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Localization of interacting Fermi gases in quasiperiodic potentials
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We investigate the zero-temperature metal-insulator transition in a one-dimensional two-component Fermi
gas in the presence of a quasiperiodic potential resulting from the superposition of two optical lattices of
equal intensity but incommensurate periods. A mobility edge separating (low-energy) Anderson localized and
(high-energy) extended single-particle states appears in this continuous-space model beyond a critical intensity
of the quasiperiodic potential. To discern the metallic phase from the insulating phase in the interacting many-
fermion system, we employ unbiased quantum Monte Carlo (QMC) simulations combined with the many-particle
localization length familiar from the modern theory of the insulating state. In the noninteracting limit, the critical
optical-lattice intensity for the metal-insulator transition predicted by the QMC simulations coincides with the
Anderson localization transition of the single-particle eigenstates. We show that weak repulsive interactions
induce a shift of this critical point towards larger intensities, meaning that repulsion favors metallic behavior.
This shift appears to be linear in the interaction parameter, suggesting that even infinitesimal interactions can
affect the position of the critical point.
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To what extent, if at all, do Anderson insulators persist in
the presence of interactions? This has been an outstanding
problem since 1958 when noninteracting quantum systems
were theoretically shown by Anderson to harbor no transport
of conserved quantities for sufficiently strong disorder [1,2].

In cold-atom settings, among others, experimenters have
observed the Anderson transition of noninteracting particles
either in the random disorder created by using speckle patterns
(which are characterized by finite-range spatial correlations) or
in the one-dimensional (deterministic) quasidisorder created
by using incommensurate bichromatic lattices [3–7]. Theo-
retical predictions about the critical point of the Anderson
transition based on models that take into account the details
of these cold-atom experiments have been recently reported
[8–11], enabling quantitative comparison with experimental
measurements [12].

Cold-atom experiments have emerged as the ideal play-
ground to also explore the effects due to interactions in
disordered many-body systems [13,14]. Experiments to under-
stand the transport and localization phenomena in disordered
interacting atomic gases continue to be performed [15–22].
Theoretically, a decade ago, Basko and collaborators showed
by using diagrammatic techniques that the Anderson insulator
can survive in the presence of interactions [23], even at finite
temperatures [24] (see Ref. [25] for a numerical study on
spin chains). For continuous-space disordered bosons this
finite-temperature localization [26] connects, in the zero-
temperature limit, to the superfluid to Bose glass transition
[27]. The concomitant zero-temperature localization transi-
tion for continuous-space weakly interacting quasidisordered
fermions is the subject of our study.

In this paper, we investigate the zero-temperature metal-
insulator transition in a one-dimensional two-component
Fermi gas with contact repulsive interactions. We consider a
realistic continuous-space model for a cold-atom setup where
an atomic Fermi gas is subjected to the quasiperiodic potential
created by the superposition of two periodic optical lattices
with the same intensity but with incommensurate periods.

Similarly to the related (discrete-lattice) Aubry–André model
[28], which would describe this physical system if one of the
two optical lattices was very deep and the other extremely
weak, the single-particle spectrum of this (continuous-space)
model displays an Anderson transition where (part of) the
eigenstates become spatially localized; however, in contrast to
the Aubry–André model, here there is a mobility edge which
separates the localized state with energies below the mobility
edge from the extended ergodic states above it [29,30].

To discern the metallic phase from the insulating phase
we adopt the concepts familiar from the modern theory
of the insulating state [31]; in particular, the expectation
value of the many-body phase operator [32]. This approach
allows one to distinguish metals from insulators by inspecting
ground-state properties, i.e., without direct computation of
low-lying exited states or dynamical properties. In the inter-
acting case, we compute this quantity via unbiased quantum
Monte Carlo simulations based on the diffusion Monte Carlo
algorithm, which is suitable for simulating large-scale realistic
models, paving the way for quantitative comparison with
experiments in interacting atomic gases. Our main goal is
to inspect the effects of weak interactions on the critical
point of the Anderson transition, i.e., whether it drifts towards
stronger or weaker intensities of the quasiperiodic potential,
or instead if it is insensitive to interactions below a certain
threshold.

