On Properties of Policy-Based Specificatioris

Andrea Margheri Rosario Pugliese Francesco Tiezzi
Universita degli Studi di Firenze Universita degli Studi di Firenze Universita di Camerino
andrea.margheri@unifi.it rosario.pugliese@unifi.it francesco.tiezziQunicam.it

Universita di Pisa

margheri@di.unipi.it

The advent of large-scale, complex computing systems famatically increased the difficulties of
securing accesses to systems’ resources. To ensure caiafitheand integrity, the exploitation of
access control mechanisms has thus become a crucial istwedesign of modern computing sys-
tems. Among the different access control approaches peoashe last decades, the policy-based
one permits to capture, by resorting to the concept of atkeitall systems’ security-relevant informa-
tion and to be, at the same time, sufficiently flexible and egpive to represent the other approaches.
In this paper, we move a step further to understand the efégrtss of policy-based specifications by
studying how they permit to enforce traditional securitggerties. To support system designers in
developing and maintaining policy-based specificatioresfavmalise also some relevant properties
regarding the structure of policies. By means of a case dnady the banking domain, we present
real instances of such properties and outline an approaards their automatised verification.

1 Introduction

The ever increasing diffusion of the Internet and the Webfbstered the development of large-scale,
complex computing systems. These modern distributed regstthat are pervading our everyday life,
produce and exploit a huge amount of data that are readiljabi@ through the underlying network
platforms. Given their importance and societal impacs ifiparamount importance to ensure that data
is accessed in a controlled way and that these systems behaw&ecure way, e.g. not to compromise
sensitive data. For achieving this objective, some majaliehges come from the fact that the operating
environment is highly dynamic and open, the involved esgtiire heterogeneous and possibly untrusted,
the interactions are complex and unpredictable, and theaios distributed.

In this setting, we believe that policy-based specificatioan be used to regulate the behaviour of
entities relatively to the access to shared resources gifsisring systemsecurity Policies that is sets
of declarative rules expressing what can(not) be done i@y are indeed high-level abstractions that
can be used to define various aspects of systems behaviqarticular, asecurity policyis a statement
that defines in which states a system is considered securgsténs issecureif starting from a secure
state it cannot enter a nonsecure one while computatiorrgssgs. The security of a state depends
on the behaviours the system exposes and, hence, on whicdntges a security policy managing and
controlling the system ensures. The enforcement of suchieypelies on a combination of various
approaches, ranging, e.g., from cryptography to accedsotoaccording to features and specificity of
the controlled system.

We focus oraccess contrglusually considered the first line of defence in protectiboomputer sys-
tems, networks, and information. Access control is a bragd that covers several different approaches

*This work has been partially sponsored by the Italian MIURNPRroject CINA (2010LHT4KM).

M.H. ter Beek and A. Lluch Lafuente (Eds.): 11th InternatibWorkshop © A. Margheri, R. Pugliese & F. Tiezzi
on Automated Specification and Verification of Web Systemy(W15). This work is licensed under the
EPTCS 188, 2015, pp. 33350, doi:10.4204/EPTCS.188.5 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.188.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

34 On Properties of Policy-Based Specifications

that enable the protection of systems by restricting playsind logical access rights of (authenticated)
subjects to shared resources. In practice, these appmasteblish if a subject’s request to access a
resource should be permitted or denied according to sone@ gigcess control rules.

Since their original introduction in the context of opengtisystems, to the more recently conceived
ones for modern distributed applications, many approattreaccess control have been proposed in
the literature. Traditional approaches are based on theitgef the subject, either directly —e.g., Ac-
cess Control Matrix[[18, 13] and its variants Capabilityteignd Access Control Lists— or through
predefined attributes, such as roles or groups assignedttsubject —e.g., Role-Based Access Control
(RBAC [10]). In our frame of reference, these approachesambersome to manage and not sufficiently
expressive, given the need to associate access rights teghester qualifiers of identity, groups, and
roles that can change frequently and could not be known iaramk: To overcome scalability problems
of these traditional access control approaches, an dfiegria to use Attribute-Based Access Control
(ABAC [23]). Here, the authorisation decision is basedatinibutes which represent arbitrary informa-
tion exposed by the system, subject, action, object, ordtieasation context itself that is relevant to the
rules at hand. Thus, ABAC permits defining fine-grained, Hkxand context-aware access control poli-
cies, and fosters systems integration, as attributes caettieved from different information systems.
Attribute-based access control rules are typically h@riaally structured and paired with strategies for
automatic treatment of conflicting decisions and errorsesghstructured specifications are calbedi-
cies from this name derives the terminology Policy-Based Asdgsntrol (PBAC), sometimes used in
the literature in place of ABAC.

Approaches to access control can be classified also witkcetpother features. For example, if we
consider resource ownership then we can distinguish betdiseretionaryaccess control (DAC), where
subjects may decide who can access their own resourcethd.access control is at the discretion of the
owner, andnandatoryaccess control (MAC), where the system decides who is atla@eaccess any
resource. In this respect, the access control matrix Hgehe DAC approach, while RBAC and ABAC
can be used both for the MAC and DAC approaches. To concludeterview of the relevant access
control approaches, on the base of the results in [16], wesagthat ABAC is sufficiently expressive to
represent in an uniform way all the other approaches.

Controlling accesses to system resources concerns tleerttai® security principles afonfidential-
ity, integrity, andavailability. Specifically, confidentiality refers to the assurance on-disclosure of
sensitive resources to unauthorised subjects; integritye protection of resources from being altered by
unauthorised subjects; and availability to the enableroétite effective use of resources by authorised
subjects. As instantiations of these general principles)ynsecurity properties have been introduced and
studied (e.g., the Bell-LaPaduld [3] and Biba [5] modelsdwdver, enforcing such properties by means
of access control policies is a tricky task. In fact, the &iehical structure of policies, the presence of
conflict resolution strategies and the intricacies deg¥iom the many involved controls do not permit to
easily check whether a given security property is propenfpieed. Therefore, in our work we consider
a general instance of the ABAC approach, i.e. the FACPL laggU20], and study in details a set of
relevant security properties, presenting how they can maered in terms of policy-based specifications.

Policy-based specifications are formed by multiple rules palicies, and to characterise the re-
lationships with the behaviours they enforce, various ergs on the structure of policies have been
proposed in the literature (e.g., change-impact analydsi$ dnd redundancy minimisation [14]). The
approaches used for defining and verifying these propatieslifferent and cannot be uniformly repre-
sented. Therefore, in our work we focus on a set of relevantisiral properties and propose a uniform
formalisation in terms of the FACPL semantics.

Furthermore, for providing a concrete support to the veiion of both security and structural prop-

A. Margheri, R. Pugliese & F. Tiezzi 35

erties, we outline a constraint-based approach enablitmreted verification by means of constraint
solver software tools. At the time of writing, this consttabased analysis of policies is under develop-
ment; thus, in this paper, we just present main features taanigths of the approach.

