Novel 8-amino-1,2,4-triazolo[4,3-a]pyrazin-3-one derivatives as potent human adenosine A_{1} and $A_{2 A}$ receptor antagonists. Evaluation of their protective effect against $\boldsymbol{\beta}$-amyloid-induced neurotoxicity in SH-SY5Y

 cellsMatteo Falsini, ${ }^{\text {a }}$ Daniela Catarzi, ${ }^{\text {a }}$ Flavia Varano, ${ }^{\text {a }}$ Diego Dal Ben, ${ }^{\text {b }}$ Gabriella Marucci, ${ }^{\text {b }}$ Michela
Buccioni, ${ }^{\text {b }}$ Rosaria Volpini, ${ }^{\text {b }}$ Lorenzo Di Cesare Mannelli, ${ }^{\text {c }}$ Carla Ghelardini, ${ }^{\text {c }}$ Vittoria Colotta ${ }^{\text {a* }}$

${ }^{a}$ Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy.
${ }^{b}$ Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, via S. Agostino 1, 62032 Camerino (MC), Italy.
${ }^{c}$ Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmacologia, Università degli Studi di Firenze, Viale Pieraccini 5, 50139 Firenze, Italy.

Corresponding authors. e-mail: vittoria.colotta@unifi.it.

Abstract

In this work, an enlarged series of 1,2,4-triazolo[4,3-a]pyrazin-3-ones was designed to target the human (h) $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor (AR) or both hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}}$ ARs. The novel 8-amino-1,2,4-triazolopyrazin-3-one derivatives $\mathbf{1 - 2 5}$ featured a phenyl or a benzyl pendant at position 2 while different aryl/heteroaryl substituents were placed at position 6 . Two compounds ($\mathbf{8}$ and 10) endowed with high affinity $\left(\mathrm{K}_{\mathrm{i}}=7.2\right.$ and 10.6 nM$)$ and a complete selectivity for the $\mathrm{hA}_{2 \mathrm{~A}}$ AR were identified. Moreover, several derivatives possessed nanomolar affinity for both hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}}$ ARs (both $\mathrm{K}_{\mathrm{i}}<20 \mathrm{nM}$) and different degrees of selectivity versus the hA_{3} AR. Two selected compounds (10 and 25) demonstrated ability in preventing β-amyloid peptide (25-35)-induced neurotoxicity in SH-SY5Y cells. Results of docking studies at the $\mathrm{hA}_{2 \mathrm{~A}}$ and $\mathrm{hA}_{1} \mathrm{AR}$ crystal structures helped us to rationalize the observed affinity data and to highlight that the steric hindrance of the substituents at the 2- and 6-position of the bicyclic core affects the binding mode in the receptor cavity.

Keywords
G protein-coupled receptors, adenosine receptors, adenosine receptor antagonists, 1,2,4-triazolo[4,3-a]pyrazin-3-ones, Alzheimer disease, ligand-adenosine receptor modeling studies.

1. Introduction

Adenosine is a ubiquitous neuromodulator which controls many physiological and pathological processes, both in the central and peripheral nervous system. Adenosine exerts its effects through activation of G protein-coupled receptors, subdivided into the four subtypes $A_{1}, A_{2 A}, A_{2 B}$ and A_{3} $[1,2] . \mathrm{A}_{1}$ and A_{3} adenosine receptors (ARs) are negatively coupled to adenylate cyclase while $\mathrm{A}_{2 \mathrm{~A}}$ and $\mathrm{A}_{2 \mathrm{~B}}$ subtypes activate the enzyme. The $\mathrm{hA}_{1} \mathrm{AR}$ subtype is the most abundant in the brain and is traditionally considered a neuroprotective receptor due to its inhibitory effects [3]. For instance, it curtails excitatory neurotransmission thus exerting a protective role in diverse pathological conditions linked to glutamate excitotoxicity such as cerebral ischemia or epilepsy. Nevertheless, there is recent evidence that A_{1} AR-sustained activation after stroke or ischemia induces AMPA receptor endocytosis and the consequent, persistent synaptic depression may contribute to enhanced neuronal death [4-6].

The $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ subtype has less widespread localization at central level where it shows higher density in the basal ganglia and lower in the cortex and hippocampus. Blockade of this AR subtype exerts a protective effect in different models of cerebral ischemia and neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases [4,7-16]. In the last decade, several human studies have highlighted that consumption of caffeine, a non-selective A_{1} and $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$ antagonist, negatively correlated with the risk of developing AD and PD [9,11-12]. The protective effect of caffeine, investigated in animal models of AD and PD was ascribed to antagonism of the $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$ subtype, among other pathways [10-14]. Related to AD models, both caffeine and the potent $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$ antagonist \quad ZM 241385 (4-(2-[7-amino-2-(2-furyl)-1,2,4-triazolo[2,3-a]triazin-5ylamino]ethyl]phenol) prevented cell death after exposure of rat cultured cerebellar granule neurons to the β-amyloid peptide (25-35) [13]. $\mathrm{A}_{2 \mathrm{~A}}$ AR antagonists demonstrated an ability to alleviate cognitive deficits caused by administration of the β-amyloid peptides in different in vivo rodent models $[14,15]$. However, more recently, also $\mathrm{A}_{1} \mathrm{AR}$ antagonism was recognized as affording neuroprotection in a model of combined neurotoxicity. In fact, the protective effect of dual A_{1} and
$\mathrm{A}_{2 \mathrm{~A}}$ AR blockade in preventing β-amyloid toxicity in neuroblastoma cells exposed to aluminium chloride was demonstrated [16].

In recent years, as part of a research program aimed at finding new adenosine receptor antagonists [17-25], we disclosed the 8 -amino-1,2,4-triazolo[4,3- a]pyrazin-3-one as a new decorable scaffold to obtain potent antagonists able to bind selectively the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ or both the hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}}$ subtypes [21] (Fig. 1). The SAR study showed that the unsubstituted phenyl ring at position 2 was the best group for obtaining an efficient $\mathrm{hA}_{2 \mathrm{~A}}$ receptor interaction, and that the presence of small para alkoxy groups (OMe, OEt, O-isopropyl, O-propargyl) on the 6-phenyl pendant afforded nanomolar affinity and a complete selectivity for this AR subtype.

To continue investigations of the 8 -amino-1,2,4-triazolopyrazin-3-one series, we designed and synthesized an enlarged series of derivatives to obtain antagonists for the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ or both hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}}$ ARs. These types of ligands were of our interest for their ability to induce neuroprotection in different neurodegenerative diseases. Thus, a new set of triazolopyrazines, featuring the unsubstituted phenyl ring at position 2 and heteroaryl or aryl groups at position 6 (Fig. 1 compounds 1-22), were synthesized. Simple substituents, endowed with different electronic, steric and lipophilic properties, were probed on the 6-phenyl ring $\left(\mathrm{X}=\mathrm{OMe}, \mathrm{NO}_{2}, \mathrm{NH}_{2}, \mathrm{Br}, \mathrm{Cl}\right)$. The NH_{2} group was also inserted to construct the piperazine moiety appended on the 6-phenyl moiety (compounds 17-22). Finally, derivatives featuring a benzyl chain at position 2 and a phenyl ring or a 2-furyl/2-(5-methylfuryl) group at position 6 were synthesized (derivatives 23-25) since the benzyl pendant and the furyl moiety were thought to enhance compound solubility.

Figure 1. Previously and currently reported 1,2,4-triazolo[4,3-a]pyrazin-3-ones 1-25.

2. Results and discussion

2.1. Chemistry

The new 8 -amino-1,2,4-triazolo[4,3- a]pyrazin-3-one derivatives $\mathbf{1 - 2 5}$ were prepared as described in Schemes 1-3. Scheme 1 depicts the synthesis of the 2-phenyl derivatives 1-16 which were obtained starting from ethyl 1-phenyl-5-oxo-1H-1,2,4-triazole-3-carboxylate 26 [21].

	R_{6}		R_{6}
$\mathbf{1 , 2 7 , 3 9 , 5 4}$	2-furyl	$\mathbf{9 , 3 5 , 4 7 , \mathbf { 6 2 }}$	$\mathrm{C}_{6} \mathrm{H}_{4}-3-\mathrm{Br}$
$\mathbf{2 , 2 8 , 4 0 , 5 5}$	2-(5-methylfuryl)	$\mathbf{1 0 , 3 6 , 4 8 , \mathbf { 6 3 }}$	$\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{Br}$
$\mathbf{3 , 2 9 , 4 1 , 5 6}$	2-thienyl	$\mathbf{1 1 , 3 7 , 4 9 , \mathbf { 6 4 }}$	$\mathrm{C}_{6} \mathrm{H}_{4}-3-\mathrm{Cl}$
$\mathbf{4 , 3 0}, \mathbf{4 2 , 5 7}$	2-pyridyl	$\mathbf{1 2 , 3 8 , 5 0 , 6 5}$	$\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{Cl}$
$\mathbf{5 , 3 1 , 4 3 , 5 8}$	$\mathrm{C}_{6} \mathrm{H}_{4}-2-\mathrm{OCH}_{3}$	$\mathbf{1 3 , 5 1}$	$\mathrm{C}_{6} \mathrm{H}_{4}-2-\mathrm{OH}$
$\mathbf{6 , 3 2 , 4 4 , 5 9}$	$\mathrm{C}_{6} \mathrm{H}_{4}-2-\mathrm{NO}_{2}$	$\mathbf{1 4}$	$\mathrm{C}_{6} \mathrm{H}_{4}-2-\mathrm{NH}_{2}$
$\mathbf{7 , 3 3 , 4 5}, \mathbf{6 0}$	$\mathrm{C}_{6} \mathrm{H}_{4}-3-\mathrm{NO}_{2}$	$\mathbf{1 5 , 5 2}$	$\mathrm{C}_{6} \mathrm{H}_{4}-3-\mathrm{NH}_{2}$
$\mathbf{8 , 3 4 , 4 6 , 6 1}$	$\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{NO}_{2}$	$\mathbf{1 6 , 5 3}$	$\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{NH}_{2}$

Scheme 1. Reagents and conditions: (a) $\mathrm{R}_{6}-\mathrm{COCH}_{2} \mathrm{Br}, \mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{DMF} / \mathrm{CH}_{3} \mathrm{CN}$, rt; (b) $\mathrm{NH}_{4} \mathrm{OAc}, 150$ ${ }^{\circ} \mathrm{C}$ sealed tube ; (c) from $\mathbf{4 3}, 5, \mathrm{BBr}_{3}$, anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ - rt; (d) from $\mathbf{4 5}, 46,6-8, \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, DMF, Parr apparatus, 40 psi ; (e) POCl_{3}, mw or conventional heating, $140-180^{\circ} \mathrm{C}$; (f) NH_{3}, absolute EtOH.
N^{4}-Alkylation of 26 with the suitable α-aloketones in $\mathrm{DMF} / \mathrm{CH}_{3} \mathrm{CN}$, and in the presence of potassium carbonate, afforded the ethyl -5-oxo-4-phenyl-1,2,4-triazole-3-carboxylate derivatives 27-38 whose cyclization with ammonium acetate, in a sealed tube at $150^{\circ} \mathrm{C}$, gave the 2 -phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8-diones 39-50. The 6-(2-methoxyphenyl) derivative 43 was demethylated with BBr_{3} to yield the corresponding hydroxy-substituted compound 51. Catalytic $(\mathrm{Pd} / \mathrm{C})$ hydrogenation of the meta- and para-nitro derivatives 45-46, in a Parr apparatus, furnished the respective amino-substituted compounds $\mathbf{5 2 - 5 3}$. The 3,8 -diones $\mathbf{3 9 - 5 0}$ were chlorinated with phosphorus oxychloride, under microwave irradiation, to obtain the corresponding 8 -chloro derivatives 54-65 which gave the desired 8 -amino-1,2,4-triazolo[4,3-a]pyrazin-3-ones $\mathbf{1 - 1 2}$ upon treatment with a saturated solution of ammonia in absolute ethanol. Demethylation of the 6-(2methoxyphenyl) derivative 5 with BBr_{3} gave the corresponding 6-(2-hydroxyphenyl)-substituted compound 13. The nitro derivatives $\mathbf{6 - 8}$ were reduced $\left(\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}\right)$ in a Parr apparatus to yield the corresponding amino derivatives 14-16. Synthesis of the triazolopyrazines 17-22, featuring a piperazine on the 6-phenyl pendant, is outlined in Scheme 2.

Scheme 2. Reagents and conditions: a) i) $\operatorname{Bis}(2$-chloroethyl)amine hydrochloride, sulfolane, 150 ${ }^{\circ} \mathrm{C}$, ii) NaHCO_{3} saturated solution; (b) $\mathrm{CH}_{3} \mathrm{I}$, anhydrous DMF, rt; (c) $\mathrm{PhCH}_{2} \mathrm{Br}, \mathrm{Et}_{3} \mathrm{~N}$, anhydrous 1,4-dioxane, reflux.

The piperazine ring was constructed by alkylation of the aromatic amino group of derivatives 14-16 with bis(2-chloroethyl)amine in sulfolane at $150{ }^{\circ} \mathrm{C}$. Reaction of the 6-(3-piperazin-1-yl)substituted compound $\mathbf{1 8}$ with methyl iodide gave rise to the N, N-dimethylpiperazinium salt 20. Compounds 18 and 19 were reacted with benzyl bromide to obtain the respective N -benzylpiperazin-1-yl-derivatives 21 and 22.

The 2-benzyl-substituted 1,2,4-triazolo[4,3-a]pyrazin-3-one derivatives $\mathbf{2 3 - 2 5}$ were synthesized as drawn in Scheme 3, i.e. starting from ethyl 2-amino-2-(2-benzyl-hydrazono)acetate 66. The latter was obtained by reacting ethyl 2-amino-2-thioxoacetate with benzylhydrazine dihydrochloride, in absolute ethanol and in the presence of potassium carbonate. Compound $\mathbf{6 6}$ was then cyclized with carbonyldiimidazole to give the key intermediate 2-benzyl-5-oxotriazole derivative 67 which was transformed into the desired the 2-benzyl-triazolo[4,3-a]pyrazine derivatives $\mathbf{2 3 - 2 5}$ through the same pathway described above to prepare 1-16.

Scheme 3. Reagents and conditions: (a) Benzylhydrazine dihydrochloride, absolute $\mathrm{EtOH}, \mathrm{K}_{2} \mathrm{CO}_{3}$, rt; (b) carbonyldiimidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (c) $\mathrm{R}_{6}-\mathrm{COCH}_{2} \mathrm{Br}, \mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{DMF} / \mathrm{CH}_{3} \mathrm{CN}$, rt; (d) $\mathrm{NH}_{4} \mathrm{OAc}$, $150{ }^{\circ} \mathrm{C}$ sealed tube; (g) POCl_{3}, mw or conventional heating, $140-180^{\circ} \mathrm{C}$; (h) NH_{3}, absolute EtOH .

2.2. Binding and cAMP assays

The 8-amino-1,2,4-triazolo[4,3-a]pyrazin-3-ones $\mathbf{1 - 2 5}$ were evaluated for their affinity to $\mathrm{hA}_{1}, \mathrm{hA}_{2 \mathrm{~A}}$ and hA_{3} ARs, stably transfected in Chinese hamster ovary (CHO) cells, and were also tested at the $\mathrm{hA}_{2 \mathrm{~B}}$ AR subtype by measuring their inhibitory effects on 5^{\prime}-(N -ethyl-carboxamido) adenosine (NECA)-stimulated cAMP levels in $\mathrm{hA}_{2 \mathrm{~B}} \mathrm{CHO}$ cells. The selected derivatives $\mathbf{1 0}, \mathbf{1 1}$ and 25, showing high affinity for hA_{1} and/or $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$, were investigated to determine their antagonistic potency by measuring their effects on cAMP production in CHO cells, stably expressing hA_{1} or $\mathrm{hA}_{2 \mathrm{~A}}$ ARs. Biological studies were also carried out on the 3,8-dione derivatives 39-53, 71-73 because they were thought to possess some affinity for the hA_{3} AR subtype, which was still of our interest even though being off-target for the work. The results of binding and cAMP assays are presented in Tables 1-3, where the data of the previously reported 2,6-diphenyl-1,2,4triazolopirazine derivatives \mathbf{A} [21] (Table 1) and \mathbf{B} [21] (Table 2) are also included as references.