The one-dimensional atomic Fermi gas we consider is
described by the following continuous-space Hamiltonian:

Ĥ =
N∑

i=1

(
− �

2

2m

d2

dx2
i

+ v(xi)

)
+

∑
i↑,i↓

gδ(xi↑ − xi↓ ), (1)

where � is the reduced Planck constant, m is the atomic
mass, N↑ and N↓ are the numbers of atoms of the two
components—hereafter referred to as spin-up and spin-down
particles—which are labeled by the indices i↑ = 1, . . . ,N↑
and i↓ = N↑ + 1, . . . ,N , respectively, and N = N↑ + N↓ is
the total atom number. The one-dimensional coupling constant
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g = −2�
2/(ma1D) is related to the one-dimensional scattering

length a1D . We consider repulsive interactions g � 0. In
experiments realized in tightly confining cigar-shaped waveg-
uides, sufficiently strong to enter the regime where the gas
is kinematically one dimensional, the coupling constant g

can be related to the experimental parameters [33], such
as the three-dimensional s-wave scattering length and the
radial harmonic confining frequency. It is convenient to intro-
duce the interaction parameter γ = mg/(�2n) = 2/(n|a1D|),
where n = N/L is the density. The external potential v(x) =
V [sin2(πx/ds) + sin2(πx/dl)] is the superposition of two
optical lattices, one with the (short) period ds , the other with
the (long) period dl .

To form an infinite quasiperiodic potential; that is, a
deterministic but aperiodic modulation, one should set the
ratio of the two periods to be an irrational (Diophantine [34])
number [35]. However, in a finite-size continuous system such
choice is incompatible with the use of periodic boundary
conditions, which are in fact adopted in our calculations. The
best remedy consists in choosing ratios of pairs of coprime
integer numbers which, in the thermodynamic limit, converge
to an irrational number. One convenient choice [35,36] is to set
r = dl/ds = Kk+1/Kk , where the integer sequence {Kk} (with
k = 0,1, . . . ) is the Fibonacci sequence (defined by the rule
Kk+2 = Kk+1 + Kk , with K0 = 1 and K1 = 1), in which case
the limiting value for k → ∞ is the golden ratio: r → φ ∼=
1.618 03; if the system size is fixed as L = Kk+1ds = Kkdl ,
as we do in our calculations, the potential v(x) complies with
periodic boundary conditions, still being aperiodic within the
finite box of length L. The intensity of the two optical lattices
V plays the role of quasidisorder strength. Notice that also
other coprime ratios Kk+1/Kk , not taken from the standard
Fibonacci sequence, can give similar values of period ratio
r � φ, and will be considered in our analysis.

Before addressing the (interacting) many-fermion system,
we inspect the properties of the single-particle eigenstates
ψj (x) of the quasiperiodic potential v(x) (which we label
with the index j = 1,2, . . . for increasing eigenenergies).
We compute them by performing exact diagonalization of
the finite Hamiltonian matrix obtained by introducing a fine
discretization in the continuous space [37]. To quantify the
spatial extent of the single-particle eigenstates, we compute the
normalized participation ratio P = 1/

∫ L

0 dx|ψj (x)|4. Ergodic
extended states are characterized by large values of the
participation ratio, diverging in the thermodynamic limit as
P ∝ L (in one dimension); instead, for localized states, P is
essentially independent of L, for sufficiently large systems
[38]. In Fig. 1 we display the P value as a function of
the eigenstate index j and of the disorder strength V . A
sudden drop is noticeable around V ≈ 1.2Ers [where Ers =
π2

