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Abstract
Wepropose and analyse a feasible experimental scheme for a quantum force sensor based on the
elimination of backaction noise through coherent quantumnoise cancellation (CQNC) in a hybrid
atom-cavity optomechanical setup assistedwith squeezed vacuum injection. The force detector,
which allows for a continuous, broadband detection of weak forces well below the standard quantum
limit (SQL), is formed by a single optical cavity simultaneously coupled to amechanical oscillator and
to an ensemble of ultracold atoms. The latter acts as a negative-mass oscillator so that atomic noise
exactly cancels the backaction noise from themechanical oscillator due to destructive quantum
interference. Squeezed vacuum injection enforces this cancellation and allows sub-SQL sensitivity to
be reached in a verywide frequency band, and atmuch lower input laser powers.

1. Introduction

Everymeasurement is affectedbynoise, degrading the signal andconsequently reducing the accuracyof the
measurement.However, noise cancellation techniques canbe applied if thenoise canbe identified andmeasured
separately, as, for example, in the acoustic domain [1]. Theapplicationofnoise cancellation toquantumsystemshas
recentlybeen introduced [2, 3]byusing the so-called coherent quantumnoise cancellation (CQNC) scheme,which relies
onquantuminterference.Thebasic idea is that under certain conditions, it is possible to introduce an ‘anti-noise’path
in thedynamicsof the systemwhich canbe employed to cancel theoriginal noisepath viadestructive interference.

Themeasurement of weak forces at the quantum limit [4] and the search for quantumbehavior in
macroscopic degrees of freedomhave been some of themotivations for the basis of the development of cavity
optomechanics [5–7]. In a forcemeasurement based on an optomechanical scheme [8, 9], the competition
between shot noise and radiation pressure backaction noise leads to the notion of SQL [4]. Shot noise is a known
effect limiting high-precision interferometry at high frequencies [10], while radiation pressure noise, recently
observed for thefirst time [11, 12], becomes relevant only at large enough powers andwill be limiting in the low-
frequency regime next-generation gravitational-wave detectors [13]. These two noise sources have opposite
scalingwith the inputfield power: increasing the input power in order to enhance themeasurement strength and
decrease the shot noise leads to increase themeasurement backaction noise. Therefore, in order to improve the
force detection sensitivity one has to eliminate the backaction noise.

There are various proposals for reducing quantumnoise and overcoming the SQL in forcemeasurements,
including frequency-dependent squeezing of the input field [14], variationalmeasurements [15, 16], the use of
Kerrmedium in a cavity [17], a dualmechanical oscillator setup [18], the optical spring effect [19], and two-tone
measurements [20–23]. Preliminary experimental demonstrations of these ideas have been already carried out
[24–29], and recent clear demonstrations of quantum-nondemolitionmeasurements have been given
in [22, 30].
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Adifferent approach for sub-SQLmeasurements has recently been introduced [2, 3], based on theCQNCof
backaction noise via quantum interference. The idea is based on introducing an ‘anti-noise’ path in the
dynamics of the optomechanical system via the addition of an ancillary oscillator whichmanifests an equal and
opposite response to the lightfield, i.e, an oscillator with an effective negativemass. In the context of atomic spin
measurements an analogous idea for coherent backaction cancellationwas proposed independently [31, 32],
and has been applied formagnetometry below the SQL [33], demonstrating that Einstein–Podolski–Rosen
(EPR)-like entanglement of atoms generated by ameasurement enhances the sensitivity to pulsedmagnetic
fields. The original proposal [2] focused on the use of an ancillary cavity that is red-detuned from the
optomechanical cavity. A quantumnon-demolition coupling of the electromagnetic fields within the two
cavities yields the necessary anti-noise path, so that the backaction noise is coherently cancelled. [34] considered
inmore detail the all-optical realization of theCQNCproposal put forwarded in [2, 3], and found that the
requirements for its experimental implementation appear to be very challenging, especially for the
experimentally relevant case of lowmechanical frequencies and high-qualitymechanical oscillators (MO) such
as gravitational wave detectors. Other setups, which provide effective negativemasses of ancillary systems for
CQNC, have been suggested based on employing Bose–Einstein condensates [35], or the combination of a two-
tone drive technique and positive-negativemass oscillators [36].

In recent years, hybrid optomechanical systems assisted by the additional coupling of the cavitymodewith
an atomic gas have attracted considerable attention. It has been found that the additional atomic ensemblemay
lead to the improvement of optomechanical cooling [37–41], thereby providing the possibility of ground state
cooling outside the resolved sideband regime [42, 43].Moreover, the coupling of themechanical oscillator to an
atomic ensemble can be used to generate a squeezed state of themechanicalmode [44], or robust EPR-type
entanglement between collective spin variables of the atomicmedium and themechanical oscillator [31, 45].

Inspired by the above considerations,more recently a theoretical scheme for CQNCbased on a dual cavity
atom-based optomechanical systemhas been proposed [46]. In this scheme, aMOused for force sensing is
coupled to an ultracold atomic ensemble trapped in a separate optical cavity which behaves effectively as an
effective negativemass oscillator (NMO). The two cavities are coupled via an opticalfiber. This system is a
modification of the setup suggested for hybrid cooling and electromagnetically induced transparency [47] and
the interaction between the optomechanical cavity and the atomic ensemble leads to theCQNC. The atomic
ensemble acts as amore flexibleNMO, for which the ‘impedancematching’ condition of a decay rate identical to
themechanical damping rate is easier to satisfy with respect to the full-optical implementation of [34].

Here, we propose to simplify and improve the atomic ensemble implementation of CQNCof [46] by
considering a different setup, involving only a single optomechanical cavity and a single cavitymode, coupled
also to an atomic ensemble, which is also injected by a squeezed vacuum (see figure 1 (a)). The atomic ensemble
is coupled to the radiation pressure and the coupling strength of the atom-field interaction ismodulated.We
show that the interaction between the optomechanical cavity and the atomic ensemble leads to an effective
NMO that can provideCQNC conditions able to eliminate the backaction noise of theMO. In fact, destructive
quantum interference between the collective atomic noise and the backaction noise of theMO realizes an ‘anti-
noise’ path, so that the backaction noise can be cancelled (figure 1 (b)). CQNC conditions are realizedwhen the
optomechanical coupling strength and themechanical frequency are equal to the coupling strength of the atom-
field interaction and to the effective atomic transition rate, respectively. Furthermore, the dissipation rate of the
MOneeds to bematched to the decoherence rate of the atomic ensemble.