Case Study We consider a scenario from the banking domain where aawgsol policies are used
for managing money loan activities. We assume that a costwitlang to borrow money from a bank
has to fill out aloan request documenpossibly aided by a bank clerk. Once the document is firdjlise
the clerk submits it for approval; if the document is apprhwhe loan is granted. Each loan request is
associated with a confidentiality level, so that a high carft@l loan request has to be managed only by
highly-trusted clerks. Notably, trepprove(resp.,submi) actions of loan request documents are carried
out by clerks that, for safety reasons, cannosdbmit(resp.,approve actions.

The case study is addressed throughout the paper. Firshtweuce the structure of policies and
access requests, then, by characterising a set of relea@unity properties, we define some policies that
can be used for managing different aspects of the money davtias.

Outline of the rest of the papeiSectiori 2 briefly reports main features of policy-basedjlages and
introduces the FACPL policy language. Sectidn 3 presemtsdpresentation in terms of policy-based
specifications and the formalisation of a set of securitypprties, while Sectionl4 addresses policies’
structural properties. The verification approach, togetith our proposal towards an automated tool
support, is sketched in Sectibh 5. Finally, Seckibn 6 resiavore strictly related work and Sectign 7 con-
cludes by touching upon directions for future work. Backgrd definitions and concepts on computer
security used in rest of the paper are based on the well-knextiooks([6, 12].

2 A Policy Language

Policy languages for access control provide high-levetrab8ons for the specifications of declarative
sets of access control rules. Specifically, these langualipes systems’ designers to express structured
sets of attribute-based positive (resp. negative) rulasting (resp. forbidding) the access to systems’
resources. In this section, by informally introducing ¢l version of) the policy language FACRL [20],
we detail all the typical features of access control speatifins. The authorisation process that is pursued
to authorise or forbid an access request is outlined by maeasimple example.

2.1 Syntax and Informal Semantics of FACPL

The syntax of a light version of FACPL is reported in Table tlis Igiven trough EBNF-like grammars,
where as usual the symbol ? indicates optional itemsfaindlicates non-empty sequences of items.

The top-level term is #DP, which is defined by a sequence of policieslicy” and an algorithm
Alg for combining the results of the evaluation of these padicie

A policy can be a basic authorizatiomule (Effect target:Expr) or a policy set
{Alg target :Expr policies :Policy”} collecting rules and (other) policy sets, so that it is poisstio
define hierarchical policies. A rule specifieskifiect i.e. permit or deny, indicating the rule-writer’s in-
tended consequence of a successful evaluation for theandegtarget, i.e. an expressiok xpr defining
the applicability of the rule to a request. pblicy instead specifies a target, a sequence of contained ele-
ments, i.e. rules or policies themselves, and an algorlgior combining the results of the evaluation
of these contained elements.

A combining algorithnmimplements a strategy for resolving conflicts among thesiees resulting
from the evaluation of a collection of rules/policies, ewghenever both decisiornsermit anddeny are

36 On Properties of Policy-Based Specifications

Table 1: Syntax of a light version of FACPL

Policy Decision Points PDP::= {Alg policies : Policy" }

Combining algorithms Alg ::= permit-overrides | deny-overrides | deny-unless-permit
| permit-unless-deny | first-applicable | only-one-applicable
|

weak-consensus | strong-consensus

Policies Policy::= (Effect target :Expr)
| {Alg target :Expr policies :Policy™}

Effects Effect::= permit | deny

Expressions Expr::= Name | Value | and(Expr,Expr) | or(Expr,Expr) | not(Expr)

| equal(Expr,Expr) | in(Expr,Expr) | greater-than(Expr, Expr)
| add(Expr,Expr) | subtract(Expr, Expr)
| divide(Expr,Expr) | multiply(Expr, Expr)

Attribute Names Name::= Identifier/Identifier

Literal Values Value::= true | false | Double | String | Date

Access RequestRequest:= (NameValue™

returned. We report below the strategies implemented byesafrthese algorithms.

e permit-overrides: if the processing of an element returpsrmit, then the result igpermit,
i.e., permit takes precedence over any other decision. Instead, if st tewe element returns
deny and all others returmot-applicable or deny, then the result isleny. If all elements re-
turn not-applicable, then the result imot-applicable. In the remaining cases, the result is
indeterminate.

e deny-unless-permit: similarly to permit-overrides, permit takes precedence owdny, but it never
returnsnot-applicable or indeterminate, which are instead evaluated éshy.

e strong-consensus: it returnspermit (resp.,deny) only if all elements returmpermit (resp.,deny).
If all elements returnnot-applicable then the result imot-applicable. Otherwise, it returns
indeterminate.

A targetis an expression indicating the access requests to whiclicy pgplies. Expressionsare
built from attribute names arderal values, i.e. booleans, doubles, strings, and dates, by ssandard
operators. As usual, string values are written as sequafogsaracters delimited by double quotes.
For simplicity sake, the expressions syntax does not taestexplicitly into account; however, the
semantics of expressions returns an error if the argumémtsesations have incorrect types. The latter
can be anyway managed by policies by resorting to apprepc@inbining algorithms.

An attribute namendicates the value of an attribute within an access reqaesithorise. Attributes
are expressed in terms of pairs name-value, where namegractiged in the forntat/att, with cat
standing for a category name (as, esghject, resource, action) andatt for a specific name (as, e.dd,
androle). For example, the structured nambject/role represents the value of the attributde within
the categorgubject.

An access requesepresents a subject willing to execute an action that hée tauthorised. This
request holds all the attributes relevant for taking théaugation decision, such as the information of
the subject originating the request and that of the reqdestgon.

A. Margheri, R. Pugliese & F. Tiezzi 37

For instance, if we consider the banking case study intrediic Sectiori 11, a request by a subject
namedclerkl with the assigned rolassistanti.e. the clerk assisting a customer, that wantetu the
resourcdoanDog i.e. the loan request document, is as follows:

(subject/id,clerkl) (subject/role,assistant (resource/id,loanDoc) (action/id,read)

All the other case study actions are dealt with similarlyr Egample, thesubmitaction of aloanDoc
by anassistantclerk, or theapproveaction of aloanDocby a clerk with the assigned rotficier, are
simply represented by means of a different instantiatiothefprevious set of attribute names.

The evaluation of a request with respect to a policy resulterie decision amongermit, deny,
not-applicable, andindeterminate. The meaning of the first two decisions is obvious (i.e., tingnand
forbidding the access, respectively), while the third nsetirat there is no policy that applies to the
request and the fourth means that some errors occur in theatoa.

By way of example, to allow read accesses to the resdaeredoconly to subjects with the assigned
role assistantwe might use the following policy

{deny-unless-permit
target : equal(resource/id,loanDog)
policies: (permit target :equal(action/id,read) and equal(subject/role,assistant)}

The evaluation of the previous request with respect to thieypabove starts by evaluating the policy’s
target, i.e. the boolean expression after the first keywattket. Since the request satisfies tgial
comparison function, the evaluation carries on with thelassxl rule. The rule’s target is satisfied as
well and the decisiopermit is returned. Then, the combining algorithm applies to tiseilteng set of
decisions, which in this case only contains freemit one, and returns the final decision for the policy,
i.e. permit. Notice that the policy does not authorise requests notsrgdhe valueassistantas arole
and that the remaining requests are granted only if they@dlead operations. Also notice that if the
policy’s target does not apply to a request, thetrapplicable is immediately returned without evaluating
the enclosed rule and applying the combining algorithm.

