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Abstract

The thermodynamical stability of a set of circular double helical molecules is analyzed by path

integral techniques. The minicircles differ only in i) the radius and ii) the number of base pairs (N)

arranged along the molecule axis. Instead, the rise distance is kept constant. For any molecule size,

the computational method simulates a broad ensemble of possible helicoidal configurations while

the partition function is a sum over the path trajectories describing the base pair fluctuational

states. The stablest helical repeat of every minicircle is determined by free energy minimization.

We find that, for molecules with N larger than 100, the helical repeat grows linearly with the

size and the twist number is constant. On the other hand, by reducing the size below 100 base

pairs, the double helices sharply unwind and the twist number drops to one for N = 20. This is

predicted as the minimum size for the existence of helicoidal molecules in the closed form. The

helix unwinding appears as a strategy to release the bending stress associated to the circularization

of the molecules.

PACS numbers: 87.14.gk, 87.15.A-, 87.15.Zg, 05.10.-a
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Introduction

A large amount of physical and biochemical research on circular DNA has been carried

out over the last fifty years following the first observations that the single stranded DNA

of coliphage φX174 was a ring [1] and the tumor virus DNA was in the form of covalently

closed circular duplex molecules [2, 3]. Being less degradable than linear DNA, circular DNA

has recently revealed a potential for those biotechnological applications such as assembly of

nanotubes which require both rigidity and flexibility of the building blocks [4, 5].

Bending flexibility of short DNA fragments has been appreciated since it was pointed

out [6] that linear molecules of order 100 base pairs (bps) can spontaneously close into

circles, even in the absence of proteins, with much higher cyclization probabilities than

those predicted by conventional worm like chain models [7–9]. The circularization of a DNA

fragment causes a bending stress in the loop that may be released by a local untwisting of

the double helix with formation of fluctuational bubbles comprising a few transiently broken

bps [10]. While bubbles are essential to key biological functions such as replication and

transcription of the genetic code [11–15], their length is related to the degree of supercoiling

as shown by atomic force microscopy imaging of circular plasmids [16].

In general, bending and twisting degrees of freedom are intertwined in DNA and their

interplay crucially depends on the molecule size.

Recently, short sequences of extra-chromosomal circular DNA have been found, both in

mouse tissues and human cells, in a range of 80− 2000 bps with length distributions peaked

between 200 and 400 bps [17]. These findings lend support to the prediction that there

should be a minimum size for the existence of double stranded loops whereas, below that

size, circular molecules can be only single stranded [18]. However, the determination of such

threshold is still an open question also in view of the fact that duplex DNA minicircles have

been obtained, by a modified ligase-assisted protocol [19], even in the 60 bps range.

Specifically in the latter, disruptions of the regular helical structure have been detected by

single-strand-specific endonuclease experiments carried out on DNA minicircles with various

radii [19]. Such local disruptions may appear either in the form of kinks which move one

base pair out of the stack [20, 21] or as a breaking of a few base pair hydrogen bonds [22],

the latter event being energetically more costly.

These issues have been attacked by a theoretical model based on the path integral for-
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malism [23] and applied to three minicircles having comparable relative contents of AT- and

GC-bps, albeit with different radii [24]: analysis of the bubble profiles has shown that base

pair disruptions and helix unwinding are in fact more pronounced in the smallest minicircle

with 66 bps (corresponding to a bending angle of ∼ 6o) while larger loops are relatively

stabler. Whereas these findings confirm the soundness of the path integral method, it is

still unsettled whether a critical radius of curvature for the appearance of bps disruptions in

small circles indeed exists and to which extent such critical value may depend on the DNA

sequence specificities.

To shed light on these issues we investigate in this work the thermodynamical stability

of a broader set of molecules spanning the range between 20 and 140 bps. In view of the

shortness of these systems we assume that, for any given length, the cyclization occurs

with finite probability and the molecules are thus in the circular form [25]. Furthermore,

we admit that the minicircles could be found either in the single or in the double stranded

helicoidal configuration, keeping the model general enough to deal with both cases. For each

minicircle size, we simulate a large ensemble of possible twist configurations and compute

the free energy profiles as a function of the average helical repeat, i.e. the number of bps per

helix turn. This methods permits to determine the energetically most convenient helicoidal

conformation for a molecule that, by virtue of the circularization process, has incorporated

a certain amount of bending stress.