Table 1. Biological activity of compounds 1-25 at human adenosine receptors ${ }^{a}$

	R_{6}	R_{2}	Binding experiments $\mathrm{K}_{\mathrm{i}}(\mathrm{nM})$			cAMPassays $\mathrm{IC}_{50}$$(\mathrm{nM})$$\mathrm{hA}_{2 \mathrm{~B}}{ }^{\mathrm{e}}$
			$\mathrm{hA}_{1}{ }^{\text {b }}$	$\mathrm{hA}_{2 \mathrm{~A}}{ }^{\text {c }}$	$\mathrm{hA}_{3}{ }^{\text {d }}$	
1	2-furyl	Ph	13 ± 2	8.4 ± 0.9	120 ± 18	> 30000
2	2-(5-methylfuryl)	Ph	10 ± 2.8	11 ± 1	77 ± 6.5	> 30000
3	2-thienyl	Ph	14.1 ± 3.2	9.0 ± 2.2	42 ± 10.2	> 30000
4	2-pyridyl	Ph	77.4 ± 5.2	13.2 ± 3.8	131.1 ± 30	> 30000
5	$\mathrm{C}_{6} \mathrm{H}_{4}-2-\mathrm{OCH}_{3}$	Ph	40.8 ± 7.1	2.0 ± 0.2	51.5 ± 3.5	>30000
6	$\mathrm{C}_{6} \mathrm{H}_{4}-2-\mathrm{NO}_{2}$	Ph	95 ± 18	43 ± 2.4	180 ± 34	>30000

7	$\mathrm{C}_{6} \mathrm{H}_{4}-3-\mathrm{NO}_{2}$	Ph	35.9 ± 7.8	ND ${ }^{\text {f }}$	38.6 ± 7.9	>30000
8	$\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{NO}_{2}$	Ph	7834 ± 597	7.2 ± 1.6	16421 ± 3505	> 30000
9	$\mathrm{C}_{6} \mathrm{H}_{4}-3-\mathrm{Br}$	Ph	11 ± 2	8 ± 2.1	>30000	> 30000
10	$\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{Br}$	Ph	>30000	10.6 ± 2.5	705.4 ± 139.5	> 30000
11	$\mathrm{C}_{6} \mathrm{H}_{4}-3-\mathrm{Cl}$	Ph	4.7 ± 1.1	6.3 ± 1	>30000	> 30000
12	$\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{Cl}$	Ph	14.3 ± 3.6	10.9 ± 2.7	>30000	> 30000
13	$\mathrm{C}_{6} \mathrm{H}_{4}-2-\mathrm{OH}$	Ph	16.3 ± 0.3	2.4 ± 0.5	44.5 ± 8.3	> 30000
14	$\mathrm{C}_{6} \mathrm{H}_{4}-2-\mathrm{NH}_{2}$	Ph	191 ± 28	19.5 ± 1	321 ± 63	> 30000
15	$\mathrm{C}_{6} \mathrm{H}_{4}-3-\mathrm{NH}_{2}$	Ph	15.0 ± 3.0	10.9 ± 2.3	169 ± 13.5	> 30000
16	$\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{NH}_{2}$	Ph	33.5 ± 6.7	22.9 ± 0.2	253.7 ± 67.6	> 30000
17	$\mathrm{C}_{6} \mathrm{H}_{4}$-2-(piperazin-1-yl)-	Ph	1640 ± 237	1528 ± 100	4465 ± 653	> 30000
18	$\mathrm{C}_{6} \mathrm{H}_{4}$-3-(piperazin-1-yl)-	Ph	36.1 ± 8.4	ND ${ }^{\text {f }}$	410.1 ± 89.2	>30000
19	$\mathrm{C}_{6} \mathrm{H}_{4}$-4-(piperazin-1-yl)-	Ph	265.1 ± 14.4	90.4 ± 8	1905 ± 314	> 30000
20	$\mathrm{C}_{6} \mathrm{H}_{4}$-3-(N-dimethyl ${ }^{+}$-piperazin-1-yl)-	Ph	57.1 ± 2.9	89.8 ± 2.8	3783 ± 667	> 30000
21	$\mathrm{C}_{6} \mathrm{H}_{4}$-3-(4-	Ph	235.7 ± 39.9	32.3 ± 7.5	298.1 ± 49.8	> 30000
22	$\begin{aligned} & \text { benzylpiperazin-1-il)- } \\ & \qquad \mathrm{C}_{6} \mathrm{H}_{4}-4-(4- \\ & \text { benzylpiperazin-1-yl)- } \end{aligned}$	Ph	121 ± 28	29 ± 1.5	>30000	> 30000
23	Ph	$\mathrm{CH}_{2} \mathrm{Ph}$	2.4 ± 0.5	4.4 ± 0.1	223.7 ± 4.8	> 30000
24	2-furyl	$\mathrm{CH}_{2} \mathrm{Ph}$	13.7 ± 0.3	2 ± 0.1	1131 ± 132	> 30000
25	2-(5-methylfuryl)	$\mathrm{CH}_{2} \mathrm{Ph}$	3.7 ± 0.2	4.6 ± 1.3	112 ± 2	> 30000
\mathbf{A}^{g}	Ph	Ph	13 ± 1	10 ± 3	11 ± 2	> 30000

${ }^{a}$ Data ($\mathrm{n}=3-5$) are expressed as means \pm standard errors. ${ }^{b}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$-CCPA binding at hA_{1} AR expressed in CHO cells. ${ }^{\mathrm{c}}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$-NECA binding at $\mathrm{hA}_{2 \mathrm{~A}}$ AR expressed in CHO cells. ${ }^{d}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$-HEMADO binding at hA_{3} AR expressed in CHO cells. ${ }^{\mathrm{e}} \mathrm{IC}_{50}$ values of the inhibition of NECA-stimulated adenylyl cyclase activity in CHO cells expressing $\mathrm{hA}_{2 \mathrm{~B}} \mathrm{AR} .{ }^{\mathrm{f}}$ Not determined. ${ }^{\mathrm{g}}$ Ref 21.

2.3. Structure-affinity relationship studies

The biological data of the 8 -amino-1,2,4-triazolo[4,3-a]pyrazin-3-ones $\mathbf{1 - 2 5}$ (Table 1) show that the structural modifications carried out on 2,6-diphenyl-substituted derivative \mathbf{A}, an equally potent ligand on $\mathrm{hA}_{1}, \mathrm{hA}_{2 \mathrm{~A}}$ and hA_{3} ARs $\left(\mathrm{K}_{\mathrm{i}}=10-13 \mathrm{nM}\right)$, shifted affinity toward the A_{1} and $\mathrm{A}_{2 \mathrm{~A}}$ ARs.

Two new derivatives ($\mathbf{8}$ and $\mathbf{1 0}$) possess high $\mathrm{hA}_{2 \mathrm{~A}}$ affinity and selectivity and most compounds bind both the hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}}$ ARs with nanomolar affinity, while showing different degrees of selectivity versus the hA_{3} subtype. Among the latter derivatives, the best in terms of $\mathrm{hA}_{2 \mathrm{~A}}$ affinity were 5,13 and 24, displaying K_{i} values in the range of 2-2.4 nM .

Concerning the $\mathrm{hA}_{2 \mathrm{~B}} \mathrm{AR}$, compounds $\mathbf{1 - 2 5}$ were inactive ($\mathrm{IC}_{50}>30000 \mathrm{nM}$) in inhibiting the NECA-stimulated cAMP levels in $\mathrm{hA}_{2 \mathrm{~B}} \mathrm{CHO}$ cells, thus it can be deduced that they lacked affinity for the $\mathrm{hA}_{2 \mathrm{~B}} \mathrm{AR}$.

Replacement of the 6-phenyl ring of the reference ligand \mathbf{A} with a heterocyclic moiety (compounds 2-4) maintained a high affinity for both hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}}$ ARs $\left(\mathrm{K}_{\mathrm{i}}=8.4-13.2 \mathrm{nM}\right)$ while enhancing selectivity versus the hA_{3} subtype.

Substituents possessing different lipophilicity, electronic and steric properties $\left(\mathrm{OMe}, \mathrm{OH}, \mathrm{NO}_{2}\right.$, $\left.\mathrm{NH}_{2}, \mathrm{Cl}, \mathrm{Br}\right)$ were then probed on the 6 -phenyl ring. When a methoxy or a hydroxy group was introduced on the ortho position of the 6-phenyl ring of compound \mathbf{A}, to give derivatives 5 and $\mathbf{1 3}$, respectively, quite similar affinity profiles were obtained, notwithstanding the different properties of the two groups, e.g. lipophilicity or ability to engage H bonding. Both compounds showed in fact high affinity for the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}\left(\mathrm{K}_{\mathrm{i}}\right.$ about 2 nM$)$ and lower, but still nanomolar, affinities for the hA_{1} and hA_{3} ARs.

Introduction of a 4-nitro and a 4-bromo substituent on the 6-phenyl ring resulted in potent and selective $\mathrm{hA}_{2 \mathrm{~A}}$ antagonists (compounds $\mathbf{8}$ and 10, respectively, $\mathrm{K}_{\mathrm{i}}=7.2$ and 8.1 nM). Insertion of the nitro group to the ortho position yielded derivative $\mathbf{6}$, which showed moderate affinity for the hA_{1}, $\mathrm{hA}_{2 \mathrm{~A}}$ and hA_{3} ARs. For the meta nitro-substituted derivative 7, good hA_{1} and $\mathrm{hA}_{3} \mathrm{AR}$ affinities were achieved $\left(\mathrm{K}_{\mathrm{i}}=35.9\right.$ and 38.6 nM , respectively) while it was not possible to obtain the $\mathrm{hA}_{2 \mathrm{~A}}$ data. Its low solubility in the assay medium did not allow it to reach high enough concentrations to obtain the dose-response curve. Introduction of the lipophilic 3-bromo (9), 3-chloro (11) and 4chloro (12) substituent on the 6-phenyl moiety led to potent and dual hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}}$ ligands $\left(\mathrm{K}_{\mathrm{i}}=\right.$ 4.71-14.3 nM). The hydrophilic amino group inserted either in meta (15) or para (16) position gave
compounds able to bind efficiently $\left(\mathrm{K}_{\mathrm{i}}=10.9-33.5 \mathrm{nM}\right)$ both hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}}$ ARs while the same group at the ortho position (14) preserved the $\mathrm{hA}_{2 \mathrm{~A}}$ affinity $\left(\mathrm{K}_{\mathrm{i}}=19.5 \mathrm{nM}\right)$ but worsened the hA_{1} one ($\left.\mathrm{K}_{\mathrm{i}}=191 \mathrm{nM}\right)$. All three amino-substituted compounds $\mathbf{1 4 - 1 6}$ showed also some ability to bind the hA_{3} receptor subtype.

Introduction of substituted piperazine moieties on the 6 -phenyl group (17-22) was pursued since these residues are a common feature of known potent and selective $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ antagonists, structurally correlated to our series [26], and are also a useful group for improving the drug-likeness of the compounds. On the whole, this kind of modification was not as profitable as expected, in terms of $\mathrm{hA}_{2 \mathrm{~A}}$ affinity. Insertion of an unsubstituted piperazine at the ortho position made the compound (17) a very weak ligand at all ARs, while its presence at the para position (19) permitted a quite good and selective interaction with the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$. Unfortunately, we were not able to determine the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ affinity of the meta- piperazine derivative $\mathbf{1 8}$ due to the problems described above for compound 7. The N, N-dimethylation of the meta-piperazine group afforded a quite good affinity for the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}(\mathbf{2 0})$, and an even better substitution was the N -benzylation of the meta(21) or para- (22) piperazine, giving rise to low nanomolar affinities at this receptor.

Derivatives 23-25, bearing a benzyl chain at position 2, combined with a phenyl, 2-furyl and a 2-(5methylfuryl) at position 6, were synthesized because the benzyl pendant, being more flexible than the 2-phenyl moiety, was thought to enhance the solubility of the compounds. Moreover, this type of decoration was suggested by the binding results previously obtained in our pyrazolopyrimidine series [18] in which combination of a benzyl with a 2-furyl substituent shifted affinity toward the $h A_{2 A} A R$. In the triazolopyrazine series, this modification enhanced both $h A_{1}$ and $h A_{2 A} A R$ affinities (compare the 2-benzyl derivatives 23-26 with the relative 2-phenyl derivatives $\mathbf{A}, \mathbf{1 - 2}$) while reducing ability to bind the $\mathrm{hA}_{3} \mathrm{AR}$. Compounds 23-25 are indeed dually potent hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}}$ ligands $\left(\mathrm{K}_{\mathrm{i}}=2.0-13.7 \mathrm{nM}\right)$.

Derivatives 11 and 25, able to bind both hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}}$ ARs with nanomolar affinity, and compound 10, highly selective for the $\mathrm{hA}_{2 \mathrm{~A}}$ subtype, were also profiled for their antagonistic properties by
evaluating their effect on cAMP production in CHO cells, stably expressing the hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}}$ ARs. The obtained results (Table 2) showed that the compounds behaved as antagonists being able to counteract NECA-inhibited (A_{1}) or NECA-stimulated $\left(\mathrm{A}_{2 \mathrm{~A}}\right)$ cAMP accumulation.

Table 2. Potencies of compounds $\mathbf{1 0}, \mathbf{1 1}$ and $\mathbf{2 5}$ at hA_{1} and/or $\mathrm{hA}_{2 \mathrm{~A}}$ ARs.

	$\mathrm{hA}_{1} \mathrm{AR}$ $\mathrm{IC}_{50}(\mathrm{nM})^{\mathrm{a}}$	$\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ $\mathrm{IC}_{50}(\mathrm{nM})^{\mathrm{b}}$
$\mathbf{1 0}$	Nd^{c}	694 ± 74
$\mathbf{1 1}$	298 ± 58	374 ± 52
$\mathbf{2 5}$	675 ± 123	521 ± 79

${ }^{\mathrm{a}} \mathrm{IC}_{50}$ values obtained counteracting the NECA-induced decrease of cAMP accumulation in CHO cells expressing $\mathrm{hA}_{1} \mathrm{AR}$. ${ }^{\mathrm{b}} \mathrm{IC}_{50}$ values obtained by inhibition of NECA-stimulated adenylyl cyclase activity in CHO cells expressing $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$. ${ }^{\mathrm{c}}$ Not determined.

Finally, we biologically evaluated also the 3,8-dione derivatives 39-53, 71-73 (Table 3) since they were thought to possess some affinity for the hA_{3} subtype, given the K_{i} value $(96 \mathrm{nM})$ of the previously reported 2,6-diphenyl-derivative B [21]. Actually, only three compounds (39, 52 and 71) showed some hA_{3} affinity $\left(\mathrm{K}_{\mathrm{i}}=193-274 \mathrm{nM}\right)$, while most of them possess low $\left(\mathrm{K}_{\mathrm{i}}=566-7265 \mathrm{nM}\right)$ to null affinity $\left(\mathrm{K}_{\mathrm{i}}>30000 \mathrm{nM}\right)$ for this receptor. No interesting binding data was found at the other ARs, except for compound 52, featuring a 3-aminophenyl group at position 6, which displayed a good affinity for the hA_{1} subtype $\left(\mathrm{K}_{\mathrm{i}}=71.3 \mathrm{nM}\right)$.

Table 3. Biological activities of compounds 39-53, 71-73 at human adenosine receptors ${ }^{a}$

	R_{6}	Binding experiments$\mathrm{K}_{\mathrm{i}}(\mathrm{nM})$				$\begin{gathered} \text { cAMP } \\ \text { assays } \\ \mathrm{IC}_{50}(\mathrm{nM}) \end{gathered}$
		R_{2}	$\mathrm{hA}_{1}{ }^{\text {b }}$	$\mathrm{hA}_{2 \mathrm{~A}}{ }^{\text {c }}$	$\mathrm{hA}_{3}{ }^{\text {d }}$	$\mathrm{hA}_{2 \mathrm{~B}}{ }^{\text {e }}$
39	2-furyl	Ph	> 30000	> 30000	193 ± 54	> 30000
40	2-(5-methylfuryl)	Ph	ND ${ }^{\text {f }}$			
41	2-thienyl	Ph	> 30000	> 30000	566 ± 147	> 30000
42	2-pyridyl	Ph	1153 ± 169	> 30000	1047 ± 112	> 30000
43	$\mathrm{C}_{6} \mathrm{H}_{4}-2-\mathrm{OCH}_{3}$	Ph	496 ± 89	769 ± 162	7265 ± 1061	> 30000
44	$\mathrm{C}_{6} \mathrm{H}_{4}-2-\mathrm{NO}_{2}$	Ph	> 30000	> 30000	> 30000	> 30000
45	$\mathrm{C}_{6} \mathrm{H}_{4}-3-\mathrm{NO}_{2}$	Ph	> 30000	> 30000	> 30000	> 30000
46	$\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{NO}_{2}$	Ph	>30000	28940 ± 990	>30000	>30000
47	$\mathrm{C}_{6} \mathrm{H}_{4}-3-\mathrm{Br}$		> 30000	> 30000	> 30000	> 30000
48	$\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{Br}$	Ph	> 30000	> 30000	> 30000	> 30000
49	$\mathrm{C}_{6} \mathrm{H}_{4}-3-\mathrm{C}$	Ph	> 30000	> 30000	> 30000	> 30000
50	$\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{Cl}$	Ph	> 30000	> 30000	> 30000	> 30000
51	$\mathrm{C}_{6} \mathrm{H}_{4}-2-\mathrm{OH}$	Ph	1453 ± 352	30810 ± 2160	1015 ± 110	> 30000
52	$\mathrm{C}_{6} \mathrm{H}_{4}-3-\mathrm{NH}_{2}$	Ph	71.3 ± 15.7	ND ${ }^{\text {f }}$	274.1 ± 60.7	> 30000
53	$\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{NH}_{2}$	Ph	552.2 ± 117.6	> 30000	821.7 ± 180	> 30000
71	Ph	$\mathrm{CH}_{2} \mathrm{Ph}$	3735 ± 690	1635.5 ± 149.5	253.7 ± 67.6	> 30000
72	2-furyl	$\mathrm{CH}_{2} \mathrm{Ph}$	1456 ± 209	1421 ± 307	3184 ± 637	> 30000
73	2-(5-methylfuryl)	$\mathrm{CH}_{2} \mathrm{Ph}$	> 30000	> 30000	1620 ± 102	> 30000
B $^{\text {g }}$	Ph	Ph	> 30000	> 30000	96 ± 15	> 30000

${ }^{a}$ Data ($\mathrm{n}=3-5$) are expressed as means \pm standard errors. ${ }^{b}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$-CCPA binding at hA_{1} AR expressed in CHO cells. ${ }^{\mathrm{c}}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$-NECA binding at $\mathrm{hA}_{2 \mathrm{~A}}$ AR expressed in CHO cells. ${ }^{d}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$-HEMADO binding at hA_{3} AR expressed in CHO cells. ${ }^{\mathrm{e}} \mathrm{IC}_{50}$ values of the inhibition of NECA-stimulated adenylyl cyclase activity in CHO cells expressing $\mathrm{hA}_{2 \mathrm{~B}}$ AR. ${ }^{\mathrm{f}}$ Not determined. ${ }^{\mathrm{g}}$ Ref 21.