2.2 A glimpse of the FACPL Formal Semantics

In this section, we briefly outline the formal semantics of AL (we refer the interested readerltol[20]
for a full account). The semantics is defined by following aatational approach, which means that

e we introduce some semantic functions mapping each FACPiasljyo construct to an appropriate
denotation that is an element of a semantic domain representing thaingeaf the construct;

e the semantic functions are defined ic@mpositionalway, so that the semantic of each construct
is formulated as a function of the semantics of its immedsate-constructs.

To this purpose, for each FACPL syntactic category, we $palae semantic domain into which the
syntactic constructs map and define the semantic fungtipby giving its domain and codomain, and
by using semantic clauses to specify, inductively on théagtit constructs, how the function acts on
each construct. Thus, H stands for a FACPL policy}P]r corresponds to the decision resulting from the
application of the semantic function to (the syntactic ot)j® and (the semantic objeat)representing
an access request.

A FACPL request, in order to be evaluated, is representets ifuinctional form. This is a function
r belonging to the seR £ Name— (Valueu 2¥3Ue { | }) containing all those total functions mapping

38 On Properties of Policy-Based Specifications

Table 2: The two-dimensional matrix for tipermit-overrides combining algorithm

dl\dz H permit ‘ deny ‘ not-applicable | indeterminate
permit permit permit permit permit

deny permit deny deny indeterminate
not-applicable || permit deny not-applicable | indeterminate
indeterminate || permit | indeterminate | indeterminate | indeterminate

attribute names (i.e., the structured names in the syotdathainName to either values, or set of values,
or the special value. (modelling the fact that an attribute name is missing).

The semantics of a policy is then a function that, given aestjueturns an authorisation decision.
Formally, it is a function of the fornR — Decision whereDecisioncorresponds to the semantic (and
syntactic) domain of authorisation decisions. To definestraantics of policies we use two clauses, one
deals with rules, the other one with policies. For a genefie (e target :expr), its semantics is given
by the following clause:

e if [exprr = true
[(e target :expr)]r = { not-applicable if [[expr]r = false Vv [expfr = L

indeterminate otherwise

where[exprr is the value returned by evaluating the target expressipnwith respect to the request
Thus, the rule’s decision is returned when the target etesuatrue, which means that the rule applies
to the request. Otherwise, it could be the case that the néds dot apply to the request, i.e. when the
target evaluates tfalse or to L (which means that the target is an attribute name missirgeindquest),
or that an error has occurred while evaluating the target.

Since the clause for policies relies on the semantics of aunmdpalgorithms, we first introduce it.
For each combining algorithm, we use a two-dimensional imm#tiat, given two decisions, calculates
the resulting combined one; then, by means of an iteratipdicgtion of this matrix, we can define the
decision returned by the algorithm when given as input aesecgi of decisions (each resulting from the
evaluation of a policy or a rule). For example, Tdble 2 reptre matrix forpermit-overrides. Notably,
when a matrix takes into account the order of policy decsi(aee, e.g., the matrix fdirst-applicable
in [20]), the combination is not associative.

Finally, for a generic policy{a target :expr policies :P* }, whereP" stands for a non-empty se-
guence of policies or rules, its semantic clause is

e if [exprr =true A [a(PT)]r=e
not-applicable if [exprr = false V [exprr = L
V ([exprr = true A [a(P™)]Jr = not-applicable)

indeterminate otherwise

[{a target :expr policies : P }]r =

where[[a(P")]r is the decision returned by evaluating the combining algoria on the sequence of
(decisions resulting from the evaluation of) policies deslP*. Thus, the policy applies to the request
when the target evaluatestime and the semantic of the combining algoritlenfwhich is applied to the
enclosed sequence of policies and the request) returnssaces; i.e. permit or deny. In this case, the

A. Margheri, R. Pugliese & F. Tiezzi 39

resulting decision of the policy ie. Instead, if the target evaluatesftdse or to 1, or the combining
algorithm states that the contained sequence of policiestiapplicable, the policy does not apply to the
request. In the remaining cases, an error has occurred anttision is indeterminate.

3 Security Properties for Polices

Policy-based specifications are sufficiently flexible angregsive to permit addressing, even in a mixed-
up way, different security aspects. As stated in the Intetidn, verifying whether a policy enforces a
given security property is not straightforward. Therefdrethis section, we first present the attribute-
based controls that the policy-based specifications musaicofor ensuring various security properties.
Then, we exploit the semantics of policies to formalise umdgch conditions a policy properly enforces
such properties.

We start by providing a more precise definition of the thremegal security principles mentioned in
the Introduction. Given a controlled system, were$ € Res Subd C SubandAct C Act, whereRes
SubandAct are respectively the set of resources, subjects and adtvarised in the system’s operation.
Then, the three principles can be defined as follows:

e confidentiality the resourceaes has the property ofonfidentialitywith respect to subjectSuby
and actionsAct’ if none of the subjects iBuld can execute actions ifact’ onres

e integrity: the resourcees has the property ahtegrity with respect to subjectSuld and actions
Act’ if actions inAct’ executed by subjects Bulj cannot alter the trustworthiness ref

e availability: the resourcees has the property oévailability with respect to subjectSubd and
actionsAct’ if all subjects inSubd can execute all actions ict’ onres

It is worth noticing that the above principles could be nbivastantiated by resorting to checks on
the identity of subjects. For example, when a subject whisetifier isstries to access the resounes,
confidentiality could be achieved by denying the accessifte € Subh. However, this requires to know
the identity of the requestor, as well as of all the otheriftatbn subjects, in advance. To overcome this
limitation, different instantiations of these principleave been proposed, which rely on the features of
subjects and resources for characterising th&abtof (dis)allowed subjects. We present some of these
instantiations below, by focussing on the attribute-basautrols necessary for expressing the wanted
features and checking specific security aspects.

Notably, from the access control point of view, the avaligbprinciple implies that the policy-based
specifications have to grant the access to a subject thdiiesxhll the required credentials. This goal is
achieved “by construction” in the proposed instantiatiohghe confidentiality and integrity principles,
hence we do not further insist on the availability principle

3.1 Attribute-based Characterisation

We use attribute names of the formbject/x, actions/+ andresource/x to identify the characteristics
of a subjectwilling to perform a giveractionon aresource For example, for a given access tentative,
action/id returns the identifier of the requested action, like eegd or write.

In the following attribute-based characterisation of teeusity properties, we rely on the commonly
usedclose-worldassumption[[27] of access control systems, which forbitlbedlaviours that are not
explicitly granted. We show in Sectiéh 5 how this assumptian be enforced using FACPL policies.

40 On Properties of Policy-Based Specifications

Confidentiality: multi-level security. The security policies commonly referred torasiti-level secu-
rity [3, [25] represent typical instantiations of the confiddityigrinciple and are also the formal basis
of the MAC approach. The goal of these kinds of policies isnevent that a resource with a certain
confidentiality level be disclosed to a subject with a lowefel. To this aim, each subject and resource
is assigned, through a functidip, a confidentiality level from a given partially ordered seL, <, > of
levels. In our case study, this function could be thus usetkfme, from the resources’ point of view,
the confidentiality of loan requests and, from the subjgmtsnt of view, the trustworthiness of clerks.