�
2/(2md2

s ) is the recoil energy of the short-period lattice,
which is chosen to be the energy unit, while ds is used as the
length unit], slightly depending on j , signaling an Anderson
localization transition where the single-particle eigenstates
become spatially localized. Furthermore, for V � 1.2Ers ,
a sudden increase of P for j > Ml (Ml = L/dl in the
number of periods of the long-period optical lattice; similarly
Ms = L/ds) is clearly visible, indicating a mobility edge
separating the localized states with j � Ml , from extended
states with j > Ml . This feature distinguishes the continuous-
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FIG. 1. Logarithmic color-scale plot of the inverse participation
ratio of the single-particle eigenstates ds/P as a function of the
rescaled eigenstate index j/Ms and of the quasidisorder intensity
V/Ers , i.e., the intensity of the two optical lattices. Ms = L/ds = 610
and Ml = Ms/r = 377 are the number of periods of the short-period
and of the long-period lattices, respectively; Ers is the recoil energy
corresponding to the former. The ratio of the two optical-lattice
periods is dl/ds = r ∼= 1.618 03, i.e., close to the golden ratio.
The continuous horizontal (violet) segment indicates the index of
the highest-occupied orbital for a density so that the short-period
lattice is half filled, while the dashed (brown) horizontal segment the
one so that the long-period lattice is fully filled. The vertical (red) bar
with diagonal pattern indicates the Anderson localization transition
of the states with index j � Ms/2.

space model we consider from the related Aubry–André
model (i.e., a tight-binding discrete-lattice model with an
incommensurate potential), where there are no mobility edges,
meaning that the whole spectrum localizes at the critical
quasidisorder strength [29,30]. In fact, it has previously been
found that extended Aubry–André models which include
beyond-nearest-neighbor hopping processes, as well as other
continuous-space quasiperiodic models similar to ours, host
mobility edges [36,39]. Below we consider a spin-population-
balanced (i.e., with N↑ = N↓ = N/2) many-fermion system
with density n = 1/ds , meaning that the short-period lattice is
half filled (N = Ms). At this density, the highest-occupied
orbital—whose energy corresponds to the Fermi energy—
has the index j = Ms/2. To precisely pinpoint the critical
quasidisorder strength where the Anderson localization occurs
at this energy, we perform a finite-size scaling analysis of the
P values; see Fig. 2. In the inset, the scaling behavior for
two values of the quasidisorder strength are shown. To reduce
fluctuations due to finite-size effects, we average P values
for Ms/40 states with index around j = Ms/2. The scaling
behavior is opposite, saturating to a finite value for the larger
V , diverging with system size for the smaller V . This allows us
to locate the critical point V 0

c of the Anderson (metal-insulator)
transition in the narrow interval between the two V values:
1.1956Ers < V 0

c < 1.2057Ers . It is worth mentioning that the
Anderson localization transition would occur also for different
(irrational) values of the ratio r , and that it is visible (in the
form of a very sharp crossover) also in large finite-size systems
as long as r is not a simple rational number [35]. However, the
critical quasidisorder strength where it occurs smoothly varies
with r [30].

013613-2



LOCALIZATION OF INTERACTING FERMI GASES IN . . . PHYSICAL REVIEW A 95, 013613 (2017)

 0

 200

 400

 600

1.14 1.18 1.22 1.26

P/
d s

V/Ers

10-2

2×10-4 4×10-4

V≈1.1956Ers

V≈1.2057Ers

P∝L

d s
/P

ds/L
L=2584ds=1597dl
L=1542ds=943dl
L=1364ds=843dl
L=1076ds=665dl
L=610ds =377dl

FIG. 2. The main panel shows the participation ratio P of the
single-particle eigenstate labeled j = Ms/2 as a function of the
quasidisorder strength V/Ers , for different system sizes L. ds and
ds are the period lengths of the short-period and of the long-period
lattices, respectively. The vertical (red) bar with diagonal pattern
indicates the location of the Anderson transition. The inset shows
the scaling of the inverse participation ratio ds/P as a function of
the inverse system size ds/L, for two values of the quasidisorder
strength: in one case P saturates for large system sizes, whereas in
the other case it diverges as P ∝ L (see continuous black line). These
two values bracket the critical point, and they determine the width of
the (red) bar in the main panel.