2.4. Neuroprotection studies in SH-SY5Y cell lines.

The selected compounds $\mathbf{1 0}, \mathbf{1 1}$ and $\mathbf{2 5}$ were tested to evaluate their ability in counteracting β amyloid peptide (A β)-induced toxicity. For this purpose we used the neuronal cell line SH-SY5Y (human neuroblastoma) a widely used catecholaminergic in vitro model for studies on pathologies or toxicities affecting the nervous system [16, 27-29]. The 25-35 amino acid $A \beta$ fragment was used for setting up a model of neurotoxicity [16]: it was previously incubated (at 2 and $10 \mu \mathrm{M}$) at $37{ }^{\circ} \mathrm{C}$ to allow peptide aggregation, days 3 and 7 were evaluated to establish the optimal time point. The obtained aggregates were incubated with cells for increasing times (24, 48 and 72 h), and subsequently cell viability was assessed via the MTT assay. Results are shown in Table 4. We chose 48 h incubation with 7 days aggregated-A β as the most suitable, concentration-dependent condition for screening the new compounds (cell viability of control was arbitrarily set to 100%).

Table 4. Toxic effect induced by $\boldsymbol{\beta}$-amyloid protein (A $\boldsymbol{\beta}$ fragment 25-35 aa) ${ }^{\text {a }}$

	Cell viability \%	
Time of incubation with cells	Time of preventive aggregation of $A \beta$ 25-35	

$\stackrel{\underset{\sim}{7}}{7}$			3 days	7 days
	Control	100 ± 4.2		
	$\mathrm{A} \beta 25-35,2 \mu \mathrm{M}$		92.8 ± 1.9	$69.6 \pm 2.9^{* *}$
	$\mathrm{A} \beta 25-35,10 \mu \mathrm{M}$		$80.3 \pm 4.5^{*}$	$64.4 \pm 3.8^{* *}$

$\underset{\sim}{\boldsymbol{\infty}}$			3 days	7 days
	Control	100 ± 7.2		
	$A \beta 25-35,2 \mu \mathrm{M}$		80.5 ± 7.6	$73.3 \pm 2.1^{*}$
	$\mathrm{~A} \beta 25-35,10 \mu \mathrm{M}$		$69.8 \pm 5.4^{* *}$	$63.2 \pm 4.6^{* *}$

$\stackrel{\beth}{\mathrm{N}}$			3 days	7 days
	Control	100 ± 8.9		
	$\mathrm{A} \beta 25-35,2 \mu \mathrm{M}$		95.5 ± 15.1	108.1 ± 16.3
	A $\beta 25-35,10 \mu \mathrm{M}$		83.0 ± 11.4	$68.7 \pm 8.7^{* *}$

${ }^{\text {a }}$ Aggregation of β-amyloid peptide ($\mathrm{A} \beta$ fragment $25-35$ aa; 2 and $10 \mu \mathrm{M}$) was allowed for 3 and 7 days at $37^{\circ} \mathrm{C}$. The so obtained different proteins aggregates were tested in SH-SY5Y cell $\left(1 \times 10^{4}\right.$ cell/well) to evaluate the cytotoxic effect. Incubation was performed for increasing times (24, 48
and 72 h), subsequently cell viability was assessed via the MTT assay. Viability is expressed as \% in comparison to the control cells (arbitrarily set 100% of viable cells). Data are presented as mean \pm SEM of 3 different experiments performed in quintuplicate. One-way ANOVA with a Bonferroni post-hoc test was used to compare different treatments. $* \mathrm{P}<0.05$ and $* * \mathrm{P}<0.01$ versus control.

Derivatives 10, 11 and $\mathbf{2 5}(0.1-1 \mu \mathrm{M})$, and caffeine as reference compound, were co-incubated with SH-SY5Y cells (1×10^{4} cell/well) for 48 h in the presence of $\mathrm{A} \beta 25-35$ (2 and $10 \mu \mathrm{M}$). Figure 2 shows the decrease of cell viability induced by $2 \mu \mathrm{M} \mathrm{A} \beta$ up to $73.3 \pm 2.1 \%$. Compounds $\mathbf{1 0}$ and $\mathbf{2 5}$ significantly prevented $\mathrm{A} \beta$ toxicity starting from concentration $0.3 \mu \mathrm{M}$, and $\mathbf{2 5}$ completely restored viability to control level. The higher concentration of $\mathrm{A} \beta 25-35(10 \mu \mathrm{M}$, previously aggregated for 7 days) decreased cell vitality to $63.2 \pm 4.6 \%$ (Fig. 3). Compound 10 was protective when coincubated at $0.3 \mu \mathrm{M}$ whereas $\mathbf{2 5}$ was able to significantly prevent cell mortality from $0.1 \mu \mathrm{M}$. In the concentration range $0.1-1 \mu \mathrm{M}$, both compound $\mathbf{1 1}$ and caffeine were ineffective. Derivatives 10, $\mathbf{1 1}$ and $\mathbf{2 5}$, as well as caffeine, did not alter cell viability per se when tested in the absence of $\mathrm{A} \beta$ (data not shown).

Fig. 2. SH-SY5Y cell (1×10^{4} cell/well) were incubated 48 h with compounds $\mathbf{1 0}, \mathbf{1 1}$ and $\mathbf{2 5}(0.1,0.3$ and $1 \mu \mathrm{M}$) in the presence of β-amyloid peptide ($\mathrm{A} \beta$ fragment $25-35 \mathrm{aa} ; 2 \mu \mathrm{M}$ following 7 days of
$37{ }^{\circ} \mathrm{C}$ aggregation). Caffeine was used as reference compound. Cell vitality was assessed via MTT assay. Viability is expressed as \% in comparison to the control cells (arbitrarily set 100% of viable cells). Dashed lines represent values of control and $A \beta$-treated samples. Data are presented as mean \pm SEM of 3 different experiments performed in quintuplicate. One-way ANOVA with a Bonferroni post-hoc test was used to compare different treatments. ${ }^{\wedge} \mathrm{P}<0.05$ and ${ }^{\wedge} \wedge \mathrm{P}<0.01$ versus β-amyloid effect.

Fig. 3. SH-SY5Y cell (1×10^{4} cell/well) were incubated 48 h with compounds $\mathbf{1 0}, \mathbf{1 1}$ and $\mathbf{2 5}$ ($0.1,0.3$ and $3 \mu \mathrm{M}$) in the presence of β-amyloid peptide (A β fragment $25-35 \mathrm{aa} ; 10 \mu \mathrm{M}$ following 7 days of $37{ }^{\circ} \mathrm{C}$ aggregation). Caffeine was used as reference compound. Cell vitality was assessed via MTT assay. Viability is expressed as $\%$ in comparison to the control cells (arbitrarily set 100% of viable cells). Dashed lines represent values of control and $A \beta$-treated samples. Data are presented as mean \pm SEM of 3 different experiments performed in quintuplicate. One-way ANOVA with a Bonferroni post-hoc test was used to compare different treatments. ${ }^{\wedge} \mathrm{P}<0.05$ and ${ }^{\wedge} \mathrm{P}<0.01$ versus β-amyloid effect.

To summarize, $\mathbf{1 1}$ did not exhibit a protective effect on cell viability, nor did caffeine, while $\mathbf{1 0}$ and 25 were active against the neurotoxicity evoked by incubating neuronal cells with $A \beta$ aggregates. Thus, derivatives $\mathbf{1 1}$ and 25, although showing similar nanomolar hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ affinities, exerted a significantly different effect on cell viability at the tested concentrations probably due to differences between the binding experiment model and the cellular model or to other compound
properties. In any case, the results obtained in these experiments highlight the potential of our triazolopyrazine derivatives as new possible neuroprotective agents in AD.

2.5. Molecular modeling studies

Molecular docking analyses were performed to simulate the binding mode of the synthesized compounds at the $\mathrm{hA}_{2 \mathrm{~A}}$ AR cavity. As molecular target, we chose the high-resolution crystal structure of the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ in complex with the antagonist/inverse agonist ZM241385 (http://www.rcsb.org; pdb code: 5NM4; 1.7-A resolution [30]). MOE (Molecular Operating Environment 2014.09 [31]) docking tool ("induced fit" setting) and Gold [32] and Autodock software [33,34] were employed for this task. Analogously to a previous study at the same receptor [21], we performed docking analyses with various docking tools to get a sort of average binding mode prediction of the compounds at the $\mathrm{h} \mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$ binding cavity.

The docking results show that the molecules could bind to the receptor binding pocket with a preferred arrangement already observed for analogue compounds at the same receptor [21]. In this arrangement (named "type-one" conformation in the previous study), the compounds present the substituent at the 2-position $\left(\mathrm{R}_{2}\right)$ located in the depth of the cavity and the R_{6} group at the entrance of the binding site (Fig. 4A-B), with the triazolopyrazinone scaffold being able to interact with Asn253 ${ }^{6.55}$ and Glu169 (EL2) through H-bond contacts and with the phenyl ring of Phe168 (EL2) through a $\pi-\pi$ interaction (Fig. 4C). This interaction is very similar also to the one observed for the co-crystallized compound ZM 241385 at the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ (Fig. 4A) [30]. An alternative binding mode ("type-two" conformation, generally associated to lower docking scores) makes the compounds be oriented in an opposite way, with the R_{2} and R_{6} groups located at the entrance and in the depth of the binding cavity, respectively.

Compound \mathbf{A} is a sort of prototype of the series, as it presents two unsubstituted phenyl rings at the 2- and 6- positions. This molecule possesses high affinities for the $\mathrm{hA}_{1}, \mathrm{hA}_{2 \mathrm{~A}}$ and $\mathrm{hA}_{3} \mathrm{ARs}$ and this makes compound A a sort of passe-partout for the three ARs. Docking results of this derivative at the structures of the ARs [21] showed that it may be inserted in the cavities with both binding modes associated to good docking scores (the "type-one" generally awarded with better values). The possibility of making various complexes with the same receptor could lead to good affinity data at this protein and this factor could be applied at the three ARs.

Fig. 4. (A-B) The type-one docking conformation of the synthesized compounds at the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ cavity, representing the preferred binding mode according to docking-scoring results; compound $\mathbf{5}$ (green) is represented superimposed to the co-crystallized reference $\mathrm{hA}_{2 \mathrm{~A}}$ AR inverse agonist ZM241385 (magenta, panel A) and alone within the receptor cavity (panel B), with key receptor residues indicated. (C) Schematic description of the ligand-target interaction (built within MOE software).

Docking results for derivatives $\mathbf{5 - 2 2}$ show that these molecules bind the $\mathrm{hA}_{2 \mathrm{~A}}$ AR cavity almost exclusively with the type-one docking arrangement. The substituents inserted on the 6-phenyl ring appear to modulate the affinity for the three AR subtypes. The compounds featuring a small orthosubstituent $(5,13,14)$ are generally endowed with low nanomolar $h A_{2 A} A R$ affinity. This substituent is oriented toward the N7 atom and in proximity of the Glu169 (EL2) residue, with a possibility of giving polar interaction with the nitrogen atom of the compound scaffold or with the backbone or sidechain atoms of the above cited receptor residue (Fig. 5A). Introduction of a nitro group at the ortho position of the 6-phenyl ring (6) affords a lower $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ affinity, mainly due to higher hindrance of the substituent and consequent lower ability of the compound to maintain the co-planarity of the 6-phenyl ring with the heterocyclic scaffold. An electronic repulsion with the Glu169 (EL2) side chain is an additional factor at the basis of the lower affinity of this compound. Introduction of an even bigger ortho-substituent, like a piperazinyl group (17), leads to a drop in the $h_{2 A}$ AR affinity.

Compounds presenting a substituent at the meta or para position of the 6 -phenyl ring (7-12, 15, 16, 19-22) are endowed with low nanomolar affinity. Even these compounds appear to exclusively bind to the $\mathrm{hA}_{2 \mathrm{~A}}$ AR with the type-one docking conformation. This is evident for compounds bearing small substituents on the 6-phenyl ring. These groups get located in proximity of H -bond donor functions of the receptor, such as the backbone NH groups of Phe168 and Glu169 (EL2) and the hydroxyl group of Tyr271 $1^{7.36}$. Even the side chains of (EL2) and Leu267 (EL3) are in proximity to these compound substituents, allowing non-polar interaction. Compounds bearing large substituents at the meta position of the 6-phenyl ring $(\mathbf{2 0}, \mathbf{2 1})$ adopt the type-one docking conformation as well. The compounds featuring a large substituent at the para position of the same ring (19,22) are inserted in the binding pocket with an upside-down conformation, where the 2-phenyl ring is inserted in the depth of the cavity while the scaffold is oppositely oriented with the 3-carbonyl group pointing toward the Asn253 ${ }^{6.55}$ amide function (Fig. 5B).

Fig. 5. (A) Top view of the type-one docking conformation of compound $\mathbf{5}$ at the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$; the key residues for the interaction with 6 -substituent are indicated and the cavity entrance is represented as molecular surface, with red-to-blue regions indicating negatively-to-positively charged regions, respectively. (B) Alternative binding mode of the synthesized compounds presenting a large substituent in the para-position of the 6-phenyl ring (compound $\mathbf{2 2}$ is shown). The key ligand-target polar interaction is between the 3-carbonyl group of the compound and the Asn $253^{6.55}$ amide function.

Compounds bearing a heterocyclic moiety at the 6-position and a phenyl ring at the 2 -position (1-4) may adopt both type-one and type-two docking conformations, like compound \mathbf{A}, with a fair preference for the type-two conformation (the one pointing the 2-phenyl ring toward the extracellular environment). This behaviour may explain the high affinity of these derivatives for the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ binding cavity, analogously to the reference compound (A). When the 2-phenyl ring is
replaced by a benzyl moiety and a heterocyclic ring is inserted at the 6-position (23-25), the compounds preferentially adopt a type-two docking conformation, pointing the 2 -substituent toward the extracellular environment. For both these sets (1-4 and 23-25) the steric and chemical-physical profile of the 6 -substituent modulates the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ affinity, with the 2 -furyl providing the highest affinity data within each set, as expected.

Docking experiments at a hA_{1} AR crystal structure (pdb code: 5UEN; 3.2-Å resolution [35]) were also simulated with the same docking tools and protocols as above. Even for this receptor, we observed two families of conformations, where the preference of the compounds for a specific arrangement (type-one or type-two binding mode) appears in accordance with that observed from docking studies at the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ (see above). As previously noted for analogue triazolopyrazinonebased compounds [21], some residues at the entrance of the hA_{1} AR binding cavity (Glu170, Ser267, and Tyr271 ${ }^{7.36}$) and in proximity to the 6 -substituents (type-one conformations) are different in some cases with respect to the corresponding ones in the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ (Leu167, Leu267, and $\operatorname{Tyr} 271^{7.36}$), leading to a slightly different interaction with the compounds with respect to the $h_{2 A} A R$ subtype [21]. Nevertheless, the interactions between these molecules and the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ and $\mathrm{hA}_{1} \mathrm{AR}$ are generally conserved, leading to similar affinity data for several derivatives at these two AR subtypes.