The Bell-LaPadula model [3] formalises these securityqoedi in terms of some security properties
that must hold with respect tead andwrite actionl. These properties are defined as follows:

e noread-up a subjecscan read a resourcesonly if the the security level of the subject dominates
the one of the object, i.€f (res) <, f.(s);

e no write-down a subjects can write a resourcesonly if the level of the subject is dominated
by the level of the object, i.€f (s) < f_(res).

If we let the attributesubject/level andresource/level denote the confidentiality level assigned by
function f_ to subjects and resources, respectively, then the prepimperties can be characterised in
terms of policy-based specifications by the following rules

(permit target : equal(action/id,read) and leq(resource/level,subject/level))

(1)

(permit target : equal(action/id,write) and leq(subject/level, resource/level))

where functiorleq corresponds to the partial order relatigi.
The Bell-LaPadula model is usually extended to also con&de¢ controls. For instance, if we use
access control lists as a DAC approach, these controls teutdndered by the following rule:

(permit target : equal(action/id,read) and in(subject/id,resource/read.ids)) 2

where we assume that the attribuésource/read.ids returns the set of all subjects allowed to execute
the read action on the resource.

Integrity: separation of duty. The integrity principle regards various system aspectaditition to
accesses authorisation, like e.g. the trustworthinessrafayance and storage means used by the system
to keep resources. Since we only focus on access controlnstentiate the principle in terms of the
Biba model[[5] and the property of separation of duty.

The Biba model formalises integrity with respect to exemutdf read and write actions in terms of
integrity levels associated with subjects and resourcasuiing that the integrity levels are defined in
the same way as the confidentiality ones, the Biba model isltta’ of the Bell-LaPadula one in that it
relies on theno read-dowrandno write-upproperties, which can be characterised as before.

An additional property that instantiates the integritynpiple is separation of dutySoD), which
was introduced in the Clark-Wilson model [8] and since thas been largely adopted to define secure
systems. In general, this property ensures that if two orenagtions are required to perform a critical
transaction, then these actions must be performed by attieagifferent subjects. SoD is valuable in
deterring fraudulent behaviours, since no single subjastthe possibility to perform complex actions,
but only well-defined, elementary actions.

1For the sake of presentation, we introduce the Bell-LaRadwdel with respect teead and write actions; the same
approach can be pursued for modelling samitandapproveactions of the case study.

A. Margheri, R. Pugliese & F. Tiezzi 41

A basic example of SoD is to prevent that an action be exeeultesh a subject is assigned two roles
that are conflicting, i.e. there is no separation of dutiesragrihe actions that these roles permit. For
instance, if we assume roleslel androle2 to be in conflict, we can define a rule that permits a write
action only when a subject exposes the first role but not tbenskone; the rule is as follows

(permit target : equal(action/id,write) and
in(rolel, subject/role) and not(in(role2,subject/role)))

3)

Indeed, the rule checks that the roles assigned to the sulijat are obtained through the attribute
subject/role, includerolel, which is required for executing the read action, androt®2. In the case
study, by using the rule above whexeite, rolel androle2 are replaced by, respectivebpprove assis-
tant andofficier, we can ensure that a clerk assigned with both roles cannfoirpeanapproveaction.

This last property is an example sfatic SoD, i.e. an integrity requirement that can be fulfilled by
evaluating a single access request. However, if we defineiistddms of conflicting actions, rather than
in terms of conflicting roles as done before, checking a simgicess request is not adequate anymore
to enforce the intended property. Indeed, SoD could beyeastumvented by executing conflicting
actions in two or more attempts, as it is the case of a suldjattis assigned, in two different instants
of time, different roles granting conflicting actions. Tooal/that the subject be authorised to execute
both actions, we must resort to considering the previousrait has performed, which is an example
of dynamicSoD. This kind of properties can be still addressed by usoligypbased specifications, but
we need to use attributes for storing the history of the assepreviously performed by a subject. We
will provide further details on this aspect when discussurtgre work.

Role-based design: hybrid properties and least-privilege The role-based design is a high level ap-
proach that permits to enforce confidentiality and intggpitoperties on the controlled resources at the
same time. It consists in assigning different roles to sttbjeithin the system and using policies stating
what accesses are allowed to subjects depending on thetlielekave. Although it is not an instantia-
tion of one of the three general security principles, we m@rghis approach explicitly since it is largely
used due to its better scalability with respect to other risydike e.g. the Bell-LaPadula and Biba ones.

The basic characterisation of role-based controls in terihmolicy-based specifications is straight-
forward: the attributesubject/role permits to define controls on the subject’s roles and Rulds(3)
concrete example of this. However, the role-based apprtaias also different, more complicated
forms [26], that exploit role hierarchies, i.e. a role iritethe privileges of the roles that are higher up
in the hierarchy, or constraints on role assignments, we. donflicting roles cannot be assigned at the
same time. The former case can be rendered by exploitingigarthy of polices or an appropriate
ordering function, while the latter one by using an approsichilar to that used for SoD properties.
The characterisation of role-based controls thus formalésort of *hybrid’ property, consisting of both
confidentiality and integrity aspects.

Let us consider an hybrid property stating that an actioite can be executed by all the subjects
with assigned roleole3, or by any other subject in the underlying role hierarchyolis not assigned
role role4 at the same time. Its characterisation in terms of ateHmgised specifications can be defined
as follows:

(permit target : equal(action/id, write) and
sub-role(subject/role, role3) and not(in(role4,subject/role)))

(4)

where we use the ad-hoc functieab-role to check if the subject’s role is a sub-role of (or coincides
with) role3 and the additional control on rotele4 to encode the integrity check.

42 On Properties of Policy-Based Specifications

A guideline commonly used in role-based desigleast privilege It means that each subject should
not expose more privileges than those necessary to perfemetjuested action. Differently from the
properties we have previously considered, least privilisgeot implemented through specific rules.
Rather, it affects the design choices pursued for definimgssccontrol policies. We will present more
details in the semantic-based formalisation presenteldeiméxt section.

3.2 Semantic-Based Formalisation

A policy-based specification, as e.g. a FACPL policy, in ddito the rules previously presented, con-
tains many other elements, such as e.g. other rules imptergexdditional controls and conflict resolu-
tion strategies. We now formalise under which conditionsl&cp enforces a given security property.

