
            

PAPER • OPEN ACCESS

Entanglement and squeezing of continuous-wave
stationary light
To cite this article: Stefano Zippilli et al 2015 New J. Phys. 17 043025

 

View the article online for updates and enhancements.

Related content
Large distance continuous variable
communication with concatenated swaps
Muhammad Asjad, Stefano Zippilli, Paolo
Tombesi et al.

-

Entangling the motion of two optically
trapped objects via time-modulated driving
fields
Mehdi Abdi and Michael J Hartmann

-

Strong squeezing via phonon mediated
spontaneous generation of photon pairs
Kenan Qu and G S Agarwal

-

Recent citations
Suppression of Stokes scattering and
improved optomechanical cooling with
squeezed light
Muhammad Asjad et al

-

Complex Squeezing and Force
Measurement Beyond the Standard
Quantum Limit
L. F. Buchmann et al

-

Dynamical Two-Mode Squeezing of
Thermal Fluctuations in a Cavity
Optomechanical System
A. Pontin et al

-

This content was downloaded from IP address 193.205.89.232 on 05/02/2019 at 12:26

https://doi.org/10.1088/1367-2630/17/4/043025
http://iopscience.iop.org/article/10.1088/0031-8949/90/7/074055
http://iopscience.iop.org/article/10.1088/0031-8949/90/7/074055
http://iopscience.iop.org/article/10.1088/1367-2630/17/1/013056
http://iopscience.iop.org/article/10.1088/1367-2630/17/1/013056
http://iopscience.iop.org/article/10.1088/1367-2630/17/1/013056
http://iopscience.iop.org/article/10.1088/1367-2630/16/11/113004
http://iopscience.iop.org/article/10.1088/1367-2630/16/11/113004
http://dx.doi.org/10.1103/PhysRevA.94.051801
http://dx.doi.org/10.1103/PhysRevA.94.051801
http://dx.doi.org/10.1103/PhysRevA.94.051801
http://dx.doi.org/10.1103/PhysRevLett.117.030801
http://dx.doi.org/10.1103/PhysRevLett.117.030801
http://dx.doi.org/10.1103/PhysRevLett.117.030801
http://dx.doi.org/10.1103/PhysRevLett.116.103601
http://dx.doi.org/10.1103/PhysRevLett.116.103601
http://dx.doi.org/10.1103/PhysRevLett.116.103601
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/142540906/Middle/IOPP/IOPs-Mid-NJP-pdf/IOPs-Mid-NJP-pdf.jpg/1?


New J. Phys. 17 (2015) 043025 doi:10.1088/1367-2630/17/4/043025

PAPER

Entanglement and squeezing of continuous-wave stationary light

StefanoZippilli, GiovanniDiGiuseppe andDavidVitali
School of Science andTechnology, PhysicsDivision, University of Camerino, viaMadonna delle Carceri, 9, I-62032Camerino (MC), Italy
INFN, Sezione di Perugia, Italy

E-mail: stefano.zippilli@unicam.it

Keywords: entanglement, squeezing, continuous fields, continuous variables, optomechanics

Abstract
Spectral components of continuous squeezed fields are entangled. In this article we review and clarify
this phenomenon by analyzing systematically the relations between the correlations ofmodes filtered
from stationary continuous fields and the cross-power spectrumbetween the operators of the
corresponding spectral components.Moreover, we study the specific spectral components that are
filtered in homodyne or heterodyne detections and their entanglement properties. In particular, we
establish the equivalence between two-mode squeezing variance and logarithmic negativity for the
spectral components of continuous stationary fields, thereby demonstrating that themeasurement of
the homodyne or heterodyne spectrum is, in fact, a directmeasurement of the logarithmic negativity
between specific spectralmodes. As an illustrative example, we apply these concepts to the analysis of
entanglement in ponderomotive squeezing.

1. Introduction

Quantumoptical fields are exploited in the development of a large class of new technologies whichmake use of
quantummechanics to push their efficiency to the limit [1]. In particular, squeezed light plays a pivotal role in
the continuous-variable domain [2–5]. After the first experimental demonstrations of optical squeezing, both in
the continuous-wave [6, 7] and in the pulsed regime [8], and of the corresponding Einstein–Podolsky–Rosen
(EPR) entanglement [9–11], nowadays squeezed optical fields are routinely produced and employed inmany
experiments aimed at investigating the potentiality of quantum-based technologies. They range, for example,
from the demonstration of quantum information tasks such as quantum teleportation [12, 13] and other
essential elements of scalable universal quantum computation [14–18] to the design of high-resolution
metrology applications [19–23], of novel spectroscopicmethods [24, 25], and of enhanced optical
communication schemes [26].

Squeezing and entanglement are two very related concepts. In practice squeezed fields are, for example, used
to produce two-mode entangled resources by simplymixing themon beam splitters [10, 12, 16]. From amore
theoretical point of view, squeezing variance can be used to construct entanglement criteria [27–30]. It is also
well known that the spectral components of continuous-wave squeezed light are endowedwith non-trivial
correlations [31–35]. In particular, specific spectralmodes of continuous squeezed fields are entangled [36–39],
realizing EPR spectral beams that have been proposed as convenient quantum communication
channels [37, 40].

In this article we study squeezed continuous fields in the stationary regime, andwe analyze the entanglement
properties of the corresponding spectral components.We aim at establishing a direct connection between the
entanglement theory of continuous-variable systems and the spectral properties of squeezed light fields in the
stationary continuous-wave regime. The spectralmodes of a continuous field can be operatively defined as the
temporalmodesfiltered from the totalfield, with a long time filter. Their entanglement and squeezing properties
are therefore readily defined as the long time limit of those that are found forfinite temporalmodes. By
employing this approach, we derive general conditions for entanglement and squeezing between two spectral
components of stationary continuous fields, andwe show that their two-mode squeezing variance can be
expressed in terms of the corresponding logarithmic negativity.We also discuss the properties of the specific
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spectralmodes that are probedwith homodyne and heterodyne detection [41, 42], andwe establish that the
squeezing spectrum that can bemeasuredwith these techniques can be interpreted as a directmeasurement of
the logarithmic negativity between specific spectralmodes.

Finally, we apply these ideas to the analysis of ponderomotive squeezing [43–46], namely the squeezing that
is obtained as a result of the optomechanical interaction between amechanical resonator and the light in an
optical cavity. Optomechanics provides a novel approach to the area of quantumnon-linear optics, which
recently has attractedmuch attention for its potential applications in quantum-enhanced technologies [47, 48].
In this work, we investigate a two-sided cavity with amembrane in themiddle, andwe identify the spectral
components of the output fields that exhibit larger entanglement and that are experimentally accessible with
homodyne and heterodyne techniques.

Part of this article comprises a review of already known results, however, rephrasedwith the intent of
providing a clear and complete introduction to the scope of our research. In particular, in our presentation, the
revision of established concepts is instrumental to the identification and full understanding of the new results
concerning the relationship between entanglement and squeezing in continuous stationary fields that constitute
the central outcome of this article. In detail, the article is organized as follows. In section 2we review the basic
properties of continuous fields and of their spectral properties.We introduce the filtered temporalmodes and
study the correlations of the corresponding field operators in the stationary regime. In section 3we demonstrate
the equivalence between logarithmic negativity and two-mode squeezing variance of the spectral components of
stationary continuous fields. In section 4we review homodyne and heterodyne detection techniques and study
how they can be used to directlymeasure the logarithmic negativity between spectralmodes. Then, in section 5,
we apply the concepts developed in the preceding sections to ponderomotive squeezing. Finally, in section 6, we
drawour conclusions and discuss some possible outlooks. The three appendices provide additional information
regarding, respectively, the basic properties of entanglement and squeezing of discrete bosonicmodes, the
homodyne and heterodyne techniques, and the input–output theory applied to the investigation of an
optomechanical system.

2. Continuous quantumopticalfields

In this sectionwe introduce the objects of our investigation, namely continuous fields, andwe discuss the
properties of temporalmodes that can befiltered from them [49–51]. In particular we define the operators for
the spectral components in terms of themodes that are filteredwith a long-time filter and that describe narrow
bands of frequencies. These operators are particularly suited for the study of the entanglement properties of the
spectral components of continuous fields using standard techniques of entanglement theory.

In detail, we investigate the freely propagating continuous fieldE(t) at the output of a quantumoptical
system. It can be decomposed into the positive and negative frequency components = ++ −E t E t E t( ) ( ) ( )( ) ( ) ,

with ∫ ω ω= ω
πϵ σ

ω+ ∞ −E t a( ) i d e ( )
c

kz t( )
0 4

i( )

0
and =− +{ }E t E t( ) ( )( ) ( ) †

, where σ is the cross section of the

propagating field and ωa ( ) is the annihilation operator for the spectral component at frequencyω that satisfy

the standard commutation relation ω ω δ ω ω′ = − ′a a( ), { ( )} ( )†⎡⎣ ⎤⎦ . In general, in an optical system, only a

relatively narrow band of frequencies Δω is relevant. This band is centered around the carrier frequency ωL of
the signal fieldE(t), which is typically defined by the frequency of a laser driving the system and fulfills the
relation Δ ω≪ω L. In practice the relevant bandwidth is set by the typical line widthΓ of the systemunder
investigation and eventually by the response time,T, of the detector such that Γ Δ≪ ωT{ , 1 } . Under these
conditions the range of frequency integration in the expression for the field can be extended from −∞ to∞, and
the relevant wave numbers k can be approximatedwith the central value ω∼ =k c kL L. By thismeans the
quantumoptical continuousfield can be expressed as

ω
ϵ σ

=+E t
c

a t( ) i
2

e ( ), (1)L k z( )

0

i L

wherewe have introduced the continuous field annihilation operator a(t). It is related to the operators for the
spectral components by the Fourier transform ∫ ω ω ω= +

π
ω ω

−∞

∞ − +a t a( ) d e ( )t
L

1

2
i( )L , where hereω is the

frequency relative to the carrier. It is also useful to introduce the operators ω ω ω= +∼ ω−a a( ) ( )eL
ti L relative to

the carrier frequency, which are equal to the Fourier transformof a(t):

∫ω
π

=∼ ω
−∞

∞
a t a t( )

1

2
d e ( ), (2)ti
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and ω ω= −∼ ͠{ }a a( ) ( )
† † . These operators satisfy the standard commutation relation for continuous fields:

ω ω δ ω ω

δ

′ = + ′

′ = − ′

∼ ͠a a

a t a t t t

( ), ( ) ( )

( ), ( ) ( ). (3)

†

†

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

2.1. Filteredmodes and spectral components of thefield
In reality one has access only to afinite time interval (and correspondingly to afinite band of frequencies) of the
totalfield a(t). These detectable intervals of the totalfield correspond to specific temporalmodes. They can be
physically defined, for example, by the temporal profile of the pumping field in pulsed experiments [8, 10, 52–
54], they can also be extracted by post-processing the previously recorded time signal [55, 56], or they can be
selected by themeasurement apparatus as a result of the corresponding response and detection times [56–59]. In
particular, in the case of experiments involving stationaryfields, the detection time can be sufficiently long to
select awell-defined spectral component of the total signal (as achieved, for example, with an electronic
spectrum analyzer) [6, 7, 42].

