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ABSTRACT: The paper presents simple formulas to evaluate parameters of a lumped system 

reproducing the frequency-dependent dynamic stiffness of end-bearing pile foundations. The 

model can be implemented in commercial finite element software and allows performing inertial 

soil-structure interaction analyses of structures considering the coupled roto-translational, vertical 

and torsional behaviour of the soil-foundation system. Pile groups arranged in a square layout are 

considered; the soil profile is constituted by a homogeneous deformable soil layer overlying a 

bedrock where piles are socked for a fixed length. Formulas are calibrated with a nonlinear least 

square procedure, based on data provided by an extensive non-dimensional parametric analysis of 

the soil-foundation systems, performed with a Winkler’s type model, previously developed by the 

authors, which assumes soil and piles to behave linearly. Firstly, the suitability of the adopted 

numerical tools in capturing the dynamic stiffness of end-bearing foundations is proven. Then, 

capabilities of the proposed formulas in estimating parameters of the best lumped systems are 

shown, and, for some case studies, comparisons of non-null terms of the impedance matrix 

obtained through the best lumped system, the one computed through the formulas, and the 

impedances resulting from the dynamic analyses, are presented. Finally, some applications of the 

proposed formulas in the framework of the seismic soil-structure interaction analysis of bridges 

are shown to demonstrate the capability of the adopted lumped system and the formula efficiency 

in assuring a reliable evaluation of the superstructure seismic response, with respect to that 

obtained from a more rigorous approach. 
 

Keywords: End-bearing pile groups, foundation impedances, inertial analysis, lumped parameter 
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1 INTRODUCTION 

The role of Soil-Structure Interaction (SSI) in the dynamic response of structural systems has 

been well addressed in the literature, which nowadays provides sufficient and useful information 

concerning situations (e.g. seismic scenarios, foundation and structural typologies) in which SSI 

has to be included in the evaluation of the structural response [1-8]. Nevertheless, SSI is usually 

neglected in the design because of the complexity of analytical and numerical procedures involved 

in its evaluation. Indeed, both the direct or the sub-structure approach, recognised in the literature 

as classical analysis methodologies, are characterised by important computational effort requiring 

the use of sophisticated software and the definition of a great number of parameters (e.g. [9, 10]) 

or the application of stepped procedures involving the use of specific tools (e.g. [11]). 



From a practical point of view, the substructure approach is more attractive. This consists in 

studying separately the soil-foundation sub-system, subjected to the propagation of seismic waves, 

and the superstructure sub-system resting on suitable dynamic compliant restraints and subjected 

to the Foundation Input Motion (FIM), which differs from the free-field motion at the soil outcrop. 

The approach is classically adopted for linear systems but can be suitably employed also to include 

effects of superstructure non-linearity by maintaining the assumption of linearity for the soil-

foundation system [e.g. 3, 8]. This is acceptable if foundations are designed to avoid the pile 

plasticization, if local pile-soil gaps are neglected, and if a linear equivalent model is adopted for 

the soil to account for possible mechanical nonlinearities. For soil conditions governed by high 

nonlinear phenomena and permanent deformations, the approach cannot be used. 

The substructure approach can be remarkably simplified by assuming the FIM to be equal to 

the free-field one at surface. Despite kinematic effects of SSI for piled foundations has been widely 

recognized to make the FIM different from the free-field motion, there are frequency ranges in 

which kinematic effects may be considered of minor importance; the latter depend strongly on the 

relative pile rigidity, pile slenderness, soil layering, pile spacing and the number of piles. Overall, 

these frequency ranges (0 ÷ f) increase by increasing the number of piles and the pile spacing and 

by decreasing the relative pile rigidity [12]. In conjunction with above considerations, input actions 

characterized by low frequency content contribute to reduce the importance of kinematic effects 

[13]. A second important task that needs simplification to make SSI analyses more familiar to 

professional engineers, is the derivation of the frequency-dependent dynamic impedances of the 

soil-foundation systems and their incorporation in time domain analyses. Lumped Parameter 

Models (LPMs) [14], obtained by assembling springs, masses and dashpots, are usually adopted 

to this purpose. However, dynamic impedances must be known, determined through not familiar 

numerical tools, and the most suitable LPM has to be selected among those available in the 

literature, and calibrated to best reproduce impedances of the specific foundation (e.g. [15-19]). 

In line with the need of simplification of SSI analysis procedures, the authors recently presented 

a LPM for the approximation of the dynamic impedances of pile groups and provided closed-form 

formulas for estimating parameters of the model for foundations in homogeneous soil deposits 

[20]. The efficiency of the proposed model in reproducing impedances of pile foundations in 

performing inertial SSI analyses was further demonstrated in [21] where it was used, in addition 

with more sophisticated approaches, to address the seismic response of bridge piers, discussing 

issues such as the soil damping modelling and the LPM complexity. 

This paper extends results of the research presented in [20] for piled foundations in homogenous 

soils, proposing new formulas for estimating components of the LPM to approximate the dynamic 

stiffness of end-bearing single piles and pile groups. These are characterised by a different number 

of piles crossing a deformable shallow soil layer of different stiffness and embedded for three 

diameters into an underlying bedrock. The lumped model can capture the coupled roto-

translational, vertical and torsional behaviour that characterise the response of pile groups. 