The formal representation of a security property is obthibg exploiting the fact that an access
control request is an assignment of values to a collecti@itobutes. We can then use sets of requests to
represent the (non)secure system behaviours with respadiven property. Formally, given a security
propertypr, we letRy, (resp.,Rpr) be thepermit(resp.deny set, i.e. the set of requests that represent the
secure (resp., nonsecure) behaviours with respgmt @ndSuly, (resp.,Resy) be the subset of subjects
(resp., resources) for which the propeplyis defined. A policyP containing the rules characterisipg
correctly enforces such property if the following conditsohold

Vr € Ry : r(resourceid) € Resy, r (subjectid) € Suly, = [P]r = permit

Vr € Ry : r(resourceid) € Resy, r(subjecfid) € Suly, = [P]r = deny
where notatiom (attr_name) indicates the value assigned to the attribute namrdname by the request
r. Hence, we require that all the secure behaviours are alldie, all the requests iRy, evaluate to
permit) and all the nonsecure ones are forbidden (i.e., all theesiqunR,, evaluate taleny). Notably,
we consider the (non)secure behaviours that only referdcstibset of subjects and resources that the
property pr takes into account. This means that the Rgtis not the complementary set B, with
respect to the universe of all the possible behaviours o$ystem; rather it represents those behaviours

that are considered nonsecure by the propertyin the sequel we report the definition of the (non)secure
sets of requests for each property we presented before.

Confidentiality: multi-level security. The secure behaviours identified by the read-upproperty
corresponds to the set of requeRks, whose elements must satisfy the following conditions

r(action/id) =read, r(resource/level) =1, r(subject/level) =1, : l,lael, 1 <.l
The sefR,, instead contains those requests satisfying the followoglitions
r(action/id) = read, r(resource/level) =1 , r(subject/level) =15 1 I3,l5€L, 13 £ 15

The permit and deny sets for the write-downproperty are similarly defined. In case of DAC properties
as e.g. that defined by Rulé (2), the requests of thBggtare characterised by the following conditions

r(action/id) = read, r(resource/read.ids) = SuRes, r (subject/id) =s : S& Subes

whereSubes is set of all subjects allowed to execute the read action errékourcees Instead, the
elements of the deny sBY,c must satisfy the following conditions

r(action/id) = read, r(resource/read.ids) = Suljy, r (subject/id) =s : S¢& Suljeg

A. Margheri, R. Pugliese & F. Tiezzi 43

Indeed, the set of granted subje8ist).; does not contain the subjext

Integrity: separation of duty. Theno read-dowrand theno write-upproperties, representing the Biba
model, are formalised like the confidentiality ones.

Let us consider the SoD property for a write action expresseRule [3). Thus, iRolis the set of
authorised non conflicting sets of roles, i.e. all the setsainrolel and notole2, the secure behaviours
Rsog are defined as follows

r(action/id) = write , r(subject/role) =rol : rol € Rol
The non secure behaviouR , are instead defined as follows
r(action/id) = write , r(subject/role) =rol’ : rol’ € Roly \Rol

where the seRoly represents the set of all sets of roles that a subject canipling system. Thus, a
request is non secure when the set of subject’s roles doeontdinrolel, i.e. the subject has not the
right to execute thevrite action, or it containgolel androle2 at the same time, i.e. the exposed roles
are in conflict.

Role-based design: hybrid properties and least-privilegeThe secure and nonsecure behaviours iden-
tified by hybrid properties are just a combination of the pyas examples. The formalisation of the least
privilege requires instead additional comments.

Let us consider a security propenty and the set of reque&,, representing the secure behaviours
with respect to such property. The sets of secure and noresbebhaviours for the least privilege, with
respect topr, are defined as follows

I:le = Rpr ﬁIp = RaII\Rpr

whereRy indicates all the possible requests. Therefore, in ordenforce the least privilege, a policy
has to authorise all those behaviours of the system deensstare by the propertyr and to forbid all

the other behaviours, not only those violatipgas in the previous cases. All the behaviours that are not
defined secure bpr are considered as nonsecure. Hence, forbidding them enfiatepossibly granted
accesses cannot be used to circumvent, in a malicious wagy, policies in the system.

4 Structural Properties for Policies

We now address some of the properties proposed in the literathich refer to the structure of policies.
We start considering completeness of a single policy, aftech we will consider redundancy, disjoint-
ness and coverage of one policy with respect to other onaspiidperties dealing with multiple policies
capture the relationships among the different sets of systehaviours they enforce. In this section,
we report a uniform characterisation of these propertiembgns of the semantic-based approach used
before.

By referring to FACPL, we usP to range over policiesylg to range over combining algorithms and
d to range over authorisation decisions. Moreover, weRygdo denote the set of all possible requests.

Completeness A policy P is completeif there is no access request for which there is an absence of
decision. Formally, this property can be rendered throbeffallowing condition

Vr €Rai: [P]r # not-applicable

44 On Properties of Policy-Based Specifications

In fact, we require that the policy applies to any request, it. always returns a decision different from
not-applicable. Notably, in this formulationindeterminate is considered as an admissible decision; a
more restrictive formulation could be defined that only atselecisionpermit anddeny.

Redundancy Redundancy among policies means that to enforce the sawiesgstem behaviours some
policies are not needed. Therefore, if we eliminate rednhgalicies, we can improve performance
of policy evaluation while leaving unchanged the enforcetidviours. Although the concept seems
natural and quite simple, different formalisations, thiétim lack of precision, have been proposed in the
literature. We follow an approach similar {0 [14].

Formally, if we let the FACPL policysbe defined aS=alg(Py,...,R,P,R11,...,P), then the policy
P is redundantwith respect t&if the following condition holds

erRa”: [[alg(Pla"'7H7P7P|+1a"'apl’l)]]r - [[alg(P17"'aHaF)l+17"'aPn)]]r

In fact, we require that, for any request, the decision retdrbySis not affected by the presence f
Notably, this property generalises in the obvious way tcctmeS contains rules instead of policies (thus
P would be a redundant rule) and to the case a target is presént i

Disjointness Disjointness among policies means that such policiesyapgalisjoint sets of behaviours.
Thus, two policies ardisjoint if there is no request for which both policies evaluatg@éemit or deny.
Formally, policiesP andP’ aredisjoint if the following condition holds

vreRa o {[PIr, [PIr} Z {permit,deny}

It is worth noticing that disjoint polices can be combinedhthe assurance that the allowed or forbidden
behaviours enforced by each of them are not in conflict, whkioiplifies the choice of the combining
algorithm to be used.

Coverage Coverage among policies means that one of such policies@nthe same decisions as the
other ones for a set of requests of interest. FormallR.if is a set of requests, we say that the policy
P coversthe policy P’ if, for each request € Reoy to which P’ applies, i.e.[P']; € {permit,deny}, P
applies too and returns the same decision. Formally, itpsessed by the following condition

VreRwo o [P]r € {permit,deny} = [P]r=[P]r

Thus, relatively to the set of requests of interdsgnforces at least the same allowed and forbidden
behaviours a$’. Consequently, i’ also coversP, then the two policies enforce exactly the same
behaviours relatively to the set of requests of interest.

These structural properties permit to statically reasathemelationships among policies and provide
useful support to system’s designers in developing and taiaing policy-based specifications. One
technique they support is tlehange-impact analysifi1]. This analysis examines the effect of policy
modifications for discovering unintended consequencesidi shanges. To be practically effective it
requires that the verification of the previous propertiesiggported by automatic tools. We further deal
with this issue in the next section.