In general a temporalfilteredmode can be introduced in terms of afilter function ϕτ t( ), which defines the
time profile of themodewith a duration of order τ. Correspondingly, it defines a band of spectral components,
of width τ1 , that are combined into thefiltered signal [60, 61]. The generic form for the operators of afiltered
mode can be expressed as

∫Ω ϕ= −τ
Ω

τ
−∞

∞
a t s t s a s( , ) d e ( ) ( ) (4)si

with Ω Ω= −τ τ{ }a t a t( , ) ( , )
† † , andwhere the symbol indicatesfiltered quantities. The parameterΩ defines

the central frequency of thefilter, and the filter function ϕτ t( ) is real and normalized according to

∫ ϕ =τ
−∞

∞
s sd ( ) 1. (5)2

Consequently, thefiltered operators are discrete bosonic operators which satisfy the standard commutation
relation

Ω Ω τ− = ∀τ τa t a t( , ), ( , ) 1, .†⎡⎣ ⎤⎦
The corresponding equivalent formof the filtered operators, in terms of the spectral components of the field, is

∫Ω ω ϕ ω Ω ω= − ∼∼
τ

ω Ω
τ

−∞

∞
− −a t a( , ) d e ( ) ( ) (6)ti( )

where ϕ ω∼
τ ( ) is the Fourier transformed filter function ∫ϕ ω ϕ=∼

τ π
ω

τ−∞

∞
s s( ) d e ( ),s1

2
i which peaks at ω = 0

and has a width on the order of τ1 .
Two particular cases areworthmentioning: the exponential filter with ϕ θ τ=τ

τ−t t( ) 2 ( )eexp t and

ϕ ω τ π τ ω= −∼
τ ( ) (1 i )
exp

, which has been used, for example, in [57] to introduce the physical spectrumof
light; and the step-filter function

ϕ
θ θ τ

τ
ϕ ω π

τ
ω τ

π ω
= − =∼

τ τ
ωτ

t
t t

( )
( ) ( )

, ( )
2

e
sin( 2)

(7)step step i 2

whichwewill connect to homodyne and heterodyne detection techniques in the following. In this form the time
t in the filtered operator Ωτa t( , ) corresponds to thefinal time of thefiltering process, that is,

∫Ω ϕ= −τ
Ω

τ−∞
a t s t s a s( , ) d e ( ) ( ).

t si Although not strictly relevant to the results presented in this article, this

choice is physicallymotivated by the fact that in this waywe define, at time t, a causal operator Ωτa t( , )which
depends only on the past of the continuous field a(t) [60].

In the limit of long filtering times, τ → ∞, thefilter selects a single spectral component of thefield. In the
followingwewill focus on the spectral components of stationaryfields for whichwewill use the following
simplified notation:

Ω Ω≡
τ

τ
→∞

a a t( ) lim ( , ), (8)

wherewe drop the label τ, the limit symbol, and the time argument t. In particular, the time t in these operators is
irrelevant for stationary fields, in the sense that (as shown in the next section) the correlations of operators of this
form, in the limit of large τ, are independent of the time arguments.

3
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Wefinally note that we are describing the field in a reference frame rotating at the carrier frequency ωL;
therefore Ωa ( ) is, in fact, the operator for the spectral component of the field at the sideband frequency
ω Ω+ .L

2.2. Correlations offiltered spectralmodes of stationaryfields
In this article we are interested in the squeezing properties of the electromagnetic field, which refers to reduced
fluctuations or reduced variance of specific quadratures below the vacuumnoise level, and in the corresponding
entanglement features. Squeezing can be revealed from the analysis of the second-order correlations offield
operators. Therefore in this sectionwe analyze the basic properties of the correlations offilteredmodes. In
particular we focus on the spectral properties of stationaryfields. The corresponding field operators, a(t) and

ω∼a( ), have diverging correlation functions as a consequence of the commutation relations in equation (3). In
this case it is therefore instructive to analyze the fluctuations of the spectralmodes in terms of the filtered spectral
operators defined in equation (6), whose correlations, in contrast, are alwaysfinite also in the limit of long
integration time τ → ∞. This approach is particularly useful for the study of the corresponding entanglement
properties, and it has the advantage of providing a clear physical definition of discretemodes corresponding to
the specific spectral components, hence allowing for a transparent application of the techniques developed in
entanglement theory, which indeed deals with discretemodes (see appendix A).

Let us study the correlations between the spectral components of two stationary continuous fields with
annihilation operators a t( )1 and a t( )2 respectively, which fulfill the commutation relation

δ δ′ = − ′a t a t t t( ), ( ) ( )j k j k
†

,
⎡⎣ ⎤⎦ . (The same results that we discuss hereafter for two continuous fields can be

appliedwithminormodifications to different spectral components belonging to a single field.) By
straightforward application of theWiener–Khintchine theorem, wefind that all the information about the
correlations between the spectral components is contained in the power spectrummatrix ω∼( ), defined as the
Fourier transformof the two-time stationary correlationmatrix, which can be expressed in terms of the

elements of the column vector of operators = ( )t a t a t a t a ta( ) ( ), ( ), ( ), ( )
T

1 2 1
†

2
† as thematrix

= t ta a( ) ( ) (0)T , whose elements are = t ta a{ ( )} { ( )} { (0)}j k j k, , where ∈j k, {1, 2, 3, 4} are vector

indices, not to be confusedwith the indices of themodes. To be specific,

∫ω =∼ ω τ
−∞

∞ t t( ) d e ( ), (9)i

wherewe use the fact that two-time correlation functions of stationary signals depend only on the difference of
the time arguments. In particular the correlations between the Fourier-transformed operators

∫ω =∼
π

ω
−∞

∞
t ta a( ) d e ( )t1

2
i are diverging and are related to the power spectrummatrix by

ω ω δ ω ω ω′ = + ′∼ ∼ ∼a a( ) ( ) ( ) ( ). (10)T

To gain insight into the physicalmeaning of these diverging quantities we employ the narrowfilteredmodes
introduced in the preceding section.We construct the vector offiltered spectral components

∫Ω ϕ= −τ
Ω

τ→∞ −∞

∞
s t s ta a( ) lim d e ( ) ( )si , which is given by Ω Ω Ω Ω Ω= ( )a a a aa( ) ( ), ( ), ( ), ( )

T

1 2 1
†

2
† , and

we compute the correspondingmatrix of correlations:

∫ ∫Ω Ω ω ω ω ω ϕ ω Ω ϕ ω Ω′ = ′ ′ − ′ − ′∼ ∼ ∼ ∼
τ

ω Ω ω Ω
τ τ

→∞ −∞

∞

−∞

∞
− − + ′− ′ ′a a a a( ) ( ) lim d d ( ) ( ) e ( ) ( ). (11)T T t ti[( ) ( ) ]

These quantities can be evaluated by noting that for large τ, the squaremodulus of the filter function approaches

a delta function, ϕ ω δ ω=∼
τ τ→∞lim ( ) ( )

2
, whereas its integral goes to zero, ∫ ωϕ ω =∼

τ τ→∞lim d ( ) 0. And,

likewise, given a genericfinite function ωf ( ), the relation

∫ ωϕ ω Ω ϕ ω Ω ω δ Ω+ − − ′ =∼ ∼
τ

τ τ Ω Ω
→∞ −∞

∞
′f flim d ( ) ( ) ( ) ( ) (12),

holds. Consequently equations (10) and (12) can be used in equation (11) tofind

Ω Ω δ Ω′ = ∼
Ω Ω− ′a a( ) ( ) ( ), (13)T

,

which shows that the power spectrum is directly related to the correlations of narrowfilteredmodes. In other
terms, in the limit of large integration time τ, i.e., when the bandwidth selected by thefilter is sufficiently small,
the correlation functions reduce to the power spectrumof the continuous field [57]. This result is valid when τ is
much larger than the decay time of the signal correlations τC (thememory time of the signals), τ τ≪C .We note
in particular that this relation implies the stationarity of the signal, which is reached on a time scale on the order
of τC .

4
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The correlations between twomodes are conveniently analyzed in terms of the corresponding correlation
matrix, fromwhich the corresponding squeezing and entanglement properties can be readily derived (see
appendix A for a short review).We remark, however, that thematrix Ω∼( ) is not a correlationmatrix for two
modes. In fact, it contains the correlations between the four spectralmodes corresponding to the two pairs of
sidebands at the frequency Ω± of the two continuous fields. On the other hand, the elements of the power
spectrummatrix can be used to construct the correlationmatrix for twonarrowmodesfiltered from the two
stationary continuous fields as follows.We consider twomodes, at frequenciesΩ and Ω′, respectively described
by thefiltered operators

Ω Ω

Ω Ω

−

′ − ′

a a

a a

( ), ( ),

( ), ( ), (14)

1 1
†

2 2
†

where the narrow bandwidth limit τ → ∞( ) is implicit in their definition (see equation (8)). The corresponding

correlationmatrix is defined using the vector Ω Ω Ω Ω Ω Ω′ = ′ − − ′( )a a a aa( , ) ( ), ( ), ( ), ( )
T

1 2 1
†

2
† , as

Ω Ω Ω Ω Ω Ω′ = ′ ′ a a( , ) ( , ) ( , )T , and can be expressed in terms of the elements of the power spectrum

matrix defined in equation (13) as

Ω Ω

δ δ δ Ω Ω δ Ω

δ Ω δ δ δ Ω Ω

Ω δ Ω δ δ δ Ω

δ Ω Ω δ Ω δ δ

′

=
′ ′ ′

− − −

− ′ − ′ − ′

∼ ∼ ∼ ∼

∼ ∼ ∼ ∼

∼ ∼ ∼ ∼

∼ ∼ ∼ ∼

Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω

′ − ′ ′

− ′ ′ ′

′ ′ − ′

′ − ′ ′


   

   
   

   

{ } { } { } { }
{ } { } { } { }

{ } { } { } { }
{ } { } { } { }

( , )

(0) ( ) ( ) ( )

( ) (0) ( ) ( )

( ) ( ) (0) ( )

( ) ( ) ( ) (0)

. (15)

,0 ,0
1,1

,
1,2 1,3

,
1,4

,
2,1

,0 ,0
2,2

,
2,3 2,4

3,1
,

3,2
,0 ,0

3,3
,

3,4

,
4,1 4,2

,
4,3

,0 ,0
4,4

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

Wefinally note that Ω Ω′ ( , ) is equal to the power spectrummatrix Ω∼( )only at zero frequency,
= ∼ (0, 0) (0).