While the single-particle analysis reported above is suitable
to identify the insulator transition in noninteracting disordered
systems, for the interacting case we need a different approach.
We tackle this problem by adopting the tools from the modern
theory of the insulating state (see Ref. [40] for a review
focusing on its geometrical concepts). This theory was initiated
by Kohn’s 1963 seminal article [31], where he first proposed
that insulation results from the organization of the electrons
in the many-particle ground state and that insulators can be
identified without inspecting excited-state properties (as in
the conventional theory of band insulators), nor the spatial
extent of the single-particle eigenstate at the Fermi energy (as
in the theory of noninteracting Anderson insulators). Resta
and Sorella [32], and later Souza, Wilkens, and Martin [41],
developed a rigorous formalism, which has already proven
successful to identify band, Mott [32], as well as Anderson
insulators [42], both in the case of uncorrelated random
disorder and also in systems with correlated disorder, with
quasiperiodic potentials, and in quasicrystals [43,44]. This
formalism is suitable for ab initio computational techniques
such as quantum Monte Carlo simulations [45,46].

It has emerged that, to discern insulators from metals, one
has to compute the expectation value Z = 〈�|Û |�〉 (|�〉 is
the many-body ground state) of the many-body phase operator
Û = exp[i(2π/L)X̂], where X̂ = ∑N

i=1 xi . |Z| is the figure
of merit to distinguish the two phases. The theory predicts
that |Z| → 0 in the thermodynamic limit (L → ∞ at fixed
n) for metals, while |Z| → 1 for insulators. Furthermore,
one can define a many-particle localization length λ as λ2 =
− L2

4π2N
ln(|Z|2). For metals, λ diverges in the thermodynamic

FIG. 3. The lower panel shows the modulus of the expectation
value of the many-body phase operator |Z| as a function of the
quasidisorder strength V/Ers , for different system sizes L. Full and
empty symbols correspond to QMC and numerical-integration (NI)
data, respectively. The continuous curves are the empirical fitting
functions (see text). The vertical (red) bar indicates the Anderson
transition. The density n = 1/ds is fixed so that the short-period
lattice is half filled, the period-lengths ratio is r � 1.618. The upper
panel shows the empty symbols with connecting lines indicate the
many-particle localization length λ/ds (left vertical axis), while the
dashed curves indicate the (rescaled) derivative of |Z| with respect to
V/Ers (right vertical axis).

limit, while it saturates to a finite value for insulators for
sufficiently large systems.

In a noninteracting many-fermion system, the ground-state
many-body wave function is the Slater determinant D(N )
of the first N single-particle spin-orbitals, which involve
the first N/2 single-particle spatial wave functions ψi(x).
In this case, the expectation value Z is readily evaluated as
Z = (det S)2 where S is the N/2 × N/2 matrix of the overlaps
Sij = ∫