5 Verification of Properties

The formalisation of security and structural propertiesspnted in Sectioris 3 ahél 4 determines the
conditions on attributes stating when a policy enjoys aatenproperty. To verify such conditions, we

A. Margheri, R. Pugliese & F. Tiezzi 45

need to take into account the various elements composinticg.p®pecifically, the hierarchical structure
of policies and the various elements originating the densimake this verification cumbersome and
error-prone if not supported by an automatised technigquseeaexample of the difficulties to be faced,
we consider (part of) the policies modelling the case studyich address th@o read-upand DAC
security properties for read actions requested by a sethpésis Sub on the resourcéoanDoc Thus,
we define various combination approaches for creating ayabntaining Ruled (1) andl(2), and we
study for each approach if the two properties are properigread.

The first combination we propose for the two rules is definefiimvs

{permit-overrides
target : equal(resource/id,loanDog) and in(subject/id, Subj)
policies:
(permit target : equal(action/id,read) and leq(resource/level,subject/level))
(permit target : equal(action/id,read) and in(subject/id, resource/read.ids))}

The chosen combination algorithm permit-overrides, which seems the natural choice since each al-
lowed behaviour is explicitly authorised. Notably, theipghk target ensures that the policy exclusively
applies to the considered resoutoanDocand to the subset of system’s subjeSts.

To verify that this policy enforces the intended properti@e show that all the secure behaviours
are authorised, while the nonsecure ones are forbidden. dw&der first theno read-upproperty. As
formalised in Sectiofi 312, the secure behaviours correbpmmll the requests containing the resource
and subject levels that respect the partial ordering melail hese ones clearly match the target of the first
rule, hence this rule, as well as thermit-overrides algorithm, returrpermit. The nonsecure behaviours
are instead represented by all the requests containingnese and subject’s levels not properly ordered.
In this case, both internal rules do not apply andghenit-overrides algorithm returnsot-applicable,
because neithgsermit nor deny are returned by the rules. However, the nonsecure behavehauld
be evaluated adeny, hence we can conclude that the policy does not properlyremfineno read-up
property. The same also holds for the DAC property.

To fix this first policy, we can replace thermit-overrides algorithm by thedeny-unless-permit
one, which ensures thdeny is taken as the default decision whenever no rule evaluatgsrinit. In
this case all the nonsecure behaviours of both propertepraperly forbidden. However, as we are
addressing two properties, the secure behaviours areoakt thnes that are secure, at the same time, for
both properties. This means thairmit must be returned only when the two rules apply at the same time
as well, but this does not happen in the presented policiegackt, the combining algorithm does not
enforce any form of consensus between the two rules. As @&nudtfact, a subject can circumvent the
access control system reading a resource, e.g., only h#wvingorrect confidentiality level and not the
discretionary access.

This additional issue can be addressed by adding a new pajieyand requesting a strong consensus
between the rules. The extended policy is thus as follows

{deny-unless-permit
policies:
{strong-consensus
target : equal(resource/id,loanDog) and in(subject/id, Subl)
policies:
(permit target : equal(action/id,read) and leq(resource/level,subject/level))
(permit target : equal(action/id,read) and in(subject/id, resource/read.ids)) }}

46 On Properties of Policy-Based Specifications

deny-unless-permit is used at top level to ensure that the resulting decisiotiseobverall policy will be
only permit or deny. In the inner policystrong-consensus ensures thapermit is returned only when
both internal rules apply at the same time. In this caseeallie and nonsecure behaviours of the two
intended properties are properly enforced. Notably, weatdneve the same result by merging the two
rules and avoiding the additional policy layer; howeveg thodelling approach we present permits to
achieve separation of concerns among rules, which are #uisréo maintain and possibly change.
Verifying that a policy properly enforces a set of propestie not straightforward. This example,
which seems easy enough for being manually checked, showsatusalso in case of simple policies
we need an automated verification approach. Specifically,approach must be capable to take into
account all the aspects of a policy specification, e.g. pdiratification and combining algorithms, and
to exhaustively check all the significant requests reptesgihe possible behaviours. A viable approach
towards an automated verification of security and strutpn@perties is outlined in the next subsection.

5.1 Towards an Automated Verification Approach

Automatising the verification of properties permits to féaie the analysis of policy-based specifica-
tions. To enable such analysis, we need a formalism thaheone hand, permits to collapse hierarchi-
cal policies into a single-layered representation and tounly represent all policy elements and, on
the other hand, is sufficiently flexible to deal with multiglemain values for attribute assignments. To
this aim, we propose a constraint-based formalism.

Constraints permit to specify satisfaction problems bdmed on boolean formulae and on formulae
dealing with different theories as, e.g. linear arithngtiSuch kind of formulae are callesgtisfiability
modulo theoriegSMT) formulae. Choosing an SMT-based approach is advdas® by the relevant
progress made in the development of automatic SMT solvags &3 [21]), which make SMT formulae
to be extensively employed in diverse analysis applicatj@d]. In addition, the analysis of logic-based
access control policies reported id [1] points out that tMT®ased approach is more effective than
many other ones, like e.g. the approaches based on deciaigmahs [11] or on description logic [17].
Of course, the feasibility of the SMT-based approach ctiyci@#epends on decidability of the satisfi-
ability checks; in other words, the used constrains mustepeesented by decidable theories, as e.g.
uninterpreted functions and array theories.

To achieve a single-layered representation of policieshawe to provide a translation function from
the language used for writing policies to the constrairgeoaformalism that preserves the semantics of
the original language. Indeed, since FACPL is equipped wifbrmal semantics, it has to be exploited
for defining a rigorous encoding. Notably, as the evaluabdioapolicy can return four possible decisions,
we have to define a different constraint for each of them.

A constraint-based representation of policy-based spatidns enables the verifications of both
security and structural properties. Specifically, in theecaf security properties, the attribute values
identifying the class of (hon)secure requests correspormssignment assertions in the constraint of
interest (i.e. the one modelling the decision to which tlipiests should evaluate) and then, by means of
an SMT-solver, it is checked if such constraint is satiséalfithis happens, it means that the requests of
the class can evaluate, under the assignment model retioyribd solver, to the decision modelled by the
constraint. In case of structural properties, we can inlstiedine boolean combinations among the single
constraints of each policy, and then check the satisfighifithe resulting constraint to understand if a
certain property holds. For instance, the disjointnesséen two policies holds if the constraint resulting
from the implication of thegpermit (resp.,deny) constraints of both policies is not satisfiable.

A. Margheri, R. Pugliese & F. Tiezzi 47

6 Related Works

Policy-based specifications have recently been the subfesttensive research, both by industry and
academia, in many application areas. In fact, policy laggaaénave been adopted for managing different
aspects of systems’ behaviour, not only access control Ibatadaptation enforcement and network
management. A large variety of languages for defining accestrols has been proposed, and the
more significant ones follow two main specification appraaciule-based as e.g. XACML [24] and
Ponder|[9], andogic-based as e.g. ASLI[[15] and the logical framework presented in A present
the relevant features of these languages, showing thetieffieess of choosing FACPL as the target
language for studying policies’ properties. Notably, tiéfarm approach based on attributes presented
in [16] does not provide any evaluable property charaagads, but only an high-level access control
model.