3. Conclusion

In this work, an enlarged set of 1,2,4-triazolo[4,3-a]pyrazine-3-one derivatives was synthesized to deepen SAR studies and to obtain $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ selective antagonists or dual-targeting hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}}$ AR antagonists which were of our interest for their potential neuroprotective effect. The aim of the work can be considered satisfied. In fact, compounds 8 and 10, featuring a 2-phenyl ring and, respectively, a 4-nitro and 4-bromo substituent on the 6-phenyl moiety, showed high $\mathrm{hA}_{2 \mathrm{~A}}$ AR affinity $\left(\mathrm{K}_{\mathrm{i}}=7.2\right.$ and 10.6 nM$)$ and a complete selectivity for this AR subtype. Several derivatives
possessed nanomolar affinity $\left(\mathrm{K}_{\mathrm{i}}<20 \mathrm{nM}\right)$ for both hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}}$ ARs and different degrees of selectivity versus the $\mathrm{hA}_{3} \mathrm{AR}$. Results of docking studies at the $\mathrm{hA}_{2 \mathrm{~A}}$ and $\mathrm{h} \mathrm{A}_{1} \mathrm{AR}$ crystal structures have been helpful to rationalize the observed affinity data and to highlight that the steric hindrance of the substituents at the 2-and 6-position of the bicyclic core affects the compound arrangement in the receptor binding cavity.

Among the selected compounds 10, $\mathbf{1 1}$ and 25, tested to evaluate their neuroprotective effect in an in vitro AD model, the 2-phenyl-6-(4-bromophenyl) derivative 10 and the 2-benzyl-6-(5-methyl-2furanyl) derivative 25 were able to counteract the $A \beta$-induced toxicity in cultured human neuroblastoma SH-SY5Y cells. Due to these interesting behaviors, further investigations are in progress on the 1,2,4-triazolo[4,3-a]pyrazines series to develop new derivatives as neuroprotective agents.

4. Experimental

4.1. Chemistry

The microwave-assisted syntheses were performed using an Initiator EXP Microwave Biotage instrument (frequency of irradiation: 2.45 GHz). Silica gel 60 (Merck, $70-230$ mesh) was used for analytical TLC, and for column chromatography, respectively. All melting points were determined on a Gallenkamp melting point apparatus and are uncorrected. Elemental analyses were performed with a Flash E1112 Thermofinnigan elemental analyzer for $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and the results were within 0.4% of the theoretical values. All final compounds revealed purity not less than 95%. The IR spectra were recorded with a Perkin-Elmer Spectrum RX I spectrometer in Nujol mulls and are expressed in cm^{-1}. NMR spectra were recorded on a Bruker Avance 400 spectrometer (400 MHz). The chemical shifts are reported in $\delta(\mathrm{ppm})$ and are relative to the central peak of the solvent which was CDCl_{3} or DMSOd_{6}. The following abbreviations are used: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad and $\mathrm{ar}=$ aromatic protons.
4.1.1. General procedure for the synthesis of ethyl 4-(2-aryl/heteroaryl-2-oxoethyl)-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3-carboxylate derivatives 27-38.

The suitable α-bromoketone (1.2 mmol), all commercially available except the heteroaryl derivatives [36-39], was added to a mixture of ethyl 1-phenyl-5-oxo-1,2,4-triazole-3-carboxylate derivative 26 [21] (1 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{mmol})$ in $\mathrm{DMF} / \mathrm{CH}_{3} \mathrm{CN}(1: 9,10 \mathrm{~mL})$. The suspension was stirred at room temperature until the disappearance of the starting material (TLC monitoring, 224 h). The solvent was removed at reduced pressure and the residue was treated with water (50-70 $\mathrm{mL})$. The resulting precipitate was collected by filtration, washed with water (20 mL), $\mathrm{Et}_{2} \mathrm{O}(10$ mL) and then recrystallized.
4.1.1.1. Ethyl 4-[2-(furan-2-yl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3carboxylate (27). Yield 72%; m.p. $170-172{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}\right) 1.22\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=\right.$ $7.1 \mathrm{~Hz}), 4.31\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 5.37\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.84(\mathrm{~d}, 1 \mathrm{H}$, furan proton, $\mathrm{J}=2.0 \mathrm{~Hz})$, $7.35-$ $7.38(\mathrm{~m}, 1 \mathrm{H}$, ar), 7.53-7.57(m,2H, ar), 7.75 (d, 1H, furan proton, $\mathrm{J}=2.0 \mathrm{~Hz}), 7.93(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4$ $\mathrm{Hz}), 8.15$ ($\mathrm{m}, 1 \mathrm{H}$, furan proton).
4.1.1.2. Ethyl 4-[2-(5-methylfuran-2-yl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3-carboxylate (28). Yield 58\%; m.p. $142-144{ }^{\circ} \mathrm{C}$ (Cyclohexane/AcOEt), ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 1.40(\mathrm{t}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.42\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 5.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.26(\mathrm{~d}$, 1 H , furan proton, $\mathrm{J}=2.8 \mathrm{~Hz}), 7.31-7.33(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{ar}, 1$ furan proton), $7.47(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.7 \mathrm{~Hz})$, $8.03(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.4 \mathrm{~Hz})$.
4.1.1.3. Ethyl 4-[2-(thiophen-2-yl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3carboxylate (29). Yield 80%; m.p. $167-168^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) 1.21\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=\right.$ $7.1 \mathrm{~Hz}), 4.31\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 5.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.35-7.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.55(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}$ $=7.8 \mathrm{~Hz}), 7.94(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.7 \mathrm{~Hz}), 8.18(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=4.0 \mathrm{~Hz}), 8.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=2.9 \mathrm{~Hz})$.
4.1.1.4. Ethyl 4-[2-(pyrid-2-yl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3carboxylate (30). Yield 30%; m.p. 153-155 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) 1.29\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=\right.$ $7.0 \mathrm{~Hz}), 4.29\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7.0 \mathrm{~Hz}\right), 5.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.37(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.55(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}$, $\mathrm{J}=7.8 \mathrm{~Hz}), 7.80(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=3.1 \mathrm{~Hz}), 7.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=4.8 \mathrm{~Hz}), 7.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.5 \mathrm{~Hz})$, $8.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 8.11(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.7 \mathrm{~Hz}), 8.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=4.7 \mathrm{~Hz})$.
4.1.1.5. Ethyl 4-[2-(2-methoxyphenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3carboxylate (31). Yield 53\%; m.p. $155-157^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}\right) 1.21\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=\right.$ $7.1 \mathrm{~Hz}), 4.02\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 4.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.37\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.12(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=$ $7.5 \mathrm{~Hz}), 7.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.36(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.55(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.70(\mathrm{t}$, $1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.9(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, 7.9 \mathrm{~Hz})$.
4.1.1.6. Ethyl 4-[2-(2-nitrophenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3carboxylate (32). Yield 92%; m.p. $171-173{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) 1.49\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=7.1\right.$ $\mathrm{Hz}), 4.52\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 5.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.32(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.48(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}$ $=7.8 \mathrm{~Hz}), 7.70-7.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ar}), 7.84(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.3 \mathrm{~Hz}), 8.04(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.9 \mathrm{~Hz}), 8.22(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.2 \mathrm{~Hz})$.
4.1.1.7. Ethyl 4-[2-(3-nitrophenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3carboxylate (33). Yield 89\%; m.p. 134-136 ${ }^{\circ} \mathrm{C}$ (Cyclohexane/EtOAc). ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $1.20(\mathrm{t}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 4.30\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7.3 \mathrm{~Hz}\right), 5.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.39(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz})$, $7.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.91-7.95(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ar}), 8.57(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.6 \mathrm{~Hz}), 8.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ar})$.
4.1.1.8. Ethyl-4-[2-(4-nitrophenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3carboxylate (34). Yield 97%; m.p. $180-182{ }^{\circ} \mathrm{C}\left(\mathrm{EtOH} / \mathrm{CH}_{3} \mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}\right) 1.21(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 4.30\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 5.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.37(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.56$ $(\mathrm{t}, 2 \mathrm{H}, \operatorname{ar}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.94(\mathrm{~d}, 2 \mathrm{H}, \operatorname{ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 8.35(\mathrm{~d}, 2 \mathrm{H}, \operatorname{ar}, \mathrm{J}=8.8 \mathrm{~Hz}), 8.43(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=$ $8.8 \mathrm{~Hz})$.
4.1.1.9. Ethyl 4-[2-(3-bromophenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3carboxylate (35). Yield 62%; m.p. $200-202{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 1.40\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=7.1\right.$ $\mathrm{Hz}), 4.42\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 5.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.32(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.43-7.5(\mathrm{~m}, 3 \mathrm{H}$, ar), $7.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8 \mathrm{~Hz}), 7.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 8.02(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.2 \mathrm{~Hz}), 8.16(\mathrm{t}, 1 \mathrm{H}$, ar, $\mathbf{J}=1.8 \mathrm{~Hz}$.
4.1.1.10. Ethyl 4-[2-(4-bromophenyl)-2-oxoethyl]-ethyl-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3-carboxylate (36). Yield 77%; m.p. $167-169{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 1.39(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 4.42\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 5.53\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.32(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.48$ $(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.4) \mathrm{Hz}), 7.71(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=6.7 \mathrm{~Hz}), 7.9(\mathrm{~d}, 2 \mathrm{H}$, ar, $\mathrm{J}=8.6 \mathrm{~Hz}), 8.02(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=$ $7.8 \mathrm{~Hz})$.
4.1.1.11. Ethyl 4-[2-(3-chlorophenyl)-2-oxoethyl]-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3carboxylate (37). Yield 47\%; m.p. 141-143 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}\right) 1.20\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=\right.$ $7.1 \mathrm{~Hz}), 4.30\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 5.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.37(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.56(\mathrm{t}, 2 \mathrm{H}$, ar, $\mathrm{J}=7.6 \mathrm{~Hz}), 7.67(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.83-7.85(\mathrm{dd}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=1.2 \mathrm{~Hz}, \mathrm{~J}=6.7 \mathrm{~Hz}), 7.94(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.7 \mathrm{~Hz}), 8.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 8.14(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=1.8 \mathrm{~Hz}) . \operatorname{Anal}(\mathrm{C}, \mathrm{H}, \mathrm{N})$.
4.1.1.12. Ethyl 4-[2-(4-chlorophenyl)-2-oxoethyl]-ethyl-5-oxo-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3-carboxylate (38). Yield 60%; m.p. $194-196{ }^{\circ} \mathrm{C}(\mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}\right) 1.20(\mathrm{t}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 4.30\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 5.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.37(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz})$, $7.55(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.70(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.94(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.9 \mathrm{~Hz}), 8.13(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}$, $\mathrm{J}=8.7 \mathrm{~Hz})$.
4.1.2. General procedure for the synthesis of 2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)dione derivatives 39-50

A mixture of the suitable ethyl 1,2,4-triazole-3-carboxylate derivatives $\mathbf{2 7 - 3 8}(0.9 \mathrm{mmol})$ and anhydrous ammonium acetate (3.5 mmol) was heated in a sealed tube at $150{ }^{\circ} \mathrm{C}$ until the disappearance of starting material (TLC monitoring, 3-24 h). The residue was taken up with EtOH $(1 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$, collected by filtration and washed with water $(20 \mathrm{~mL})$. All the crude compounds were purified by recrystallization.
4.1.2.1. 6-(2-Furan-2-yl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (39). Yield 73%; m.p. 298-299 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) 6.65-6.67 (m, 1H, furan proton), $7.16(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-5), 7.21(\mathrm{~d}, 1 \mathrm{H}$, furan proton, $\mathrm{J}=1.8 \mathrm{~Hz}), 7.35-7.38(\mathrm{~m}, 1 \mathrm{H}$, ar), 7.54-7.58 (m, 2 H, ar), 7.80-7.82 (m, 1H, furan proton), 7.99-8.01 (m, 2H, ar), 11.71 (br s, 1H, NH). IR 3187, 3123, 1691. 4.1.2.2. 2-Phenyl-6-(5-methylfuran-2-yl)-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (40). Yield 75%; m.p. $281-283{ }^{\circ} \mathrm{C}(\mathrm{AcOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right) 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.26(\mathrm{~d}, 1 \mathrm{H}$, furan
proton, $\mathrm{J}=2.3 \mathrm{~Hz}$), 7.07-7.08 (m, 2H, H-5 + furan proton), $7.36(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.56(\mathrm{t}, 2 \mathrm{H}$, ar, $\mathrm{J}=7.7 \mathrm{~Hz}), 8.00(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.6 \mathrm{~Hz}) 11.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$.
4.1.2.3. 2-Phenyl-6-(2-thienyl)-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (41). Yield 55\%; m.p. $>300{ }^{\circ} \mathrm{C}$ (2-Methoxyethanol). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $7.17(\mathrm{q}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=3.6 \mathrm{~Hz}), 7.36(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}$, $\mathrm{J}=7.4 \mathrm{~Hz}), 7.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.67(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}+\mathrm{H}-5, \mathrm{~J}=4.4 \mathrm{~Hz}), 8.00(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.9$ Hz), 11.70 (br. s, 1H, NH).
4.1.2.4. 2-Phenyl-6-(2-pyridyl)-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (42). Yield 70\%; m.p. 264-265 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH} / 2-M e t h o x y e t h a n o l) .{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{-} \mathrm{d}_{6}$) $7.38(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.46$ $(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=4.1 \mathrm{~Hz}), 7.57(\mathrm{t}, 2 \mathrm{H}$, ar, $\mathrm{J}=8.0 \mathrm{~Hz}), 7.92-7.97(\mathrm{~m}, 2 \mathrm{H}$, ar $+\mathrm{H}-5), 8.02(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=$ $8.4 \mathrm{~Hz}), 8.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.1 \mathrm{~Hz}), 8.68(\mathrm{~d}, 1 \mathrm{H}$, pyridine proton, $\mathrm{J}=4.8 \mathrm{~Hz}), 11.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$. IR 3254, 1688.
4.1.2.5. 6-(2-Methoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (43). Yield 77%; m.p. 279-281 ${ }^{\circ} \mathrm{C}$ (2-Methoxyethanol/ DMF). ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) 3.84 (s, 3H, CH_{3}), 7.02 (s, $1 \mathrm{H}, \mathrm{H}-5), 7.05(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.00 \mathrm{~Hz}), 7.36(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.41-$ $7.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ar}), 7.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.4 \mathrm{~Hz}), 8.01(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.6 \mathrm{~Hz}) 11.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$.
4.1.2.6. 6-(2-Nitrophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (44). Yield 66%; m.p. $>300{ }^{\circ} \mathrm{C}$ (2-Methoxyethanol). ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}), 7.20 (s, 1H, H-5), 7.41 (t, 1H, ar, J $=7.4 \mathrm{~Hz}), 7.60(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=6.1 \mathrm{~Hz}), 7.84(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.93$ $(\mathrm{t}, 1 \mathrm{H}, \operatorname{ar}, \mathrm{J}=7.5 \mathrm{~Hz}), 8.02(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.5 \mathrm{~Hz}), 8.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.1 \mathrm{~Hz}), 11.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$.
4.1.2.7. 6-(3-Nitrophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (45). Yield 62%; m.p. > $300{ }^{\circ} \mathrm{C}(\mathrm{AcOH}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}, $7.37(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.55-7-59(\mathrm{~m}, 3 \mathrm{H}$, $2 \mathrm{ar}, \mathrm{H}-5), 7.77(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.00 \mathrm{~Hz}), 8.02(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 8.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.7 \mathrm{~Hz})$, $8.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=) 8.57(\mathrm{~s}, 1 \mathrm{H}$, ar) $11.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$.
4.1.2.8. 6-(4-Nitrophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (46). Yield 88%; m.p. $>300{ }^{\circ} \mathrm{C}$ (2-Methoxyethanol/DMF). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $7.37(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}$), $7.57(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{ar}, \mathrm{H}-5), 8.00-8.03(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ar}), 8.29(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.7 \mathrm{~Hz}), 11.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$.
4.1.2.9. 6-(3-Bromophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (47). Yield 47%; m.p. $>300{ }^{\circ} \mathrm{C}$ (2-Methoxyethanol). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) 7.37 (t, $1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}$), 7.41$7.45(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{ar}, \mathrm{H}-5), 7.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=$ $8.6 \mathrm{~Hz}), 7.96$ (s, 1H, ar), 8.02 (d, 2H, ar, J = 8.8 Hz), 11.67 (br s, 1H, NH).
4.1.2.10. 6-(4-Bromophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (48). Yield 49%; m.p. > $300^{\circ} \mathrm{C}(\mathrm{AcOH} / \mathrm{DMF}) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) 7.35-7.38 (m, 2H, $1 \mathrm{ar}, \mathrm{H}-5$), 7.56 (t, 2H, ar, $\mathrm{J}=7.7 \mathrm{~Hz}), 7.67(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ar}), 8.01(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.7 \mathrm{~Hz}), 11.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, ar).
4.1.2.11. 6-(3-Chlorophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (49). Yield 76%; m.p. $>300{ }^{\circ} \mathrm{C}(2-M e t h o x y e t h a n o l) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) 7.37 (t, 1H, ar, J = 7.3 Hz), 7.44 (s, $1 \mathrm{H}, \mathrm{H}-5), 7.50-7.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ar}), 7.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.69-7.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ar}), 7.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ar})$, $8.01(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.80 \mathrm{~Hz}) 11.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$.
4.1.2.11. 6-(4-Chlorophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (50). Yield $81 \% ;$ m.p. $>300{ }^{\circ} \mathrm{C}$ (2-Methoxyethanol/DMF). ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $7.35-7.38$ (m, 2H, $1 \mathrm{ar}, \mathrm{H}-5$), 7.53-7.58 (m, 4H, ar), $7.74(\mathrm{~d}, 2 \mathrm{H}$, ar, J = 8.6 Hz$), 8.01(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.00 \mathrm{~Hz}), 11.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, ar). ${ }^{13}$ C NMR (DMSO-d ${ }_{6}$) 100.92, 119.58, 126.98, 127.27, 128.77, 129.22, 129.81, 130.31, 134.37, 135.96, 137.67, 147.67, 153.47.
4.1.3. 6-(2-Hydroxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (51).