3. Equivalence between two-mode squeezing variance and logarithmic negativity of the
spectral components of stationary continuousfields

Having introduced our notation in the previous section, and having reviewed the basic properties of stationary
continuous fields, we are now in a position to study the general conditions for squeezing and entanglement
between two spectral components, which can be inferred from equation (15). In particular, in the case of
Gaussian states, we establish the equivalence between the logarithmic negativity and the two-mode squeezing
variance of two spectralmodes.

In general, given twomodes described by the operators a1 and a2, two-mode squeezing is characterized by

non-vanishing correlations of the form 〈 〉a a1 2 and a a1
†

2
† . According to equation (15), the correlation

between the annihilation operators for twofiltered spectral components of stationaryfields, Ωa ( )1 and Ω′a ( )2 ,
can be non-vanishing only for opposite frequencies, that is, when Ω Ω= − ′. In this case thematrix in
equation (15) reduces to the form

=

+
+

+ −

+

−

+

−

 n n m

m n

m n

n m

n m

( , , )

0 1 0

0 0 1

0 0 *

0 * 0

(16)

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

where

Ω Ω Ω

Ω Ω Ω

Ω Ω Ω

= − = −

= = −

= = −

+

−





{ }

{ }
{ }

n a a

n a a

m a a

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) (17)

3,1 1
†

1

4,2 2
†

2

1,2
1 2

with ±n real and positive. Herewe have used the general properties of the power spectrummatrix

Ω Ω− − = −
∼ ∼  


( ) ( )T 2

2

⎛
⎝⎜

⎞
⎠⎟, where 2 is the 2× 2 identitymatrix and themissing blocks are nullmatrices,

5
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and Ω Ω= −∼ ∼ { } { }( ) ( )
1,2

*

3,4
, i.e., Ω Ω Ω Ω− = −a a a a( ) ( ) * ( ) ( )1 2 1

†
2
† . Equation (16) represents the

general form for the correlationmatrix between two spectral components at opposite sideband frequencies of
stationary continuous fields. Thismatrix can be exploited to derive general results regarding the corresponding
squeezing and entanglement properties.

In general squeezing refers to the reduced fluctuations offield quadratures. Let us therefore define the
quadrature operators for a spectralmode:

Ω Ω Ω= + −θ θ θ−x a a( ) e ( ) e ( ). (18)j j j
( ) i i †

Therebywe can formalize the condition for two-mode squeezing of the two spectral components as follows. The
two components are two-mode squeezedwhen the variance of a generic composite quadrature of the form

Ω Ω Ω= + −θ θ θ θ+ − + −( )X x x( )
1

2
( ) ( ) (19)( ),

1 2
( )⎡

⎣⎢
⎤
⎦⎥

is below the shot noise level for some value of θ± (see appendix A for further remarks).Wefirst note that, in the
case of a stationaryfield, for which α〈 〉 =a t( ) is constant, the average of a corresponding filteredmode is given

by Ω π α ϕ Ω= −∼
τ

Ω
τa t( , ) 2 e ( )ti , and it approaches zero for large τ and for non-zero values ofΩ. Therefore,

according to our definitions, the fields are two-mode squeezed if for some values of θ± the autocorrelation
function of the combined quadrature

Δ Ω Ω=θ θ θ θ+ − + −( ) ( )X X( ) ( ), ,
2⎡

⎣⎢
⎤
⎦⎥

is smaller than 1, Δ Ω <θ±X ( ) 1( ) .More generally one can construct composite quadratures with different
weights of the two components:

Ω
ξ ξ

ξ Ω ξ Ω=
+

+ −ξ ξ
θ θ θ θ

+ −
+ −+ −

+ − + −X x x( )
1

( ) ( ) . (20)( ) ( )
,

,

2 2
1 2

( )⎡
⎣⎢

⎤
⎦⎥

It has been shown [29] that the variance of quadratures of this form can be used to define entanglement criteria.
Specifically, when the relation

Δ Ω Δ Ω+ <ξ ξ
θ θ

ξ ξ
θ π θ π+ −

+ −
+ −

+ −

+ −( )X X( ) ( ) 2 (21)( )
,

,
,

2
,

2

is satisfied for some values of θ± and ξ±, the twomodes are entangled. In general this is a sufficient condition for
entanglement, but it is also necessary in the case of Gaussian fields and for an appropriate choice of ξ±. The
calculation of the autocorrelation function of these composite quadratures is straightforward using thematrix of
correlations in equation (16). The result is

Δ Ω
ξ ξ ξ ξ

ξ ξ
= +

+ + +

+ξ ξ
θ θ

θ θ θ θ
+ + − − + −

+ − +

+ −
+ −

+ −

+ − + −( ) ( )
X

n n m m
( ) 1

2 2 2 e * e
.( )

,
,

2 2 i i

2 2

⎡
⎣⎢

⎤
⎦⎥

In particular, wefind that Δ Ω Δ Ω=ξ ξ
θ θ

ξ ξ
θ θ+ π π

+ −
+ −

+ −
+ −( )( )X X( ) ( ),

,
,

,2 2 ; hence, in our case, the condition for entanglement

reduces to Δ Ω <ξ ξ
θ θ
+ −

+ −( )X ( ) 1,
, . The corresponding optimized squeezing spectrum can be defined as theminimum

of this quantity over the quadrature of thefield. Specificallywe can identify two differentminimization strategies.
If we restrict the quadratures to composite quadratures that are a symmetric superposition of the two
components (ξ ξ=+ −) as in equation (19), theminimization runs only over the phases θ±, and the
corresponding phase-optimized squeezing spectrum takes the general form

Ω Δ Ω=
= + + − ∣ ∣

θ
θ θ

+ −

±
+ −( )S X

n n m

( ) min ( )

1 2 . (22)

,

This is the quantity that is obtained, for example, by the homodynemeasurement of a continuous field, where
the phases θ±, in equation (22), are directly related to the phase of the local oscillator (see section 4 for further
details). If, on the other hand, we consider themore general quadratures with the two components scaled by the
factors ξ± as in equation (20), theminimization can be performed both over the phases and over the parameters
ξ±, and the corresponding globally optimized squeezing spectrum reduces to

Ω Δ=

= + + − ∣ ∣ + −

θ ξ ξ ξ
θ θ

+ − + −

± ± + −
+ −S X

n n m n n

( ) min

1 4 ( ) . (23)

( )
min , ,

,

2 2
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In general Ω Ω⩽S S( ) ( )min , and they are equal in the case of symmetric spectral components, for which
=+ −n n . In the next sectionwe describe how tomeasure both quantities in a few specific cases with homodyne

and heterodyne techniques. Herewe emphasize that the occurrence of Ω <S ( ) 1min implies that the
entanglement criterion in equation (21) is satisfied, and in turn, itmeans that a squeezing spectrum smaller than 1
is always a signature of entanglement.We further note that equation (23) is, indeed, smaller than 1 if and only if

< ∣ ∣+ −n n m . (24)2

Consequently this relation can be interpreted as a sufficient condition for the entanglement between the spectral
components at opposite sideband frequencies of stationary continuous fields. And, as already noted, it is also a
necessary condition in the case of Gaussian fields.

Let us now focus on theGaussian regime. In this case the logarithmic negativity, which is ameasure of
bipartite entanglement [62], can be expressed as

ν= −{ }E min 0, log ( ) (25)N 2

where the parameter ν is equal to the smallest symplectic eigenvalues of the covariancematrix corresponding to
the partially transposed state of the twomodes (see appendix A). Using equation (16)wefind that the parameter
ν evaluated for each pair of spectral components at the sideband frequencies Ω± is equal to the squeezing
spectrum in equation (23),

ν Ω Ω= S( ) ( ). (26)min

This is a general result that is valid for the spectral components of stationary continuousfields. (A specific
example has been discussed in [63].) In particular, this relation implies that, if the two stationary fields are
Gaussian, then ameasure of theminimum variance of a composite quadrature of two spectral components, of the
form of equation (20), is a directmeasurement of the corresponding logarithmic negativity.

4.Homodyne and heterodyne detection of the spectral components of stationary
continuousfields

The quadratures of continuous electromagnetic fields are routinelymeasured in experiments with homodyne
and heterodyne techniques [5, 41, 64–67]. The photocurrents resulting fromhomodyne and heterodyne
detections are, in fact, proportional to specific quadratures of the detected field. In turn, the power spectrumof
the photocurrent, namely the homodyne or heterodyne spectrum,measures the fluctuations of the quadratures
at specific frequencies. Such spectra are therefore directly related to the squeezing and entanglement properties
of the spectral components of the electromagnetic field, and in particular to the squeezing spectra defined in
equations (22) and (23). Specifically, wewill show that the autocorrelation function of the photocurrent
minimized over experimentally accessible parameters such as the phase of the local oscillator can always be cast
in the formof equation, (22) or (23), with corresponding parameters ±n andm evaluated for specific spectral
modes. This justifies the interpretation of the optimized homodyne and heterodyne spectra as a direct
measurement of the logarithmic negativity of thesemodes.

4.1. Single-mode homodyne spectrumand entangled spectral components
In homodyne detection the signal field ismixed on a 50:50 beam splitter with a strongmonochromatic field (the
local oscillator) at the same frequency as the carrier signal. Thefields at the two output ports of the beam splitter
are detected and the corresponding photocurrents are subtracted, resulting in a signal that contains information
about afield quadrature [65] and that can be described by a photocurrent operator of the form (see appendix B)

= +θ θ θ−I t a t a t( ) e ( ) e ( ), (27)( ) i i †

where θ is the phase of the local oscillator. The power spectrumof the photocurrent contains information about
the spectral components of the detected field, and in particular it quantifies the strength of the fluctuations at
specific frequencies.Wewill refer to it as the homodyne spectrum, and it can be expressed as the autocorrelation

function of thefiltered photocurrent, integrated over a long time τ, of the form ϵ ∝τ
θ φ

τ
J t( , )( , ) 1 ∫ τ−

sd
t

t

ϵ φ+ θs I scos( ) ( )( ) . In detail, the homodyne spectrum can bewritten as

ϵ ϵ=θ
τ

τ
θ φ

→∞
 ( )J t( ) lim , . (28)( )( ) ,

2⎡⎣ ⎤⎦
Wenote that, for stationary processes, this quantity is independent of the phase of the filterφ (see appendix B).
However, this phase is relevant and can be useful when considering combinations offiltered photocurrents at
different phases, which, as discussed hereafter, can be exploited to probe arbitrary superpositions of spectral
modes.Moreover the same results for the power spectrum in equation (28) are obtainedwhen, in thefiltered
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photocurrent ϵτ
θ φJ t( , )( , ) , one uses an exponential oscillating function, as in thefilters of section 2.1, in place of

the sinusoidal function introduced earlier. The use of a sinusoidal function is, however,more convenient
because, in this case, thefiltered photocurrent is aHermitian operator, therebymaking the relation between the
photocurrent and thefield observablesmore transparent. Specifically thefiltered photocurrent in the limit of
longfiltering time can be expressed as the sumof twofiltered quadrature operators for the two spectralmodes at
frequencies ϵ± (see appendix B):