XACML is the most widely-used instantiation of the ABAC appch. It relies on an XML-based
syntax and permits to write policies and access requestsetdr, XML does not permit compact spec-
ifications and, due to the lack of a formal semantics, an explnambiguous formalisation of request’s
evaluation. The use of FACPL permits thus to avoid verbosengrtes, and to rely on a rigours formal
semantics to formalise properties.

Ponder is instead a strongly-typed language defined in tefiagent-Condition-Action rules. Dif-
ferently from XACML and FACPL, it does not provide any expicombination strategy to resolve
conflicts. Thus, the presence of conflicts or inconsistencstatically analysed by means of abductive
reasoning techniquesl[2]. This reasoning generates a mefimefor the considered policy. Ponder, on
the one hand, permits to avoid policy hierarchies, but, enatmer hand, it does not provide any mod-
ularity and compositionality in the specification of polisi The FACPL-based specification approach
consists instead in basic building rules, that can be apiattepy combined to enforce different security
properties, ensuring separation of concerns in the erddrsebaviours.

The increasing spread of policy-based specifications hamed the development of multiple veri-
fication techniques like, e.g., property checking and biglasl characterisations. Such techniques have
been implemented by means of different formalisms, varyiogn multi-terminal binary decision dia-
grams (MTBDD) to different kinds of logics. We review the ragelevant techniques and formalisms.

The change-impact analysis of XACML policies presented.iij permits to study the consequences
of policy’s maodifications. In particular, to verify structl properties among policies by means of auto-
matic tools, this approach relies on a MTBDD-based reptatien of policies. However, it cannot deal
with many of the classical combining algorithms, e.g. afl XACML's ones, and, as outlined inl[1], an
SMT-based approach (i.e. the one we are exploring), sc@gesicantly better than the MTBDD one.

The ASL languagel[15] is a logical framework for the formalisn of access control policies.
Specifically, it enables hierarchisation, conflict resolutand role- and group-based definitions of access
rights. Furthermore, by means of additional predicatesemmting a posteriori checks on authorisation
decisions, it permits to easily express various histonyetelent properties, e.g. dynamic separation of
duty. Similarly, the framework i]1] permits a logic-bassgkcification of control policies. A policy is
thus a list of constraint assertions that are evaluated Y& I&ased tool, and various structural prop-
erties can be encoded in terms of additional, low-levelréisss. The FACPL-based approach permits
instead to abstract from the underlying logical means @hastill used to in the FACPL formal seman-
tics and for the automatised analysis we foster), allowibgtéer usability for system'’s designers of the
properties formalisation.

An additional logic-based analysis is the one presented ih Wwhich aims at verifying structural
properties of XACML policies. Specifically, it defines a paktencoding of XACML into description

48 On Properties of Policy-Based Specifications

logics and a set of supporting analysis services. Howevisrapproach does not take into account many
combining algorithms and, also, the decisians-applicable andindeterminate, which are instead useful

in the definition of structural properties. Furthermore tised reasoning tool suffers the same scalability
issues as the one based on MTBDD.

Finally, the redundancy property has been object of spaaifensive studies. In fact, the identifi-
cation of redundant policies and their ‘safe’ eliminatioirieases the evaluation performance of access
control systems. A rigorous formalisation of redundancgrigposed inl[14], where an algorithmic ap-
proach for minimising access control policies is proposadiits computational complexity studied.

7 Conclusion

Policy-based specifications are widely used to regulatédbéaviour of system’s entities relatively to
the access to shared resources. The policy-based accésd, donresorting to the concept of attribute,
is sufficiently expressive to represent in an uniform wayckabksical access control approaches, varying
from access control list and role-based to discretionadyraandatory ones. Policies permitindeed to de-
fine fine-grained, flexible and context-aware access captfostering systems integration, as attributes
can be retrieved from different information systems. Toueasonfidentiality and integrity principles,
such policies need to take into account multiple securipeets, e.g., the ones studied by well-known
security models, such as the Bell-LaPadula and Biba onesetr, enforcing in terms of policy-based
specifications the security properties characterisingy snigdels is a tricky task. In fact, the hierarchi-
cal structure of policies, the presence of conflict resotustrategies and the intricacies deriving from
the many controls involved do not permit to easily check Wwhet given security property is properly
enforced. By means of the FACPL policy language, we haveigeovsome specification examples of
a significant set of security properties, and showed undechmtonditions such properties are prop-
erly enforced. To characterise the relationships with thleaiours that different polices enforce, we
have also formalised, in a uniform way, various propertiashe structure of policies. Furthermore,
to effectively support system’s designers in developing rmuiaintaining policy-based specifications, we
outlined a constraint-based approach enabling automatéitation of security and structural properties
by means of constraint solver tools.

We conclude by reviewing some additional properties we pastudy in the next future. On the
one hand, to take into account dynamic behaviours of systemasvant to address history-dependent
security properties, and provide specialised formal amslgchniques. On the other hand, access control
policies can also be used to produce, together with the dséttion decision, additional actions, named
obligations that can adapt the computing system'’s configuration. Tsorea@an obligations, we want to
formalise properties on conflicts and dependencies amam.tRurther details follow.

History-Dependent Properties Classical examples of history-dependent properties ymardic SoD
and Chinese Wall [7]. Dynamic SoD properties correspondnforeing separation of duty by evalu-
ating not only the current subject’'s request, but also tlséohy of actions the subject has previously
performed. Chinese Wall properties correspond insteaa toyhrid instantiation of the confidentiality
and integrity principles, where history is used to adaptabeess rights granted by the confidentiality
controls. Specifically, it means that a subject is only aldwo access resources which are not in conflict
with any other resource that the subject has already aatesse

Enforcing these properties within policy-based specificet means checking the history of system’s
authorisations. This could be done, e.g., by means of atéshrepresenting the history. These attributes
should in fact collect all the information needed for prép@nforcing a considered history-dependent

A. Margheri, R. Pugliese & F. Tiezzi 49

property, e.g., in case of Chinese Wall, which resources baen already accessed. In order to formally
verify that such properties are enforced, we need to enhamceemantic-based formalisation with an

explicit representation of history. Possible approacbgsitsue for achieving this formalisation are those
used in Usage Control [19], i.e. a novel access control modeinsuring continuous authorisation when

an access is in progress.

Obligations. Obligations have been introduced in access control foratiad the need of fulfilling
additional actions in order to gain access. For instanceCMA supports the definition of obligations
and, to allow an access, it requires that all obligationssipbg generated by the policy evaluation are
correctly fulfilled. Obligations can be thus used to adaptdbmputing system’s configuration. However,
these obligations may have conditional requirements dneiecution, e.g. conflicts and dependencies,
that have to be taken into account. For instance, an olbigatn require to be executed only if another
one has not been already executed. To formalise and analygerfes on obligations, we plan to start
from the representation model of obligation’s featurediwed in [4], and instantiate such model with
respect to the FACPL policy language.

References

[1] Konstantine Arkoudas, Ritu Chadha & Cho-Yu Jason Chi@td 4): Sophisticated Access Control via SMT
and Logical FrameworksACM Trans. Inf, Syst. Secut6(4), p. 17, doit0.1145/2595222.

[2] Arosha K. Bandara, Emil Lupu & Alessandra Russo (20038king Event Calculus to Formalise Policy
Specification and Analysisin: POLICY, IEEE Computer Society, p. 26, do@.1109/P0OLICY.2003.
1206955.