Here, we exploit the injection of appropriately squeezed vacuum light in order to control and improve the
noise reduction for force detection, applyingwithin this new scenario, the properties of squeezing. In fact, it is
well known that the injection of a squeezed state in the unused port of aMichelson interferometer can improve
interferometricmeasurements [48–54], as recently demonstrated in the case of gravitational wave
interferometers [55]. The improvement of the performance ofmeasurement via squeezing injection has also
been demonstrated in other interferometers, such as theMach–Zehnder [56], Sagnac [57], and polarization
interferometers [58]. Squeezing-enhancedmeasurement have been realized alsowithin optomechanical setups;
an experimental demonstration of squeezed-light enhancedmechanical transduction sensitivity inmicrocavity
optomechanics has been reported in [59].Moreover, by utilizing optical phase tracking and quantum smoothing
techniques, improvement in the detection of optomechanicalmotion and forcemeasurements with phase-
squeezed state injection has also been verified experimentally [60]. Finally, the improvement in position
detection by the injection of squeezed light has been recently demonstrated also in themicrowave domain in
[61].We also notice that it has been recently theoretically shown that even the intracavity squeezing generated by
parametric down conversion can enhance quantum-limited optomechanical position detection through de-
amplification [62].More recently [63] has investigated the response of amechanical oscillator in an
optomechanical cavity driven by a squeezed vacuumand has shownwhen it can be used as a high sensitive
nonclassical light sensor.
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In the present paperwe show that if the cavitymode is injectedwith squeezed light with an appropriate
phase, backaction noise cancellation provided byCQNC ismuchmore effective because squeezing allows to
suppress the shot noise contribution at amuch smaller input power, and one has a significant reduction of the
force noise spectrum evenwithmoderate values of squeezing and input laser power.

The paper is organized as follows. Section 2 is devoted to the description of themodel. The linear quantum
Langevin equations ofmotion for the dynamical variables involved in the sensing process are derived in
section 3. Themain results for force sensing and the increased sensitivity achieved in the case of backaction
cancellation provided byCQNCare given in section 4. Finally, the conclusions are summarized in section 5.

2. The system

The optomechanical setup considered in this paper is schematically described infigure 1(a). The system consists
of a single Fabry–Pérot cavity inwhich aMO, serving as a testmass for force sensing, is directly coupled to the
radiation pressure of an optical cavity field. Furthermore, the cavity contains an ensemble of effective two-level
atoms that is coupled to the intracavitymode. As is shown infigure 1(c), andwill be detailed further below, the
two-level atomic ensemble with time-modulated coupling constant considered in this scheme is achievable by
considering a doubleΛ-type atomic ensemble driven by the intracavity lightfield and by a classical control field.

We consider a standard optomechanical setupwith a single cavitymode driven by a classical laserfieldwith
frequency wL, input powerPL, interacting with a singlemechanicalmode treated as a quantummechanical
harmonic oscillator with effectivemassm, frequency wm, and canonical coordinates x̂ and p̂, with =x p, i[ ˆ ˆ] .
This singlemode description can be appliedwhenever scattering of photons from the drivenmode into other
cavitymodes is negligible [64], and if the detection bandwidth is chosen such that it includes only a single,
isolated,mechanical resonance andmode-mode coupling is negligible [65].Moreover, the cavity is injected by a
squeezed vacuumfieldwith central frequency wsq which is assumed to be resonant with the cavity
mode w w=sq c.

The totalHamiltonian describing the system is given by

= + + + + +H H H H H H H , 1c m om d at Fˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )

where Hc
ˆ describes the cavity field, Hm

ˆ represents theMO in the absence of the external force Fext, Hom
ˆ denotes

the optomechanical coupling, Hd
ˆ accounts for the driving field, Hat

ˆ contains the atomic dynamics, and HF
ˆ

denotes the contribution of the external force. Thefirst four terms in theHamiltonian of equation (1) are given
by

w=H a a a, 2c cˆ ˆ ˆ ( )†

Figure 1. (a) Schematic description of the systemunder consideration. Amechanical oscillator with frequency wm is placedwithin a
single-mode Fabry–Pérot cavity containing an atomic ensemble that can be controlled by a classical pumping fieldwithRabi
frequency WR with effective transition rate w w=s m. An external force Fext is exerted on themechanical oscillator acting as a sensor.
The cavity is driven by a classical laser fieldwith powerPL and frequency wL, and also a squeezed lightfield, resonant with the cavity
mode, w w=sq c , is injected into the cavity. (b) Flow chart representation of the backaction noise cancellation caused by the anti-noise
path associatedwith the interaction of the cavitymodewith the atomic ensemble acting as a negativemass oscillator (NMO). (c)
Atomic scheme leading to the effective Faraday interaction, with a doubleΛ atomic system coupled to the intracavitymode â (thin
blue line) and driven by a classical control field (thick blue line) of frequency w w=G c resonant with the cavitymode.
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w w= = +H b b
p

m
m x b

2

1

2
, 2m m m

2
2 2ˆ ˆ ˆ ˆ

ˆ ( )†

= +H g a a b b c, 2om 0
ˆ ˆ ˆ ( ˆ ˆ ) ( )† †

= -w w-H E a a di e e , 2d L
t ti iL Lˆ ( ˆ ˆ ) ( )†

where â and b̂ are the annihilation operators of the cavity field and theMO, respectively, whose only nonzero

commutators are = =a a b b, , 1[ ˆ ˆ ] [ ˆ ˆ ]† †
. Furthermore, = +x x b bZPFˆ ( ˆ ˆ )†

and = -p p b bi ZPF
ˆ ( ˆ ˆ)†

, with

 w=x m2ZPF m and =p x2ZPF ZPF the zero-point position andmomentum fluctuations of theMO.

w=g x xd dc ZPF0 ( ) is the single-photon optomechanical strength, while k w=E PL L Lin , with kin the
coupling rate of the input port of the cavity.

