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Università di Camerino, 62032 Camerino (MC), Italy
2INFN, Sezione di Perugia, 06123 Perugia (PG), Italy

Numerical solution of the LPDA equation

We describe the numerical procedure that we have
adopted in the main text to solve the LPDA equation for
the gap parameter ∆(r) (cf. Eq. (2) of the main text),
together with the number equation N =

∫
drn(r) (with

n(r) given by Eq. (6) of the main text) to determine the
chemical potential µ for fixed particle number N .

The LPDA equation can be rewritten in the form:

∇2∆(r) +
Ĩ0(r)
I1(r)

∆(r)− 4mivn(r) · ∇∆(r) = 0, (1)

where Ĩ0(r) ≡ [m2/(πaF ) + I0(r)] and with h̄ = 1. The
coefficients I0(r) and I1(r) are defined by Eqs. (3) and
(4) of the main text. The differential equation (1) is
solved over a finite box, with the condition that ∆(r)
vanishes identically from the boundary of the box out-
wards. For the trap of ref. [1] the box width is taken as
2.7RF along the x and y directions and 6.8RF along the z
direction; for the trap of ref. [2] the corresponding widths
are 1.5RF and 22RF . In this way, the box is at least 1.5
times larger than the size of the cloud in each direction
for all rotation frequencies that we have considered.
The differential equation (1) is transformed into a set

of finite-difference equations which we schematize in vec-
tor form as �F (�∆) = 0, by discretizing it over a uniform

spatial grid. Here, �∆ is a vector formed by the unknown
variables ∆j ≡ ∆(rj) where rj is a point on the grid,
while the equation Fi = 0 corresponds to the finite dif-
ference version of Eq. (1) at position ri. For the trap of
ref. [1] the grid is taken 800× 800× 30 for the x, y, and
z directions, respectively; while for the trap of ref. [2]
the grid is taken 500 × 500 × 50. One is thus left with
solving a system of Np � 2 × 107 non-linear equations
for the Np complex variables ∆j , where the non-linearity
arises from the functional dependence of the coefficients
I0(r) and I1(r) on ∆(r) (cf. Eqs. (3) and (4) of the
main text). To solve this system we have implemented
a quasi-Netwon method as follows. The ordinary (multi-

dimensional) Newton method would imply modifying �∆
as follows:

�∆new = �∆old − J−1 · �F (�∆old) (2)

where J−1 is the inverse of the Jacobian matrix J with
matrix elements Jij =

∂Fi(�∆
old)

∂∆j
. Here, the Jacobian ma-

trix can be calculated quite accurately with a numerical

effort comparable to that of evaluating �F (�∆), because
most of the off-diagonal elements vanish and those dif-
ferent from zero are linear combinations of ∆i and ∆j .
The memory storage of the sparse matrix J is set up by
using a compressed sparse column (CSC) format. How-
ever, since the numerical inversion of J is too costly, we
have resorted to an incomplete LU factorization [3] and
obtained an approximate inverse of J to be inserted in
Eq.(2). It is the use of this approximate inverse of J that
makes the procedure a quasi-Newton method instead of
an ordinary Newton method. Specifically for our prob-
lem, this method proves to converge better than alter-
native versions of the quasi-Newton method (such as the
SR1 or Broyden’s methods [4]).

For a given trial value of µ, we routinely perform 40
iterations for the discretized gap �∆ according to Eq. (2).
We then update the chemical potential µ through a single
step of the secant method applied to the number equa-
tion N =

∫
drn(r) at fixed ∆(r). With this new value

of µ, we again repeat 40 iterations for �∆, and so on. In
the presence of a large number of vortices (about one
hundred or more), 50 steps to update µ, each followed

by 40 iterations for �∆, are typically required to reach a
satisfactory convergence. With a smaller number of vor-
tices, on the other hand, these numbers can considerably
be decreased (together with the number of points for the
spatial grid in the xy plane). In order to speed up the cal-
culation (and to make it feasible, in practice, for a large
number of vortices), the coefficients Ĩ0(r) and I1(r) are
calculated over an interpolation grid 100 × 100 × 100 in
the variables (|A|, |∆|, µ̄ ≡ µ−V (r)), with a logarithmic
spacing for ∆. [Note that this grid is over the possible
values of |A|, |∆|, and µ̄, and not over the physical space
spanned by the variable r.] The values of the coefficients
Ĩ0(r) and I1(r) at position r are then obtained by a tri-
linear interpolation within a cube containing the point
|A(r)|, |∆(r)|, and µ̄(r). In this way, the most demand-
ing cases (like that shown in Fig. 1a of the main text)
required 30 hours of CPU time on a standard desktop
computer (with no parallelization of the code).