ϵ ϵ

ϵ ϵ

=

= + −

θ φ
τ

τ
θ φ

θ φ θ φ

→∞

+ −

J J t

x x

( ) lim ( , )

1

2
( ) ( ) . (29)

( , ) ( , )

( ) ( )⎡⎣ ⎤⎦
Similar to equation (19), this is a symmetric superposition of two quadratures, defined as in equation (18),
corresponding to the two spectral components, which in this case are filtered from the same field, andwhose
annihilation operators are

ϵ ϵ−a a( ) and ( ), (30)

as illustrated infigure 1. The corresponding single-mode homodyne spectrum (where, single-mode, indicates
that its results form the detection of a single continuous field) is equal to equation (22)with ξ ξ=+ − and

θ θ θ+ =+ − 2 , i.e., ϵ = + + + +θ θ θ
+ −

− n n m m( ) 1 [ e * e ]I I I I( ) ( ) ( ) ( ) 2 i ( ) 2 i , where

ϵ ϵ ϵ ϵ= ∓ ± = −±n a a m a a( ) ( ) , ( ) ( ) . (31)I I( ) † ( )

Thus, the single-mode phase-optimized squeezing spectrum, which is experimentally accessible by tuning the
phase of the local oscillator, ϵ ϵ= θ

θS ( ) min ( )I( ) ( ) , is equal to equation (22) evaluated for the parameters in
equation (31).When it is smaller than one, it indicates that the two sidebandmodes ϵ±a ( ) are entangled [37–
40]. Their logarithmic negativity, which as discussed in section 3, is directly related to the squeezing spectrum in
equation (23), could bemeasurable if one could construct afiltered photocurrent similar to equation (20), which
is a non-symmetric superposition of the quadratures of the twomodes. This photocurrent is, in fact, achievable
by combining twofiltered photocurrents detected at appropriately tuned phases of the local oscillator θ and of
thefilterφ. Specifically one shouldfirst detect the filtered photocurrent ϵθ φJ ( )( , ) for some value of θ andφ and
then a second one, ϵθ φ′ ′J ( )( , ) , with the phases tuned to different values θ′ and φ′. The two photocurrents are
then summed, resulting in the total photocurrent

ϵ
ξ ξ

ξ ϵ ξ ϵ=
+

+ −ξ ξ
θ θ θ θ

+ −
+ −+ −

+ − + −( ) ( )J x x( )
1

( ) ( ) , (32)( )
,

,

2 2

⎡
⎣⎢

⎤
⎦⎥

whichwe have appropriately normalized, andwhere

θ
θ θ φ φ

ξ
θ θ φ φ

= + ′ ± + ′

= − ′ ± − ′

±

±

( )

2

cos
( )

2
. (33)

⎡
⎣⎢

⎤
⎦⎥

Wenote that equation (32) has, indeed, the formof the composite quadrature defined in equation (20). The

corresponding single-mode globally optimized squeezing spectrum ϵ =S ( )I
min
( ) ϵθ ξ ξ ξ

θ θ
± ± + −

+ −( )Jmin ( ), ,
,

2⎡
⎣⎢

⎤
⎦⎥ is then

equal to equation (23) evaluated for the parameters in equation (31), and it can bemeasured byminimizing the
homodyne spectrumover the phases of both the local oscillator and the filter. In particular, although the tuning

thefilter phases, φ and φ′, can be, in principle, achieved by recording the photocurrent for a sufficiently long

Figure 1. Single-mode homodyne detection: a stationary continuous field is detected by homodyne techniques and the resulting
filtered photocurrent is a superposition of spectral components at opposite sideband frequencies ϵ± .
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time and then post-processing the recorded signal, the phases of the local oscillator, θ and θ′, must be adjusted
during repeated homodynemeasurements.

4.2. Two-mode homodyne spectrumand entangled spectral components
In the preceding sectionwe saw that the single-mode homodyne spectrum, which ismeasurable from a single
stationary continuous field, provides information about the entanglement between two spectral components.
Let us now study the two-mode squeezing spectrumobtained from the combination of two homodyne
photocurrents which result from themeasurement of two signal fields a t( )1 and a t( )2 , as depicted infigure 2.
This strategy detects the correlations between four spectral components [68]. Specifically, we consider the
situation inwhich the photocurrents corresponding to the two detected fields, θI t( )1

( )1 and θI t( )2
( )2 , have the

formof equation (27) and are combined to construct the total photocurrent

μ μ
μ μ=

+
+θ θ θ θI t I t I t( )

1
( ) ( ) , (34)c

( , )

1
2

2
2

1 1
( )

2 2
( )1 2 1 2⎡⎣ ⎤⎦

wherewe have introduced the scaling parameters μ1 and μ2, whichweight the two quadratures differently and
hence provide ameans to select arbitrary collectivemodes as discussed hereafter. These parameters are
controllable experimentally, including the asymmetrical amplification and/or attenuation of the two
photocurrents. The total photocurrent is then analyzed by frequency. As in the preceding case, the filtered

photocurrent ∫ϵ ϵ φ= +θ θ
τ τ τ

θ θ
→∞ −

J s s I s( ) lim d cos( ) ( )c t

t
c

( ) 1 ( )1 2 1 2 can be decomposed into two spectral

components at the frequencies ϵ± :

ϵ ϵ ϵ= + −θ θ θ θ+ − + −J x x( )
1

2
( ) ( ) (35)( ) ( )

c c c
, ( )⎡

⎣⎢
⎤
⎦⎥

where θ φ= ±θ θ
±

+
2

1 2 , andwherewe have introduced the quadrature operators for the collective spectral
modes defined as

ϵ ϵ ϵ= + −θ θ θ−x c c( ) e ( ) e ( ) (36)c
( ) i i †

with the collective annihilation and creation operators given by

ϵ
μ μ

μ ϵ μ ϵ

ϵ
μ μ

μ ϵ μ ϵ

± =
+

± + ±

∓ =
+

∓ + ∓

θ θ

θ θ

−

−

c a a

c a a

( )
1

e ( ) e ( ) ,

( )
1

e ( ) e ( ) , (37)

1
2

2
2

1
i

1 2
i

2

†

1
2

1
2

1
i

1
†

2
i

2
†

c c

c c

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

where ϵ ϵ± ∓ =c c( ), ( ) 1†⎡⎣ ⎤⎦ and θ θ θ= −( ) 2c 1 2 . Also in this case, the filtered photocurrent is a composite

quadrature of the fromof equation (29). Thus, although it is constructed from the collective operators in
equation (37), we can still apply the results of section 3 to conclude that the two-mode squeezing spectrum,

Figure 2.Two-mode homodyne detection: two stationary continuous fields are detected by homodyne techniques. The two
photocurrents are summed and then analyzed by frequency. As in single-mode homodyne detection, the resulting total filtered
photocurrent is a superposition of spectralmodes at opposite sideband frequencies ϵ± . However, here each spectralmode [ ϵ±c ( )]
can be decomposed as the superposition of two spectral components [ ϵ±a ( )1 and ϵ±a ( )2 ] at the same sideband frequency, each
filtered fromone of the twofields.
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ϵS ( )II( ) , obtained as theminimumover the phases θ± of the autocorrelation function of the filtered current, has
the formof equation (22) but is evaluatedwith the parameters

ϵ ϵ

μ μ μ μ θ

μ μ

ϵ ϵ

μ μ
μ μ μ μ

= ∓ ±

=
+ + +

+

= −

=
+

+ + +θ φ θ φ θ φ θ φ

±

± ± ± − ±

+ − + + − +( )

( )

( ) ( ) ( ) ( )

n c c

v v v v

m c c

w w w w

( ) ( )

2 cos 2 arg

( ) ( )

1
e e e e , (38)

c

c

( ) †

1
2 (11)

2
2 (22)

1 2
(21) (21)

1
2

2
2

( )

1
2

2
2 1

2 i (11)
2
2 i (22)

1 2
i (12) i (21)1 1 2 2

⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥

where

ϵ ϵ

ϵ ϵ

= ∓ ±

= −

±v a a

w a a

( ) ( )

( ) ( ) (39)

jk
j k

jk
j k

( ) †

( )

for =j k, 1, 2.We remark that ϵS ( )II( ) is found byminimizing the autocorrelation function of the photocurrent
in equation (35) over θ± only, whereas θc and μ j define the specific collectivemodes that are being probed and

arefixed. Therefore, in this case the condition ϵ <S ( ) 1II( ) indicates the entanglement of the collectivemodes
described by the operators in equation (37), each of which is a superpositions of the spectral components at the
same sideband frequencies of the twofields.Moreover, as with the discussions of the single-mode homodyne
spectrum, the corresponding logarithmic negativity can be, in turn,measured by summing twofiltered
photocurrents, at different phases, of the formof equation (35) and then calculating the corresponding
autocorrelation function. The two-mode squeezing spectrum ϵS ( )II

min
( ) is then found byminimizing this quantity

over the phases of both the local oscillator and the filter, and the result, in full similarity with the single-mode
squeezing spectrum, is equal to equation (23) but now evaluated for the parameters in equation (38).

4.3.Detecting single spectral componentswith homodyne techniques
As discussed in the previous sections, it is possible to construct arbitrary superposition of spectralmodes at
opposite sideband frequencies by the superposition of two homodyne photocurrents. The corresponding total
photocurrent is then given by equation (32). Similarly, when the phases in equation (33) are set to some values
for which one of the two parameters ξ± is equal to zero, then a single spectralmode is detected.

When applied to two distinct fields, this approachwould permit the investigation of the correlations
between two distinct spectralmodes each belonging to a different field. Let us, for example, assume that we
repeat the pair ofmeasurements resulting in the total photocurrent in equation (32) for two different
continuous fields a t( )1 and a t( )2 . The two resultant composite filtered photocurrents are then, in general, given

by ϵ ξ ϵ ξ ϵ ξ ξ= + − +ξ ξ
θ θ θ θ

+ − + −+ −

+ − + −( )J x x( ) ( ) ( )j j j j,
,

,
( )

,
( )

,
2

,
2

j j

j j j j
, ,

, , , ,⎡⎣ ⎤⎦ with the parameters defined as in

equation (33) andwhere here j= 1, 2 distinguishes the parameters corresponding to themeasurements of the
first and second fields respectively.