For the atomic part, we consider an ensemble ofN ultracold four-level atoms interacting non-resonantly
with the intracavity field andwith a classical control fieldwith Rabi frequency WR and frequency wG (see
figure 1(c)). Considering the far off-resonant interaction, the two excited states ñe1∣ and ñe2∣ will be only very
weakly populated. In this limit, these off-resonant excited states can be adiabatically eliminated so that the light-
atom interaction reduces the coupled double -Λ system to an effective two-level system, with upper level ñe∣ and
lower level ñg∣ , (figure 1(c)), driven by the so-called Faraday or quantumnon-demolition interaction [66]. Apart
from the light-matter interface, the Faraday interaction has important applications also in continuous non-
demolitionmeasurement of atomic spin ensembles [67], quantum-state control/tomography [68] and
magnetometry [69]. In the systemunder consideration, we also assume that a static externalmagnetic field tunes
the Zeeman splitting between the states ñe∣ and ñg∣ into resonancewith the frequency wm of theMO.

Considering the effective two-levelmodel for the atomic ensemble, we introduce the collective spin
operators

å= ñá =+
=

-S e g S a, 3
i

N
i i

1

ˆ ∣ ∣ ( ˆ ) ( )( ) ( ) †

å= ñá - ñá
=

S e e g g b
1

2
, 3z

i

N
i i i i

1

ˆ ∣ ∣ ∣ ∣ ( )( ) ( ) ( ) ( )

where i labels the different atoms. The collective spin operators obey the commutation relations =+ -S S S, 2 z[ ˆ ˆ ] ˆ
and = S S S, z z[ ˆ ˆ ] ˆ , so that the effectiveHamiltonian of the atomic ensemble can bewritten as

 w w= + + ++ -H S G t a a S Scos , 4at m z G0ˆ ˆ ( )( ˆ ˆ )( ˆ ˆ ) ( )†

where d= W sG E R0 0 ( ) is the atom-field coupling, withE0 and ds denoting the cavity-mode Rabi frequency and
the detuning of the control beam from the excited atomic states, respectively. Nowwe assume that the atoms are
initially pumped in the hyperfine level of higher energy, ñe∣ , which results in an inverted ensemble that can be
approximated for largeN by a harmonic oscillator of negative effectivemass. This fact can be seen formally using
theHolstein-Primakoffmapping of angularmomentumoperators onto bosonic operators [70]. In our case we
have a total spin equal to N 2 and one can introduce an effective atomic bosonic annihilation operator d̂ such

that = -S N d d2ẑ
ˆ ˆ†

, = -+S N d d N d1 1 2ˆ [ ˆ ˆ ] ˆ†
, = --S N d d d N1 1 2ˆ ˆ [ ˆ ˆ ]† †

, so that the commutation

rules are preserved. As long as the ensemble remains close to its fully inverted state, we can take d d N 1ˆ ˆ†
and

approximate - S N dˆ ˆ†
, + S N dˆ ˆ. Therefore, under the bosonization approximation, we can rewrite

equation (4) as

 w w= - + + +H d d G t a a d dcos , 5at m Gˆ ˆ ˆ ( )( ˆ ˆ )( ˆ ˆ ) ( )† † †

which shows that the atomic ensemble can be effectively treated as aNMO, coupledwith the collective coupling
=G G N0 with the cavitymode.Moving to the frame rotating at laser frequency wL, where  w-a ae ti Lˆ ˆ ,

choosing the resonance condition w w=G L, and applying the rotatingwave approximation in order to neglect
the fast rotating terms, i.e., the terms proportional to w w +e ti G L( ) , one gets

 w= - + + +H d d
G

a a d d
2

. 6at mˆ ˆ ˆ ( ˆ ˆ )( ˆ ˆ ) ( )† † †

Therefore, the totalHamiltonian of the system in the frame rotating at laser frequency wL is time-independent
and can bewritten as

   

 

w w= D + - + +

+ + + + -

H a a b b d d g a a b b

G
a a d d i E a a

2
, 7

c m m

L

0 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ )

( ˆ ˆ )( ˆ ˆ ) ( ˆ ˆ) ( )

† † † † †

† † †

where w wD = -c c L0 .
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3.Dynamics of the system

The dynamics of the system is determined by the quantumLangevin equations obtained by adding damping and
noise terms to theHeisenberg equations associatedwith theHamiltonian of equation (7) [71],

=x p m a, 8ˆ̇ ˆ ( )

w g h= - - - + +p m x p g a a p F b2 , 8m ZPF m
2

0 extˆ̇ ˆ ˆ ˆ ˆ ˜ ( )†

k
k

=-D - - + +

- +

a a g a
x

x

G
d d E

a a c

i i i
2

2
, 8

c
ZPF

L0 0

in

ˆ̇ ˆ ˆ ˆ ( ˆ ˆ )

ˆ ˆ ( )

†

w= - + -
G

+ Gd d
G

a a d d di i
2 2

, 8m
inˆ̇ ˆ ( ˆ ˆ ) ˆ ˆ ( )†

where gm is themechanical damping rate,Γ is the collective atomic dephasing rate, andκ denotes the cavity
photon decay rate.We have also considered an external classical force Fext˜ which has to be detected by theMO.
The system is also affected by three noise operators: the thermal noise acting on theMO, h t( ), the optical input
vacuumnoise, ainˆ , and the bosonic operator describing the optical vacuumfluctuations affecting the atomic

transition, d
inˆ [72]. These noises are uncorrelated, and their only nonvanishing correlation functions are

dá ñ = á ñ = - ¢a t a t d t d t t tin in in inˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )† † [72]. Here, we have assumed that the external classical force has
no quantumnoise. The Brownian thermal noise operator h t( ) obeys the following correlation function [71]