For frequencies close to Ωc1 , where the solution with
one vortex is almost degenerate with that without vor-
tices, one needs to be particularly careful. In this case,
we have used for the initial ansatz the product of the
gap profile ∆TF (µ − V (x, y, z)) within a local density
approximation for the system in the absence of rotation
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Ĩ0(r) and I1(r) at position r are then obtained by a tri-
linear interpolation within a cube containing the point
|A(r)|, |∆(r)|, and µ̄(r). In this way, the most demand-
ing cases (like that shown in Fig. 1a of the main text)
required 30 hours of CPU time on a standard desktop
computer (with no parallelization of the code).

For frequencies close to Ωc1 , where the solution with
one vortex is almost degenerate with that without vor-
tices, one needs to be particularly careful. In this case,
we have used for the initial ansatz the product of the
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[5] (where V (x, y, z) is the trapping potential), with the
function

f(r;R0) =
x−X0 + i(y − Y0)√

ξ20 + (x−X0)2 + (y − Y0)2
(3)

which simulates a vortex of radius ξ0 centered at R0 =
(X0, Y0). Here, the position and radius of the vortex are
parameters that can be varied to optimize the solution.
In particular, the initial position of the vortex should
be slightly displaced from the trap center, to avoid the
system being trapped in an excited state for Ω < Ωc1 . In
this way, for Ω > Ωc1 (but still close to Ωc1) the vortex
adjusts its position and radius to the convergence values.
For Ω < Ωc1 , on the other hand, the vortex migrates
towards the edges of the cloud and eventually disappears.
At larger rotation frequencies, to speed up the cal-

culations we have used as initial ansatz a gap profile
given by the above local density approximation, but
now multiplied by a triangular lattice of vortices which
are spaced according to Feynman’s theorem. Specifi-
cally, this is implemented by multiplying the gap profile
∆TF (µ−V (x, y, z)) within local density with the function∏Nv

v=1 f(r;Rv), where f(r;Rv) is given by the expression
(3) with Rv = (Xv, Yv) replacing R0 = (X0, Y0) and ξv
replacing ξ0, {(Xv, Yv); v = 1, · · · ,Nv} being the initial
positions of Nv vortices in a triangular lattice spaced ac-
cording to Feynman’s theorem. It turns out that this
initial configuration contains about twice the number of
vortices of the final configuration at convergence (since
Feynman’s theorem is progressively violated when ap-
proaching the border of the cloud). Correspondingly, the
iteration procedure evolves in such a way that a number
of vortices progressively evaporates away from the bor-
der of the cloud, until the system reaches its final equi-
librium configuration. Quite generally, in the course of
the iterations the radii of the vortex cores adjust to their
convergence values rather quickly, while a larger number
of iterations is required to reach convergence as far as the
positions and number of vortices are concerned.

Spontaneous self-assembling of vortex arrays

The distinct power of the present method is that vor-
tex arrays can be generated through the cycles of self-
consistency at a finite rotation frequency, even when the
initial condition for the gap profile contains (essentially)
no vortices. In this respect, during iterations we have
found that, quite generally, vortices enter from the edges
of the cloud and eventually reach their equilibrium posi-
tions inside the cloud.
As a demonstration of a typical numerical simula-

tion that shows the evolution through the cycles of self-
consistency, we report here a simplified version of the cal-
culations presented in the main text, where now it is the
chemical potential µ and not the particle number N to
be kept fixed at a given value through the cycles of self-
consistency (in this case, we use thermodynamic value

µ = 0.752EF of Fig. 3b of the main text). In addition,
to speed up the calculation further we now utilize a spa-
tial grid with 300× 300× 35 points instead of the denser
one with 500× 500× 50 points used for the calculations
in the main text for the trap of ref.[2].

Figure S1. The evolution of the gap profile through
iterations. The evolution of the gap profile in the course of
the iterations is shown at unitarity, T = 0, and Ω = 0.3Ωr

for the trap parameters of ref. [2]. Left column (from top to
bottom): initial configuration without vortices, and configu-
rations after 400, 800, and 18000 iterations. Right column
(from top to bottom): initial configuration with 37 vortices,
and configurations after 400, 800, and 6000 iterations.