Formulas for the evaluation of the system parameters are evaluated through a nonlinear regression 

of data resulting from a comprehensive non-dimensional parametric investigation. The dataset is 

obtained by performing dynamic analyses of soil-foundation systems in homogenous soil deposits 

by means of the numerical model developed by Dezi et al. [22], which provides impedances of 

pile groups, and by optimising parameters of the lumped models through a linear regression 

approach. Formulas, that may be implemented in simple spreadsheets, allow defining restraint 

systems that can be physically reproduced in common software for structural analysis, avoiding 

the (i) evaluation of the dynamic impedance functions and the (ii) LPMs selection and calibration 



process. The efficiency of the proposed formulas in assuring a reliable evaluation of the seismic 

response of bridge piers, with respect to that obtained from a more rigorous approach for the 

analysis of the SSI problem, are presented and discussed with reference to some case studies. In 

detail, the seismic SSI analysis of four bridge piers founded on different soils is performed and the 

proposed LPM, with parameters estimated by the proposed closed formulas, is adopted to simulate 

the soil-foundation dynamic behaviour. By assuming the FIM to be equal to the free-field motion, 

inertial interaction analyses are performed avoiding frequency domain analyses of the soil-

foundation system. Results of the analyses are compared with those achieved through a rigorous 

approach considering the actual frequency-dependent soil-foundation impedances and FIM. 

Results of fixed base applications are included to highlight the significance of the SSI problem for 

the selected analysis cases. 

2 RECALL AND SUITABILITY OF ADOPTED TOOLS 

In this section the suitability of the numerical model adopted to build up the database of 

impedances used for the formulas regression, as well as the potentialities of the selected LPM in 

reproducing the dynamic stiffness of end-bearing pile groups are discussed. 

 

2.1 Numerical model for the soil-foundation dynamic analysis 

Impedances are obtained performing dynamic analyses of case studies through the numerical 

model developed by Dezi et al. [22]; piles are modelled with 2-node beam elements with third 

order and linear polynomials for the interpolation of transverse and longitudinal displacements, 

respectively, while the soil is assumed to be constituted by independent horizontal infinite visco-

elastic layers. Displacement components of the soil are not physically included in the problem 

formulation since the soil-pile interaction and the radiation damping are taken into account in the 

frequency domain by means of elastodynamic Green’s functions available in the literature for the 

plane strain problem [22-27]. The presence of a rigid cap is accounted for by constraining 

displacements of the pile heads. The model allows performing kinematic soil-foundation 

interaction analysis of pile groups with generic number of piles, layout and piles inclination and 

permits the derivation of the soil-foundation impedance matrix through the problem condensation 

on the rigid cap degrees of freedom. With reference to homogenous half spaces, the model was 

validated by the Authors comparing results with those obtained from 3D refined finite element 

models [22]. 

The model does not account for the vertical continuity of the soil medium and the interaction 

between layers is assured by piles. Thus, as well known for Winkler’s type models implementing 

plane strain solutions, resonant frequencies and associated cut-off effects cannot be captured 

directly, unless empirical adjustments are adopted [28-31]. Above effects may become very 

important in the case of piles embedded in soil deposits overlying stiff strata (i.e. in presence of a 

high impedance contrast between layers); in above situations the cut-off frequency, namely the 

first resonance of the soil-pile foundation system, defines the frequency associated to the emerging 

of waves propagating in the medium. For frequencies below the cut-off one, the stiffness of the 

system is almost unaffected by the damping, which is practically only due to the material hysteretic 

contribution; near the cut-off frequency the stiffness tends to diminish drastically and damping 

increases rapidly due to the contribution of waves radiating into the medium (geometric damping). 

Beyond the cut-off frequency, the behaviour is similar to that obtained by assuming plane strain 

conditions for the waves propagation. Generally, the plane strain solution underestimates the real 



part of impedances and overestimates the imaginary part for frequencies below the cut-off ones 

[32, 33]. However, by increasing the pile slenderness ratio or the pile-soil modulus ratio, cut-off 

effects reduce and models implementing the plane strain solutions become more reliable in 

estimating the soil-foundation dynamic impedances. 

Taking into account the investigated soil-foundation layout (Figure 1a) and the variability of 

geometric and mechanical parameters that will be considered in the sequel for the formulas 

calibration, some applications are herein presented to show the suitability of the model proposed 

in estimating impedances of the selected end-bearing foundations. Potential critical scenarios, 

constituted by low pile slenderness ratios and high impendence contrasts between the deformable 

layer and the bedrock are included. Components of impedance matrices obtained with the 

numerical model developed by the Authors are compared with those obtained from a refined 3D 

finite element model, developed in ANSYS [34]. In details, 16 analysis cases are considered 

combining non-dimensional geometric and mechanical properties of soils and foundations 

reported in Figure 1b. The latter descend from a formal application of the Buckingam’s theorem 

[35]. 

Taking into account the double symmetry of case studies, and considering the reference system 

frame of Figure 1a, the non-dimensional soil-foundation impedance matrix assumes the form 
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are the non-dimensional translational, rotational and coupled roto-translational impedances of the 

soil-foundation systems, obtained starting from the relevant dimensional components i , ri  and 

ryx  (with i = x, z). In Equations (1) and (2), a0 = d/Vs is non-dimensional circular frequency. 

The refined 3D model is developed adopting 8-node linear brick elements to model a quarter of 

a cylindrical soil portion with radius R and height H satisfying conditions R/d = 70 and H/d = 70 

(Figure 2a). A viscoelastic material is adopted for the soil and infinite elements, based on the 

formulation by Kaljevic et al. [36], are placed at the boundaries to simulate the radiation condition, 

absorbing most of the outgoing waves. Piles are modelled with 2-node cubic beam elements and 

their physical dimensions are considered removing the relevant soil cylinders (Figure 2b). The 

beam-solid coupling is enforced exploiting potentials of the adopted software.  
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Figure 1. (a) Soil-foundation layouts and (b) selection of geometric and mechanical parameters generating the 

analysis cases  
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Figure 2. 3D refined finite element model 

 

Piles are connected at the head by a rigid constraint (Figure 2b) and meshing criteria aimed at 

obtaining an as much as possible structured mesh and assuring a sufficient number of nodes per 

wavelength are adopted. Some accuracy analyses are preliminarily performed to define the mesh 

dimension in order to balance results reliability with computational efforts; the selected mesh 

dimension assures that the propagation of waves with frequency up to 15 Hz is well captured. As 

for the model proposed by the Authors, a highly refined vertical mesh is used for the pile (0.5 m), 

since the computational effort is overall very low. 