Model

In general, the quantum statistical partition function of a system is determined by per-

forming an analytic continuation of the quantum mechanical partition function to the imag-

inary time τ = it, t being the real time [26]. τ is defined within a range whose upper bound

is given by the inverse temperature as in the Matsubara method [27]. Accordingly, the Eu-

clidean action takes the place of the mechanical canonical action and, in the path integral

formalism [28], the statistical partition function is an integral in the configuration space

over (closed) paths running along an imaginary time axis. The largest contribution to the

statistical partition function comes from those trajectories for which the sum of the kinetic

and potential energy is small. The classical partition function is obtained by replacing the

quantum thermal wavelength with the classical one as described in detail in [29].
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The focus of our investigation is a system made of a homogeneous set of N free purine-

pyrimidine bps with reduced mass µ. Let’s define ri as the inter-strand fluctuational vector

describing the dynamics of the stretching mode for the i− th base pair. The application of

the path integral method to our classical system relies on the idea that, at finite temperature,

the base pair displacements can be thought of as trajectories, xi(τ):

± |ri| → xi(τ); τ ∈ [0 , β] , (1)

where β = (kBT )
−1, kB is the Boltzmann constant and T is the temperature. As the

trajectories are closed, xi(0) = xi(β), they can be expanded in Fourier series:

xi(τ) = (x0)i +
∞
∑

m=1

[

(am)i cos(ωmτ) + (bm)i sin(ωmτ)
]

ωm =
2mπ

β
. (2)

The set of coefficients {(x0)i, (am)i, (bm)i} represents a point in the path configuration

space corresponding to a fluctuational state for the i−th base pair. Consistently one defines,

over the space of the Fourier coefficients, an integration measure
∮

Dxi which normalizes

the partition function Zk for the freely fluctuating N particles:

∮

Dxi ≡
1√
2λC

∫

d(x0)i

∞
∏

m=1

(mπ

λC

)2
∫

d(am)i

∫

d(bm)i

Zk =

N
∏

i=1

∮

Dxi exp
[

−Ak[x]
]

= 1

Ak[x] =

N
∑

i=1

∫ β

0

dτ

[

µ

2
ẋ2

i (τ)

]

. (3)

λC is the classical thermal wavelength and Ak[x] is the kinetic action which, as a conse-

quence of the real space mapping, is a dimensionless quantity. Hence, Eq. (3) sets the zero

for the free energy, β−1 lnZk, of the system.

Next, as shown in Fig. 1, we uniformly arrange the N objects (represented by the blue

points) on a circle, with radius R, which represents the bent molecule axis. The i− th object

can fluctuate with respect to R and its vector (ri) describes a (red shaded) orbit lying on
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a plane which is bent by φi with respect to the (x, y) plane. In the local reference system,

centered in Oi, the i − th object makes a positive twist angle (θi) with respect to the x
′

axis and adjacent objects along the stack are twisted by a constant angle. The rise distance

between neighbor objects along the circumference is: d = 2πR/N . Thus we have built a

circular model for a set of particles arranged in a helicoidal conformation. The model can

be applied to both a single stranded and a double stranded molecule. In the former case, ri

represents the i− th base along the strand. In the latter, ri is the inter-strand fluctuational

vector, for the i− th base pair, with respect to the equilibrium position which corresponds

to the minimum for the hydrogen bond potential (see below). In the following we will refer

to a set of N bps with the caveat that very short circular molecules may more likely be

found in the single strand configuration. The values d = 3.4Å and µ = 300 amu peculiar

of DNA molecules are hereafter taken.

Accordingly, with respect to the O reference system (see Fig. 1), the general vector ti for

the i− th base pair is:

(

ti
)

x
= |ri| cosφi cos θi

(

ti
)

y
= (R + |ri| sin θi) cosφi

(

ti
)

z
= (R + |ri|) sinφi . (4)

The x-axis is normal to the sheet plane and R lies on the (y, z) plane. For small size

molecules, it can be reasonably assumed that the relative bending between adjacent orbital

planes along the stack is constant and depends only on the circle length. Then, the bending

angle is, φi = (i−1)2π/N+φS, while the twisting is measured by, θi = (i−1)2π/h+θS, where

h is the number of bps per helix turn [30, 31]. The computation sums over a distribution of

φS and θS in order to avoid to pin the first base pair in the sequence to a specific angular

position. Furthermore, as the molecule axis lies on a plane, the Writhe (measuring the

spatial coiling of the axis itself [32] ) vanishes and the integer Linking number (Lk) for the

closed-circular molecule coincides with the Twist number Tw [33, 34]. The latter is given

by Tw = N/h which, however, is generally not an integer. While in long molecules one

can take Lk as the closest integer to N/h, the extra twist required to join the strand ends

becomes large in short sequences thus significantly reducing the cyclization probability [7].