Figure S1 shows a typical evolution of the gap profile
during the cycles of self-consistency for the trap of ref.[2]
at unitarity, zero temperature, and Ω = 0.3Ωr, using
two different initial configurations: in the left column,
a gap profile with no vortex but only a phase imprint

3

of equilateral triangular symmetry at the cloud edge; in
the right column, a gap profile containing 37 vortices as
required by Feynman’s theorem. In order to reduce the
distortion of the triangular lattice in the left column, the
equilibrium value 0.3Ωr has been reached only asymptot-
ically in the course of the iteration cycles through a suit-
able damped saw-tooth profile of the angular frequency
Ω (a movie showing the complete evolution for this case

is available at http://bcsbec.df.unicam.it/?q=node/1 ).

The result is that these two quite different initial config-
urations lead essentially (apart from an overall rotation)
to the same final solution at convergence with a total of
18 vortices (note also that the panel at the bottom of the
right column of Fig. S1 coincides with Fig. 3b of the
main text, the minor differences being ascribed to the
different number of points in the spatial grids).

The Ω vs T phase diagram for the superfluid
phase of a neutral trapped Fermi gas

It is interesting to combine together the two physical
effects which yield a finite value for the moment of in-
ertia in the superfluid phase, namely, the presence of:
(i) An array of vortices even in the absence of a normal
component when the angular frequency increases above
a threshold, as occurs at zero temperature (cf. Fig. 3a of
the main text); (ii) A normal component at finite tem-
perature even in the absence of vortices, as occurs for
vanishing angular frequency (cf. Fig. 4 of the main
text). Simultaneous consideration of both effects leads
us to construct a phase diagram for the temperature de-
pendence of the lower critical frequency Ωc1 about which
the first vortex stably appears in the trap and of the
upper critical frequency Ωc2 about which the superfluid
region disappears from the trap. This phase diagram is
the analogue of that for a homogeneous type-II super-
conductor, showing the temperature dependence of the
critical magnetic fields Hc1 and Hc2 [6].
The results of this calculation are reported in Fig. S2

at unitarity for the trap corresponding to the experiment
of ref.[2]. More precisely, at a given temperature we
have found it necessary to distinguish between a lower
(l) and an upper (u) value for Ωc1 and for Ωc2 accord-

ing to the following considerations. The lower value Ω
(l)
c1

corresponds to the smaller angular frequency Ω at which
an isolated vortex placed initially close to the trap center
(say, at a distance Rs/10 from it) begins to be attracted
toward the trap center in the course of the cycles of the
self-consistent solution of the LPDA equation. The up-

per value Ω
(u)
c1 corresponds instead to the smaller value of

Ω at which an isolated vortex placed initially at the edge
Rs of the superfluid part of the cloud begins to be at-
tracted toward the trap center. The ensuing uncertainty
in the identification of Ωc1 , which is unavoidably present
for a trap with finite size, corresponds to the shaded red

area of Fig. S2. On the other hand, the lower value Ω
(l)
c2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Ω
/Ω

r

T/Tc0

 0.04

 0.06

 0.08

 0.1

 0.12

-2 -1.5 -1 -0.5  0  0.5  1

Ω
c

1
/Ω

r

(kFaF)
-1

Figure S 2. Phase diagram for the critical frequen-
cies Ωc1 and Ωc2 vs temperature. Temperature depen-
dence of the two critical frequencies Ωc1 and Ωc2 (in units
of the radial trap frequency Ωr) at unitarity for the trap of
ref.[2]. The shaded red (blue) area corresponds to the uncer-
tainty associated with Ωc1 (Ωc2). At a given temperature,

no vortex is present for 0 ≤ Ω < Ω
(l)
c1 while vortex arrays

appear for Ω
(u)
c1 ≤ Ω < Ω

(l)
c2 (shaded yellow area). The bro-

ken line extrapolates the values of Ω
(u)
c2 down to the point

(Ω = 0, T = Tc0), while the dashed line corresponds to Eq.(1)
of the main text with appropriate (temperature dependent)
values of ξ and Rs. The inset shows Ωc1 at T = 0 vs the cou-
pling (kF aF )

−1 again obtained from Eq.(1) of the main text
with the appropriate values of ξ and Rs at zero temperature.

corresponds to the smaller value of Ω at which all vor-
tices have eventually disappeared from the trap, while

the upper value Ω
(u)
c2 is determined by the condition that

the gap parameter itself vanishes everywhere in the trap.