Soil-foundation impedances from the refined 3D model are obtained by imposing unit steady 

harmonic displacements at the fully restrained master node and evaluating the relevant reaction 

forces; symmetry or antisymmety conditions are imposed at boundaries, depending on the 

investigated component of the impedance matrix. 

For the sake of brevity only some results obtained from the applications are shown in detail in 

the sequel, comparing impedances obtained from the model by Dezi et al. [22] and the ANSYS 

model; the latter, which has fewer simplifying hypotheses with respect to the former, is considered 



to provide more precise results with respect to the exact solution of the 3D linear wave propagation 

problem.  

Figure 3 refers to the non-dimensional real and imaginary parts of the translational, vertical, 

rotational and coupled roto-translational impedances of the 2x2 pile group with s/d = 4, h/d = 14 

and different  2/ ssp VE   ratios. Results of the 3D refined finite element model are reported with 

marks while continuous lines are used for results of the adopted model. Cut-off effects are evident 

in the horizontal, vertical and coupled roto-translational impedances, especially in the case of soft 

soils, while for stiff soils effects appear of less significance. Also, for the rotational impedance, 

cut-off effects do not modify sensibly the overall trends of both real and imaginary parts. From an 

engineering point of view, the numerical model developed by Dezi et al. is overall capable of 

reproducing the behaviour of soil-foundation systems evaluated through the 3D refined model in 

the frequency range 0÷10 Hz, which may be considered of practical interest in earthquake 

engineering because it usually includes both the highest energy content of earthquakes and the 

fundamental frequencies of civil structures. However, the model is not able to capture local trends 

of impedances due to cut-off effects. The model underpredicts the actual horizontal stiffness in the 

case of stiff soils: this aspect is already known in the literature, for Winkler-type models [e.g. 37]. 

The latter issue appears to be of greater significance with respect to the cut-off induced phenomena. 

Similarly, Figure 4 refers to the non-dimensional real and imaginary parts of the translational, 

vertical, rotational and coupled roto-translational impedances of the 4x4 pile group with s/d = 2, 

h/d = 28 and different  2/ ssp VE   ratios. As expected, in view of the higher soil layer thickness 

overlying the bedrock, cut-off effects are less important and only clearly evident for the coupled 

roto-translational behaviour of the selected case studies. 
 

 70 

14 

0 

28 

100 

20 

0 

40 

350 

70 

0 

140 

0 15 f  [s-1] 

600 

360 

120 

0 

240 

5 

 xRe

 xIm

 rxRe

500 

100 

0 

200 

0 15 f  [s-1] 

350 

210 

70 

0 

140 

5 

100 

20 

0 

40 

100 

20 

0 

40 

0 15 f  [s-1] 5 

 ryxRe

 zRe  zIm

E
p
/

V
2

s=
1

5
0

 

LPM 

Dezi et al., 2016 

E
p
//


 V
2

s 
=

1
5

0
0

 

ANSYS 

42 210 60 

60 

 rxIm

300 

 ryxIm

60 

 

Figure 3. Impedances of 2x2 pile groups with s/d = 4, h/d = 14 and different Ep/Es ratios 
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Figure 4. Impedances of 4x4 pile groups with s/d = 2, h/d = 28 and different Ep/Es ratios 

With reference to the horizontal impedance, the adopted model [22] slightly underpredicts the 

response of the 3D model in the case of stiff soils and overpredicts that relevant to soft soils, in the 

low frequency range. Greatest inaccuracies affect the vertical stiffness in the case of soft soils and 

the coupled roto-translational one, for both stiff and soft soils; in these cases, the response provided 

by the Authors’ model differs of about 20% from that of the 3D refined solid model. 

Considering ANSYS model results (ANS) as benchmarks, overall errors (within the range 0÷10 

Hz) of the proposed model (D) can be computed by means of  
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for real and imaginary parts of impedance functions i. In Equations (3),  
ANSi are the mean 

values of the i-th component of the impedance matrix obtained from the ANSYS model and p = 11 

is the number of frequencies over which impedances are evaluated. Errors resulting from 

Equations (3) are collected in Table 1 for the full set of considered cases. Data relevant to analysis 

cases shown in Figures 3 and 4 (highlight in Table 1) provide a relation between the errors amounts 

and trends of impedances from the two models in the entire frequency range and make it possible 

to interpret results from all the set of applications. Overall imaginary parts present higher errors 

than real ones, especially the vertical component. Anyway, most cases are affected by errors below 

10%. 
 



Table 1. Overall percentage errors ([%]) between real and imaginary parts of impedances from Equations (3) 
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2.1 Lumped Parameter Model 

The lumped model presented by Carbonari et al. [20] and depicted in Figure 5 is considered in 

this work. As already stated, because of the symmetry of the system, the foundation is characterised 

by uncoupled vertical and torsional responses, whereas horizontal displacements and relevant 

rotations are coupled as usual for deep foundations. Furthermore, the double symmetry of the 

system makes the roto-translational responses uncoupled between planes xz and yz, too. The 

adopted LPM reflects above aspects and is obtained assembling independent sub-LPMs, as 

presented in Figure 5, which refer the uncoupled behaviours of the soil-foundation systems. The 

square layout of the pile group implies that the whole system is characterized by 18 parameters, 

namely: translational and rotational masses, lumped at the master node of the rigid cap (4 

parameters), elastic and viscous constants that define the relevant spring-dashpot elements also 

applied at the master node (8 parameters) and additional eccentric springs, dashpots and masses (3 

parameters), connected to the master node by rigid links of different lengths (3 parameters). 