If, in each pair ofmeasurements, we tune the phases of the local oscillators and of the filtersto certain values
for which θ θ φ φ π− ′ − − − ′ =( 1) ( )j j

j
j j and θ θ φ φ π− ′ + − − ′ ≠( 1) ( )j j

j
j j so that ξ ξ= =− + 0,1 ,2 , then

each composite photocurrent is proportional to a quadrature of a single spectral component corresponding
respectively to the annihilation operators

ϵ ϵ−a a( ) and ( ). (40)1 2

The two photocurrents are then summed together, after beingmultiplied by appropriately chosen scaling factors
ζ±, so that the resulting total photocurrent is

ζ ζ
ζ ϵ ζ ϵ=

+
+ −θ θ

+ −
+ −

+ −( ) ( )J x x
1

( ) ( ) ,tot
2 2

1 2
,1 ,2

⎡
⎣⎢

⎤
⎦⎥

where the single-mode quadratures ϵ±θx ( )j
( ) are defined in equation (18). Thus, this protocol detects the

combined quadrature defined in equation (20). The corresponding squeezing spectrum, ϵS ( )III( ) , defined for
ζ ζ=+ −, as theminimumof the autocorrelation function of the total photocurrent over θ+,1 and θ−,2, is equal to
equation (22) and is obtained by appropriately tuning the phases of the local oscillator and the filter during
repeated homodynemeasurements. Similarly, ϵS ( )III

min
( ) , defined as theminimumof the power spectrumof the

total photocurrent over θ+,1, θ−,2 and ζ±, is equal to equation (23). In particular, also in this casewe can conclude
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that this quantity is equivalent to the logarithmic negativity between ϵa ( )1 and ϵ−a ( )2 when thefields are
Gaussian.

4.4. Two-mode heterodyne spectrumand entangled spectral components
An alternative strategy for probing single spectralmodes and hence formeasuring the squeezing spectrum, as
well as the logarithmic negativity between two distinct spectral components of two distinct fields, as in
section 4.3, is based on heterodynemeasurements.

In heterodyne techniques, the local oscillator is detuned from the carrier frequency of the signal field by a
quantity Δ ω ω= −LO L, and the corresponding operator for the photocurrent reads

= +Δ
θ Δ θ Δ θ− −I t a t a t( ) e e ( ) e e ( ).t t( ) i i i i †

Hence, the corresponding filtered photocurrent, ∫ϵ ϵ φ= +Δ
θ φ

τ τ τ Δ
θ

→∞ −
J s s I s( ) lim d cos ( ) ( )

t

t( , ) 1 ( ) , is the

superposition of the quadratures for the spectral components at the frequencies Δ ϵ± , namely

ϵ Δ ϵ Δ ϵ= + + −Δ
θ φ θ φ θ φ+ −J x x( ) ( ) ( ) 2( , ) ( ) ( )⎡⎣ ⎤⎦ . Thus, whereas homodyne detection probes spectral

components at opposite sideband frequencies, heterodyne techniquesmeasure two components asymmetrically
locatedwith respect to the carrier frequency of the signal field but symmetric with respect to the local oscillator
frequency, which, in our description (where all frequencies are relative to the carrier signal), is equal toΔ (see
figure 3).

In particular heterodyne techniques can be used to detect a single spectral component, as discussed in the
following. Saywewant to detect the component at frequencyΩ; thenwe set the detuningΔ at a valuemuch
larger than the typical bandwidth of the signal Δ Δ∣ ∣ ≫ signal, which is the band of frequencies that are populated

by the signal photons.We also assume that the frequencyΩ is a relevant frequency for the field Ω Δ∣ ∣ ⩽ signal.

Then the corresponding heterodyne photocurrent isfiltered at the frequency ϵ Δ Ω= − so that, as depicted in

figure 3, ϵΔ
θ φJ ( )( , ) is the superposition of the field quadratures at the frequenciesΩ and Δ Ω−2 :

Δ Ω Ω Δ Ω− = + −Δ
θ φ θ φ θ φ− +J x x( )

1

2
( ) (2 ) . (41)( , ) ( ) ( )⎡⎣ ⎤⎦

Since the signal covers a bandwidthmuch smaller thanΔ, themode at Δ Ω−2 is basically in a vacuumand only
the photons of the sidebandΩ are detected.However, in doing this the vacuum fluctuations of the empty
component at Δ Ω−2 are added to the signal, resulting in higher noise.

This approach can be exploited tomeasure the correlations between two spectralmodes belonging to two
separatefields. Specifically the two-mode heterodyne spectrum is obtainedwhen detecting two signals with two
heterodynemeasurements (with Δ Δ≫ signal). The corresponding photocurrents are filtered independently at

the frequencies ϵ1 and ϵ2 respectively, and then combined, with appropriately chosen scaling factors ξj , to

construct the totalfiltered photocurrent ξ ϵ ξ ϵ∝ +Δ Δ
θ φ

Δ
θ φ( ) ( )J J J( ) ( )tot, 1

,
1 2

,
2

1 1 2 2 . If, in particular, we are interested
in the spectral components at frequencyΩ of thefirst field and at frequency Ω− of the second such that
Ω Δ∣ ∣ ⩽ signal, we consider the filtered photocurrents at the frequencies ϵ Δ Ω= −1 and ϵ Δ Ω= +2 . As in

equation (41) they are equal, respectively, to the superpositions of the two quadratures at frequenciesΩ and
Δ Ω−2 of the firstfield and of the two quadratures at frequencies Ω− and Δ Ω+2 of the second.

Correspondingly, the total photocurrent is given by

Figure 3. Single-mode heterodyne detection: a stationary continuous field is detected by heterodyne techniques with the local
oscillator at the frequencyΔ relative to the carrier frequency of the signal. The detected photocurrent is spectrally analyzed at the
frequency ϵ Δ Ω= − . The resulting filtered photocurrent is a superposition of spectral components at the frequenciesΩ and
Δ Ω−2 .

11

New J. Phys. 17 (2015) 043025 SZippilli et al



ξ Ω ξ Ω

ξ ξ

ξ Δ Ω ξ Δ Ω

ξ ξ
=

+ −

+
+

− + +

+
Δ

θ φ θ φ θ φ θ φ− − + +( ) ( ) ( ) ( )
J

x x x x( ) ( )

2

(2 ) (2 )

2
(42)tot,

1 1 2 2

1
2

2
2

1 1 2 2

1
2

2
2

1 1 2 2 1 1 2 2

where the quadrature operators for a single component are defined in equation (18). Its autocorrelation function
is therefore given by

Ω= +Δ ξ ξ
θ φ θ φ− −( )J X

1

2
( )

1

2
(43)tot,

2
,

,
2

1 2

1 1 2 2⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥

where the term 1

2
on the right is due to the vacuum fluctuations of the spectralmodes at Δ Ω±2 , the collective

quadrature Ωξ ξ
θ θX ( ),

( , )
1 2

1 2 has the same formof the one defined in equation (20), and its autocorrelation function,
which is given in equation (22), quantifies the correlations between themodes Ωa ( )1 and Ω−a ( )2 .

Also in this casewe define two kinds of optimized squeezing spectra. One is obtained byminimizing the
autocorrelation function in equation (43), with ξ ξ=1 2, only over the phases of the local oscillators

Ω = θ ΔT J( ) min tot,
2

j
⎡⎣ ⎤⎦ ; the other is obtainedwhen theminimization also runs over the scaling parameters,

Ω = θ ξ ΔT J( ) min totmin , ,
2

j j
⎡⎣ ⎤⎦ . In both cases they can be expressed in terms of the squeezing spectra resulting

from the protocol described in section 4.3 as

Ω
Ω

Ω
Ω

= + =
+

T
S

T
S

( )
( ) 1

2
, ( )

( ) 1

2
. (44)

III III( )

min
min
( )

Thus, according to equation (26), in theGaussian case, ΩT ( )min measures the entanglement between themodes
whose operators are Ωa ( )1 and Ω−a ( )2 .

5. Application to ponderomotive squeezing in a two-sided cavity

Herewe study ponderomotive squeezing [43–46] and the conditions underwhich the spectral components of
thefield emitted by an optomechanical system are squeezed and entangled.Moreover we determine the
squeezing spectra, andwe identify the detectable spectralmodes that exhibitmaximum entanglement.

Ponderomotive squeezing refers to the squeezing of the output light resulting from the non-linear radiation-
pressure interactionwith amechanical resonator inside an optical cavity. The response of a high-Qmechanical
resonator to a resonancemode of a high-finesse optical cavity can be described as that of a Kerrmedium,which
imparts an intensity-dependent phase shift to the light. As a result the field fluctuations can be reduced, and
correspondingly, squeezed light is produced [43, 44]. In detail, we investigate a Fabry–Perot cavity with a
membrane in themiddle [70]. A single opticalmode is relevant in the systemdynamics. It loses photons at rates
κ j from themirrors j=1, 2 and is driven by a laser at a frequency detuned by δ from the relevant cavity resonance.
Only onemechanicalmode of themembrane at frequency ωm interacts significantly with the cavity fieldwith a
linearized coupling strength g. The decay rate of themembrane is γ, and the number of thermalmechanical
excitations nT. The corresponding linearized optomechanical dynamics areGaussian [47, 48] and are efficiently
analyzed in terms of the standard input–output theory [69].Here we describe the results for the field emitted
through the two cavitymirrors at the steady state of the systemdynamics in the regime of optomechanical
stability, referring the reader appendix C for further details and derivations.

The photons lost through the two cavitymirrors are described by the outputfield operators aout1 , a1
out†, aout2 ,

and a2
out†. The corresponding power spectrummatrix, defined in equation (9), can be evaluated for the vector of

operators = ( )a a a aa , , ,
T

out 1
out

2
out

1
out†

2
out† , and the result is given by

ω
ω

=
∣ ∣

+∼    g

f
( )

2

( )
(45)out

2

2 out out

where out is a diagonalmatrix whose diagonal elements are κ κ κ κ( )2 , 2 , 2 , 21 2 1 2 ,  is amatrix whose

only non zero elements are = = { } { } 11,3 3,4 ,

ω δ ω ω γ ω δ κ κ ω= − + − + + −( )f g( ) 4 ( i ) i , (46)m m
2 2 2 2

1 2
2⎡⎣ ⎤⎦⎡

⎣⎢
⎤
⎦⎥
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and thematrix  is given in terms of the parameters

α ω κ κ δ κ κ δ ω γ

γ ω ω ω γ ω ω

β ω κ κ γ κ κ δ ω γ ω ω ω ω

= − + + − + + + +

× + + + + −

= + + + + ± + + + ∓ω±

( ) ( ) ( )

( ) ( )

( ) ( ) ( )( )

g n

g n

4 i i 2 1

i

4 ( ) 2 1 2 (47)

m T

m m m

m T m m

2 2
1 2 1 2

2 2

2 2 2 2 2 2

2 2
1 2 1 2

2 2 2 2 2

⎡
⎣⎢

⎤
⎦⎥⎡⎣

⎤⎦
⎡
⎣⎢

⎤
⎦⎥⎡⎣ ⎤⎦

(withα complex even function ofω, and β ω± real and positive) as

α α β β

α α β β
β β α α
β β α α

=

ω ω

ω ω

ω ω

ω ω

− −

− −


* *

* * . (48)

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

Thismatrix contains all the information about the spectral properties of the outputfields and can be used to
construct the correlationmatrix for two spectralmodes as in equation (15). In the followingwewill use this
matrix and the results of sections 3 and 4 to study the corresponding entanglement properties.