1 M solution of BBr_{3} in dichloromethane (5.1 mL) was slowly added at $0{ }^{\circ} \mathrm{C}$, under nitrogen atmosphere, to a suspension of the methoxy derivative $43(1.0 \mathrm{mmol})$ in anhydrous
dichloromethane (20 mL). The mixture was stirred at room temperature for 18 h , then it was diluted with water $(10 \mathrm{~mL})$ and neutralized with a NaHCO_{3} saturated solution. The organic solvent was removed by evaporation at reduced pressure and the solid was collected by filtration. The crude derivative was dried and purified by recrystallization. Yield 96%; m.p. $>300{ }^{\circ} \mathrm{C}(2-$ Methoxyethanol). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $6.90(\mathrm{t}, 1 \mathrm{H}$, ar, $\mathrm{J}=7.4 \mathrm{~Hz}$), $6.97(\mathrm{~d}, 1 \mathrm{H}$, ar, $\mathrm{J}=8.1 \mathrm{~Hz}$), 7.13 (s, 1H, H-5), 7.28 (t, 1H, ar, J = 7.2 Hz), 7.34-7.42 (m, 2H, ar), 7.56 (t, 2H, ar, J = 7.8 Hz), 8.02 (d, 2H, ar, J = 7.9 Hz) 10.14 (br s, 1H, OH), 11.37 (br s, 1H, NH).
4.1.4. General procedure for the synthesis of amino-substituted 1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione derivatives 52 and 53.
$10 \% \mathrm{Pd} / \mathrm{C}(10 \% \mathrm{w} / \mathrm{w}$ with respect to the nitro derivative) was added to a solution of the 6nitrophenyl derivative 45 or $\mathbf{4 6}(1.2 \mathrm{mmol})$ in DMF (10 mL). The mixture was hydrogenated in a Parr apparatus at 40 psi for 24 h . Then the catalyst was filtered off and the clear solution was diluted with water (about 50 mL). The resulting solid was collected by filtration, washed with water and $\mathrm{Et}_{2} \mathrm{O}$, dried and recrystallized.
4.1.4.1. 6-(3-Aminophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (52). Yield 77%; m.p. 286-288 ${ }^{\circ} \mathrm{C}$ (2-Methoxyethanol). ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6} 5.27$ (br s, 2H, NH N_{2}), 6.64 (dd, $1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{~J}=6.5 \mathrm{~Hz}), 6.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.7 \mathrm{~Hz}), 6.84(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ar}), 7.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.11$ $(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.36(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 8.01(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=$ 7.7 Hz), 11.49 (br s, 1H, NH).
4.1.4.2. 6-(4-Aminophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (53). Yield 87%; m.p. $>300{ }^{\circ} \mathrm{C}$ (DMF/Acetone). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) 5.49 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.61 (d, 2H, ar, J $=8.6 \mathrm{~Hz}), 7.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.37-7.33(\mathrm{~m}, 3 \mathrm{H}, \operatorname{ar}), 7.55(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 8.01(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=$ 7.7 Hz), 11.38 (br s, 1H, NH).
4.1.5. General procedure for the synthesis of 8-chloro-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one derivatives 54-65.

A suspension of the suitable triazolopyrazin-3,8-dione derivatives $\mathbf{3 9 - 5 0}$ (2.1 mmol) in phosphorus oxychloride (12 mL) was heated under microwave irradiation at $170{ }^{\circ} \mathrm{C}$ for 1.5 h . The excess of phosphorus oxychloride was distilled off and the residue was treated with water (about 5-10 mL). The obtained solid was collected by filtration. These intermediates were pure enough (NMR, TLC) to be used for the next step without further purification.
4.1.5.1. 8-Chloro-6-(2-furyl)-2-phenyl[1,2,4]triazolo[4,3-a]pyrazin-3-(2H)-one (54). Yield 90\%; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) 6.65-6.66 (d, 1 H , furan proton), $6.98(\mathrm{~d}, 1 \mathrm{H}$, furan proton, $\mathrm{J}=1.8 \mathrm{~Hz}$), $7.39(\mathrm{t}$, $1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.58(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.83(\mathrm{~s}, 1 \mathrm{H}$, furan proton), $8.03(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.1$ $\mathrm{Hz}), 8.07$ (s, 1H, H-5).
4.1.5.2. 8-Chloro-6-(5-methylfuran-2-yl)-2-phenyl[1,2,4]triazolo[4,3-a]pyrazin-3-(2H)-one (55).
 proton), $7.41(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.59(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 8.05(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}$ $=8.3 \mathrm{~Hz}$).
4.1.5.3. 8-Chloro-6-(2-thienyl)-2-phenyl[1,2,4]triazolo[4,3-a]pyrazin-3-(2H)-one (56). Yield 72\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $7.18(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=4.3 \mathrm{~Hz}), 7.41(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.58-7.65(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ar})$, $7.89(\mathrm{~d}, 1 \mathrm{H}$, thiophene proton, $\mathrm{J}=3.6 \mathrm{~Hz}), 8.07(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.62\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right)$.
4.1.5.4. 8-Chloro-2-phenyl-6-(2-pyridyl)[1,2,4]triazolo[4,3-a]pyrazin-3-(2H)-one (57). Yield 87%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $7.42(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.50(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=6.1 \mathrm{~Hz}), 7.60(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.8$ $\mathrm{Hz}), 8.01-8.14(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ar}), 8.62(\mathrm{~d}, 1 \mathrm{H}$, pyridine proton, $\mathrm{J}=4.5 \mathrm{~Hz}), 8.71\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right)$.
4.1.5.5. 8-Chloro-6-(2-methoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (58). Yield $81 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{\mathrm{d}}\right.$) $3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.13(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, 7.5 \mathrm{~Hz}), 7.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=$ $8.3 \mathrm{~Hz}), 7.38-7.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ar}), 7.59(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 8.00(\mathrm{~d}, 1 \mathrm{H}$; ar, J=7.8 Hz), $8.06(\mathrm{~d}, 2 \mathrm{H}$, ar, J=8.2 Hz), $8.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5)$.
4.1.5.6. 8-Chloro-6-(2-nitrophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (59). Yield 93%; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}$) $7.45(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.63(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.76-7.75(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{ar}), 7.86-7.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ar}), 8.06-8.08(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ar}), 8.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5)$.
4.1.5.7. 8-Chloro-6-(3-nitrophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (60). Yield $95 \% ;{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $7.42(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.60(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.79(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}$ $=7.8 \mathrm{~Hz}), 8.07(\mathrm{~d}, 2 \mathrm{H}, \operatorname{ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 8.26(\mathrm{~d}, 1 \mathrm{H}, \operatorname{ar}, \mathrm{J}=7.7 \mathrm{~Hz}), 8.54(\mathrm{~d}, 1 \mathrm{H}, \operatorname{ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 8.82$ (s, 1H, ar), 8.98 (s, 1H, H-5).
4.1.5.8. 8-Chloro-6-(4-nitrophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (61). Yield $89 \% ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6}$) $7.42(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.61(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.7 \mathrm{~Hz}), 8.07(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}$ $=7.7 \mathrm{~Hz}), 8.32(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=9.2 \mathrm{~Hz}), 8.36(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=9.2 \mathrm{~Hz}), 8.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5)$.
4.1.5.9. 6-(3-Bromophenyl)-8-chloro-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (62). Yield $82 \% ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) 7.36-7.41 (m, 2H, ar), 7.53-7.59 (m, 3H, ar), $7.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.9$ $\mathrm{Hz}), 7.09-7.11(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{ar}+\mathrm{H}-5), 8.15(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.7 \mathrm{~Hz})$.
4.1.5.10. 6-(4-Bromophenyl)-8-chloro-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (63). Yield 93%; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}^{6}$) $7.41(\mathrm{t}, 1 \mathrm{H}$, ar, $\mathrm{J}=7.3 \mathrm{~Hz}$), $7.60(\mathrm{t}, 2 \mathrm{H}$, ar, $\mathrm{J}=8.1 \mathrm{~Hz}$), $7.68(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.5 \mathrm{~Hz}), 8.02(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.5 \mathrm{~Hz}), 8.07(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.6 \mathrm{~Hz}), 8.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5)$.
4.1.6.11. 8-Chloro-6-(3-chlorophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (64). Yield 77%; ${ }^{1} \mathrm{H}$ NMR (DMSO_{6}) $7.41(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.47-7.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ar}), 7.60(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}$, $\mathrm{J}=7.4 \mathrm{~Hz}), 8.03-8.08(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ar}), 8.13(\mathrm{~s}, 1 \mathrm{H}$, ar) $8.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5)$.
4.1.6.12. 8-Chloro-6-(4-chlorophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (65). Yield 75\%; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{\left.-\mathrm{d}_{6}\right)} 7.40(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.53-7.61(\mathrm{~m}, 4 \mathrm{H}$, ar), 8.05-8.09 (m, 4H, ar), 8.69 (s, 1H, H-5).
4.1.6. General procedure for the synthesis of 8-amino-6-aryl-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin$3(2 \mathrm{H})$-one derivatives 1-12.

A suspension of the 8-chloro-triazolopyrazine derivatives 54-65 (1.1 mmol) in a saturated ethanolic solution of $\mathrm{NH}_{3}(50 \mathrm{~mL})$ was heated at $140{ }^{\circ} \mathrm{C}$ in a sealed tube for 16 h , with the exception of the 6-(2-furyl) derivative 54 that was reacted at $100{ }^{\circ} \mathrm{C}$ for 4 h . The mixture was cooled at room temperature and the solid was collected by filtration, washed with water (about 5-10 mL), dried and recrystallized. Derivative 2 was purified by column chromatography (Cyclohexane/EtOAc, 6:4).
4.1.6.1. 8-Amino-6-(2-furyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (1). Yield $25 \% ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) 6.59-6.60 (m, 1 H , furan ptoton), $6.78(\mathrm{~d}, 1 \mathrm{H}$, furan proton, $\mathrm{J}=1.8 \mathrm{~Hz}), 7.38(\mathrm{t}$, 1 H , ar, $\mathrm{J}=7.4 \mathrm{~Hz}$), $7.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.58(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.65\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.74(\mathrm{~s}, 1 \mathrm{H}$, furan proton), $8.06(\mathrm{~d}, 2 \mathrm{H}$, ar, $\mathrm{J}=7.8 \mathrm{~Hz})$.
4.1.6.2. 8-Amino-6-(5-methylfuran-2-yl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one Yield 52%; m.p. 263-265 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO_{6}) $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.20(\mathrm{~s}, 1 \mathrm{H}$, furan proton), $6.66(\mathrm{~s}, 1 \mathrm{H}$, furan proton), 7.33-7.37 (m, 2H, 1ar + 1 furan proton), $7.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.63$ (br s, 2H, NH2), 8.06 (d, 2H, ar, J=7.8 Hz). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) 13.89, 99.15, 108.39, 108.79, $119.81,126.78,129.58,129.65,131.47,137.88,147.51,148.27,150.06,152.30$.
4.1.6.3. 8-Amino-2-phenyl-6-(2-thienyl)-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (3). Yield 58\%; m.p. 283-284 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH} / 2-\mathrm{Methoxyethanol}) .{ }^{1} \mathrm{H}$ NMR (DMSO_{6} (${ }_{6} 7.11$ (t, $1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=4.4 \mathrm{~Hz}$), 7.36 $(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.51-7.71\left(\mathrm{~m}, 6 \mathrm{H}, 4 \mathrm{ar}+\mathrm{NH}_{2}\right), 7.80\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 8.07(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.8 \mathrm{~Hz})$.

IR 3318, 3223, 1715, 1643. ${ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}) 100.20, 119.85, 123.09, 126.50, 126.79, 128.62, 129.67, 131.52, 132.25, 137.92, 142.42, 147.53, 147.92.
4.1.6.4. 8-Amino-2-phenyl-6-(2-pyridyl)- 1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (4). Yield 62\%; m.p. $251-252{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right) 7.36(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=5.9 \mathrm{~Hz}), 7.57(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.0$ $\mathrm{Hz}), 7.65\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.90(\mathrm{t}, 1 \mathrm{H}$, pyridine proton $\mathrm{J}=3.9 \mathrm{~Hz}), 7.92-8.10\left(\mathrm{~m}, 4 \mathrm{H}, 3 \mathrm{ar}+\mathrm{H}_{5}\right)$, $8.62(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=3.8 \mathrm{~Hz})$. IR 3217, 3167, 1715, 1634.
4.1.6.5. 8-Amino-6-(2-methoxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (5). Yield 68%; m.p. $249-251{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR (DMSO_{6}) $3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.06(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.1$ Hz), $7.14(\mathrm{~d}, 1 \mathrm{H}$, ar, $\mathrm{J}=8.1 \mathrm{~Hz}), 7.34-7.37\left(\mathrm{~m}, 2 \mathrm{H}\right.$, ar), $7.48\left(\right.$ br s. $\left.2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.56(\mathrm{t}, 2 \mathrm{H}$, ar, $\mathrm{J}=7.8$ Hz), 7.9 (s, 1H, H-5), 8.06-8.09 (m, 3H, ar).
4.1.6.6. 8-Amino-6-(2-nitrophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (6). Yield 83%; m.p. 281-283 ${ }^{\circ} \mathrm{C}(\mathrm{AcOH}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right) 7.40(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.58-7.69(\mathrm{~m}$, $\left.6 \mathrm{H}, 4 \mathrm{ar}+\mathrm{NH}_{2}\right), 7.76-7.80(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{ar}+\mathrm{H}-5), 7.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 8.09(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.7$ Hz).
4.1.6.7. 8-Amino-6-(3-nitrophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (7). Yield 72%; m.p. $280-281^{\circ} \mathrm{C}(\mathrm{AcOH}) .{ }^{1} \mathrm{H}$ NMR (DMSO_{-1}) $7.37(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.57(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}$ $=7.6 \mathrm{~Hz}), 7.71(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.7 \mathrm{~Hz}), 7.77\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 8.07-8.09(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{ar}+\mathrm{H}-5), 8.19(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 8.48(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 8.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ar})$.
4.1.6.8. 8-Amino-6-(4-nitrophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (8). Yield 69%; m.p. 297-299 ${ }^{\circ} \mathrm{C}$ (2-Methoxyethanol/DMF). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) 7.36 (t, 1H, ar, J = 7.4 Hz), $7.57(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.7 \mathrm{~Hz}), 7.73\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 8.06-8.08(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{ar}+\mathrm{H}-5), 8.28(\mathrm{~s}, 4 \mathrm{H}$, ar). ${ }^{13}$ C-NMR (DMSO-d ${ }_{6}$) 104.87, 119.91, 124.19, 126.80, 126.87, 129.69, 131.56, 133.78, 137.85, 143.48, 147.17, 147.64, 148.08. IR 1713, 3373, 3485.
4.1.6.9. 8-Amino-6-(3-bromophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (9). Yield 87%; m.p. 281-283 ${ }^{\circ} \mathrm{C}$ (2-Methoxyethanol). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) 7.35-7.40 (m, 2H, ar), 7.52-7.59 (m, 3H, ar), $7.66\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 8.07(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=$ 8.0 Hz), 8.23 ($\mathrm{s}, 1 \mathrm{H}$, ar). ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) 102.93, 119.90, 122.57, 124.64, 126.83, 128.65, $129.68,131.04,131.09,131.60,134.18,137.89,139.26,147.63,147.94$.
4.1.6.10. 8-Amino-6-(4-bromophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (10). Yield 92%; m.p. 266-268 ${ }^{\circ} \mathrm{C}$ (2-Methoxyethanol). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) 7.36 (t, $1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}$), 7.57 $(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.63-7.61\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{ar}+\mathrm{NH}_{2}\right), 7.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.96(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.6 \mathrm{~Hz})$, $8.07(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}) 102.35, 119.89, 121.63, 126.79, 128.01, 129.66, 131.57, 131.81, 134.82, 136.15, 137.93, 147.63, 147.94.
4.1.6.11. 8-Amino-6-(3-chlorophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (11). Yield 85%; m.p. 279-281 ${ }^{\circ} \mathrm{C}$ (EtOH/2-Methoxyethanol). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}^{-} \mathrm{d}_{6}$) 7.34-7.47 (m, 3H, ar), 7.57 (t, 2H, ar, J = 7.7 Hz), $7.65\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.7 \mathrm{~Hz}), 8.06-$ 8.08 (m, 3H, ar). ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) 102.96, 119.92, 124.30, 125.78, 126.82, 128.14, 129.67, $130.78,131.62,133.96,134.33,137.91,139.09,147.64,147.95$.
4.1.6.12. 8-Amino-6-(4-chlorophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (12). Yield 87%; m.p. $256-258{ }^{\circ} \mathrm{C}$ (2-Methoxyethanol). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $7.36(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}$), 7.48 $(\mathrm{d}, 2 \mathrm{H}, \operatorname{ar}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.63\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 8.02(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.5 \mathrm{~Hz}), 8.07(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) 102.40, 119.88, 127.70, 128.97, 129.57, 129.72, 131.55, 132.99, 134.75, 135.76, 137.92, 147.62, 147.92.
4.1.7. 8-Amino-6-(2-hydroxyphenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one 13.