Eccentric components are introduced to catch the coupling between the rotation and the translation 

in x and y directions.  

Following a formal non-dimensional approach [35] for the formulation of the system impedance 

matrix, the following expressions hold for parameters of the lumped model 
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Figure 5. Assemblage of uncoupled LPMs 
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where i (i = 1…15) are the non-zero non-dimensional components of the lumped system 

impedance matrix 
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In Equation (5), 
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Parameters hki, hci, hmi appearing at the right-hand side of Equations (4) are arbitrarily chosen 

according to the following conditions 
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in order to enforce positive signs to springs and dashpots coefficients, as well as masses. It is worth 

noting that real parts of the LPM impedance matrix are second order parabolas in the non-

dimensional frequency a0, while imaginary parts vary linearly. The non-dimensional parameters 

i (i = 1…15) of the LPM impedance matrix appearing in Equations (4) have to be calibrated to 

reproduce components of the soil-foundation impedance matrix (1) evaluated with dedicated 

software or analytical procedures (e.g. [22, 32, 38]).  

Details of a linear least square calibration strategy that allows computing the best set of 

parameters of the lumped system can be found in [20]. In Figures 3 and 4 impedances of LPMs 

suitably calibrated with the mentioned procedure are shown with dashed lines. The adopted 

lumped system is able to well capture trends of impedances (both real and imaginary parts) in the 

frequency range 0÷10 Hz. 

3 FORMULAS FOR ESTIMATING PARAMETERS i OF END-BEARING PILE GROUPS 

Closed-form empirical formulas to estimate parameters iof the LPMs representative of square 

r.c. end-bearing pile groups are presented in this section. These are calibrated starting from 

parameter values optimised with the procedure previously mentioned [20], by considering 

frequency dependent impedances evaluated with the model proposed by Dezi et al. [22]. The LPM 

parameters are calibrated to best fit the soil-foundation impedances in the frequency range 0÷10 

Hz; considering the cut-off frequency issue previously addressed, formulas provide a reliable 

estimation of the LPM parameters for frequency ranging between the cut-off value and 10 Hz. 

A wide number of cases, representative of foundations with square layouts constituted by r.c. 

piles embedded in deformable homogeneous shallow soils from low to high stiffness and socked 

for 3 diameters in the underlying seismic bedrock (Figure 6a), are considered. In details, analysis 

cases are obtained by varying the number of piles n, the pile spacing-diameter ratio s/d, the pile 

length-diameter ratio h/d and the stiffness ratio  2/ ssp VE  , where Ep is the Young modulus of the 

pile material and s and Vs are the density and the shear wave velocity of the soil, respectively. 

Values attributed to the above non-dimensional parameters are listed in Figure 6b. For all cases, a 

constant Poisson’s ratio  = 0.4 and soil hysteretic damping ratios s = 0.05 are assumed. Fixed 

values for the pile-soil density ratio p/s are assumed for each   2/ ssp VE   ratio since preliminary 

applications revealed that the influence of p/s on impedances is limited (symbol “&” is used in 

Figure 6b to couple the two parameters). Combination of parameters generates a total of 1470 

analysis cases, which constitute the dataset from which formulas are calibrated. 

It is worth noting that the optimization procedure is constrained to give positive definite 

matrices and positive masses, to guarantee the system implementation in commercial software for 

structural analysis (which generally do not allow introducing negative masses). Positivity of 

masses in some cases enforces solutions with null mass values; this circumstance is typical of 

impedance functions characterized by almost flat real parts or slightly increasing with frequency 

in the selected frequency range of calibration. (e.g. some translational or rotational terms of Figures 

3 and 4). 
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Figure 6. (a) Scheme of investigated soil-foundation systems and (b) non-dimensional parameters generating the 

analysis cases 

 

Expressions defined for the generic non-dimensional parameter i (i = 1…15) are reported 

below. 
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In Equations (8c) and (8d) 

0          for        1n  (9a) 

1           for        1n  (9a) 

while in Equation (8f)  
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Constants appearing in Equations (8) and (10) are reported in Appendix I for foundations with 

different number of piles. 

Figure 7 compares the non-dimensional parameters i optimised according to [20] with values 

obtained from the proposed formulas. Parameters are reproduced closely, with errors 

lower than 30% (dotted lines in Figure 7).  
 

 
Figure 7. Comparisons between the optimized non-dimensional parameters of the LPMs and the proposed formulas 
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On the contrary, parametersand, representative of mass terms, present errors 

sensibly higher; all the remaining parameters are characterised by errors of about 30% (with few 

exceptions). Errors relevant to masses are due to perturbations induced by the positivity condition 

in the LPM calibration procedure. The overall suitability of the proposed formulas in capturing the 

optimised parameters of the LPMs is quantified through the coefficients of determination (R-

squared coefficients) presented in Table 2. It should be noted that most of the computed R-squared 

parameters, including mean values obtained by averaging those of pile groups with different 

number of piles, are greater than 0.9, excepting those relevant to . Furthermore, in a very high 

number of cases, the R-squared coefficients are higher than 0.95. Finally, to provide a pictorial 

view of the formulas capabilities in predicting parameters of the optimised LPM, Figure 8 shows 

components i of the non-dimensional impedance matrix for the 4x4 pile groups with s/d = 2.5, 

h/d = 18 and different  2/ ssp VE   ratios, obtained from the dynamic analysis [22], from the LPM 

calibration (LPM_C) and from the proposed formulas (LPM_F). The proposed LPM, suitably 

calibrated, can approximate the soil-foundation dynamic stiffness very well in the optimization 

frequency range 0÷10 Hz with minor discrepancies affecting the imaginary parts at low 

frequencies, especially for the rotational (ry) component. Differences between the dynamic 

behaviour of LPM_C and LPM_F are overall very limited and mainly affect the torsional 

impedance (rz). 