5.1.Homodyne and heterodyne spectra and entangled components of the emittedfield
In section 4we described three different strategies for the experimental investigation of the spectral properties of
stationary continuous fields, which are based on homodyne and heterodyne techinques. They probe different
pairs of spectralmodes given, respectively, by equations (30), (37), and (40).When applied to the investigation
of the optomechanical system, these techniques allow the detection of the corresponding spectral components
of the two output fields a t( )j

out , as depicted infigure 4. In particular, using these techniques it is possible to study
composite quadratures of these pairs ofmodes and their squeezing and entanglement properties.We have
identified two different kinds of optimized squeezing spectra, corresponding to different experimental
approaches for themeasurement and theminimization of the homodyne photocurrent fluctuations.
Specifically, to probe symmetric superpositions of quadratures of the twomodes it is sufficient to apply standard
homodyne techniques; thusminimization is achieved by tuning the relative phase of the two quadratures, which
is controlled experimentally by the phase of the local oscillator.We indicate this phase-optimized spectrumwith
the symbol ωℓS ( )( ) , where the label ℓ = I II III, , is used to distinguish the three detection strategies (see
figure 4). At the same time, non-symmetric superpositions, with different weights of the two quadratures, can be
probed by combining different filtered photocurrents detectedwith appropriately selected phases of both the
filter and the local oscillator. The globally optimized squeezing spectrum ωℓS ( )min

( ) is then obtained,minimizing
the corresponding fluctuations over the phases of both the local oscillator and the filter.

Figure 4. Spectral components at the output of an optomechanical system that are probedwith three different detection strategies and
that are entangled, and squeezed, as a result of the optomechanical interaction.
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In all cases the squeezing spectra ωℓS ( )( ) and ωℓS ( )min
( ) are equal to equation (22) and (23), evaluated in each

case for the specific parameters ±n andm, which correspond to the detected spectralmodes. Specifically, ωS ( )I( )

and ωS ( )I
min
( ) are obtained by the single-mode homodyne detection of a single field (either one of the two output

fields), as discussed in section 4.1, and if applied to the output from thefirstmirror, then

ω ω= ∓ ±±n a a( ) ( )I( )
1
out†

1
out and ω ω= −m a a( ) ( )I( )

1
out

1
out . The second strategy is based on the two-

mode homodyne detection of the two outputfields (see section 4.2), and the corresponding spectra, ωS ( )II( ) and

ωS ( )II
min
( ) , are evaluated for ω ω= ∓ ±±n c c( ) ( )II

j j
( ) out† out and ω ω= −m c c( ) ( )II

j j
( ) out out , where the

operators ω±c ( )out( ) have the same formof equation (37), but in this case, they are constructed as the
superpositions of the twofiltered outputfields ω±a ( )j

out . Finally, ωS ( )III( ) and ωS ( )III
min
( ) correspond to the two-

mode heterodyne detection of the two output fields as discussed in section 4.4. If it is applied to the spectral
component at frequencyω of the first output and at ω− of the second then ωS ( )III( ) and ωS ( )III

min
( ) are evaluated

for ω ω= ∓ ±±n a a( ) ( )III( )
1
out†

2
out and ω ω= −m a a( ) ( )III( )

1
out

2
out .We note that these last two spectra

can also be retrieved by combining various homodyne photocurrents as discussed in section 4.3.
The power spectrummatrix in equation (45) can be used tofind

ω
ω

β β α

ω
ω

β β α β β

= +
∣ ∣

+ −

= +
∣ ∣

+ − + −

ℓ ℓ
ω

ℓ
ω

ℓ ℓ

ℓ ℓ
ω

ℓ
ω

ℓ ℓ ℓ
ω

ℓ
ω

+ − − + −

+ − − + − + − −( )

S
g

f
q q q q

S
g

f
q q q q q q

( ) 1
4

( )
2 ,

( ) 1
4

( )
4

( )
2

2
( ) 2 ( ) 2 ( ) ( )

min
( )

2

2
( ) 2 ( ) 2 ( ) ( ) 2 ( ) 2 ( ) 2 2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

where

κ

μ κ μ κ

μ μ

κ κ

= =

= =
+

+

= =

θ θ
+ −

+ −

−

+ −

q q

q q

q q

e e

, , (49)

I I

II II

III III

( ) ( )
1

( ) ( ) 1
i

1 2
i

2

1
2

2
2

( )
1

( )
2

c c

In the case of strategy II( ), the parameters μ j and θc , in the expression for ±q II( ), determine the specific detected

compositemodes, which are defined as in equation (37).We observe that when

θ μ μ κ κ= =0 and (50)c 1 2 1 2

then κ κ= +±q II( )
1 2; hencewe can conclude that ωS ( )II

min
( ) evaluated for a two-sided configurationwith decay

rates κ1 and κ2 is equal to ωS ( )I
min
( ) when it is evaluated for a single-sided cavity with the decay rate equal to the

sumof the decay rates κ κ+1 2 of the two-sided configuration. It indicates that the entanglement between

ωa ( )1
out and ω−a ( )1

out , in a single-sided cavity, is redistributed among the four spectral components ω±a ( )1
out

and ω±a ( )2
out in the case of a two-sided cavity. For this reason, the same amount of squeezing found in the case

of a single-sided cavity, can be recoveredwhen the information from the two decay channels of a two-sided
cavity are properly combined. In particular ±q II( ) ismaximum for the parameters of equation (50) and
consequently the correspondingmodes are the collectivemodes that aremaximally squeezed (and entangled).

We also note that according to equation (24)wefind that, in all cases, the pairs of spectral components are
entangled (and squeezed), although possibly with different degrees of entanglement (and squeezing), when

β β α< ∣ ∣ω ω− . (51)2

Moreover we note that the logarithmic negativity between the pair of spectral components detectedwith each
strategy is obtained by applying the definition in equation (25) to the parameter

ν ω ω=ℓ ℓS( ) ( ),( )
min
( )

which is equal to theminimum symplectic eigenvalue of the corresponding partially transposed covariance
matrix.

Infigure 5we compare the results for the spectra evaluated for realistic parameters and corresponding to the
three detection strategies, and hence to different pairs of spectral components. Each plot infigure 5 is evaluated
for different values of the relative decay rate κ κ2 1 of the twomirrors, whereas the total decay rate κ κ+1 2 and all
the other parameters are kept fixed. In plot (a) we study a single-sided cavity with κ = 02 . In plot (b) themirrors
are lossy and non-symmetric, and finally in (c) the twomirrors are symmetric: κ κ=1 2.When κ = 02 , in plot (a),

the curves for S II( ), ν II( ), S III( ), and ν III( ) correspond to the situation inwhich the detector on the secondmirror
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detects only vacuum fluctuations. It is therefore clear that the curves for S III( ) and ν III( ), whichmeasure the
correlations between the single spectral component ωa ( )1

out of thefield lost from thefirstmirror and the single

spectral component ω−a ( )2
out of thefield lost from the second showno squeezing. On the other hand,

maximum two-mode squeezing and entanglement are observed for the single-mode homodyne spectra
corresponding to the curves S I( ) and ν I( ), whichmeasure the correlations between ωa ( )1

out and ω−a ( )1
out . The

curves S II( ), ν II( ), thatmeasure the correlations between the compositemodes in equation (37), are at an
intermediate value as a result of the vacuum fluctuations of themodes ω±a ( )2

out , which reduces the visibility of

the two-mode squeezing between ωa ( )1
out and ω−a ( )1

out .
Plot (c) corresponds to a symmetric two-sided cavitywith κ κ=1 2. In this case themaximum squeezing and

entanglement are obtained for the curves S II( ) and ν II( ), indicating that in this configuration themaximally
entangled spectral components correspond to the compositemodes in equation (37). In particular S II( ) and ν II( )

are equal to the curves for S I( ) and ν I( ) in the single-sided cavity reported in plot (a). In the two cases, the
correlations of the cavity field built by the optomechanical dynamics are equal as a result of the equal total decay
rate. The only difference is that, in one case all the photons are lost through a singlemirror, whereas in the other
they are split in the two decay channels and only their combined detection can reveal the corresponding total
degree of squeezing and entanglement.Moreover in plot (c) we observe that S III( ) and ν III( ) are equal to S I( ) and

ν I( ). In this case, the two output fields are symmetric, hence the correlations between ωa ( )1
(out) and ω−a ( )1

(out)

are equal to those between ωa ( )1
(out) and ω−a ( )2

(out) . Finally, plot (b) corresponds to an intermediate situation
between the two described in (a) and (c), and it shows that the three detection strategies can display different
degrees of squeezing. In general, the values of all the squeezing spectra can lie at any value between the extremes
set by the corresponding curves in plot (a) and (c), depending on the actual value of the ratio κ κ ∈ [0, 1]2 1 .

We also emphasize that the values of S II( ) and ν II( ) are reported, in the three plots, for the same values of the
parameters μ j and θc which define the specific superposition of spectral components that are being probed as

defined in equation (37). However, for each value of κ κ2 1 the values of μ j and θc can be appropriately tuned to

find the compositemodes that are characterized by the samemaximumamount of squeezing as in plot (c). This
is shown for the parameters of plot (b) and at ω = 0 infigure 6, wheremaximum squeezing and entanglement

Figure 5. Squeezing spectrum ωℓS ( )( ) and symplectic eigenvalue ν ω ω=ℓ ℓS( ) ( )( )
min
( ) , obtained for the values of the decay rates of the

cavitymirrors κ κ ω+ = 0.1 m1 2 and (a) κ = 02 , (b) κ κ = 0.32 1 , (c) κ κ = 12 1 . In the insets the regions close to the uppermechanical
resonance (ω ω= m) aremagnified. The other parameters are δ = 0, ω=g 0.5 m, γ ω= −10 m

5 , nT =13091 (temperature = 100 mK
and ω = 1m MHz), and in the case of ωS ( )II( ) and ν ω− ( )II( ) , the spectralmode operators ϵ±c ( )out are defined by the values θ = 0c

and μ μ=2 1.
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(recovering themaximumvalue found infigure 5(c)) is foundwhen μ μ κ κ=2 1 2 1.We further observe that,

infigure 5, the results for S I( ) and S II( ) are very close to ν I( ) and ν II( ) respectively. They are substantially different
only close to themechanical resonances (ω ω= ± m), where, although the two spectralmodes are entangled

(ν <ℓ 1( ) ), this feature is not reflected in the corresponding squeezing spectrum ℓS( ), which is significantly larger
and very close to 1. This happenswhen the two corresponding spectralmodes are significantly asymmetric so
that ≠ℓ ℓ

+ −n n( ) ( ). This situation is realized very close to the condition ω ω= ± m and for a bandwidth on the order
of themechanical dissipation rate γ, which, in a typical optomechanical system, can be very small, as shown in
the insets offigure 5.On the other hand, the discrepancy between S III( ) and ν III( ) can be considerably larger,
covering, for example, the full spectrum in plots (a) and (b). This is because in this case the difference between
the corresponding +n III( ) and −n III( ) is proportional to the difference between κ1 and κ2, which is relatively large in

plots (a) and (b). In plot (c), on the other hand, the twomirrors are symmetric and likewise S III( ) and ν III( ) are
very close, reproducing the results for S I( ) and ν I( ).