1 M solution of BBr_{3} in dichloromethane (5.1 mL) was slowly added at $0{ }^{\circ} \mathrm{C}$, under nitrogen atmosphere, to a suspension of the methoxy-substituted triazolopirazine $\mathbf{5}(1.0 \mathrm{mmol})$ in anhydrous
dichloromethane $(20 \mathrm{~mL})$. The mixture was stirred at room temperature for about 30 h , then was diluted with water (10 mL) and neutralized with a NaHCO_{3} saturated solution. The organic solvent was removed by evaporation at reduced pressure and the solid was collected by filtration. The crude derivative was dried and purified by recrystallization. Yield 88%; m.p. $274-276{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) 6.83-6.87 (m, 2H, ar), $7.18(\mathrm{t}, 1 \mathrm{H}$, ar, $\mathrm{J}=8.1 \mathrm{~Hz}), 7.37(\mathrm{t}, 1 \mathrm{H}$, ar, $\mathrm{J}=7.8 \mathrm{~Hz})$, $7.57(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.91-7.93\left(\mathrm{~m}, 4 \mathrm{H}, 1 \mathrm{ar}+\mathrm{H}-5+\mathrm{NH}_{2}\right), 8.07(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.0 \mathrm{~Hz}) .11 .93$ (s, 1H, OH). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) 102.57, 117.76, 119.46, 119.61, 119.90, 126.87, 127.18, 129.70, 129.87, 131.27, 134.75, 137.88, 147.12, 147.59, 157.06.

4.1.8. General procedure for the synthesis of 8-amino-6-(aminophenyl)-2-phenyl-1,2,4-triazolo[4,3-

 a]pyrazin-3-(2H)ones 14-16.$10 \% \mathrm{Pd} / \mathrm{C}(10 \% \mathrm{w} / \mathrm{w}$ with respect to the nitro derivative) was added to a solution of the 6(nitrophenyl) derivatives 6-8 (1.2 mmol) in DMF (10 mL). The mixture was hydrogenated in a Parr apparatus at 40 psi for 24 h . Then the catalyst was filtered off and the clear solution was diluted with water (about 50 mL) to obtain a solid that was collected by filtration, washed with water and $\mathrm{Et}_{2} \mathrm{O}$, dried and recrystallized.
4.1.8.1. 8-Amino-6-(2-aminophenyl)-2-phenyl-1,2,4-triazolo[4,3-alpyrazin-3 (2H)-one (14). Yield 59%; m.p. $256-258{ }^{\circ} \mathrm{C}$ (2-Methoxyethanol). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) 5.78 (br s, 2H, NH_{2}), $6.58(\mathrm{t}, 1 \mathrm{H}$, ar, $\mathbf{J}=7.4 \mathrm{~Hz}), 6.72(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.00 \mathrm{~Hz}), 7.05(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.30-7.38(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{ar}+$ $\mathrm{H}-5), 7.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.62\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 8.07(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.9 \mathrm{~Hz})$.
4.1.8.2. 8-Amino-6-(3-aminophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (15). Yield 75%; m.p. 280-282 ${ }^{\circ} \mathrm{C}$ (2-Methoxyethanol). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) 5.10 (br s, 2H, NH_{2}), 6.54-6.57 (m, 1H, ar), 7.04-7.10 (m, 2H, ar), $7.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ar}), 7.36(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5)$, 7.51 (br s, 2H, NH 2), $7.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.7 \mathrm{~Hz}), 8.08(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.7 \mathrm{~Hz})$.
4.1.8.3. 8-Amino-6-(4-aminophenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3 (2H)-one (16). Yield 78%; m.p. 294-296 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{NO}_{2} / \mathrm{DMF}\right) .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}\right) 5.27$ (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.59 (d, 2H, ar, $\mathrm{J}=8.6 \mathrm{~Hz}), 7.35(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.44\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=$ 8. 5 Hz), $7.64(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.6 \mathrm{~Hz}), 8.08(\mathrm{~d}, 2 \mathrm{H}$, ar, $\mathrm{J}=7.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}}\right.$) 149.40 , $147.56,147.54,138.03,136.93,131.50,129.64,126.89,126.68,124.15,119.83,114.10,98.70$. IR 1703, 3292-3115, 3350, 3435.
4.1.9. General procedure for the synthesis of 8-amino-2-phenyl-6-(piperazinylphenyl)-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)one 17-19

A suspension of the 8 -amino- 6 -(aminophenyl) derivatives $\mathbf{1 4 - 1 6}$ (1.1 mmol) and bis-(2chloroethyl)amine hydrochloride in sulfolane (5 mL) was heated at $150^{\circ} \mathrm{C}$ until the disappearance of starting material (TLC- monitoring 16-24 h). After cooling at $0-5{ }^{\circ} \mathrm{C}$, the mixture was treated with acetone $(30 \mathrm{~mL})$ and the obtained ammonium salts were collected by filtration and dissolved in water $(50 \mathrm{~mL})$. The solution was neutralized with a NaHCO_{3} saturated solution and extracted with EtOAc (40 mL x 5). The organic phase was anhydrified $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and reduced to dryness under vacuum to give a yellow solid. All the crude derivatives were purified by recrystallization.
4.1.9.1. 8-Amino-2-phenyl-6-(2-piperazin-1-yl-phenyl)-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)one (17). Yield 52\%; m.p. 214-216 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $2.82\left(\mathrm{~s}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right)$, 7.08-7.11 (m, $2 \mathrm{H}, \mathrm{ar}), 7.28(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.36(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.51\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}$, $\mathrm{J}=7.7 \mathrm{~Hz}), 7.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=6.6 \mathrm{~Hz}), 8.09(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 8.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5)$.
4.1.9.2. 8-Amino-2-phenyl-6-(3-piperazin-1-yl-phenyl)-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)one (18). Yield 47%; m.p. $234-235{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}\right) 2.86\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}, \mathrm{~J}=4.9 \mathrm{~Hz}\right), 3.11$ $\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}, \mathrm{~J}=5.1 \mathrm{~Hz}\right), 6.90(\mathrm{dd}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{~J}=1.9 \mathrm{~Hz}), 7.25(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}), 7.34-7.39(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ar}), 7.51-7.58\left(\mathrm{~m}, 5 \mathrm{H}, 3 \mathrm{ar}+\mathrm{NH}_{2}\right), 7.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 8.08(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.6 \mathrm{~Hz})$.
4.1.9.3. 8-Amino-2-phenyl-6-(4-(piperazin-1-yl-)phenyl)-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)one (19). Yield 56\%; m.p. $255-257{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}\right){ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) 2.84 (t, $\left.4 \mathrm{H}, 2 \mathrm{CH}_{2}, \mathrm{~J}=4.9 \mathrm{~Hz}\right), 3.11\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}, \mathrm{~J}=5.1 \mathrm{~Hz}\right), 7.96(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.36(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}$, $\mathrm{J}=7.4 \mathrm{~Hz}), 7.50\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.54-7.59(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{ar}+\mathrm{H}-5), 7.82(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.8 \mathrm{~Hz}), 8.08$ (d, 2H, ar, J = 7.7 Hz).
4.1.10. 4-(3-(8-Amino-3-oxo-2-phenyl-2,3-dihydro-1,2,4-triazolo[4,3-a]pyrazin-6-yl)phenyl)-1,1-dimethyl-piperazin-1-ium 20.

A mixture of compound $\mathbf{1 8}(0.4 \mathrm{mmol})$, methyl iodide $(0.7 \mathrm{mmol})$ and potassium carbonate in anhydrous DMF (0.5 mL) was stirred at room temperature for 7 h , then it was diluted with $\mathrm{H}_{2} \mathrm{O}$ (about 50 mL) and EtOAc (about 40 mL). The obtained solid was collected by filtration and recristallized. Yield 35%; m.p. $>300^{\circ} \mathrm{C}$ (DMF). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) 3.23\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.61$ (br $\mathrm{s}, 8 \mathrm{H}$, piperazine protons), $7.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.32-7.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ar}), 7.52-7.59(\mathrm{~m}, 6 \mathrm{H}, 4 \mathrm{ar}$ $+\mathrm{NH}_{2}$), $7.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 8.07(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.2 \mathrm{~Hz})$.
4.1.11. General procedure for the synthesis of 8-amino-6-(benzylpiperazin-1-yl-phenyl)-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)one 21 and 22.

A suspension of the 8-amino-6-(piperazinyl)phenyl derivative $\mathbf{1 8}$ or $\mathbf{1 9}$ (0.7 mmol), anhydrous triethylamine (0.9 mmol) and benzylchloride (0.9 mmol) in anhydrous dioxane (10 mL) was heated at reflux until the disappearance of starting material (TLC monitoring, 24-48 h). In case of compound 21, the organic solvent was removed by evaporation at reduced pressure and the residue treated with EtOAc (50 mL). The organic phase was washed with water ($30 \mathrm{~mL} \times 3$), anhydrified $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and reduced to dryness under vacuum to give a solid. To isolate compound 22, the solvent was evaporated under vacuum and the residue was treated with water (30 ml). The resulting solid
was collected by filtration and washed with diethyl ether (about 20 mL). The crude product was purified by recrystallization (21) or column chromatography (22, eluent Cyclohexane/EtOAc/MeOH, 5.5:4.5:0.1).

4.1.11.1. 8-Amino-6-[3-(benzylpiperazin-1-yl)phenyl]-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-

 (2H)one (21). Yield 34\%; m.p. 208-210 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $2.55\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}, \mathrm{~J}=4\right.$. $8 \mathrm{~Hz}), 3.22\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}, \mathrm{~J}=4.9 \mathrm{~Hz}\right), 6.91(\mathrm{dd}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=6.2, \mathrm{~J}=2.00 \mathrm{~Hz}), 7.24-7.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ar})$, 7.34-7.31 (m, 6H, ar), 7.52-7.59 (m, 5H, 3 ar $+\mathrm{NH}_{2}$), $7.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 8.08(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.6 \mathrm{~Hz})$. 4.1.11.2. 8-Amino-6-[4-(benzylpiperazin-1-yl)phenyl]-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)one (22). Yield 63\%; m.p. 244-246 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}-\mathrm{d}_{6}\right) 2.65\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}, \mathrm{~J}=4\right.$. $8 \mathrm{~Hz}), 3.30\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}, \mathrm{~J}=4.9 \mathrm{~Hz}\right), 5.54\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.98(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.30-7.40$ (m, 6H, ar), $7.52(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.7 \mathrm{~Hz}), 7.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.76(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=8.8 \mathrm{~Hz}), 8.12(\mathrm{~d}, 2 \mathrm{H}$, ar, $\mathrm{J}=7.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}_{6}\right) 48.63,52.95,63.07,101.56,11.64,119.84,126.64,126.85$, 127.21, 128.32, 129.19, 129.24, 130.81, 136.62, 137.58, 146.38, 147.47, 151.50.
4.1.12. Ethyl 2-amino-2-benzylhydrazonoacetate 66

Ethyl thiooxamate (3.7 mmol) was added to a mixture of benzylhydrazine hydrochloride (3.7 $\mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.7 \mathrm{mmol})$ in absolute ethanol $(15 \mathrm{~mL})$. The suspension was stirred at $25{ }^{\circ} \mathrm{C}$ for 15 h , then was treated with NaHCO_{3} saturated solution (40 mL) and extracted with EtOAc (30 mL x 3). The organic layer was washed with brine (30 mL x 3), anhydrified $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give a brown solid which was used for the next step without further purification. Yield $88 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}\right) 1.22\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 4.16\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7\right.$. $1 \mathrm{~Hz}), 4.25\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=5.1 \mathrm{~Hz}\right), 5.49\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.88(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{J}=5.1 \mathrm{~Hz}), 7.24-7.35$ (m, 5H, ar).

Carbonyldiimidazole (5.4 mmol) was portion wise added to a cold $\left(\mathrm{T}=0^{\circ} \mathrm{C}\right)$ suspension of ethyl 2-amino-2-benzylhydrazonoacetate $\mathbf{6 6}(2.7 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The mixture was stirred at room temperature for 15 h , then was treated with a $\mathrm{NH}_{4} \mathrm{Cl}$ saturated solution (30 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL} \times 3)$. The organic phase was anhydrified $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated under reduced pressure to afford a yellow solid which was purified by column chromatography (cyclohexane/EtOAc/MeOH, 6:4:1). Yield 35\%; mp 154-156 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $1.27\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 4.31\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 4.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.26-$ 7.38 (m, 5H, ar), 12.67 (br s, 1H, NH).
4.1.14. General procedure for the synthesis of 1-benzyl-4-(2-phenyl/heteroaryl-2-oxoethyl)-5-oxo-4,5-dihydro-1H-1,2,4-triazole-3-carboxylate derivatives 68-70

The title compounds were synthesized by reacting ethyl 1-benzyl-5-oxo-1,2,4-triazole-3carboxylate $67(1 \mathrm{mmol})$ with phenacyl bromide or heteroaryl- α-bromoketone [38-39] (1.2 mmol) in the same conditions described above to prepare compounds 27-38 from 26. The crude 68, 69 and 70 were purified by column chromatography (eluent $n-\mathrm{Hexane}^{2} / \mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH} /$ Toluene 2:5.5:0.1:0.5, Cyclohexane/EtOAc 6:4 and Cyclohexane/EtOAc 1:1, respectively).
4.1.14.1. Ethyl 1-benzyl-5-oxo-4-[2-oxo-2-phenylethyl]-1-phenyl-4,5-dihydro-1H-1,2,4-triazole-3carboxylate (68). Yield 34%; m.p. $90-92{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 1.34\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 4.36$ $\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 5.15\left(\mathrm{~s}, 2 \mathrm{H} . \mathrm{CH}_{2}\right), 5.51\left(\mathrm{~s}, 2 \mathrm{H} . \mathrm{CH}_{2}\right), 7.32-7.42(\mathrm{~m}, 5 \mathrm{H}$, ar), $7.54(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}$, $\mathrm{J}=7.7 \mathrm{~Hz}), 7.67(\mathrm{t}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.5 \mathrm{~Hz}), 8.01(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz})$.
4.1.14.2. Ethyl 1-benzyl-4-[2-(furan-2-yl)-2-oxoethyl]-5-oxo-4,5-dihydro-1H-1,2,4-triazole-3carboxylate (69). Yield 68\%; m.p. 104-106 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) 1.34\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=7.1 \mathrm{~Hz}\right)$, $4.36\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 5.13\left(\mathrm{~s}, 2 \mathrm{H} . \mathrm{CH}_{2}\right), 5.37\left(\mathrm{~s}, 2 \mathrm{H} . \mathrm{CH}_{2}\right), 6.63(\mathrm{dd}, 1 \mathrm{H}$, furan proton, $\mathrm{J}=$ $1.6 \mathrm{~Hz}, \mathrm{~J}=1.9 \mathrm{~Hz}), 7.32-7.41(\mathrm{~m}, 6 \mathrm{H}, 5 \mathrm{ar}+1$ furan proton), $7.67(\mathrm{~s}, 1 \mathrm{H}$, furan proton).
4.1.14.3. Ethyl 1-benzyl-4-[2-(5-methylfuran-2-yl)-2-oxoethyl]-5-oxo-4,5-dihydro-1H-1,2,4-triazole-3-carboxylate (70). Yield 93\%; Oily compound. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) 1.35\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=7.1\right.$ $\mathrm{Hz}), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.37\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7.1 \mathrm{~Hz}\right), 5.13\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.33\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.24(\mathrm{~d}$, 1 H , furan proton, $\mathrm{J}=3.3 \mathrm{~Hz}$), $7.25(\mathrm{~d}, 1 \mathrm{H}, 1$ furan proton, $\mathrm{J}=3.4 \mathrm{~Hz}), 7.41-7.31(\mathrm{~m}, 5 \mathrm{H}$, ar).
4.1.15. General procedure for the synthesis of 2-benzyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)dione derivatives 71-73.