5 APPLICATIONS OF THE PROPOSED FORMULAS 

Proposed formulas can be exploited to simplify the computational effort of seismic SSI analysis 

of structures, in the framework of the substructure approach, which classically requires the 

definition of the frequency-dependent compliant structural restraints and the evaluation of the FIM. 

Above quantities, usually obtained through frequency domain analysis of the soil-foundation 

system, have to be further elaborated in order to be used in time domain inertial SSI analysis of 

the superstructures: soil-foundation impedances must be reproduced by means of calibrated 

lumped systems and time histories of the FIM must be computed by the inverse Fourier transform. 

In this framework, proposed closed-form expressions directly provide parameters of the lumped 

system approximating the frequency-dependent impedance functions of the soil-foundation 

system, largely simplifying the overall procedure, especially if the free-field motion is assumed to 

be equal to the foundation input one. 
 

 
 

Table 2. R-squared coefficients 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1.00 --- 0.81 1.00 --- 1.00 1.00 1.00 1.00 0.99 --- 0.91 0.94 1.00 0.99 

2x2 1.00 0.89 0.98 1.00 --- 1.00 0.99 0.94 0.99 1.00 0.98 0.97 1.00 0.94 0.97 

3x3 1.00 0.93 0.99 1.00 0.79 1.00 0.99 0.94 0.99 1.00 0.97 0.98 1.00 0.99 0.99 

4x4 1.00 0.97 0.99 1.00 0.72 1.00 0.99 0.98 0.99 1.00 0.93 0.99 1.00 0.99 1.00 

5x5 1.00 0.97 0.99 1.00 0.72 1.00 0.99 0.98 0.99 1.00 0.93 0.99 1.00 0.99 1.00 

Mean 1.00 0.94 0.95 1.00 0.72 1.00 0.99 0.97 0.99 1.00 0.95 0.97 0.99 0.98 0.99 
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Figure 8. Impedances of 4x4 pile groups: comparisons of benchmarks with impedances of LPM_C and LPM_F 

 

5.1 Case Studies 

By assuming the FIM to coincide with the free-field motion [12, 13], formulas proposed in 

Section 4 are herein used to evaluate LPMs to perform SSI analyses of some bridge piers (Figure 

9a) characterised by different fundamental periods. The scheme may be representative of the 

transverse response of multi-span bridges with decks not connected at the abutments in the 

transverse direction, or with dual load path mechanisms, for what concern the transverse seismic 

behaviour of inner piers [7]. Focusing on the deck and foundation displacements due to seismic 

actions in the x direction (i.e. transverse bridge direction), piers are modelled with rigid elements 

and the elastic deformability is lumped at end rotational viscoelastic springs with stiffness K and 

damping C (Figure 9b). Pile and bent caps are assumed to be rigid, with masses mc and mf, and 

moment of inertia Ic and If, respectively. Furthermore, md and mp are the masses of the bridge deck 

belonging to the pier and the mass of the pier, respectively, while Id is the deck moment of inertia. 

Finally, hd, hc, hp and hf are geometric parameters depicted in Figure 9b. Four piers (P1, P2, P3, 

P4), characterised by properties reported in Table 3, are considered and assumed to be founded on 

2x2 and 4x4 r.c. pile groups with h/d = 20 and s/d = 3, according to schemes of Figure 6a. Soft 

soil conditions (i.e  2/ ssp VE   = 1000 and p/s = 1.5416) are considered in order to enhance 

significance of SSI effects.  



With reference to the soil-foundation systems, mechanic and geometric dimensional parameters 

are obtained assuming d = 1 m, Ep = 30000 MPa and p = 2.5 t/m3. Finally, 5% structural damping 

is introduced in terms of stiffness proportional damping. 

The response of the bridge piers on Compliant Base (CB) (Figure 9b) are computed considering 

both the LPM, with parameter obtained through the proposed formulas (CB-LPM), and the soil-

foundation impedances (CB-IMP) resulting from the numerical procedure of Dezi et al. [22]. 

Furthermore, the response of piers on Fixed Base (FB) (Figure 9c) is also computed in order to 

evaluate significance of SSI effects on the bridge response and suitably weight discrepancies 

between the rigorous and simplified evaluation of the soil-foundation impedances. 

Since accuracy of LPMs in reproducing impedances of the soil-foundation system may vary 

with frequency, each pier, characterised by a specific fundamental period, is analysed considering 

seismic actions with different frequency contents, selected from both the Europeans Strong motion 

Database (ESD) [39] and the Italian database Itaca (IT) [40].  

 
Table 3. Superstructure and foundation parameters of bridge piers 

Superstructure P1 P2 P3 P4 

Foundation 2x2 2x2 4x4 4x4 

md [t] 305.8 305.8 305.8 305.8 

Id [t m2] 2466.6 2466.6 2466.6 2466.6 

hd [m] 0.59 0.59 0.59 0.59 

mc [t] 88.3 88.3 88.3 88.3 

Ic [t m2] 426.6 426.6 426.6 426.6 

hc [m] 1.80 1.80 1.80 1.80 

mp [t] 57.6 121.1 196.0 253.6 

hp [m] 5.0 10.5 17.0 22.0 

hf [m] 1.50 1.50 2.00 2.00 

mf [t] 95.6 95.6 326.2 326.2 

If [t m2] 217.0 217.0 1848.4 1848.4 

Kϕ [MN/rad] 23067.6 10984.6 6784.6 5242.6 

FB period [s] 0.2001 0.50082 1.0076 1.4841 
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Figure 9. (a) Lateral view of one bridge pier; (b) CB models and (c) FB model 

 



The adopted earthquakes with high magnitude Mw registered by stations on different soil types 

are reported in Table 4, while Figure 10 shows the relevant acceleration time histories and Fourier 

amplitude spectra from which the earthquakes frequency content can be evaluated. The seismic 

inputs of CB models implementing the actual frequency-dependent soil foundation impedances 

are evaluated rigorously considering the Dezi et al. model [22], which provides the FIM from a 

kinematic interaction analysis of the soil foundation system. 
 