6. Conclusions

In conclusion, we have presented a comprehensive analysis of the entanglement properties of stationary
squeezed fields at the output of a quantumoptical system. By revisiting a number of already known concepts and
condensing them into a unified description, we have derived novel results that directly link the spectral
properties of squeezed lightfields, in the stationary continuous-wave regime, to the entanglement theory of
continuous-variable systems. Specifically we have employed long-time filteredmodes to systematically study the
spectral properties of squeezed fields. Likewise we have derived general squeezing and entanglement criteria that
are valid for stationary fields, andmost important, we have established the equivalence between two-mode
squeezing variance and logarithmic negativity for stationaryGaussian fields. In experiments, the squeezing
properties of thefield can be investigatedwith homodyne or heterodyne techniques. In particular the long time
integration of the homodyne or heterodyne signal provides information about specific spectral components of
thefield and of the corresponding squeezing.We have analyzed the discrete bosonic operators describing such
spectralmodes and have studied the corresponding entanglement properties, thereby demonstrating that the
measurable squeezing spectrum resulting from the spectral homodyne or heterodyne analysis of afield is indeed
a directmeasurement of the corresponding logarithmic negativity.

When applied to an optomechanical system comprising a two-sided Fabry–Perot cavity with amembrane in
themiddle, these findings help in identifying the specific spectral components of the output fields that are
maximally entangled, showing, in particular, thatmaximum squeezing and entanglement are found between
specificmodes constituted by the superposition of carefully selected spectral components of the two outputs.

In general, a continuous-wave squeezed field combines, in a single spatialmode, a large number of spectral
entangled sidebandmodes. It is, therefore, logical to askwhether and howone could exploit such a rich
entanglement structure for real quantum-enhanced applications. Such a question has been addressed, for
example, in [37–40], where it is discussed how to spatially separate the spectral sidebands of a continuous
squeezed field to createN spatially independent entangled pairs and hence to prepareN quantum
communication channels whose actual number is limited only by the spectral resolution of the experimental
apparatus and by the bandwidth of the squeezed signal. In a similar perspective, it is intriguing to askwhether

Figure 6. Squeezing spectrum S (0)II( ) and symplectic eigenvalue ν = S(0) (0)II II( )
min
( ) , as a function of the ratio μ μ2 1, when θ = 0c ,

κ κ = 0.32 1 , κ κ ω+ = 0.1 m1 2 , δ = 0, ω=g 0.5 m, γ ω= −10 m
5 , nT=13091 (temperature = 100 mKand ω = 1m MHz).
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such a large number of entangled pairs could be exploited as a resource for frequency-encodedmultimode
entangled networks in the stationary continuous-wave regime, as an alternative to that achievedwith pulsed
frequency combs [18].

Wefinally remark that although herewe have focused on spectral components, the approach based on the
filteredmodes that we have described in section 2.1 is sufficiently general to be applicable to awider area of
experimental situations inwhich finite-time filteredmodes are relevant [61, 71–74].
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AppendixA. Squeezing and entanglement of discretemodes

Herewe discuss some useful results regarding the squeezing and entanglement of discrete Gaussianmodes
[2, 75, 76]. Squeezing refers to the occurrence of reduced fluctuations of a quadrature of afield below the value of
thefluctuations of a coherent state. Particularly interesting is two-mode squeezing, which refers to the squeezing
of a combined quadrature of twomodes, whereas the two separatedmodes are not squeezed. Two-mode
squeezing is, in fact, a signature of entanglement between the twomodes.

Let us now consider two discretemodes with annihilation operators, b1 and b2, for which δ=b b,j k j k
†

,
⎡⎣ ⎤⎦ .

Here and in the following, for simplicity, we assume that the average value of the fields is zero =( )b 0j , and

only thefluctuations characterize the state of the twomodes. A quadrature = +ϕ ϕ ϕ−x b be ej j j
( ) i i † is squeezed

when the following relation is fulfilled: Δ = <ϕ ϕx x 1j j
( ) ( ) 2⎡⎣ ⎤⎦ . Two-mode squeezing is likewise foundwhen

the variance of a composite quadrature = + + +ϕ ϕ ϕ ϕ ϕ ϕ− −X b b b be e e e( , ) 1

2
i

1
i

1
† i

2
i

2
†1 2 1 1 2 2⎡⎣ ⎤⎦ is smaller than 1,

i.e., Δ = <ϕ ϕ ϕ ϕX X 1( , ) ( , ) 2
1 2 1 2⎡⎣ ⎤⎦ .We note that this relation can be satisfied only if 〈 〉 ≠b b 01 2 . In general,

two-mode squeezing variances of this form can be used to construct entanglement criteria. In particular, it was
established [29], given a quadrature of the form

ξ ξ ξ ξ

ξ ξ
=

+ + +

+
ξ ξ

ϕ ϕ
ϕ ϕ ϕ ϕ− −

( )X
b b b be e e e

(A.1),
, 1

i
1 1

i
1
†

2
i

2 2
i

2
†

1
2

2
21 2

1 2
1 1 2 2

where ξj are real and positive. A sufficient condition for entanglement can be defined in terms of the quantity

Δ Δ= +ξ ξ
ϕ ϕ

ξ ξ
ϕ π ϕ π+ −( )( )E X X . (A.2)S ,

,
,

2
,

2
1 2

1 2

1 2

1 2

Specifically, when <E 2S , for some values of ξj and ϕ j, the twomodes are entangled. In the case of Gaussian

fields this criterion also becomes a necessary condition for entanglement (for appropriate values of ξj) [2].
In the analysis of the entanglement properties of Gaussian systems, for which all the information is

contained in the first and secondmoments of the field operators, it is useful to introduce the followingmatrix
notation.We consider the column vector of operators = b b b bb ( , , , )T

1 2 1
†

2
† and the corresponding correlation

matrix, which is given by

〈 〉= b b ,T

whose elements are = b b{ } { } { }j k j k, . The corresponding covariancematrix,C, namely the symmetric

matrix of correlations of the quadrature x j
(0) and πx j

( 2), can be used to compute entanglementmeasures, such as

the logarithmic negativity. It is given by = +  C T
2

T

, wherewe have introduced thematrix

= −

−


1 0 1 0
i 0 i 0

0 1 0 1
0 i 0 i

.

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

The logarithmic negativity forGaussian states is then computed as ν= −{ }E max 0, log ( )N 2 , where ν is the
smallest symplectic eigenvalue of the covariancematrix of the partially transposed state that can be expressed as

Π Π′ =  , whereΠ is a diagonalmatrix whose diagonal elements are −(1, 1, 1, 1) [62]. In particular, this
relation implies that the state is entangledwhen ν < 1.
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Ageneric covariancematrix can always be transformed, using only local symplectic transformation, into the
standard form [29]

= ′

′


a c

a c
c b

c b

0 0
0 0

0 0
0 0

, (A.3)0

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

where a, b, c and c′ are reals. In this case the correspondingmatrix of correlations for the field operators reads

=

+
+

− +

− +

+ −

+ −


m n m

m m n

n m m

m n m

0 1

0 1

0

0

, (A.4)0

1

2

1

2

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

where

= ± ′ = − = −±m c c n a n b( ) 4, ( 1) 2, ( 1) 2.1 2

The symplectic eigenvalue ν in the definition of the logarithmic negativity can be expressed in terms of the
elements of thesematrices as

ν = + − + − − −
+

−
+− + +

a b
m

a b a b
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Likewise, thesematrices can be used to determine an explicit expression forES

ξ ξ ξ ξ ϕ ϕ

ξ ξ
= +

+ + +

+
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E
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that isminimized for

ϕ ϕ
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and the correspondingminimum is

= + + − + −ϕ ξ −E n n m n nmin 2 1 4 ( ) . (A.8)S, 1 2
2

1 2
2

j j

⎡⎣ ⎤⎦
Wenote that if =+m 0 (i.e., = − ′c c ), then ν2 is equal to equation (A.8), that is,

ν = ϕ ξ=+ E2 min . (A.9)m S0 ,j j

This result is important because it directly joins an entanglementmeasure, namely the logarithmic negativity, to
thefield observables, namely the variances of the field quadratures. Aswe have seen, this is true only for the

specific class of states for which =+m 0 that correspond to the condition =b b 0j k
† with ≠ =j k 1, 2 (or

equivalently = − π πx x x x1
(0)

2
(0)

1
( 2)

2
( 2) ). A related result was previously discussed in [77], where the

symplectic eigenvaluewas shown to be equal to the EPR correlations in the case of symmetric states, for
which a= b.

As discussed in themain text, the condition =+m 0 is relevant to the study of entanglement between the
spectral components of stationary continuous fields. The general corresponding correlationmatrix takes the

formof equation (16), for which the correlations of the form b bj k
† are zero.We note that in this case

equation (A.6) is equal to twice equation (22)when = ∣ ∣−m m and ϕ ϕ θ θ+ = + + marg[ ]1 2 1 2 , where marg( )
is the phase of the complex parameterm, which is introduced in equation (16). Theminimization of
equation (22) is therefore similar to equations (A.7) and (A.8) (see equation (23)). The corresponding
covariancematrix is given by
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=

+
+ −

+
− +


n m m

n m m

m m n

m m n

2 1 0 2 Re[ ] 2 Im[ ]

0 2 1 2 Im[ ] 2 Re[ ]

2 Re[ ] 2 Im[ ] 2 1 0
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, (A.10)
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Wenote that thismatrix and thematrix in equation (16) are not, in general, in the standard formdescribed by
equations (A.3) and (A.4). They can be cast in standard formbymeans, for example, of the single-mode rotation
that performs the transformation Ω Ω→ −a a( ) e ( )miarg( ) . Thus the resultingmatrices are equal to
equations (A.3) and (A.4), with ′ = −c c and =+m 0. Therefore the correspondingminimum symplectic
eigenvalue of the partially transposed covariancematrix has the formof equation (A.5) with = ∣ ∣−m m and

=+m 0, and it is explicitly given by equations (23) and (26).