The title compounds were synthesized from ethyl 1,2,4-triazole-3-carboxylate derivatives 68-70 (0.9 mmol) and anhydrous ammonium acetate (3.5 mmol), in the same conditions described above to prepare compounds 39-50 from 27-38.
4.1.15.1. 2-Benzyl-6-phenyl-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (71). Yield 32\%; m.p. 278-279 ${ }^{\circ} \mathrm{C}$ (2-Methoxyethanol). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) 5.13 (s, 2H, CH 2), 7.20 (s, 1H, H-5), 7.35$7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ar}), 7.45-7.47(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ar}), 7.68-7.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ar}), 11.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$.
4.1.15.2. 2-Benzyl-6-(furan-2-yl)-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (72). Yield 81\%; m.p. $280-282{ }^{\circ} \mathrm{C}(\mathrm{AcOH}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}-\mathrm{d}_{6}\right) 5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.63(\mathrm{dd}, 1 \mathrm{H}$, furan proton, $\mathrm{J}=$ $1.6 \mathrm{~Hz}, \mathrm{~J}=1.8 \mathrm{~Hz}), 7.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ar}, \mathrm{J}=3.4 \mathrm{~Hz}), 7.32-7.39(\mathrm{~m}, 5 \mathrm{H}, 4 \mathrm{ar}+1$ furan proton), $7.8(\mathrm{~s}, 1 \mathrm{H}$, furan proton), $11.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$.
4.1.15.3. 2-Benzyl-6-(5-methylfuran-2-yl)-1,2,4-triazolo[4,3-a]pyrazine-3,8(2H,7H)-dione (73). Yield 28%; m.p. $286-288{ }^{\circ} \mathrm{C}(\mathrm{AcOH}) .{ }^{1} \mathrm{H}$ NMR (DMSO_{6}) $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $6.22(\mathrm{~s}, 1 \mathrm{H}$, furan proton), $7.01(\mathrm{~s}, 1 \mathrm{H}$, furan proton), $7.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.34-7.37(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ar}), 11.46$ (br s, 1H, NH).
4.1.16. General procedure for the synthesis of 2-benzyl-8-chloro-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one derivatives 74-76.

The title compounds were synthesized by heating a suspension of the suitable triazolopyrazin-3,8dione derivatives 71-73 (2.1 mmol) in phosphorus oxychloride (12 mL) in the same conditions described above to prepare compounds $\mathbf{5 4 - 6 5}$ from $\mathbf{3 9 - 5 0}$. These intermediates were pure enough (NMR, TLC) to be used for the next step without further purification.
4.1.16.1. 2-Benzyl-8-chloro-6-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (74). Yield $68 \% ;{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $5.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.33-7.42(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ar}), 7.48(\mathrm{t}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.1), 8.01(\mathrm{~d}, 2 \mathrm{H}$, ar, $\mathrm{J}=7.2 \mathrm{~Hz}), 8.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5)$.
4.1.16.2. 2-Benzyl-8-chloro-6-(furan-2-yl)-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (75). Yield $85 \% ;{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $5.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.65(\mathrm{dd}, 1 \mathrm{H}$, furan proton, $\mathrm{J}=1.7 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}$), $6.95(\mathrm{~d}, 1 \mathrm{H}$, furan proton, $\mathrm{J}=3.2 \mathrm{~Hz}), 7.36-7.41(\mathrm{~m}, 5 \mathrm{H}$, ar), $7.82(\mathrm{~s}, 1 \mathrm{H}$, furan proton), $8.02(\mathrm{~s}, 1 \mathrm{H}$, H-5).
4.1.16.3. 2-Benzyl-8-chloro-6-(5-methylfuran-2-yl)-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (76). Yield $95 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}\right) 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.25(\mathrm{~d}, 1 \mathrm{H}$, furan proton, J $=2.1 \mathrm{~Hz}), 6.81(\mathrm{~d}, 1 \mathrm{H}$, furan proton, $\mathrm{J}=2.8 \mathrm{~Hz}), 7.33-7.38(\mathrm{~m}, 5 \mathrm{H}$, ar), $7.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5)$.
4.1.17. General procedure for the synthesis of 8-amino-6-aryl-2-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one derivatives 23-35.

The title compounds were obtained by heating the 8 -chloro-triazolopyrazine derivatives 74-76 (1.1 $\mathrm{mmol})$ in a saturated ethanolic solution of $\mathrm{NH}_{3}(50 \mathrm{~mL})$ in the same conditions described above to prepare derivatives 1-12. The crude compounds 24 and 25 were purified by column chromatography (n -Hexane/EtOAc $/ \mathrm{MeOH}, 7: 3: 0.1$ and Cyclohexane/EtOAc/MeOH, 5:4:1).
4.1.17.1. 8-Amino-2-benzyl-6-phenyl-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (23). Yield 79\%; m.p. 288-290 ${ }^{\circ} \mathrm{C}(\mathrm{DMF}) .{ }^{1} \mathrm{H}$ NMR (DMSO_{-}) $5.18\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.31-7.45\left(\mathrm{~m}, 10 \mathrm{H}, 8 \mathrm{ar}+\mathrm{NH}_{2}\right), 7.72$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$), $7.95(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ar}, \mathrm{J}=7.2 \mathrm{~Hz})$.
4.1.17.2. 8-Amino-2-benzyl-6-(furan-2-yl)-1,2,4-triazolo[4,3-a]pyrazin-3(2H)-one (24). Yield 38\%; m.p. $185-187{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right) 5.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.58(\mathrm{dd}, 1 \mathrm{H}$, furan proton, $\mathrm{J}=1.6 \mathrm{~Hz}, \mathrm{~J}$ $=1.8 \mathrm{~Hz}), 6.75(\mathrm{~d}, 1 \mathrm{H}$, furan proton, $\mathrm{J}=3.1 \mathrm{~Hz}), 7.31-7.37(\mathrm{~m}, 6 \mathrm{H}, 5 \mathrm{ar}+\mathrm{H}-5), 7.51(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, NH_{2}), 7.72 (s, 1H, furan proton).
4.1.17.3. 8-Amino-2-benzyl-6-(5-methylfuran-2-yl)-1,2,4-triazolo[4,3-a]pyrazin-3-(2H)-one (25). Yield 54\%; m.p. 215-217 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.17-6.18$ $(\mathrm{m}, 1 \mathrm{H}$, furan proton), $6.61(\mathrm{~d}, 1 \mathrm{H}$, furan proton, $\mathrm{J}=3.0 \mathrm{~Hz}), .7 .30-7.39(\mathrm{~m}, 6 \mathrm{H}$, ar $+\mathrm{H}-5)$, 7.47 (br $\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$.

4.2. Pharmacology

4.2.1. Binding assays

4.2.1.1. Cell culture.

CHO cells stable transfected with hARs were grown in Dulbecco's modified Eagle's medium (DMEM) with nutrient mixture F12 supplemented with 10% fetal bovine serum (FBS), $100 \mathrm{U} / \mathrm{ml}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin, $2.5 \mu \mathrm{~g} / \mathrm{ml}$ Amphotericin $\mathrm{B}, 0.1 \mathrm{mg} / \mathrm{ml}$ Geneticine and 1 mM Sodium Pyruvate. They were cultured at $37{ }^{\circ} \mathrm{C}$ in a humidified atmosphere of $5 \% \mathrm{CO}_{2} / 95 \%$ air [40].

4.2.1.1. Membrane preparation.

Crude membranes for radioligand binding experiments were prepared by collecting cells (CHO stably transfected with $\mathrm{hA}_{1}, \mathrm{hA}_{2 \mathrm{~A}}$ and $\mathrm{hA}_{3} \mathrm{ARs}$) in ice-cold hypotonic buffer ($5 \mathrm{mM} \mathrm{Tris} / \mathrm{HCl}, 2$ mM EDTA, pH 7.4). The cell suspension was homogenized on ice (Ultra-Turrax, $2 \times 20 \mathrm{sec}$ at full speed) and the homogenate was spun for $10 \mathrm{~min}\left(4^{\circ} \mathrm{C}\right)$ at 3200 rpm . The supernatant was centrifuged for 50 min at 37000 rpm at $4^{\circ} \mathrm{C}$. The membrane pellet was resuspended in the specific binding buffer (hA_{1} ARs: 50 mM Tris/ HCl buffer pH 7.4 ; $\mathrm{hA}_{2 \mathrm{~A}}$ ARs: 50 mM Tris $/ \mathrm{HCl}, 50 \mathrm{mM}$ $\mathrm{MgCl}_{2} \mathrm{pH} 7.4 ; \mathrm{hA}_{3}$ ARs: 50 mM Tris/ $\mathrm{HCl}, 10 \mathrm{mM} \mathrm{MgCl}, 1 \mathrm{mM}$ EDTA, pH 8.25), frozen in liquid nitrogen at a protein concentration of $2-4 \mathrm{mg} / \mathrm{ml}$ and stored at $-80^{\circ} \mathrm{C}$.

4.2.1.2. Radioligand binding.

Dissociation constants of radioligands (K_{D} values) were obtained from saturation binding experiments. Dissociation constants of unlabelled compounds (K_{i} values) were determined in radioligand competition experiments.

For saturation binding, increasing concentration of the radioligands $\left[{ }^{3} \mathrm{H}\right] \mathrm{CCPA}\left(\left[{ }^{3} \mathrm{H}\right] 2\right.$-chloro- $N^{6}-$ cyclopentyladenosine, hA_{1} ARs), $\left[{ }^{3} \mathrm{H}\right]$ NECA ($\left[{ }^{3} \mathrm{H}\right] 5^{\prime}-\mathrm{N}$-ethylcarboxamidoadenosine, $\mathrm{hA}_{2 \mathrm{~A}}$ ARs), and $\left[{ }^{3} \mathrm{H}\right]$ HEMADO $\left(\left[{ }^{3} \mathrm{H}\right] 2-(1-\mathrm{Hexynyl})-\mathrm{N}\right.$-methyladenosine, hA_{3} ARs) were incubated, in a 96-well plate, in a total volume of $200 \mu \mathrm{l}$ containing $0.2 \mathrm{U} / \mathrm{ml}$ adenosine deaminase and $10 \mu \mathrm{~g}$ of membrane proteins in the specific buffer of each receptor.

In competition experiments, a fixed concentration of radioligand $\left(1 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right] \mathrm{CCPA}, \mathrm{K}_{\mathrm{D}}=1.1 \mathrm{nM}\right.$; $10 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$ NECA, $\mathrm{K}_{\mathrm{D}}=20 \mathrm{nM}$; $\left[{ }^{3} \mathrm{H}\right]$ HEMADO, $\mathrm{K}_{\mathrm{D}}=1.5 \mathrm{nM}$) was incubated in a 96-well plate with $10 \mu \mathrm{~g}$ of specific receptor cell membrane preparations and increasing concentrations of the compound understudy. Non-specific binding was determined in the presence of 1 mM theophylline for $\mathrm{hA}_{1} \mathrm{AR}$ and $100 \mu \mathrm{M}(\mathrm{R})-\mathrm{N}^{6}$-phenyliso-propyladenosine (R-PIA) for both $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ and $\mathrm{hA}_{3} \mathrm{AR}$. Samples were incubated for 3 h at rt , filtered using a microplate format utilizing the 96 -well microplate filtration system Microbeta Filtermat 96 Cell Harvester (PerkinElmer) to separate the
free fractions to the bound fractions. The filters were washed three times with $200 \mu 1$ of ice-cold binding buffer specific for each receptor and subsequently dried. After the addition of $20 \mu \mathrm{l}$ of scintillation cocktail, the bound radioactivity was determined using a Perkin Elmer Microbeta ${ }^{2}$ scintillation counter. All binding data were calculated by non-linear curve fitting with Prism 5.0 programme (GraphPAD Software, San Diego, CA, USA). Each concentration was tested three-five times in triplicate and the values are given as the mean \pm standard error (S.E.). Radioligand binding at the $\mathrm{hA}_{2 \mathrm{~B}} \mathrm{AR}$ is problematic because no high-affinity radioligand is commercially available for this subtype. Therefore, inhibition of NECA-stimulated adenylyl cyclase (cAMP assay, see below) was determined as a measurement of affinity of compounds.
4.2.2. GloSensor cAMP Assay. Cells, stably expressing the $\mathrm{hA}_{1}, \mathrm{hA}_{2 \mathrm{~A}}$, and $\mathrm{hA}_{2 \mathrm{~B}}$ ARs and transiently the biosensor, were harvested in CO_{2}-independent medium and were counted in a Neubauer chamber. The desired number of cells was incubated in equilibration medium containing a $3 \% \mathrm{v} / \mathrm{v}$ GloSensor cAMP reagent stock solution, $10 \% \mathrm{FBS}$, and $87 \% \mathrm{CO}_{2}$ independent medium. After 2 h of incubation at rt , the cells were dispensed in the wells of a 384 -well plate and, when a steady-state basal signal was obtained, the NECA reference agonist or the understudy compounds, at different concentrations, were added. Initially, the ability of compounds $\mathbf{1 0}, \mathbf{1 1}$ and $\mathbf{2 5}$ to stimulate $\left(\mathrm{A}_{2 \mathrm{~A}}\right.$ and $\mathrm{A}_{2 \mathrm{~B}} \mathrm{ARs}$) or inhibit $\left(\mathrm{A}_{1} \mathrm{AR}\right)$ the cAMP production was evaluated, but any results were obtained. Subsequently, their antagonist profile was evaluated by assessing their ability to counteract NECA-induced increase ($\mathrm{A}_{2 \mathrm{~A}}$ and $\mathrm{A}_{2 \mathrm{~B}} \mathrm{ARs}$) or decrease ($\mathrm{A}_{1} \mathrm{AR}$) of cAMP accumulation. The cells were incubated in the reaction medium (10 min at rt) with different understudy molecule concentrations and then treated with a fixed concentration of NECA. In the case of $h A_{1} A R$, Forskolin (FSK) $10 \mu \mathrm{M}$ was added 10 min after the agonist NECA and various luminescence reads were performed at different incubation times [40, 41].
4.2.3. Statistical analysis. Responses were expressed as percentage of the maximal relative luminescence units (RLU). Concentration-response curves were fitted by a nonlinear regression
with the Prism 5.0 programme (GraphPAD Software, San Diego, CA, USA). The antagonist profile of the two compounds was expressed as IC_{50}. $\mathrm{The}^{\mathrm{IC}} \mathrm{C}_{50}$ value is the concentration of antagonists that produces 50% inhibition of the agonist effect. Each concentration was tested three-five times in triplicate and the values are given as the mean \pm S.E [42].

4.2.4. β-Amyloid-induced toxicity studies in SH-SY5Y cell lines.

Human neuroblastoma SH-SY5Y cell line, was purchased by Istituto Zooprofilattico dell'Emilia e della Romagna (Brescia, Italy). Cells were routinely cultured in DMEM High Glucose/Ham's F12 Mixture Medium (1:1) supplemented with 10% foetal bovine serum (FBS), 2 mM L-Glutamine (EuroClone S.p.a., Milano, Italy) at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$ in humidified atmosphere. The growth medium was changed every $2-3$ days. Cell damage (1×10^{4} cell/well) was induced by incubation ($24-72 \mathrm{~h}$) with $A \beta$-amyloid peptide ($\mathrm{A} \beta$ fragment 25-35 aa (Sigma-Aldrich, Italy); 2 and $10 \mu \mathrm{M}$) after a previous aggregation period of 3 or 7 days at $37^{\circ} \mathrm{C}$. The studied compounds were co-incubated with $\mathrm{A} \beta$-amyloid peptide (2 or $10 \mu \mathrm{M}$, previously aggregated for 7 days) for 48 h . Cell viability was evaluated by the reduction of 3-(4,5-di-methylthiozol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) as an index of mitochondrial functional activity. Briefly, SH-SY5Y cells were seeded into 96 well plates at a density of 10,000 cells/well in complete growth medium for 1 day. After the above described treatments, the medium was removed and $1 \mathrm{mg} / \mathrm{mL}$ MTT was added into each well and incubated for at least 20 min at $37^{\circ} \mathrm{C}$. Following the removing of the chromogenic solution, the formazan crystals were dissolved in $50 \mu \mathrm{~L}$ of dimethyl sulfoxide (DMSO) and the absorbance was measured at 595 nm by a Multiscan FC photometer (ThermoFisher Scientific, Milano, Italy). Three independent experiments were conducted and each experiment was performed in quintuplicate. Viability was expressed as \% in comparison to the control cells (arbitrarily set 100% of viable cells).