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥


òh h g

w
p
w

w
á ¢ ñ = +w- - ¢t t m

k T

d

2
e coth

2
1 , 9m

t t

B

i( ) ( ) ( )( )

whereT is the temperature of the thermal bath of theMO. Themechanical quality factor w g=Qm m m is
typically very large, justifying theweak damping limit where the Brownian noise can be treated as aMarkovian
noise, with correlation function [71]

h h g w d dá ¢ ñ + - ¢ + ¢ - ¢t t m n t t t t2 1 i , 10m m m( ) ( ) [ ( ¯ ) ( ) ( )] ( )

where w= - -n k Texp 1m m B
1¯ ( ( ) ) is themean thermal phonon number and d¢ - ¢t t( ) is the time derivative

of theDirac delta. The termproportional to the derivative of theDirac delta is the antisymmetric part of the
correlation function, associatedwith the commutator of h t( ) [71], but it does not contribute to the subsequent
expressions wherewe have always calculated symmetrized correlation functions.

We define the optical and atomic quadrature operators = +X a a 2a
ˆ ( ˆ ˆ)† , = -P a ai 2â ( ˆ ˆ)† ,

= +X d d 2d
ˆ ( ˆ ˆ )†

, = -P d di 2d̂ ( ˆ ˆ)†
and their corresponding noise operators = +X a a 2a

in in, inˆ ( ˆ ˆ )† ,

= -P a ai 2a
in in, inˆ ( ˆ ˆ )† , = +X d d 2d

in in, inˆ ( ˆ ˆ )†
and = -P d di 2d

in in, inˆ ( ˆ ˆ )†
.Moreover, we adopt

dimensionlessMOposition andmomentumoperators =X x x2 ZPF
ˆ ˆ and =P p p2 ZPF

ˆ ˆ , so that

=X P, i[ ˆ ˆ] .We then consider the usual regimewhere the cavity field and the atoms are strongly driven and the
weak coupling optomechanical limit, so thatwe can linearize the dynamics of the quantum fluctuations around
the semiclassical steady state. After straightforward calculations, the linearized quantumLangevin equations for
the quadratures’fluctuations are obtained as

d w d=X P a, 11mˆ̇ ˆ ( )

d w d d= - -
G

+ GX P X X b
2

, 11d m d d d
inˆ̇ ˆ ˆ ˆ ( )

d d
k
d k= D - +X P X X c

2
, 11a c a a a

inˆ̇ ˆ ˆ ˆ ( )

d w d g d d g= - - - + +P X P g X f F d, 11m m a m extˆ̇ ˆ ˆ ˆ ( ˆ ) ( )

d d d d
k
d k= -D - - - +P X g X G X P P e

2
, 11a c a d a a

inˆ̇ ˆ ˆ ˆ ˆ ˆ ( )

d w d d d= - -
G

+ GP X G X P P f
2

, 11d m d a d d
inˆ̇ ˆ ˆ ˆ ˆ ( )

where the effective linearized optomechanical coupling constant is a=g g2 s0 , a wD = D - gc c s m0 0
2 2∣ ∣ is the

effective cavity detuning, and as is the intracavity field amplitude, solution of the nonlinear algebraic equation
k a w a w+ D = - G +E G2 i i Re 4c s L m s m

2 2 2( ) ( ), which is always possible to take as a real number by an
appropriate redefinition of phases. Finally, we have rescaled the thermal and external force by defining

h w g=f t t m m m( ) ( ) and  w g=F F t m m mext ext˜ ( ) . These equations are analogous to those describing the
CQNC scheme proposed in [3] and then adapted to the case when theNMO is realized by a blue detuned cavity
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mode in [34], and by an inverted atomic ensemble in [46]. Compared to the latter paper, the cavitymode tunnel
splitting J2 is replaced by the effective cavitymode detuningDc.

As suggested by the successful example of the injection of squeezing in the LIGOdetector [55] andmore
recently in an electro-mechanical system [61], we now show that the force detection sensitivity of the present
scheme can be further improved and can surpass the SQLwhen the cavity is driven by a squeezed vacuum field,
with a spectrum centered at the cavity resonance frequency w w=sq c.

The squeezed field driving is provided by the finite bandwidth output of an optical parametric oscillator
(OPO), shined on the input of our cavity system, implying that the cavitymode is subject to a non-Markovian
squeezed vacuumnoise, with two-time correlation functions given by [73]

á ¢ ñ =
+

+t t- -a t a t
M b b

b b
b b a

2
e e , 12

x y

x y
y

b
x

bin in
2 2

x yˆ ( ) ˆ ( ) ( ) ( )

á ¢ ñ =
-

-t t- -a t a t
N b b

b b
b b b

2
e e , 12
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where t = - ¢t t∣ ∣, while bx and by define the bandwidth properties of theOPOdriven below threshold [74] for
the generation of squeezed light. The squeezing bandwidths and the parametersM andN are related to the
effective second-order nonlinearity ε and the cavity decay rate γ of theOPOby g e= -b 2x ∣ ∣, g e= +b 2y ∣ ∣
and eg= +M b b2 1 1x y

2 2( )( ), e g= -N b b2 1 1x y
2 2(∣ ∣ )( ). It is clear that N 0 and the stability of the

OPO requires b 0x . The chosen parametrization satisfieswell-known condition  +M N N 12∣ ∣ ( ) for
squeezed noise. In the case of pure squeezing, there are only two independent parameters, one can parametrize

f=M r i1 2 sinh 2 exp( ) ( ) ( ) and =N rsinh2 , with r andf being, respectively, the strength and the phase of
squeezing, so that = +M N N 12∣ ∣ ( ) and = + +b b N M2 1y x ( ∣ ∣ ) .

In thewhite noise limit, i.e., when  ¥bx y, , while keepingM andN constant, the correlation functions can
bewritten inMarkovian form, i.e., dá ¢ ñ = - ¢a t a t M t tin inˆ ( ) ˆ ( ) ( ) and dá ¢ ñ = - ¢a t a t N t tin in,ˆ ( ) ˆ ( ) ( )† .Wewill
restrict to this white noise limit fromnowon, which is justifiedwhenever the two bandwidths bx y, are larger than
themechanical frequency wm and the cavity line-widthκ.