Accordingly, as h is here a variable, we assume to deal with closed-circular molecules only if
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FIG. 1: (Color online) Schematic of the base pairs (blue dots) stacked along the circular molecule

backbone whose radius R lies on the (y, z) plane. ri is the inter-strand fluctuational vector, for the

i− th base pair, spanning the red shaded orbit. For |ri| = 0, the orbit shrinks into the fluctuations

free state. Adjacent orbits along the molecule axis are bent by an angle φi. θi is the twist angle

for the i− th base pair as shown in the reference system Oi.

N/h is an integer and, in these cases, also closure conditions on the radial fluctuations are

implemented in the computation, |rN+1| = |r1|. Whenever such conditions are not fulfilled,

our circular molecules are open.

As the efficacy of the method crucially depends on the partition of the Tw range, we take

a small incremental step, ∆Tw = 0.0125, so that any molecule may assume in principle a

large ensemble of possible twisted conformations, each with a specific h. The computational

task consists in evaluating the free energy profiles within a broad range of h values. It follows

that the CPU time grows fast with the size of the molecule.

In analogy with Eq. (1), the path integral method is applied to the bent configuration.

Accordingly, ti maps onto a time dependent path fluctuation:

|ti| → ηi(τ) , (5)
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which, in the circular geometry, reads:

ηi(τ) =
[

R2 + xi(τ)
2 + 2R|xi(τ)|f(θi, φi)

]1/2

f(θi, φi) = sin θi cos
2 φi + sin2 φi . (6)

Then, the partition function for the ensemble of N bps oscillating around the fluctuations

free circle is given by:

Z0 =

N
∏

i=1

∑

θS , φS

∮

Dxi exp
[

−A0[η]
]

A0[η] =
N
∑

i=1

A0[ηi]

A0[ηi] ≡
∫ β

0

dτ

[

µ

2
η̇2i (τ)

]

. (7)

The action A0[η] accounts for the bending energy cost due to the deformation which

closes the array of N free particles into a loop. This is proved by the following analytical

argument.

Take for simplicity only one Fourier component in Eq. (2) (and set (b1)i = 0). Then the

path amplitude can be approximated by: xi(τ) ∼ (x0)i+(a1)i cos(ω1τ) and A0[ηi] in Eq. (7)

reads:

∫ β

0

dτ

[

µ

2
η̇2i (τ)

]

≈ 2(s1)
2
i

β

∫ β

0

dτ sin2

(

2πτ

β

)

gi(τ)

gi(τ) ≡
[

|xi(τ)|+Rf(θi, φi)
]2

[

R2 + xi(τ)2 + 2R|xi(τ)|f(θi, φi)
]

(s1)
2

i ≡
π3(a1)

2
i

λ2
C

. (8)

As the action is not quadratic in the Fourier coefficients, Z0 does not decouple into

a product of Gaussian integrals. This marks the difference with respect to Zk in Eq. (3).

Setting R = 0, the Gaussian approximation is recovered for any Fourier component, A0[ηi] ≈
(s1)

2
i and Z0 → Zk.

In general, for a circular molecule with finite R, the normalization condition in Eq. (3)

is not fulfilled. Hence, the free energy level for the loop, F0 = β−1 lnZ0, is not zero. F0 is

computed via Eq. (7) with the integration measure given in the first of Eqs. (3).
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A mesoscopic model for double stranded DNA molecules should incorporate in the action

also the terms describing the effective hydrogen bond base pair interactions. This is done

by including: a) the Morse potential, VM [ηi(τ)] = Di

[

exp(−bi(ηi(τ) − R)) − 1
]2
, which

also accounts for the repulsive electrostatic interaction between phosphate groups. Di is

the pair dissociation energy while the inverse length bi sets the potential range. b) A

solvent potential which enhances the barrier for base pair breaking and stabilizes the strands:

VSol[ηi(τ)] = −Difs
(

tanh((ηi(τ)−R)/ls)−1
)

[35]. The factor fs is related to the counterions

concentration in the solvent and ls tunes the width of the solvent barrier. Both terms and

parameters choice, Di = 45meV , bi = 2 Å−1, fs = 0.1, ls = 0.5 Å, are described in detail

in [34]. Hence the partition function for our homogeneous ds-circular molecules reads:

Z1 =
N
∏

i=1

∑

θS ,φS

∮

Dxi exp
[

−A1[η]
]

A1[η] =

N
∑

i=1

∫ β

0

dτ

[

µ

2
η̇2i (τ) + V1[ηi(τ)]

]

V1[ηi(τ)] = VM [ηi(τ)] + VSol[ηi(τ)] . (9)

and the free energy is computed via F1 = β−1 lnZ1 [36].