dxψ∗
j (x)ψi(x) exp(i2πx/L). Alternatively, Z can be

computed via a QMC simulation that samples the modulus
squared of the exact wave function �NI(X) = D(N↑)D(N↓)
[X = (x1, . . . ,xN ) is the spatial configuration], where the
Slater determinants of the spin-up and spin-down components
are separately written for computational efficiency. In Fig. 3
we show data for |Z| and λ obtained with both techniques
(which we refer to as numerical integration and QMC
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simulation, respectively) as a function of the quasidisorder
strength V for different system sizes L. These results confirm
the expectations; in particular, |Z| decreases with L for
small V , while it increases saturating to |Z| = 1 for strong
quasidisorder. To pinpoint the metal-insulator transition by
using the finite-L data, where the |Z| vs V curve is smooth—as
opposed to the thermodynamic limit, in which case a sudden
jump develops—we consider two criteria: The first consists
of identifying the critical point with the location of the
crossing of dataset corresponding to different system sizes.
The second consists of identifying the critical point with the
location of the maximum of the derivative of the curve |Z|(V )
with respect to V (indicated as |Z|′) which, for sufficiently
large L, would accurately approximate the position where the
derivative diverges in the thermodynamic limit. To locate this
point, we fit the data with an empirical fitting function based
on a modified hyperbolic tangent function:

|Z|(V ) = exp[a1(V − c)] − exp[−b1(V − c)]

exp[a2(V − c)] − exp[−b2(V − c)]
,

where the ai , bi (i = 1,2), and c are fitting parameters. As is
evident from Fig. 3, both criteria provide accurate estimates
of the critical quasidisorder strength, in excellent agreement
with the predictions based on the system-size scaling of the P

values discussed above, even for the relatively small system
sizes amenable to the QMC simulations.

To determine |Z| for the interacting many-fermion system,
we employ QMC simulations based on the diffusion Monte
Carlo algorithm [47]. This projective technique stochastically
solves the imaginary-time Schrödinger equation and allows
one to sample the exact ground-state wave function. To
circumvent the sign problem, which would hinder many-
fermion simulations, one has to introduce the fixed-node
constraint, meaning that the ground-state wave function is
forced to have the same nodes as those of a trial wave function.
While in generic higher-dimensional systems this constraint
would possibly introduce an uncontrolled approximation, in
the one-dimensional case this approach is, in fact, exact (as was
shown in Ref. [48]), because (only in one dimension) the nodal
surface is equivalent to two identical fermions occupying the
same point; this implies that the wave function �NI(X) defined
above has the same nodes as the exact ground state [49,50]. To
compute the unbiased expectation value of Û we employ the
standard forward-walking technique [51]. Therefore, the data
reported in this paper are free of systematic approximations. To
reduce the stochastic fluctuations, we employ the importance
sampling technique with the trial wave function written
in the Jastrow–Slater form: �T (X) = �NI(X)

∏
i↑i↓ f (|xi↑ −

xi↓ |) which, beyond the Slater-determinant part �NI(X) that
fixes the nodes, includes a Jastrow correlation function f (x) >

0 that has to ensure the Bethe–Peierls boundary condition
∂�/∂(xi↑ − xi↓ )|0 = −�/a1D but is arbitrary otherwise (the
specific choice affects only the statistical fluctuations).

In the diffusion Monte Carlo simulations, we consider the
system sizes L = 38ds = 23dl , L = 58ds = 35dl , and for the
weakest interactions also L = 78ds = 47dl . r = dl/ds is again
the ratio of two coprime integers, but with the value r ∼= 1.65,
which is slightly larger than the golden ratio r ∼= φ considered
above. This value is chosen for numerical convenience, since
it allows us to exploit the largest system sizes amenable to the

FIG. 4. The main panel shows the modulus of the expectation
value of the many-body phase operator |Z| as a function of the
quasidisorder strength V/Ers , for the same system size L = 58ds

but different interaction strengths γ . The density n = 1/ds is fixed
so that the short-period lattice is half filled, the period-length ratio
is r � 1.65. The full line shows modified hyperbolic tangent (see
text). The inset shows the finite-size scaling analysis of |Z| for the
noninteracting case γ = 0 (full symbols) and for an interacting case
with γ = 0.02 (empty symbols). Continuous curves are cubic fitting
functions shown to guide the eye.