In the next section, wewill study howCQNCeliminating the effect of backaction noise and squeezed-
vacuum injection can jointly act in order to improve significantly the detection of aweak force acting on theMO.

4. Force sensing andCQNC

An external force acting on theMO shifts its position, which in turn is responsible for a change of the effective
length of the cavity and therefore of the phase of the optical cavity output. As a consequence, the signal associated

to the force can be extracted bymeasuring the optical output phase quadrature, Pa
outˆ , with heterodyne or

homodyne detection. The expression for the outputfield can be obtained from the standard input–output
relation [72, 75], i.e., kd= -a a aout inˆ ˆ ˆ , so that the output quadrature is given by

k d= -P P P , 13a a a
out inˆ ˆ ˆ ( )

and solving equation (11) for dPâ. Typically stationary spectralmeasurements of forces are carried out and therefore
we are interested in the solution for Pa

out in the frequency domain.After straightforward calculations,we get
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wherewe have defined the susceptibilities of the cavity field, theMO, and of the atomic ensemble, respectively as
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andwe have introduced themodified cavitymode susceptibility

c c
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Equation (14) is the experimental signal which, after calibration, is used for estimating the external force Fext.
Appropriately rescaling equation (14)we can rewrite
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where the added force noise is defined as
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Equation (18) shows that in the present scheme for force detectionwe have four different contributions to the
force noise spectrum. Thefirst term corresponds to the thermal noise of theMO, the second term corresponds
to the shot noise associatedwith the output opticalfield, which is the one eventuallymodified by the squeezed
inputfield. The third term is the contribution of the atomic noise due to its interactionwith the cavitymode,
while the last termdescribes the backaction noise due to the coupling of the intracavity radiation pressure with
theMOandwith the atomic ensemble.

4.1. CQNCconditions
TheCQNCeffect amounts to the perfect backaction cancellation at all frequencies, obtaining in this way
significantly lower noise in force detection. From the last term in equation (18), it is evident that for g=G and
c c= -m d the contributions of the backaction from themechanics and from the atoms cancel each other for all
frequencies. As shown infigure 1(b), they can be thought of as ‘noise’ and ‘anti-noise’ path contributions to the
signal force Fext. Therefore an effectiveNMO, in this case realized by the inverted atomic ensemble, is necessary
for realizing c c= -m d .More in detail, CQNC is realizedwhenever:

i. the coupling constant of the optical field with theMO and with the atomic ensemble are perfectly matched,
g=G, which is achievable by adjusting the intensity of the fields driving the cavity and the atoms;

ii. the atomic dephasing rate between the two lower atomic levels Γ must be perfectly matched with the
mechanical dissipation rate gm (wehave assumed the atomic Zeeman splitting perfectlymatchedwith the
MO frequency wm from the beginning);

iii. the MO has a high mechanical quality factor, or equivalently, wG  m so that the term G 42 can be
neglected in the denominator of cd (see equation (15)).

Mechanical damping rates of high quality factorMOare quite small, not larger than 1 kHz. As already
pointed out in section 3 of [46], thematching of the two decay rates is easier in the case of atoms because ground
state dephasing rates can also be quite small [76, 77]. On the contrary,matching the dissipative rates in the case
when theNMO is a second cavitymode, as in the fully opticalmodel of [34], ismore difficult because it requires
having a cavitymodewith an extremely small bandwidthwhich can be obtained only assuming largefinesse and
long cavities.

Note that under CQNCconditions the effective susceptibility of equation (16) becomes
c c c¢ = + D -1a a a c

CQNC 2 1( ) . It is clear that under theCQNC conditions the last term in the noise force of
equation (18) is identically zero andwe can rewrite
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In order to quantify the sensitivity of the forcemeasurement, we consider the spectral density of added noise
which is defined by [34]
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Under perfect CQNC conditions one gets the force noise spectrum in the presence of squeezed-vacuum
injectionwhich, in the experimentally relevant case k w , reads (see appendix A for the explicit derivation)
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is the contribution of the injected squeezing to the optomechanical shot noise. Equation (21) shows that when
CQNC is realized, the noise spectrum consists of three contributions; thefirst termdenotes the thermal
Brownian noise of theMO, the second termdescribes the atomic noise, and the last one represents the
optomechanical shot noisemodified by squeezed-vacuum injection.

We recall that with the chosen units, the noise spectral density is dimensionless and in order to convert it to
-N Hz2 1units we have tomultiply by the scale factor  w gm m m. This noise spectrumhas to be comparedwith the

noise spectrumof a standard optomechanical setup formed by a single cavity coupled to aMOat resonance
frequency (D = 0c ) [5, 7],
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As it is well known, the standard quantum limit for stationary force detection comes from theminimization of
the noise spectrum at a given frequency over the driving power, i.e., over the linearized coupling squared g 2,
yielding
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In the present case, the complete cancellation of the backaction noise termproportional to g2 has the
consequence that force detection is limited only by shot noise and that therefore the optimal performance is
achieved at very large power. In this limit force detection is limited only by the the additional shot-noise-type
term that is independent of themeasurement strength g 2 corresponding to atomic noise (see equation (21)), and
which is the price to pay for the realization of CQNC,
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(here, we neglect thermal noise and other technical noise sources which are avoidable in principle). As already
discussed in [46], in the limit of sufficiently large driving powers when shot noise (and also thermal noise) is
negligible, CQNChas the advantage of significantly increasing the bandwidth of quantum-limited detection of
forces, well out of themechanical resonance. This analysis can be applied also for the present scheme employing
a single cavitymode, and it is valid also in the presence of injected squeezing, whichmodifies and can further
suppress the shot noise contribution. This is relevant because it implies that one can achieve theCQNC limit of
equation (25), bymaking the shot noise contribution negligible,much easily, already at significantly lower
driving powers. In this respect one profits from the ability of injected squeezing to achieve theminimumnoise at
lower power values, asfirst pointed out byCaves [48].