Statistical analyses were performed by One-way ANOVA followed by the Bonferroni test. All assessments were made by researchers blinded to treatments. Data were analysed using "Origin 9" software (OriginLab, Northampton, USA). Differences were considered significant at $p<0.05$.

4.3. Molecular Modeling

4.3.1. Refinement of the human $A_{2 A} A R$ and $A_{1} A R$ structures.

A high-resolution crystal structures of the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ in complex with ZM241385 was retrieved from the Protein Data Bank (http://www.rcsb.org; pdb code: 5NM4, 1.7- \AA resolution [30]). Once removed the fragment of the Soluble Cytochrome b562 contained in the IL3 region, the $A_{2 A}$ AR was rebuilt by inserting the IL3 segment and by restoring the wild type receptor sequence (due to the presence of some mutations within the crystallized thermostabilized receptor) with the Homology Modelling tool of MOE [31]. Hydrogen atoms were added and energetically minimized. The crystal structure of the human A_{1} AR covalently bound to an antagonist was retrieved from the Protein Data Bank (pdb code: 5UEN; 3.2-Å resolution [35]). Even for this structure, hydrogen atoms were added within MOE and energetically minimized.

4.3.2. Molecular docking analysis.

All compound structures were docked into the binding site of the AR structures using three docking tools: the Induced Fit docking protocol of MOE [31], the genetic algorithm docking tool of CCDC Gold [32], and the Lamarckian genetic algorithm of Autodock [33, 34]. The Induced Fit docking protocol of MOE is divided into several stages: Conformational Analysis of ligands. The algorithm generated conformations from a single 3D conformation by conducting a systematic search. In this way, all combinations of angles were created for each ligand. Placement. A collection of poses was generated from the pool of ligand conformations using Alpha Triangle placement method. Poses were generated by superposition of ligand atom triplets and triplet points in the receptor binding
site. The receptor site points are alpha sphere centers which represent locations of tight packing. At each iteration, a random conformation was selected, a random triplet of ligand atoms and a random triplet of alpha sphere centres were used to determine the pose. Scoring. Poses generated by the placement methodology were scored using the $A l p h a H B$ scoring function, which combines a term measuring the geometric fit of the ligand to the binding site and a term measuring hydrogen bonding effects. Induced Fit. The generated docking conformations were subjected to energy minimization within the binding site and the protein sidechains are included in the refinement stage. In detail, the protein backbone is set as rigid while the side chains are not set to "free to move" but are set to "tethered", where an atom tether is a distance restraint that restrains the distance not between two atoms but between an atom and a fixed point in space. Rescoring. Complexes generated by the Induced Fit methodology stage were scored using the $A l p h a H B$ scoring function. Gold tool was used with default efficiency settings through MOE interface, by selecting GoldScore as scoring function [32]. For the analysis with Autodock (version 4.2.6), we chose lamarckian genetic algorithm with the following settings: 50 runs for each ligand; 2,500,000 as maximum number of energy evaluations; 27,000 as maximum number of generations; 0.02 as rate of gene mutation and 0.8 as rate of crossover. The grid box was set with 50,50 , and 50 points in the x, y, and z directions, respectively, with the default grid spacing of $0.375 \AA[33,34]$.

References

1. B.B. Fredholm, A.P. IJzerman, K.A. Jacobson, K.N. Klotz, J. Linden, International union of Pharmacology XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev. 53 (2001) 527-552.
2. B.B. Fredholm, A.P. IJzerman, K.A. Jacobson, J. Linden, C.E Muller, International union of Pharmacology LXXXI. Nomenclature and classification of adenosine receptors. An up date. Pharmacol. Rev. 63 (2011) 1-34.
3. R.A. Cunha, Neuroprotection by adenosine in the brain: from A_{1} receptor activation to $A_{2 A}$ receptor blockade, Purinergic Signal. 1 (2005) 111-134.
4. J. Stockwell, E. Jackova, F.S Cayabyab, Adenosine A_{1} and $\mathrm{A}_{2 \mathrm{~A}}$ receptors in the brain: current research and their role in neurodegeneration, Molecules, 22 (2017) 676.
5. Z. Chen, J. Stockwell, F.S. Cayabyab, Adenosine A_{1} receptor-mediated endocytosis of AMPA receptors contributes to impairments in long-term potentiation (LTP) in the middle-aged rat hippocampus, Neurochem. Res. 41 (2016) 1085-1097.
6. J. Stockwell, Z. Chen, M. Niazi, S. Nosib, F.S. Cayabyab, Protein phosphatase role in adenosine A_{1} receptor-induced AMPA receptor trafficking and rat hippocampal neuronal damage in hypoxia/reperfusion injury, Neuropharmacology 102 (2016) 254-265.
7. P.A. Borea, S. Gessi, S. Merighi, F. Vincenzi, K. Varani. Pharmacology of adenosine receptors: the state of art, Physiol Rev 98 (2018) 1591-1625.
8. R. Franco, G. Navarro, Adenosine $\mathrm{A}_{2 \mathrm{~A}}$ receptor antagonist in neurodegenerative diseases: huge potential and huge challenges, Front. Psychiatry 9 (2018) 68.
9. M. Rivera-Oliver, M. Díaz-Ríos, Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review, Life Sci. 101 (2014) 1-9.
10. K. Xu, D.G. Di Luca, M. Orrù, Y. Xu, J.-F Chen, M. A. Schwarzschild, Neuroprotection by caffeine in the MPTP model of Parkinson's disease and its dependence on adenosine $\mathrm{A}_{2 \mathrm{~A}}$ receptors, Neuroscience 322 (2016) 129-137.
11. M.H. Eskelinena, M. Kivipelto, Caffeine as a Protective Factor in Dementia and Alzheimer's Disease, Journal of Alzheimer's Disease 20 (2010) S167-S174.
12. M. Kolahdouzan, M.J. Hamadeh, The neuroprotective effects of caffeine in neurodegenerative diseases CNS Neurosci Ther. 23 (2017) 272-290.
13. O.P. Dall'Igna, L.O. Porciuncula, D.O. Souza, R.A. Cunha. Neuroprotection by caffeine and adenosine $\mathrm{A}_{2 \mathrm{~A}}$ receptor blockade of β-amyloid neurotoxicity, Br . J. Pharmacol, 138 (2003) 1207-1209.
14. O.P. Dall'Igna, P. Fett, M. W. Gomes, D.O. Souza, R.A. Cunha, D.R. Lara. Caffeine and adenosine $\mathrm{A}_{2 \mathrm{~A}}$ receptor antagonist prevent β-amyloid (25-35)-induced cognitive deficits in mice, Experimental Neurology 203 (2007) 241-245.
15. E. Faivre, J. E. Coelho, K. Zornbach, E. Malik, Y. Baqi, M. Schneider, L. Cellai, K. Carvalho, S. Sebda, M. Figeac, S. Eddarkaoui, R. Caillierez, Y. Chern, M. Heneka, N. Sergeant, C. E. Müller, A. Halle, L. Buée, L. V. Lopes, D. Blum, Beneficial Effect of a Selective Adenosine $\mathrm{A}_{2 \mathrm{~A}}$ Receptor Antagonist in the APPswe/PS1dE9 Mouse Model of Alzheimer's Disease, Front. Mol. Neurosci. 11 (2018) 235.
16. . S. Giunta, V. Andriolo, A. Castorina, Dual blockade of the A_{1} and $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor prevents amyloid beta toxicity in neuroblastoma cells exposed to aluminium chloride, Int. J. Biochem. Cell Biol. 5 (2014) 122-136.
17. L. Squarcialupi, V. Colotta, D. Catarzi, F. Varano, M. Betti, K. Varani, F. Vincenzi, P. A. Borea, N. Porta, A. Ciancetta, S. Moro, 7-Amino-2-phenylpyrazolo[4,3- d]pyrimidine derivatives: structural investigations at the 5-position to target A_{1} and $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptors. Molecular modeling and pharmacological studies. Eur. J. Med. Chem. 84 (2014) 614-627.
18. L. Squarcialupi, M. Falsini, D. Catarzi, F. Varano, M. Betti, K. Varani, F. Vincenzi, D. Dal Ben, C. Lambertucci, R. Volpini, V. Colotta, Exploring the 2- and 5-positions of the pyrazolo $[4,3-d]$ pyrimidin- 7 -amino scaffold to target human A_{1} and $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptors. Bioorg. Med. Chem. 24 (2016) 2794-2808.
19. F. Varano, D. Catarzi, F. Vincenzi, M. Betti, M. Falsini, A. Ravani, P. A. Borea, V. Colotta, K. Varani, Design, synthesis, and pharmacological characterization of 2 - (2-furanyl)thiazolo[5,4-d]pyrimidine-5,7-diamine derivatives: New highly potent $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor inverse agonists with antinociceptive activity, J. Med. Chem. 59 (2016) 10564-10576.
20. L. Squarcialupi, M. Betti, D. Catarzi, F. Varano, M. Falsini, A. Ravani, S. Pasquini, F. Vincenzi, V. Salmaso, M. Sturlese, K. Varani, S. Moro, V. Colotta, The role of 5-arylalkylamino- and 5-piperazino- moieties on the 7 -aminopyrazolo[4,3- d]pyrimidine core in affecting adenosine A_{1} and $\mathrm{A}_{2 \mathrm{~A}}$ receptor affinity and selectivity profiles, J. Enzyme Inhib. Med. Chem. 32 (2017) 248-263.
21. M. Falsini, L. Squarcialupi, D. Catarzi, F. Varano, M. Betti, D. Dal Ben, G. Marucci, M. Buccioni, R. Volpini, T. De Vita, A. Cavalli, V. Colotta, The 1,2,4-triazolo[4,3-a]pyrazin-3one as a versatile scaffold for the design of potent adenosine human receptor antagonists. Structural investigations to target the $\mathrm{A}_{2 \mathrm{~A}}$ receptor, J. Med. Chem, 60 (2017) 5772-5790.
22. S. Gessi, S. Bencivenni, E. Battistello, F. Vincenzi, V. Colotta, D. Catarzi, F. Varano, S. Merighi, P. A. Borea, K. Varani, Inhibition of $\mathrm{A}_{2 \mathrm{~A}}$ Adenosine Receptor Signaling in Cancer Cells Proliferation by the Novel Antagonist TP455, Frontiers in Pharmacology, 8, (2017) 888.
23. D. Catarzi, F. Varano, M. Falsini, K. Varani, F. Vincenzi, V. Colotta, Development of novel pyridazinone-based adenosine receptor ligands, Bioorg. Med. Chem. Lett. 28 (2018) 14841489.
24. F. Varano, D. Catarzi, M. Falsini, F. Vincenzi, S. Pasquini, K. Varani, V. Colotta, Identification of novel thiazolo[5,4-d]pyrimidine derivatives as human A_{1} and $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor antagonists/inverse agonists, Bioorg. Med. Chem. 26 (2018) 3688-3695.
25. F. Varano, D. Catarzi, F. Vincenzi, M. Falsini, S, Pasquini, P.A. Borea, V. Colotta, K. Varani, Structure-activity relationship studies and pharmacological characterization of N5-heteroarylalkyl-substituted-2-(2-furanyl)thiazolo[5,4-d]pyrimidine-5,7-diamine-based derivatives as inverse agonists at human $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor. Eur. J. Med. Chem. 155 (2018) 552-561.
26. D. Preti, P.G. Baraldi, A. R. Moorman, P. A. Borea, K. Varani, History and perspective of A 2A adenosine receptor antagonists as potential therapeutic agents. Med. Res. Rev. 35 (2015) 790848.
27. L. Di Cesare Mannelli, M. Zanardelli, P. Failli, C. Ghelardini. Oxaliplatin-induced oxidative stress in nervous system-derived cellular models: could it correlate with in vivo neuropathy? Free Radic Biol Med. 61 (2013) 143-50.
28. J. Faria, J. Barbosa, O. Queirós, R. Moreira, F. Carvalho, R.J. Dinis-Oliveira. Comparative study of the neurotoxicological effects of tramadol and tapentadol in SH-SY5Y cells. Toxicology, 359 (2016), 1-10.
29. J.J.V. Branca, G. Morucci, M. Maresca, B. Tenci, R. Cascella, F. Paternostro, C. Ghelardini, M. Gulisano, L. Di Cesare Mannelli, A. Pacini. Selenium and zinc: Two key players against cadmium-induced neuronal toxicity. Toxicol In Vitro. 48 (2018) 159-169.
30. T. Weinert, N. Olieric, R. Cheng, S. Brunle, D. James, D. Ozerov, D. Gashi, L. Vera, M. Marsh, K. Jaeger, F. Dworkowski, E. Panepucci, S. Basu, P. Skopintsev, A.S. Dore, T. Geng,
R.M. Cooke, M. Liang, A.E. Prota, V. Panneels, P. Nogly, U. Ermler, G. Schertler, M. Hennig, M.O. Steinmetz, M. Wang, J. Standfuss, Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons, Nat Commun, 8 (2017) 542.
31. I. Molecular Operating Environment; C.C.G., 1255 University St., Suite 1600, Montreal, Quebec, Canada, H3B 3X3.
32. G. Jones, P. Willett, R.C. Glen, A.R. Leach, R. Taylor, Development and validation of a genetic algorithm for flexible docking, J Mol Biol, 267 (1997) 727-748.
33. G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J Comput Chem, 19 (1998) 1639-1662.
34. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J Comput Chem, 30 (2009) 2785-2791.
35. A. Glukhova, D.M. Thal, A.T. Nguyen, E.A. Vecchio, M. Jorg, P.J. Scammells, L.T. May, P.M. Sexton, A. Christopoulos, Structure of the Adenosine A_{1} Receptor Reveals the Basis for Subtype Selectivity, Cell, 168 (2017) 867-877 e813.
36. G. La Regina, R. Bai, W. Rensen, A. Coluccia, F. Piscitelli, V. Gatti, A. Bolognesi, A. Lavecchia, I. Granata, A. Porta, B. Maresca, A. Soriani, M. L. Iannitto, M. Mariani, A. Santoni, A. Brancale, C. Ferlini, G. Dondio, M. Varasi, C. Mercurio, E. Hamel, P. Lavia, E. Novellino, R. Silvestri, Design and Synthesis of 2-Heterocyclyl-3-arylthio-1H-indoles as Potent Tubulin Polymerization and Cell Growth Inhibitors with Improved Metabolic Stability, J. Med. Chem. 54, (2011) 8394-8406.
37. E. Bellale, M. Naik, V. VB, A. Ambady, A. Narayan, SRavishankar, V. Ramachandran, P. Kaur, R. McLaughlin, J. Whiteaker, S. Morayya, S. Guptha, S. Sharma, A. Raichurkar, D. Awasthy, V. Achar, P. Vachaspati, B. Bandodkar, M. Panda, M. Chatterji Diarylthiazole: an
antimycobacterial scaffold potentially targeting PrrB-PrrA two-component system, J. Med. Chem 57 (2014) 6572-6582.
38. G. A. Bennett, G. B. Mullen, J. T. Mitchell, W. E. Jones, S. D. Allen, C. R. Kinsolving, V. St. Georgiev, Studies on antifungal agents 30. Novel substituted 3-(2-furanyl)-3- (1H-imidazol-1-ylmethyl)-2-methyl-5-phenyl(or phenyloxymethy)-isoxazolidines, Eur. J. Med. Chem, 24, 1989, 579-583.
39. N. Saldabol, Yu. Popelis, V. Shatz, V. Slavinskaya, Bromination of 2-acetyl-5-methylfuran, Chemistry of Heterocyclic Compounds 35 (1999) 161-163.
40. A. Thomas, M. Buccioni, D. Dal Ben, C. Lambertucci, G. Marucci, C. Santinelli, A. Spinaci, S. Kachler, K.N. Klotz, R. Volpini, The Length and Flexibility of the 2-Substituent of 9Ethyladenine Derivatives Modulate Affinity and Selectivity for the Human $\mathrm{A}_{2 \mathrm{~A}}$ Adenosine Receptor, ChemMedChem, 11 (2016) 1829-1839.
41. M. Buccioni, C. Santinelli, P. Angeli, D. Dal Ben, C. Lambertucci, A. Thomas, R. Volpini, G. Marucci, Overview on Radiolabel-Free in vitro Assays for GPCRs, Mini Rev Med Chem, 17 (2017) 3-14.
42. M. Buccioni, G. Marucci, D. Dal Ben, D. Giacobbe, C. Lambertucci, L. Soverchia, A. Thomas, R. Volpini, G. Cristalli, Innovative functional cAMP assay for studying G proteincoupled receptors: application to the pharmacological characterization of GPR17, Purinergic Signal, 7 (2011) 463-468.

Highlights

Several derivatives possess nanomolar hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}}$ receptor affinities.
Two compounds showed high affinity and a complete selectivity for the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$
Two compounds were able to prevent β-amyloid peptide (25-35)-induced neurotoxicity.
Docking studies were employed to rationalize the affinity data.

Graphycal Abstract