[3] David E. Bell & Leonard J. LaPadula (1976%ecure Computer System: Unified Exposition and MULTICS
Interpretation Technical Report, The MITRE Corporation.

[4] Elisa Bertino, Carolyn Brodie, Seraphin B. Calo, Lotfagith Cranor, Clare-Marie Karat, John Karat, Ninghui
Li, Dan Lin, Jorge Lobo, Qun Ni, Prathima Rao & Xiping Wang (®): Analysis of privacy and security
policies. IBM Journal of Research and DevelopmBB(2), doi10.1147/JRD.2009.5429045.

[5] Kenneth J. Biba (1977)integrity Considerations for Secure Computer Systermiechnical Report, The
MITRE Corporation.

[6] Matthew A. Bishop (2002)The Art and Science of Computer Securigdison-Wesley.

[7] D.F. C. Brewer & Michael J. Nash (1989yhe Chinese Wall Security Polichl: Security and PrivagyEEE
Computer Society, pp. 206—214, ddi. 1109/SECPRI . 1989.36295.

[8] D.D. Clark & D. R. Wilson (1987)A Comparison of Commercial and Military Computer Securili¢tes
In: Security and PrivagyEEE Computer Society, pp. 184-195, doi:1109/SP.1987.10001.

[9] Nicodemos Damianou, Naranker Dulay, Emil Lupu & Morri®@&an (2001):The Ponder Policy Specifica-
tion LanguageIn: POLICY, LNCS 1995, Springer, pp. 18-38, dfi:. 1007/3-540-44569-2_2.

[10] David Ferraiolo & Richard Kuhn (1992Role-Based Access Contréh: NIST-NCSGC pp. 554-563.

[11] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyeroti& Michael C. Tschantz (2005)erification and
change-impact analysis of access-control policies ICSE ACM, pp. 196—-205, doi:0.1145/1062455.
1062502.

[12] Dieter Gollmann (2011)Computer Security (3. ed.Wiley.

[13] G. Scott Graham & Peter J. Denning (197P)yotection: Principles and Practiceln: AFIPS ACM, pp.
417-429,doit0.1145/1478873.1478928.

[14] Marco Guarnieri, Mario Arrigoni Neri, Eros Magri & Sinm@ Mutti (2013):0n the notion of redundancy in
access control policiedn: SACMAT, ACM, pp. 161-172, doi:0.1145/2462410.2462426.

http://dx.doi.org/10.1145/2595222
http://dx.doi.org/10.1109/POLICY.2003.1206955
http://dx.doi.org/10.1109/POLICY.2003.1206955
http://dx.doi.org/10.1147/JRD.2009.5429045
http://dx.doi.org/10.1109/SECPRI.1989.36295
http://dx.doi.org/10.1109/SP.1987.10001
http://dx.doi.org/10.1007/3-540-44569-2_2
http://dx.doi.org/10.1145/1062455.1062502
http://dx.doi.org/10.1145/1062455.1062502
http://dx.doi.org/10.1145/1478873.1478928
http://dx.doi.org/10.1145/2462410.2462426

50 On Properties of Policy-Based Specifications

[15] Sushil Jajodia, Pierangela Samarati & V. S. Subrahara(i997):A Logical Language for Expressing Au-
thorizations In: Security and PrivacdEEE Computer Society, pp. 31-42, ddi- 1109/SECPRI.1997.
601312,

[16] Xin Jin, Ram Krishnan & Ravi S. Sandhu (2012)Unified Attribute-Based Access Control Model Covering
DAC, MAC and RBACIn: DBSec Springer, pp. 41-55, ddi0.1007/978-3-642-31540-4_4.

[17] Vladimir Kolovski, James A. Hendler & Bijan Parsia (200 Analyzing web access control policietn:
WWW, ACM, pp. 677—686, doi:0.1145/1242572.1242664.

[18] Butler W. Lampson (1974 Protection Operating Systems Revie(1), pp. 18-24, doi:0.1145/775265.
775268.

[19] Aliaksandr Lazouski, Fabio Martinelli & Paolo Mori (20): Usage control in computer security: A survey
Computer Science Revie#(2), pp. 81-99, doi0.1016/j.cosrev.2010.02.002.

[20] Andrea Margheri, Rosario Pugliese & Francesco Tie2@il6): A Light Version of the FACPL Policy Lan-
guage Technical Report. Available atttp://facpl.sourceforge.net/research/l1ightFACPLTR.
pdf.

[21] Leonardo Mendonga de Moura & Nikolaj Bjgrner (2008B: An Efficient SMT Solverin: TACAS 2008
Springer, pp. 337-340, dab.1007/978-3-540-78800-3_24.

[22] Leonardo Mendonga de Moura & Nikolaj Bjgrner (201 8hatisfiability modulo theories: introduction and
applications Commun. ACM54(9), pp. 69—77, doin.1145/1995376.1995394.

[23] NIST (2009): A survey of access control models http://csrc.nist.gov/news_events/
privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf.

[24] OASIS XACML TC (2013):eXtensible Access Control Markup Language (XACML) ver3ibnhttps://
www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml.

[25] Ravi S. Sandhu (1993):attice-Based Access Control ModellEEE ComputeR6(11), pp. 9-19, daio.
1109/2.241422.

[26] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein & Gisl. Youman (1996Role-Based Access Control
Models IEEE Compute29(2), pp. 38-47, doi0.1109/2.485845.

[27] Sabrina De Capitani di Vimercati, Sara Foresti & Pigigla Samarati (2008)Recent Advances in Access

Control. In Michael Gertz & Sushil Jajodia, editoréiandbook of Database Securigpringer, pp. 1-26,
doi:10.1007/978-0-387-48533-1_1.

http://dx.doi.org/10.1109/SECPRI.1997.601312
http://dx.doi.org/10.1109/SECPRI.1997.601312
http://dx.doi.org/10.1007/978-3-642-31540-4_4
http://dx.doi.org/10.1145/1242572.1242664
http://dx.doi.org/10.1145/775265.775268
http://dx.doi.org/10.1145/775265.775268
http://dx.doi.org/10.1016/j.cosrev.2010.02.002
http://facpl.sourceforge.net/research/lightFACPLTR.pdf
http://facpl.sourceforge.net/research/lightFACPLTR.pdf
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1145/1995376.1995394
http://csrc.nist.gov/news_events/privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf
http://csrc.nist.gov/news_events/privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://dx.doi.org/10.1109/2.241422
http://dx.doi.org/10.1109/2.241422
http://dx.doi.org/10.1109/2.485845
http://dx.doi.org/10.1007/978-0-387-48533-1_1

	1 Introduction
	2 A Policy Language
	2.1 Syntax and Informal Semantics of FACPL
	2.2 A glimpse of the FACPL Formal Semantics

	3 Security Properties for Polices
	3.1 Attribute-based Characterisation
	3.2 Semantic-Based Formalisation

	4 Structural Properties for Policies
	5 Verification of Properties
	5.1 Towards an Automated Verification Approach

	6 Related Works
	7 Conclusion