Table 4. Selected earthquakes 

ID Earthquake Station Soil Type Date Mw [km] PGA [g] (x) 

ESD287 Campano Lucano ST93 A 23/11/80 6.9 23 0.18 

ESD290 Campano Lucano ST96 A 23/11/80 6.9 32 0.32 

ESD292 Campano Lucano ST98 A 23/11/80 6.9 25 0.06 

ESD428 Etolia ST169 A 18/05/88 5.3 23 0.18 

ESD593 Umbria-Marche ST60 B 26/09/97 5.7 13 0.27 

ESD595 Umbria-Marche ST83 B 26/09/97 5.7 25 0.04 

ESD601 Umbria-Marche ST224 C 26/09/97 5.7 27 0.05 

ESD759 Umbria-Marche ST265 B 26/09/97 5.7 32 0.04 

ESD4675 South Iceland ST2487 A 17/06/00 6.5 13 0.13 

ESD6965 Izmit (aftershock) ST3270 D 13/09/99 5.8 27 0.07 

ESD7089 Pasinler ST557 A 10/07/01 5.4 32 0.02 

IT74 Friuli SRC0 A 11/09/76 5.1 16 0.07 
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Figure 10. Acceleration time histories [m/s2] and Fourier amplitude spectra [m/s2] of the selected earthquakes 



On the contrary, the seismic inputs of the FB models and of CB models implementing LPMs, 

obtained through formulas of Section 4, are directly constituted by the selected free-field ground 

motions. It is worth mentioning that a rigorous evaluation of the FIM for the CB models implies 

the computation of the soil-foundation system kinematic factors, through which the translational 

and rotational components of the seismic action are evaluated. 

5.2 Main results 

Results of applications are presented in terms of bridge deck relative displacements (with 

respect to the foundation) and foundation displacements, comparing results obtained from the two 

CB models (CB-IMP, implementing the actual frequency-dependent soil foundation impedances, 

and CB-LPM, assembled according to the proposed formulas). Results of FB applications are 

considered to quantify significance of SSI effects, i.e. to weight importance of discrepancies 

between the rigorous (CB-IMP) and simplified (CB-LPM) approach. 

Figure 11 shows the deck relative displacement of P2 obtained for two of the selected 

accelerograms (ESD287 and ESD428); results from FB and CB-IMP models are compared in the 

first row of graphs while comparisons of results from the CB models (i.e. CB-IMP and CB-LPM) 

are addressed in the second row of graphs. The simple observation of time histories suggests that 

SSI significantly affects the superstructure response, as expected in view of the superstructure 

stiffness (case study P2 is representative of a stiff superstructure), and that these effects can be 

reasonably captured by adopting a simplified analysis approach which foresees the application of 

the free-field motion, instead of the foundation input one, to a CB structure assembled exploiting 

the proposed formulas. The latter consideration is justified by the almost superimposed responses 

of the CB-IMP and CB-LPM models. 

Figure 12 shows similar results for P4, which is representative of a slender superstructure. In 

this case, SSI is less pronounced and responses of CB-IMP and CB-LPM models perfectly match. 
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Figure 11. Deck displacements obtained from FB and CB models for (a) earthquake ESD287 and (b) earthquake 

ESD428 and for P2 
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Figure 12. Deck displacements obtained from FB and CB models for (a) earthquake ESD287 and (b) earthquake 

ESD428 and for P4 

 

In order to facilitate the presentation of results from all applications, and to quantitatively 

express the formulas efficiency, metrics proposed by Kavrakov et al. [41] are used in the sequel to 

compare time histories of displacements obtained from the different structural models. Metrics, 

quantifying discrepancies between two signals x(t) and y(t) in the time domain with respect to 

different properties, are expressed in the form: 

   yxA

i
ieyxM

,
,


    (11) 

and assume values between 0 (completely discrepant signals) and 1 (no discrepancies between 

signals). In equation (11), subscript i refers to the i-th particular property of the signals, for which 

the metric is constructed. Among those introduced in [41], the phase metric M the peak metric 

Mp, the root mean square metric Mrms, the magnitude metric Mm, the wavelet metric Mw and the 

frequency normalised wavelet metric Mwf are herein considered. The phase metric accounts for the 

mean phase discrepancy between signals, with respect to a reference time delay TC; the peak metric 

accounts for the difference in the maximum peak response while the root mean square metric 

quantify discrepancies of signals with respect to their average quantities. The magnitude metric 

accounts for discrepancies in the time-localized magnitude of the signals and is computed on the 

basis of the dynamic time warping algorithm [42]. Finally, the wavelet metric allows studying the 

overall signals discrepancies in the time-frequency plane while the frequency normalised wavelet 

metric allows to understand if the latter are due to the signal amplitudes or frequency content. 