Let us now see inmore detail the effect of the injected squeezing by optimizing the parameters under perfect
CQNCconditions. To bemore specific, the injected squeezed light has to suppress asmuch as possible the shot
noise contribution to the detected force spectrum, and therefore we have tominimize the functionwithin the
square brackets of equation (21), over the squeezing parametersN,M and the detuningDc. Defining k= Dy c

the normalized detuning, one can rewrite this function as
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where f =y a y b ytan opt ( ) ( ) ( ) and it is straightforward to verify that + = +a y b y y1 2 22 2 2 2( ) ( ) ( ) . From
this latter expression is evident that, for a given detuning y, andwhatever value ofN and M∣ ∣, the optimal value of
the squeezing phaseminimizing the shot noise contribution is just f f= yopt ( ), for which one gets
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This latter expression can be easily furtherminimized by observing that itsminimal value is obtained by
assuming pure squeezed light = +M N N 1∣ ∣ ( ) and also taking zero detuning y=0, i.e., driving the cavity
mode at resonance, so that for a given value of (pure) squeezingN, one has that
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4
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which tends to zero quickly for large squeezingN, i.e., h N N1 1 32min ( ) ( ). As a consequence, the shot
noise contribution can be rewritten after optimization over the squeezing and detuning as,
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Wenotice that the optimal value of the detuning,D = 0c can be taken only in the presentmodel with a single
cavitymode and not in the dual-cavitymodel of [46]where the parameterDc is replaced by the coupling rate
between the two cavities J2 , which cannot be reduced to zero. This is an important advantage of the single cavity
mode case considered here. Equation (31) shows that injected squeezing greatly facilitates achieving the ultimate
limit provided byCQNCof equation (25) because in the optimal case and at large squeezingN, the shot noise
term is suppressed by a factor N1 4( )with respect to the case without injected squeezing (compare equation (29)
in the case = = =M N y 0with equation (30) in the case when N 1). This is of great practical utility
because itmeans that one needs amuch smaller value of g, and thereforemuch less optical driving power in
order to reach the same suppression of the shot noise contribution.

Let us now illustrate how the combination of backaction cancellation by the atomic ensemble under CQNC
and of the squeezing injected in the cavitymay significantly improve force detection sensitivity.We consider an
experimentally feasible scheme based on amembrane-in-the-middle setup [78], coupled to an ultracold atomic
gas confined in the cavity and in amagnetic field, like the one demonstrated in [77] for light storage. A systemof
this kind has not been demonstrated yet, but the coupling of an atomic ensemblewith amembrane has been
already demonstrated in [41, 43].We assume typicalmechanical parameter values for SiNmembranes,
w p =2 300m KHz, g p =2 30m mHz, p =g 2 300 Hz0 , l  780 nmL , m=P 24 WL and k p =2 1 MHz
(see also the caption offigure 2). The ground state sub-levels of the ultracold atomic gas of [77] could be prepared
in order to satisfy the CQNCcondition, i.e., the Zeeman splitting tuned in order that the effective atomic
transition rate coincideswith wm, the driving of the laserfields adjusted so that the two linearized couplings with
the cavitymode,G and g, coincide.Matching the dephasing rateΓwith the damping rate gm is less
straightforward but one can decrease and partially tune the atomic dephasing rate using themagic-value
magnetic field technique and applying dynamical decoupling pulse sequences, as demonstrated in [77].

Infigure (2), the forcenoise spectral density wSF ( ) optimizedover the squeezingparameters, i.e.,
= +M N N 1∣ ∣ ( ) , f = 0, is plotted versus frequency. Infigure 2(a)wefix the squeezingparameterN=10 and

consider different values of thedetuning: as shownabove, forcenoise isminimumat the optimal case of resonant
cavity drivingD = 0c . This plot clearly shows the advantage of thepresent single cavity scheme compared to the
double cavity setupof [46], where the role ofDc is playedby themode splitting J2 associatedwith theoptical
coupling Jbetween the cavity that cannot beput to zero. Infigure 2(b)wefix thedetuning at this optimal zero value,
andweconsiderdifferent values of the injected squeezing parameterN. At resonance (w w= m), CQNCand injected
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squeezingdoesnot improvewith respect to the SQL spectrum (dottedblack line), but forcenoise suppression is
remarkable in abroadbandaround the resonancepeak, andbecomesmore relevant for increasing injected squeezing
N.Notice that injected squeezing allows a further reductionof the off-resonance (w w¹ m) forcenoisewith respect to
what canbe achievedwithCQNCalone (see infigure 2(b) the full blue line and thedot-dashedpurple line compared
to thedashed red linewhich refers to the case of no-injected squeezing,N=0.)

Infigure (3) the force noise spectral density is instead plotted versus g g0
2( ) , which is proportional to the

input laser power PL, both at themechanical resonance (figure 3(a), w w= m) and off-resonance (figure 3(b),
w w g= + 4m m). In both subfigures we compare the force noise spectrumwith perfect CQNCand for a given
optimized squeezingN, with the corresponding spectrumwith the same injected squeezing butwithout atomic
ensemble andCQNC, for three different values ofN, =N 0, 1, 10 (see also appendix Bwherewe evaluate the
general expressions of the force noise spectrumwithout imposing theCQNC condition). Backaction noise
cancellationmanifests itself with a significant noise suppression at large power, whereminimum force noise is
achieved.Without atoms andCQNC, force noise diverges at large power due to backaction, and one has the
usual situationwhereminimum force noise is achieved at the SQL, at a given optimal power. In both cases, either
with orwithout CQNC, injected squeezingwith f = 0 and = +M N N 1∣ ∣ ( ) is not able to improve force
sensitivity and to lower the noise at resonance (see figure 3(a)), i.e., the SQL value remains unchanged, but one
has the advantage that for increasingN, the SQL is reached at decreasing values of input powers [48]. As already
suggested by figure (2), instead one has a significant force noise suppression off-resonance and at large powers
due to backaction cancellation (figure 3(b)).