[In this context, we have found that approaching Ω
(u)
c2 ,

the spatial width of ∆(r) shrinks progressively but never
becomes smaller than the size of the ground-state wave
function of the harmonic trap, and that from this point
on it is the height of ∆(r) to decrease to zero.] The ensu-
ing uncertainty in the identification of Ωc2 corresponds to
the shaded blue area of Fig. S2. For the specific trap and
coupling conditions under which Fig. S2 was constructed,
the values of Ωc1 and Ωc2 with their related uncertain-
ties could be identified up to the maximum temperature
0.92Tc0 where Tc0 is the critical temperature in the trap
for Ω = 0. Finally, the shaded yellow area which extends

from Ω
(u)
c1 to Ω

(l)
c2 is where arrays of vortices are present

for given values of Ω and T .

For comparison, the dashed line in Fig. S2 corresponds
to the approximate expression (1) of the main text, in
which we have inserted the appropriate (temperature-
dependent) values of kF ξ for an isolated vortex taken
from ref.[7] and of kFRs obtained from the present calcu-
lation. It is remarkable that the curve obtained from the
approximate expression (1) of the main text falls within
the shaded red area of Fig. S2 obtained by the full nu-
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of equilateral triangular symmetry at the cloud edge; in
the right column, a gap profile containing 37 vortices as
required by Feynman’s theorem. In order to reduce the
distortion of the triangular lattice in the left column, the
equilibrium value 0.3Ωr has been reached only asymptot-
ically in the course of the iteration cycles through a suit-
able damped saw-tooth profile of the angular frequency
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18 vortices (note also that the panel at the bottom of the
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It is interesting to combine together the two physical
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pendence of the lower critical frequency Ωc1 about which
the first vortex stably appears in the trap and of the
upper critical frequency Ωc2 about which the superfluid
region disappears from the trap. This phase diagram is
the analogue of that for a homogeneous type-II super-
conductor, showing the temperature dependence of the
critical magnetic fields Hc1 and Hc2 [6].
The results of this calculation are reported in Fig. S2

at unitarity for the trap corresponding to the experiment
of ref.[2]. More precisely, at a given temperature we
have found it necessary to distinguish between a lower
(l) and an upper (u) value for Ωc1 and for Ωc2 accord-

ing to the following considerations. The lower value Ω
(l)
c1

corresponds to the smaller angular frequency Ω at which
an isolated vortex placed initially close to the trap center
(say, at a distance Rs/10 from it) begins to be attracted
toward the trap center in the course of the cycles of the
self-consistent solution of the LPDA equation. The up-

per value Ω
(u)
c1 corresponds instead to the smaller value of

Ω at which an isolated vortex placed initially at the edge
Rs of the superfluid part of the cloud begins to be at-
tracted toward the trap center. The ensuing uncertainty
in the identification of Ωc1 , which is unavoidably present
for a trap with finite size, corresponds to the shaded red

area of Fig. S2. On the other hand, the lower value Ω
(l)
c2
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Figure S 2. Phase diagram for the critical frequen-
cies Ωc1 and Ωc2 vs temperature. Temperature depen-
dence of the two critical frequencies Ωc1 and Ωc2 (in units
of the radial trap frequency Ωr) at unitarity for the trap of
ref.[2]. The shaded red (blue) area corresponds to the uncer-
tainty associated with Ωc1 (Ωc2). At a given temperature,

no vortex is present for 0 ≤ Ω < Ω
(l)
c1 while vortex arrays

appear for Ω
(u)
c1 ≤ Ω < Ω

(l)
c2 (shaded yellow area). The bro-

ken line extrapolates the values of Ω
(u)
c2 down to the point

(Ω = 0, T = Tc0), while the dashed line corresponds to Eq.(1)
of the main text with appropriate (temperature dependent)
values of ξ and Rs. The inset shows Ωc1 at T = 0 vs the cou-
pling (kF aF )

−1 again obtained from Eq.(1) of the main text
with the appropriate values of ξ and Rs at zero temperature.

corresponds to the smaller value of Ω at which all vor-
tices have eventually disappeared from the trap, while

the upper value Ω
(u)
c2 is determined by the condition that

the gap parameter itself vanishes everywhere in the trap.

[In this context, we have found that approaching Ω
(u)
c2 ,

the spatial width of ∆(r) shrinks progressively but never
becomes smaller than the size of the ground-state wave
function of the harmonic trap, and that from this point
on it is the height of ∆(r) to decrease to zero.] The ensu-
ing uncertainty in the identification of Ωc2 corresponds to
the shaded blue area of Fig. S2. For the specific trap and
coupling conditions under which Fig. S2 was constructed,
the values of Ωc1 and Ωc2 with their related uncertain-
ties could be identified up to the maximum temperature
0.92Tc0 where Tc0 is the critical temperature in the trap
for Ω = 0. Finally, the shaded yellow area which extends

from Ω
(u)
c1 to Ω

(l)
c2 is where arrays of vortices are present

for given values of Ω and T .