Expressions of coefficients Ai of above metrics are reported below for the sake of completeness; 

further details can be found in [41].  
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where TC is assumed to be the fundamental frequency of the pier; 
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where xw and yw are the warped signals and Nw is the number of warped steps; 
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where Wx and Wy are the wavelet coefficients of signals x and y, respectively, in the time-frequency 

plane, obtained by considering the Morlet wavelet, for which the scale a is inversely proportional 

to the frequency; 
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Figure 13 refers to the deck relative displacements and shows comparisons in terms of above 

metrics for all applications (i.e. for all piers and earthquakes) adopting “radar graphs”. In details, 

each radar refers to a specific pier and each line within the radar refers to one of the selected 

earthquakes. Association of each line to the relevant earthquake goes beyond the aim of the figure, 

which intends to provide a pictorial view of the overall discrepancies between the superstructure 

responses obtained from FB and CB models for input motions characterised by different frequency 

contents, magnitudes, and acceleration amplitudes. In this sense, blue lines quantify discrepancies 

between responses of CB-IMP and CB-LPM models, while red lines quantify discrepancies 

between responses from FB and CB-LPM models. With reference to red lines, it can be observed 

that SSI effects diminish sensibly by increasing the superstructure slenderness; greater effects can 

be observed for P1 for which metrics are all in in the range 0.35÷0.60, with few exceptions relevant 

to Mp and Mrms. This implies that the response of the CB model is significantly different from that 

of the FB model, both in terms of amplitude and frequency content. For pier P2, discrepancies in 

terms of average quantities of signals (Mrms), maximum peak response (Mp) and time lag (M) 

diminish (metrics are mainly in the range 0.40÷0.90) while differences in terms of time-localized 

magnitude (Mw) and frequency content (Mwf) remain important (metrics are in the range 

0.35÷0.45). Piers P3 and P4 are less affected by SSI phenomena; both metrics quantifying 

discrepancies in terms of signal amplitude and frequency content are close to one (0.80÷1.00).  

The effectiveness of the proposed formulas in providing reliable lumped systems to simulate 

the actual soil-foundation impedances is quantified through metrics depicted with blue lines in 

Figure 13. 



For P1 and P2 the response of the CB-LPM model agree quite well with that obtained from the 

CB-IMP model, implementing the actual soil-foundation impedances, both in terms of signals 

amplitude and frequency content; the relevant metrics, indeed, vary between 0.75 and 1.00, 

depending on the earthquake. Furthermore, discrepancies between the two CB models reduce 

significantly, passing from P1 to P4; in particular, for P3 and P4 the match is almost perfect. 

With a similar approach, Figure 14 shows trends of the comparison metrics relevant to time 

histories of the foundation rotations, obtained from the CB-LPM and CB-IMP models.  
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Figure 13. Comparison metrics for the deck displacements: (a) P1, (b) P2, (c) P3 and (d) P4 
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Figure 14. Comparison metrics for the foundation rotation: (a) P1, (b) P2, (c) P3 and (d) P4 



Previous considerations concerning deck displacements hold; overall the CB-LPM models are 

able to capture the response predicted with the more rigorous CB-IMP models with differences 

among them diminishing by increasing the superstructure slenderness. 

5 CONCLUSIONS 

With reference to end-bearing square pile groups, closed form expressions for evaluating 

parameters of the lumped system proposed by Carbonari et al. [20] have been identified and 

calibrated. The lumped model can be adopted in the framework of the sub-structure approach to 

perform time domain inertial analyses of superstructures considering the coupled roto-

translational, vertical and torsional behaviour of the soil-foundation system. The system can be 

easily implemented in commercial software for structural analyses. Formulas are calibrated with a 

nonlinear least square procedure, based on data provided by an extensive non-dimensional 

parametric analysis, covering a wide number of cases representative of foundations constituted by 

r.c. piles embedded in deformable soils from low to high stiffness and socked in the underlying 

bedrock. Formulas, whose independent variables are the main geometrical and mechanical 

properties of the soil-foundation systems, are overall able to well capture all the parameters of the 

lumped system and can be readily adopted by engineers through simple spreadsheets to define 

compliant restraints to perform inertial soil-structure interaction analyses. Anyway, application of 

the proposed tools (i.e. analysis methodology, lumped parameter model and formulas) to practical 

situations requires an engineering judgment to reconcile the real case (i.e. stratified non-

homogenous soil deposit) with the academic one investigated in this paper and to care possible 

effects due to the cut-off issue, for those structures presenting a compliant base fundamental 

frequency lower or close to the cut-off one. 

However, some applications of the proposed formulas in the framework of seismic soil-

structure interaction analysis of bridges, demonstrate the potentials of the developed expressions 

in simplifying the analysis procedures while assuring a reliable prediction of the structural 

response, independently on the seismic input magnitude and frequency content. 
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APPENDIX I 

Table A1. Parameters of Equations (8) and (10) 