4.2. The case of imperfect CQNCconditions
Backaction cancellation requires the perfectmatching of atomic andmechanical parameters. Aswediscussed
above, one can tune the effective atomic transition rate by tuning themagneticfield, andmake it identical to the
mechanical resonance frequency wm.Herewe still assume such a perfect frequencymatchingwhich, even though

Figure 2. Force noise spectral density versus w wm in the presence of perfect CQNC,with an optimized squeezed injected light with
phase f f= =0 0opt ( ) and = +M N N 1∣ ∣ ( ) . (a) refers to the casewith fixed squeezingN=10 and different detunings:

kD = 0c (dot-dashed purple line), kD = 1 2c (dashed green line), kD = 1c (full brown line). (b) refers to the optimal case
kD = 0c and different values of the squeezing parameter,N=0 (dashed, red line),N=10 (dot-dashed, purple line), andN=100

(full, blue line). The dotted black line corresponds to the SQL. The other parameters are w p =2 300m KHz, g p =2 30m mHz,
p =g 2 300 Hz0 , l  780 nmL , m=P 24 WL and k p =2 1 MHz.
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not completely trivial, can always be achieved due to the high tunability ofZeeman splitting.Aswediscussed in the
previous subsection, one can alsomake the twocouplingswith the cavitymodeG and g identical, by adjusting the
cavity and atomic driving, andfinally even the twodecay rates,Γ and gm. However, both coupling ratesmatching
anddecay ratematching are less straightforward, and therefore it is important to investigate the robustness of the
CQNCschemewith respect to imperfectmatching of these two latter parameters.

We have restricted our analysis to the parameter regime corresponding to the optimal case under perfect
CQNCconditions, i.e., the resonant caseD = 0c , with an optimized pure squeezing, f f= =0 0opt ( ) and

= +M N N 1∣ ∣ ( ) .We have alsofixed the squeezing value,N=10, and considered again the parameter values
of the previous subsection, but now considering the possibility of nonzeromismatch of the couplings and/or of
the decay rates.We have used the expression of the spectrumof equation (B5).Wefirst consider infigure (4) the
effect of parametermismatch on the force noise spectrumversusω. Figure (4) shows that CQNC ismore
sensitive to the couplingmismatch than to the decay ratemismatch. In fact, the spectrum is appreciably
modified alreadywhen - = -G g g 10 5( ) , and force noise increases significantly and in a broadband around
resonance alreadywhen - = -G g g 10 3( ) . Thismodification is quite independent from the value of the decay
ratemismatch, g gG - m m( ) , whose effectmoreover is always concentrated in a narrow band around resonance
and for larger values, g gG - = 0.5m m( ) . There is aweak dependence upon the sign of the twomismatches,
which however is typically very small and not visible in the plots.

Infigure (5) insteadwefix the frequency and consider thedependenceof the forcenoise spectrumversus g2, i.e.
versus the laser inputpower, either at resonance (figure 5(a)), andoff-resonance (figure 5(b)), similarly towhatwedid
under perfectCQNCinfigure (3).Due to the imperfectCQNCcausedbyparametermismatch, at large power force
noise spectrum increases againdue to theuncancelled, residual backactionnoise, and the increase at large power is
larger for larger parametermismatch.At resonance (figure5(a))both couplingmismatch anddecay ratemismatch

Figure 3. Force noise spectral density versus g g0
2( ) (proportional to the input laser power) at the optimal value for the detuning

kD = 0c andwith an optimized squeezed injected light with phase f f= =0 0opt ( ) and = +M N N 1∣ ∣ ( ) . (a) refers to the value
at themechanical resonance, w w= m, while (b) refers to the off-resonant case w w g= + 4m m. In both subfigures we compare the
force noise spectrumwith perfect CQNCand for a given (optimized) squeezingNwith the corresponding spectrumwith the same
injected squeezing butwithout atomic ensemble andCQNC. The full red line refers to standard optomechanical caseN=0without
the atomic ensemble of equation (23), while the dashed black line refers again toN=0with the atomic ensemble and perfect CQNC.
The case with injected squeezingwithN=1 corresponds to the long-dashed green line (without atoms andCQNC, see also
equation (B6)), and to the dotted purple line (with atoms andCQNC). Finally the case with injected squeezingwithN=10
corresponds to the double-dot dashed brown line (no atoms andCQNC), and to the dot-dashed blue line (with atoms and perfect
CQNC). The other parameter values are as in figure (2).
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have an effect, and forcenoise increase is largerwhenbothmismatches are nonzero andopposite, due to the effect of
thenegativemass, yielding susceptibilitieswithopposite signs.As already shown infigure (4), the effect of decay rate
mismatch is insteadhardly appreciable out of resonance, andnoise increase is causedby themismatchbetween the
twocouplings, regardless the value of thedecay ratemismatch.The analysis offigures (4) and (5) allowsus to

Figure 4. Force noise spectral density versus w wm at the optimal value for the detuning kD = 0c , with an optimized squeezed
injected light with phase f f= =0 0opt ( ) , = +M N N 1∣ ∣ ( ) , andN=10.We consider different coupling and decay rate
mismatches. The dashed purple line and double-dot dashed red line, respectively refer to the SQL and perfect CQNC.The other
curves correspond to: - =  -G g g 10 3( ) , gG = m (green, dot-dashed line); - =  -G g g 10 5( ) , gG = m (blue, solid line);

g gG - = 0.5m m( ) , g=G (black, solid line); - =  -G g g 10 5( ) , g gG - = 0.5m m( ) (brown, long-dashed line). The other
parameter values are as in figure (2).