Appendix B. The power spectrumof the stationary homodyne/heterodyne photocurrent

In homodyne and heterodyne detection techniques [5, 41, 64–67] the signal field ismixed on a 50:50 beam
splitter with a strongmonochromatic field at the frequency ωLO, the local oscillator.When the frequency of the
local oscillator is equal to the carrier frequency, ωL, then one has homodyne detection.Heterodyne detection
corresponds, instead, tofinite detuning Δ ω ω= − ≠ 0LO L . Thefields at the two output ports of the beam
splitter are detected and the corresponding photo-currents are subtracted to end upwith a classical electronic
signal (which contains informations about a particular quadrature of the signal field):

α α∝ +θ Δ θ Δ θ− − t t t( ) e e ( ) e e *( ) (B.1)t t( ) i i i i

where α t( ) is a classical randomvariable and θ is the phase of the local oscillator, with Δ = 0 corresponding to
homodyne detection. Information about the spectral components of a detected stationary signal are provided by
the power spectrum that quantifies the strength of the fluctuations at specific frequencies.Wewill refer to it as
the homodyne or heterodyne spectrum. It is given by

∫ϵ =θ ϵ θ θ
−∞

∞  t t( ) d e ( ) (0) (B.2)t( ) i ( ) ( )

where here the angular brackets need to be intended as ensemble averages overmany experimental runs and
wherewe use the fact that the photocurrent is a real stationary randomprocess, for which the two-times
correlation function depends only on the time difference and is symmetric

′ = ± − ′θ θ θ θ   t t t t( ) ( ) ( ( )) (0)( ) ( ) ( ) ( ) . In particular this implies that

ϵ ϵ= −θ θ ( ) ( ). (B.3)( ) ( )

The power spectrum can be equivalently expressed trough the relation

 ϵ ϵ δ ϵ ϵ ϵ′ = + ′θ θ θ  ( ) ( ) ( ) ( ) (B.4)( ) ( ) ( )

where ∫ϵ =θ
π

ω θ
−∞

∞ t t( ) d e ( )t( ) 1

2
i ( ) . In practice the homodyne/heterodyne spectrum is evaluated in an

approximate way by filtering the photocurrent with afilter function of length τ:

∫ϵ
τ

=τ
θ

τ
ϵ θ

−
 t s s( , )

1
d e ( ) (B.5)

t

t
s( ) i ( )

and then calculating the corresponding autocorrelation function,

ϵ ϵ=τ
θ

τ
θ  ( )t( ) , . (B.6)( ) ( )

2

When τ is sufficiently large, the spectral properties of the stationary signal can be resolved and the power
spectrum iswell approximated

ϵ ϵ=
τ

τ
θ θ

→∞
 lim ( ) ( ). (B.7)( ) ( )

This relation can be demonstrated as follows. Thefiltered photocurrent is equivalently given by

∫ϵ ω ϕ ω ϵ ω= −∼
τ
θ ω ϵ

τ
θ

−∞

∞
− − t( , ) d e ( ) ( ) (B.8)t( ) i( ) step ( )
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where thefilter function ϕ ω∼
τ ( )
step

is defined in equation (7). Thuswefind

 ∫ ∫
∫

ϵ ω ω ϕ ω ϵ ϕ ω ϵ ω ω

ω ϕ ω ϵ ω

= ′ − ′ − − ′

= −

∼ ∼

∼

τ
θ ω ϵ ω ϵ

τ τ
θ θ

τ
θ

−∞

∞

−∞

∞
− − ′−

−∞

∞

  



( ) d d e e ( ) ( )* ( ) ( )

d ( ) ( ). (B.9)

t t( ) i( ) i( ) step step ( ) ( )

step 2
( )

wherewe have used equation (B.4). In the large τ limit themodulus square of the filter function is equal to a delta
function, yielding therefore equation (B.7).

We remark that the filtered photocurrent in equation (B.5) is complex and therefore is not directly related to
ameasurable (real) quantity. However, we note that the same result presented in equation (B.7) is obtained if,
instead, we use the real photocurrent

∫ϵ
τ

ϵ φ= +τ
θ

τ
θ

−
 t s t s( , )

1

2
d 2 cos( ) ( ). (B.10)

t

t
( ) ( )

In particular the corresponding power spectrum is independent of the phaseφ. To demonstrate this statement
we rewrite equation (B.10) as

∫ϵ ω ϕ ω ϵ ϕ ω ϵ ω= − + +∼ ∼
τ
θ φ ω ϵ

τ
φ ω ϵ

τ
θ

−∞

∞
− − − − + t( , )

1

2
d e e ( ) e e ( ) ( ). (B.11)t t( ) i i( ) step i i( ) step ( )⎡⎣ ⎤⎦

Hence the corresponding autocorrelation function is given by

∫ϵ ω ϕ ω ϵ ϕ ω ϵ

ϕ ω ϵ ϕ ω ϵ ϕ ω ϵ ϕ ω ϵ ω

= − + +

+ − − − + + − +

∼ ∼

∼ ∼ ∼ ∼

τ
θ

τ τ

ϵ φ
τ τ

ϵ φ
τ τ

θ

−∞

∞

+ − +





( )
1

2
d ( ) ( )

e ( ) ( ) e ( ) ( ) ( ) (B.12)t t

( ) step 2 step 2

2i( ) step step 2i( ) step step ( )

⎡
⎣⎢

⎤⎦
wherewe have used the relation ϕ ω ϕ ω= −∼ ∼

τ τ( )* ( )
step step

and equation (B.4). Finally, using equations (12) and
(B.3)wefind that, in the limit of large τ, this equation reduces to equation (B.7).

The photocurrent is directly related to the properties of the detected field. In fact, the ensemble average in
equation (B.2) can be equivalently interpreted as a quantum average over an operator of the form

= +Δ
θ Δ θ Δ θ− −I t a t a t( ) e e ( ) e e ( ) (B.13)t t( ) i i i i †

where now a(t) and a t( )† are quantumoperators for the detected field and the results discussed earlier, in terms
of classical photocurrents, can be straightforwardly rephrased in terms of this quantumoperator.

Furthermore, although the results for the homodyne and heterodyne spectra are independent of the formof
thefiltered photocurrent, whether equation (B.5) or (B.10), the choice of equation (B.10) is physically
motivated by the fact that it results in a realfiltered photocurrent that corresponds to aHermitian quantum
operator, and hence itmakes transparent the relation between the spectral properties of the detected
photocurrent and the corresponding quantumobservables of the stationary field. In particular thefiltered
photocurrent can be described by theHermitian operator

∫ϵ
τ

ϵ φ= +Δ τ
θ τ

τ
θ

−
J

N
s s I s( )

2
d cos ( ) ( )

t

t

,
( ) ( )

where the normalization factor τN is appropriately chosen to satisfy the commutation relation for quadrature

operators ϵ ϵ =Δ τ
θ

Δ τ
θ+ π( )J t J t( , ), ( , ) 2 i,

( )
,

2
⎡
⎣⎢

⎤
⎦⎥ , namely τ ϵ τ ϵ= + +τN (1 ) (2 ) . Thus, the filtered photocurrent

can be expressed as the sumof twofiltered quadrature operators for the two frequency bands of width τ1 each,
centered at the frequencies Δ ϵ± ,

ϵ Δ ϵ Δ ϵ= + + −Δ τ
θ τ

τ
θ φ

τ
θ φ+ −J t

N
x t x t( , )

2
( , ) ( , ) (B.14),

( ) ( ) ( )⎡⎣ ⎤⎦
where

Δ ϵ Δ ϵ Δ ϵ± = ± + − ∓τ
θ θ

τ
θ

τ
−x t a t a t( , ) e ( , ) e ( , ) (B.15)( ) i i †

with the annihilation operator, of a single-bandfilteredmode, defined as in equation (4). In the limit of large τ,
equation (B.14) reduces to equations (29) and (41), when, respectively, Δ = 0 and Δ ≠ 0.

AppendixC. A single-mode cavity with amembrane in themiddle: Input–output theory

Weconsider a single-mode Fabry–Perot cavity with amembrane in themiddle as discussed in themain text. The
quantumLangevin equations [78] for the creation and annihilation operators of a cavity photon a a,† and of a
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membrane phonon b b,† , in the linearized regime [47] can be expressed inmatrix form as

= + t t ta a a˙ ( ) ( ) ( ) (C.1)in

where a is the column vector of systemoperators = ( )a b a ba , , ,
T† † , thematrix of coefficients  is given by

κ κ δ
γ ω

κ κ δ
γ ω

=

− − − − −
− − − −

− − +
− +


g g

g g

g g

g g

i i 0 i

i i i 0

0 i i i

i 0 i i

, (C.2)
m

m

1 2

1 2

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

with the parameters defined in themain text, and a in is the vector of input noise operators

= ( )a a b a a ba , , , , ,
T

in 1
in

2
in in

1
in†

2
in† in†

, which includes the two inputs of the cavity corresponding to the two

mirrors. Finally , is the 4× 6matrix

κ κ

γ
κ κ

γ

=
2 2 0 0 0 0

0 0 2 0 0 0

0 0 0 2 2 0

0 0 0 0 0 2

. (C.3)

1 2

1 2

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

In general the systemdynamics can be divided into twomain parameter regimes [47].When the real part of all
the eigenvalues of thematrix  is negative, the system is stable and approaches a steady state at long times. If, on
the other hand, some eigenvalues have a positive real part, the system is not stable, the populations of themodes
explode, and no steady state is reached. In this second case the linearizedmodel in equation (C.1) is not a valid
description of the optomechanical dynamics. All the results presented in themain text correspond to the regime
of optomechanical stability.

The steady state corresponding to equation (C.1) can be easily obtained in Fourier space.We introduce the

Fourier-transformed operators ∫ω = ωt ta a˜( ) d e ( )t1

2
i , hence

ω ω ω= − + − a a˜( ) ( i ) ˜ ( ). (C.4)1 in

Weare interested in the field leaking out by the two cavitymirrors. According to the input–output theory [78],
the operators for the outputfields can be expressed in terms of the system and of the input noise operators as

κ= −a a a2j j j
out in, where j = 1, 2 distinguish the two output channels corresponding to the two cavity

mirrors. To express these relations inmatrix formwe introduce the 4 × 6matrix

=
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

(C.5)

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

that when applied to the vector of input operators gives = ( )a a a aa , , ,
T

in 1
in

2
in

1
in†

2
in†

and selects only the

noise operators corresponding to the two output channels. Thus, the vector of output operators

= ( )a a a aa , , ,
T

out 1
out

2
out

1
out†

2
out† can bewritten as

= −  a a a . (C.6)T
out in

Using equation (C.4)wefind

ω ω ω= − + +−    a a˜ ( ) ( i ) ˜ ( ), (C.7)T
out

1
in

⎡⎣ ⎤⎦

and the corresponding power spectrummatrix is

ω ω ω= + + − +∼ − −          ( ) ( i ) ( i ) (C.8)T T T
out

1
in

1⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

where in is the correlationmatrix of the input noise operators defined as δ ω ω ω ω+ ′ = a a( ) ˜ ( ) ˜ ( )T
in in in ,

and it is given by
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=
+

C
n

n

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0

(C.9)
T

T

in

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

where nT is the number of thermal excitations of themechanical oscillator. The explicit result for ω∼ ( )out is given
in equation (45).
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