i  n         

1  

1 2.20683 0 0.00145 0.21021 - - - - - 

2 3.95051 0.20365 -0.00023 0.21056 - - - - - 

3 5.57664 0.26932 -0.00149 0.21084 - - - - - 

4 7.13818 0.30023 0.00065 0.21080 - - - - - 

5 8.65519 0.31771 0.00557 0.21054 - - - - - 

2  

1 0 -0.44848 0 0 0 - - - - 

2 0.72831 2.74226 -2.37E-07 0.000231 3.78511 - - - - 

3 0.83961 1.08683 5.603E-07 -0.00284 27.03892 - - - - 

4 0.95976 0.19168 4.784E-07 0.00222 67.01696 - - - - 

5 1.02683 -0.09726 -1.82E-06 0.01657 115.9066 - - - - 

3  

1 0 -0.1808 1.669E-07 0.000476 21.36234 - - - - 

2 0.54884 0.17127 -5.35E-07 0.00593 30.29008 - - - - 

3 0.80035 0.47078 -1.83E-06 0.01228 39.31741 - - - - 

4 0.96114 0.74962 -2.04E-06 0.0154 48.6382 - - - - 

5 1.08628 0.76012 -3.07E-06 0.02388 60.16417 - - - - 

4  

1 -0.49282 0 0.00158 0.47346 - - - - - 

2 -1.15308 0.1359 -0.00232 0.47388 - - - - - 

3 -1.899 0.18094 0.00154 0.47356 - - - - - 

4 -2.71322 0.20184 0.01592 0.47244 - - - - - 

5 -3.58332 0.21328 0.03704 0.47094 - - - - - 

5  

1 0 0 0 0 - - - - - 

2 0 0 0 0 - - - - - 

3 -0.60842 -0.23992 4.53695 0.24911 - - - - - 

4 -2.27738 0.78598 3.8906 0.15478 - - - - - 

5 -2.79472 1.06496 3.2542 0.24101 - - - - - 

6  

1 3.22514 0 0.30245 0.23005 - - - - - 

2 3.97101 0.48106 0.38126 0.3291 - - - - - 

3 5.31738 0.66483 0.30408 0.38741 - - - - - 

4 7.53143 0.77205 0.47104 0.39779 - - - - - 

5 9.72955 0.84712 0.39294 0.42266 - - - - - 



i  n         

7  

1 5.6625E-05 5.77E-05 -0.03354 232.7635 30019.93 0.88453 -0.00040 - - 

2 0.00077919 -0.00076 -0.06386 433.5887 171694.2 1.75513 -0.3441 - - 

3 0.00282 -0.00358 -0.12227 1037.128 344937.2 1.40658 -0.44029 - - 

4 0.00694 -0.00945 -0.16538 1691.237 471922.6 1.13963 -0.48307 - - 

5 0.01353 -0.01902 -0.19653 2367.728 571263.4 0.94006 -0.5009 - - 

8  

1 -2.127E-07 -2.13E-07 -2.13E-07 0.18159 -485.846 -2091490 2.07403 0.01892 - 

2 0.00033337 -0.00109 0.00103 -0.0226 79.50082 -2438.37688 -3.48682 2.31184 - 

3 0.00534 -0.01508 0.0127 -0.28697 1334.937 -14314.0097 -7.9606 1.35155 - 

4 0.00533 -0.01465 0.01223 0.01035 -43.42026 140587.3635 1.29069 1.07711 - 

5 0.01998 -0.05565 0.0477 0.01182 -38.2927 191842.0915 0.33118 0.91193 - 

9  

1 2.9766E-06 2.98E-06 2.976E-06 -0.12533 521.4217 435223.6453 2.60335 0.00794 - 

2 0.00017926 -0.00015 0.00065 -0.00267 19.15515 59971.3804 0.73802 0.57976 - 

3 0.00096233 -0.00285 0.00351 -0.00575 27.28366 53174.85506 1.65464 1.09161 - 

4 0.00312 -0.01146 0.01319 -0.00363 17.37703 39454.39976 2.68146 1.48159 - 

5 0.00864 -0.03444 0.03942 -0.00291 15.06353 32917.26453 3.01846 1.69822 - 

10  

1 0 -1,03E-05 0,0848421 28,68086 1,46576 -0,45835 - - - 

2 0,08192 -2,38E-05 0,4290812 85,40291 0,57299 -0,51224 - - - 

3 0,12816 -3,09E-05 0,7208385 116,5395 0,45263 -0,47394 - - - 

4 0,16591 -3,03E-05 9,08E-01 133,7845 0,37313 -0,41934 - - - 

5 0,19934 -2,47E-05 1,01E+00 143,3302 0,31734 -0,36691 - - - 

11  

1 0 0 0 0 0 0 - - 2000 

2 9,69E-01 -19,6 3,07E+00 -1,67E-07 9,87E-06 -7,6516E-05 - - 442 

3 1,06354 -3,38 0,88332 -0,001261 8,74E-02 -0,45599353 - - 300 

4 1,04904 -0,511 5,99E-01 -0,002421 2,33E-01 0,06260198 - - 0 

5 1,03754 0,60216 0,41476 -0,001695 4,65E-01 7,8268823 - - 0 

12  

1 0 0,59049 0,05557 -0,000792 0,30204318 16,4602273 - - 0 

2 0,61742 0,47699 0,18137 0,010835 -0,2495260 22,687036 - - 0 

3 0,87509 0,21319 0,28866 0,013036 -0,4340227 26,3905513 - - 0 

4 0,97493 0,20027 0,33256 0,013930 -0,5180498 35,3765775 - - 0 

5 1,02386 0,15193 0,35794 0,011682 -4,36E-01 4,68E+01 - - 0 

13  

1 0 0 0 0 0 - - - - 

2 1.75344 1.34909 -1.41E-06 0.00499 16.00872 - - - - 

3 1.93871 1.36806 -5.30E-06 0.01874 59.18202 - - - - 

4 2.04008 1.37436 -0.000013 0.04497 141.34578 - - - - 

5 2.10388 1.37774 -2.47E-05 0.08709 273.41737 - - - - 

14  

1 0 0 0 0 0 - - - - 

2 3.43807 -8.44519 -9.22E-05 0.39579 -4.61503 - - - - 

3 2.87355 -1.05179 3.562E-05 -0.13316 322.13418 - - - - 

4 2.74287 -2.34447 0.000284 -0.94663 2353.98912 - - - - 

5 2.69686 -2.72946 0.00152 -3.97363 7635.85437 - - - - 

15  

1 0 0 0 0 0 - - - - 

2 1.94311 -1.92629 2.074E-06 0.01241 39.82764 - - - - 

3 2.83271 0.5482 -3.39E-06 0.02146 23.50052 - - - - 

4 3.1257 2.2111 -7.73E-06 0.02901 32.50647 - - - - 

5 3.17766 2.70347 -1.80E-05 0.05597 72.5556 - - - - 