Figure 5. Force noise spectral density versus g g0
2( ) . (a)Resonant case (w w= m). Curves 1 (double-dot-dashed dark green line) and

9 (brown solid line) refer to theCQNCand standard optomechanical spectrum (equation (B6)), respectively. The other curves
correspond to: g gG - = +0.1m m( ) ,G=g (curve 2, red dashed); g gG - = - = G g g 0.1m m( ) ( ) (curve 3, black dashed);

g gG - = -0.1m m( ) , g=G (curve 4, green dashed); - = -G g g 0.1( ) , gG = m (curve 5, pink dashed); - = +G g g 0.1( ) ,
gG = m (curve 6, blue dashed); g g- = - G - = -G g g 0.1m m( ) ( ) (curve 7, orange dashed); and

g g- = - G - = +G g g 0.1m m( ) ( ) (curve 8, purple dashed). Figure (b) refers to the off-resonant case (w w g= + 4m m). Curves 1
(double-dot-dashed dark green line) and 5 (brown solid line) refer to theCQNCand standard optomechanical spectrum, respectively.
The other curves correspond to: g gG - = 0.1m m( ) and g=G (curve 2, blue dashed); - = -G g g 0.1( ) and gG = m,

g gG - = - = -G g g 0.1m m( ) ( ) , and g g- = - G - = -G g g 0.1m m( ) ( ) (curve 3, red dashed); - =G g g 0.1( ) and
gG = m, g gG - = - =G g g 0.1m m( ) ( ) and g g- = - G - =G g g 0.1m m( ) ( ) (curve 4, black dashed). As infigure 4, all curves

refer toN=10,D = 0c , f f= =0 0opt ( ) and = +M N N 1∣ ∣ ( ) . The other parameter values are as in figure (2).
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conclude thatCQNC is robustwith respect tomismatchof thedecay rates, up to10%mismatch, and especially off-
resonance,where the advantage of backaction cancellation ismore relevant.On the contrary,CQNC is very sensitive
to themismatchbetween the atomic andmechanical couplingswith the cavitymode,whichhave tobe controlled at
0.1% level or better. Thismeans that inorder to suppress backactionnoise the intensity of the cavity and atomic
drivinghave tobe carefully controlled inorder to adjust the twocouplings.

5. Summary and conclusion

Wehaveproposed a scheme for the realizationofCQNCscheme for thehigh-sensitive detectionof forces basedon a
single optomechanical cavity containing anatomic ensemble anddrivenby squeezed vacuum light. The interactionof
the atomic ensemblewith the cavitymode leads to adestructive interference that perfectly cancels backactionnoise of
theMO,provided that atomic ensemble parameters are chosen so that it acts as anegativemassoscillatorwhose
susceptibility perfectly cancels themechanical one. PerfectCQNCoccurswhen theoptomechanical and the atom-
field interaction coupling constants, themechanical frequency and the effective atomic transition rate, andfinally the
dissipation rate of themechanical resonator and thedecoherence rate of the atomic ensemble, respectively coincide.
Thepresent scheme couldbe implementedby combining state-of-the-artmembrane-in-the-middle setup [78], with
ultracold atomic ensemble systemsused for long-lived light storage [77] and improves in various directions thedual
cavity proposal of [46]. Theoptical coupling rate between cavities J in [46] is replacedby the cavitymodedetuningDc

in our scheme, anddue to this fact, the present scheme reaches a stronger forcenoise suppressionbecause such a
suppression is optimal at resonanceD = 0c ,which canbe set only in thepresent scheme.A further noise
suppression is realized by injected squeezed vacuum in the cavitymode: in fact, shotnoise is further suppressed for
increased squeezing, and this occurs atmuch lower input laser power.Wehave also analyzed indetail the effect of
imperfectCQNCconditions, i.e., when themechanical and atomicparameters are not perfectlymatched, focusing
on the casewhen the twocouplingswith the cavitymodes and/or thedecay rates are different.Wehave seen that
backaction cancellation is robustwith respect to thedecay ratemismatch and10%mismatch canbe tolerated,
especially off-resonance. InsteadCQNC is very sensitive to themismatchof the coupling rates, andonehas to tune
the twocouplings, by adjusting the cavity and atomicdriving, at the 0.1% level at least.
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AppendixA.Derivation ofCQNC force noise spectrum

Using the definitions provided in themain text, the force noise spectrum is explicitly written as
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where the correlation functions in the Fourier space are given by
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Inserting these expressions onefinally gets the general result of equation (21).

Appendix B. Exact expression of force noise spectrum

Based on equation (18), the exact expression of the force noise spectrum in the general casewithout CQNC
condition is given by
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where w w=S k Tth B m( ) is the thermal noise contribution, wSf ( ) corresponds to the field contribution, the
third term is associatedwith the contribution of backaction noise, the fourth term corresponds to the atomic
contribution, and the last term is an interference term asscoaitedwith the joint action of the cavity field and of
the atoms. The explicit expressions are given by
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Notice that under perfect CQNCconditions, w+ =G g R1 02 2( ) ( ) , and both contributions Sb and Sfb become
zero. In theMarkov limit, k w , we keep only the zero order of w k, therefore we have
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Whenwe choose the optimal case of zero cavity detuning,D = 0c , the total force noise spectrum considerably
simplifies andwe get
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Equation (B5) shows the effect ofmismatch.Without the atomic ensemble (G=0) the force noise spectrumof
the optomechanical cavity with squeezed injection can bewritten as
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If we restrict to the injected squeezingwhich is optimal under perfect CQNCcondition for suppressing shot
noise, i.e., f= =ImM 0, one can easily see how the SQL ismodified by phase quadrature squeezing [48, 49], by
minimizing over g2:minimumnoise is achieved at
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which in the case of pure squeezed driving = +M N N 1∣ ∣ ( ) reproduces the usual force SQL,
g c w=S 1 m mSQL ∣ ( )∣ [48, 49].

If in the case without atomswe do not restrict to a given squeezing phase, andwe optimize not only over g2

(power), but also over the phasef, we get that the optimal power is still given by equation (B7), and that,
restricting to the pure squeezing case, the optimal squeezing phase is given by

f c c= + = -M N N2Im 1 sin Re Imm m( ) . This latter optimization allows to reach the so-called ultimate
quantum limit [50, 51] in the case of force sensing, which is smaller than or equal to (at resonance) the SQL, and
is given by
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