For comparison, the dashed line in Fig. S2 corresponds
to the approximate expression (1) of the main text, in
which we have inserted the appropriate (temperature-
dependent) values of kF ξ for an isolated vortex taken
from ref.[7] and of kFRs obtained from the present calcu-
lation. It is remarkable that the curve obtained from the
approximate expression (1) of the main text falls within
the shaded red area of Fig. S2 obtained by the full nu-
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Figure S3. Effect of rotation on the chemical potential.
Coupling dependence of the chemical potential in the trap (in
units of EF ) at T = 0 for three different angular frequencies
(in units of Ωr). The inset shows the chemical potential vs Ω
for (kF aF )

−1 = −1.

merical calculation. We have then used this approximate
expression to get an estimate for the coupling dependence
of Ωc1 at zero temperature which is reported in the inset
of Fig. S2. The values of Ωc1 obtained in this way are
in line with the sharp thresholds occurring in Fig. 3a of
the main text, where, however, the numerical procedure

sets these thresholds at the lower values of Ω
(l)
c1 .

Chemical potential

It is interesting to determine the effect of a fast trap
rotation also on the fermionic chemical potential, which
is an essential ingredient of the BCS-BEC crossover. To
this end, Fig. S3 shows the coupling dependence of the
chemical potential µ in the trap at zero temperature
for several angular frequencies approaching the limiting
value Ω = Ωr, past which the fermion cloud is no longer
bound. The rotation affects µmore markedly on the BCS
than on the BEC side of unitarity, the dependence be-
coming rather abrupt in the BCS limit as shown in the
inset of Fig. S3 for (kFaF )

−1 = −1.

Fluctuation corrections emerging from an
inhomogeneous mean-field approach

Quite generally, a mean-field calculation for an inho-
mogeneous situation (of the type dealt with by the BdG
or LPDA equations) contains contributions from what
are referred to as fluctuation corrections in a homoge-
neous situation. This is because, in an inhomogeneous
situation, the imprint of the lowest excited states can be
found in the ground-state wave function (as discussed,
for instance, in ref.[8]). As an example, Fig. S4 re-
ports a comparison of the coherence (healing) length of
the gap parameter, obtained alternatively by solving the
BdG equations for an isolated vortex (cf. ref.[7]) and by
adding pairing (Gaussian) fluctuations on top of the ho-
mogeneous BCS mean field (cf. ref.[9]). This comparison
shows that a BdG calculation is able to capture fluctua-
tion contributions beyond mean field as far as the spatial
variations of the gap parameter are concerned.
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Figure S 4. Coherence length obtained by homoge-
neous mean field plus Gaussian fluctuations and by
inhomogeneous mean field. Comparison of the tempera-
ture dependence of the coherence length ξ (in units of k−1

F ),
obtained alternatively by including Gaussian fluctuations on
top of the homogeneous BCS mean field (full lines) and by a
numerical solution of the inhomogeneous BdG equations for
an isolated vortex embedded in an infinite superfluid (dots),
for different values of the coupling parameter (kF aF )

−1. The
temperature is in units of the superfluid critical temperature
Tc of the homogeneous system. The results of the homoge-
neous calculation have been rescaled by an overall factor of
2/3, which takes into account the different definitions used for
the same physical quantity by the two independent numerical
calculations. [Figure adapted from Fig. 10 of ref.[9].]

In addition, as emphasized in the main text, the vortex
profile (and thus the healing length) is not affected by the
presence of the surrounding vortices, and the distance
between two adjacent vortices is an order of magnitude
larger than the healing length. Possible corrections to
the healing length should thus have a minimal impact on
the distribution of vortices.