QMC simulations. In the noninteracting case (for which we
use the numerical integration approach) we also consider the
size L = 618ds = 373dl . Larger systems cannot be addressed
via QMC simulations due to the glassy nature of the insulating
phase, which causes a pathological slowdown of the QMC
dynamics. It is possible that this problem could be alleviated
by using a grand-canonical QMC scheme or by introducing
cluster Monte Carlo updates. In Fig. 4 we show the results
for |Z| as a function of V , obtained for different values of
the interaction strength γ for the same system size. As γ in-
creases, the datasets are shifted towards significantly stronger
quasidisorder, giving a qualitative indication that interactions
favors metallic behavior. To quantify this effect, we determine
the critical quasidisorder strength Vc which separates the metal
from the insulator by using the two criteria (crossings and
peaks of derivative) described above in the noninteracting
case. The inset of Fig. 4 displays the finite-size scaling
analysis for the interaction parameter γ = 0.02, compared
with the noninteracting case γ = 0. In the interacting case,
the crossing of the curves—which we identify with the critical
quasidisorder, according to the first criterion—is clearly drifted
towards larger values of V compared with the noninteracting
case (notice that for r � 1.65 the metal-insulator transition
occurs at slightly weaker quasidisorder than in the case r � φ

considered before), confirming that even interactions as weak
as γ = 0.02 determine a positive shift of Vc. This is the main
result of this work.

The zero-temperature phase diagram as a function of qua-
sidisorder strength V and interaction parameters γ , including
the metallic and the insulating phases, is displayed in Fig. 5;
the critical quasidisorder strengths determined by using the
two criteria are compared, finding precise agreement. These
data turn out to be well described by a simple linear fitting
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FIG. 5. Critical quasidisorder strength Vc/Ers , which separates
the metallic phase (yellow region) from the insulating phase (cyan
region), as a function of the interaction strength γ . The density is
n = 1/ds , the optical lattice period is r � 1.65. The empty (blue)
circles indicate the data obtained from the crossing of the |Z|(V )
curves for different system sizes; the full (red) squares are those
obtained from the maximum of the derivative of these curves. The
continuous (black) line Vc/Ers = 1.03(3)γ + 1.176(2) is a linear fit
to the latter dataset.

function, suggesting that even infinitesimal interactions affect
the location of the metal-insulator transition. These results
could serve as a benchmark for experiments performed in
shallow bichromatic optical lattices, tuning the interaction
parameter via Feshbach resonances. It is worth mentioning
that a linear increase of the critical quasidisorder for weak
repulsion was previously obtained for the Aubry–André model
within the self-consistent Hartree–Fock approximation [43]. It
is likely that this linear increase would cease to hold for strong

interactions γ � 1; this regime is, however, beyond the scope
of this work. An upward shift of the critical point at weak
interaction was found also in bosonic systems (see, e.g., Refs.
[19,52]), in apparent contrast with the argument of Ref. [14]
which predicts the opposite behavior in bosons and fermions.
Previous results for spinless fermions [53] cannot be directly
compared with the (experimentally relevant) spinful fermion
case addressed in this work, because the two cases are expected
to display important differences [54,55].

In conclusion, we have investigated the effect of weak
repulsive contact interaction on the Anderson localization
transition in a one-dimensional atomic spinful Fermi gas ex-
posed to a quasiperiodic potential. Our results clearly indicate
that even weak repulsions induce a (seemingly linear) drift of
the metal-insulator transition towards stronger quasidisorder.
This study parallels previous investigations of ultracold atoms
in shallow optical lattices [56–62], which explored regimes
where simple (nearest-neighbor) tight-binding approximations
are not applicable [39,63]. The computational approach we
implemented, which is based on the modern theory of the
insulating state combined with projective QMC simulations,
is a promising tool to further explore zero-temperature local-
ization phenomena in complex experimental configurations;
in particular, in the relatively unexplored higher-dimensional
and continuous-space settings [64]. One can also envision
extending the use of the modern theory of the insulating
state beyond the ground state in combination with different
computational techniques.
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V. E. Kravtsov, and U. Schneider for useful discussions. S.P.
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