Nor even the further inclusion of pairing fluctuations
beyond the Gaussian ones is expected to change the vor-
tex profile significantly. This is shown in Fig. S5, which
compares the vortex profiles at unitarity and zero tem-
perature, obtained alternatively by the BdG/LPDA ap-
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Figure S 5. Effect of fluctuation corrections on the
profile of an isolated vortex. Comparison of the vortex
profiles at unitarity and zero temperature, obtained by the
BdG/LPDA approach (full line) and by the DFT approach
(dashed-dotted and broken lines). The BdG/LPDA profile is
taken from Fig. 1c of the main text, while the DFT profiles
have been extracted from Fig. 2 of ref.[10] where two different
parameterizations (I and II) were used for the DFT approach
(referred to as the EDF approach in that reference).

proach (full line) and by the Density-Functional-Theory
(DFT) approach of ref.[10] (dashed-dotted and broken
lines) within two different parameterizations (referred to

as I and II). Rather remarkably, the BdG/LPDA profile
just lies within the uncertainty of the DFT profiles in this
important case [11].
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Coupling dependence of the chemical potential in the trap (in
units of EF ) at T = 0 for three different angular frequencies
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merical calculation. We have then used this approximate
expression to get an estimate for the coupling dependence
of Ωc1 at zero temperature which is reported in the inset
of Fig. S2. The values of Ωc1 obtained in this way are
in line with the sharp thresholds occurring in Fig. 3a of
the main text, where, however, the numerical procedure

sets these thresholds at the lower values of Ω
(l)
c1 .

Chemical potential

It is interesting to determine the effect of a fast trap
rotation also on the fermionic chemical potential, which
is an essential ingredient of the BCS-BEC crossover. To
this end, Fig. S3 shows the coupling dependence of the
chemical potential µ in the trap at zero temperature
for several angular frequencies approaching the limiting
value Ω = Ωr, past which the fermion cloud is no longer
bound. The rotation affects µmore markedly on the BCS
than on the BEC side of unitarity, the dependence be-
coming rather abrupt in the BCS limit as shown in the
inset of Fig. S3 for (kFaF )

−1 = −1.

Fluctuation corrections emerging from an
inhomogeneous mean-field approach

Quite generally, a mean-field calculation for an inho-
mogeneous situation (of the type dealt with by the BdG
or LPDA equations) contains contributions from what
are referred to as fluctuation corrections in a homoge-
neous situation. This is because, in an inhomogeneous
situation, the imprint of the lowest excited states can be
found in the ground-state wave function (as discussed,
for instance, in ref.[8]). As an example, Fig. S4 re-
ports a comparison of the coherence (healing) length of
the gap parameter, obtained alternatively by solving the
BdG equations for an isolated vortex (cf. ref.[7]) and by
adding pairing (Gaussian) fluctuations on top of the ho-
mogeneous BCS mean field (cf. ref.[9]). This comparison
shows that a BdG calculation is able to capture fluctua-
tion contributions beyond mean field as far as the spatial
variations of the gap parameter are concerned.
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Figure S 4. Coherence length obtained by homoge-
neous mean field plus Gaussian fluctuations and by
inhomogeneous mean field. Comparison of the tempera-
ture dependence of the coherence length ξ (in units of k−1

F ),
obtained alternatively by including Gaussian fluctuations on
top of the homogeneous BCS mean field (full lines) and by a
numerical solution of the inhomogeneous BdG equations for
an isolated vortex embedded in an infinite superfluid (dots),
for different values of the coupling parameter (kF aF )

−1. The
temperature is in units of the superfluid critical temperature
Tc of the homogeneous system. The results of the homoge-
neous calculation have been rescaled by an overall factor of
2/3, which takes into account the different definitions used for
the same physical quantity by the two independent numerical
calculations. [Figure adapted from Fig. 10 of ref.[9].]

In addition, as emphasized in the main text, the vortex
profile (and thus the healing length) is not affected by the
presence of the surrounding vortices, and the distance
between two adjacent vortices is an order of magnitude
larger than the healing length. Possible corrections to
the healing length should thus have a minimal impact on
the distribution of vortices.

Nor even the further inclusion of pairing fluctuations
beyond the Gaussian ones is expected to change the vor-
tex profile significantly. This is shown in Fig. S5, which
compares the vortex profiles at unitarity and zero tem-
perature, obtained alternatively by the BdG/LPDA ap-
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profile of an isolated vortex. Comparison of the vortex
profiles at unitarity and zero temperature, obtained by the
BdG/LPDA approach (full line) and by the DFT approach
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taken from Fig. 1c of the main text, while the DFT profiles
have been extracted from Fig. 2 of ref.[10] where two different
parameterizations (I and II) were used for the DFT approach
(referred to as the EDF approach in that reference).

proach (full line) and by the Density-Functional-Theory
(DFT) approach of ref.[10] (dashed-dotted and broken
lines) within two different parameterizations (referred to

as I and II). Rather remarkably, the BdG/LPDA profile
just lies within the uncertainty of the DFT profiles in this
important case [11].
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