Results and Discussion

Given a molecule with N bps, for any twist configuration, the programme sums over

the sets of Fourier coefficients corresponding to ∼ 105 fluctuational states for each base

pair. This suffices to get numerical convergence in the partition function. The computation

includes also large (of the order of a few Ångstroms) path amplitudes xi(τ) which measure

the distance between the pair mates on complementary strands. However, such amplitudes

should not exceed the radius R in order to preserve the overall circular shape of the molecule.

Technically, too large fluctuational amplitudes can be discarded as they would yield a high

kinetic action (see Eq. (8)) hence, a small contribution to the partition function.

The free energy profiles are shown in Figs. 2 for three circular molecules. F0 and F1 are

compared in each panel. The calculations are carried out at room temperature being aware

that thermal effects would loosen the base pair bonds, favor the molecules unwinding, ulti-

mately leading to denaturation in the high temperature regime [37]. The input parameters
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FIG. 2: (Color online) Room temperature free energies (in meV) for three helicoidal circular

molecules as function of the helical repeat. F0 and F1 are computed by Eqs. (7) and Eqs. (9),

respectively.
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of the model, i.e. rise distance, reduced mass and hydrogen bond potential, are common to

all circles.

While oscillating patterns are found in all the free energy versus h plots, the location

of the free energy minimum strongly varies with the molecule size. This indicates that, for

each minicircle, the thermodynamically stablest configuration is associated to a specific twist

conformation. In particular, the smallest circle (among the three ones displayed) takes the

equilibrium state with the largest helical repeat, h ∼ 16, suggesting that the helix unwinding

is more pronounced in small size molecules where the bending of the backbone is strong.

Importantly, in each panel, the minima for F1 coincide with those for F0 signaling that the

molecule unwinding is driven by the bending rather than by the hydrogen bonds, at least

at room temperature. Then, the unwinding patterns of single and double stranded circular

molecules are similar. On the other hand, the potential in Eqs. (9) contributes to order the

molecular structure and, accordingly, the F1 values are shifted upwards on the energy scale

with respect to F0.

Fig. 3 summarizes the results of the free energy computation for a set of circles with

size N ∈ [20, 140]. The helical repeat values which minimize the free energies are reported.

Interestingly the curve is not monotonous and the most twisted conformation (h ≃ 5) is

found for N = 100. For 100 < N < 140, the h equilibrium values increase smoothly and

linearly with N so that the twist number remains essentially constant, Tw = 20. This

is however a property which should be investigated also for larger circles than those here

examined.

Instead, for N < 100, h sharply grows. This is physically consistent with the fact

that short molecules, once bent, have small angles between adjacent bps along the stack.

As a consequence, short circular molecules tend to untwist in order to attain an energetic

configuration which may efficiently release the bending stress. Furthermore, N/h is generally

not an integer indicating that, in the very small size range, circular molecules are unlikely

to be found in the closed conformation.

Only for the loop with N = 20, one single turn of the helix involves all 20 bps that is,

Tw = 1 and the bending angle is 18o. It follows that, in our model, no closed helicoidal

molecules can be found under such size: a prediction which would be interesting to check

experimentally.

The helical repeats selected in Fig. 3 represent the most probable twist conformations
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FIG. 3: (Color online) Helical repeat values obtained by minimization of the free energy of mini-

circles with different size.

associated to the deepest minimum in the free energy profiles with multiple wells. It should

be however remarked that thermal effects may transiently drive every molecule out of its

deepest well bringing it to one of the energetically close states associated to other h values

[38].

In conclusion, the picture emerging from this path integral computation points to the

existence of a critical size of order 100 bps below which the molecule helix progressively

unwinds. The applied model is based on the actions in Eq. (7) and Eq. (9) accounting for the

kinetic energy and the stabilizing hydrogen bond potential. A more structured description

including also the intra-strand base pair stacking may certainly refine the predictions for the

most probable helical repeat values of specific sequences but it is not expected to change

the trend of the results for the helical unwinding versus N presented in this work [39].

Thus, applying a criterion of thermodynamical stability, we have found that the unwind-

ing of small helicoidal circular molecules hosting a uniform distribution of nucleotides is

driven by the size of the loop and it is not essentially affected by the sequence specificities.

The helix unwinds in order to release the stress associated to the bending of the molecule

backbone. The equilibrium twist conformations have been determined by minimizing the
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molecules free energy under the assumption that the bending angle between adjacent base

pairs along the stack is constant. For circles larger than those here examined, such as-

sumption may not hold and, accordingly, bending fluctuational effects [40, 41] should be

incorporated in the theoretical description. Finally, for short double stranded molecules,

a direct computation of the cyclization probabilities in the framework of the path integral

method may contribute to clarify whether a threshold size for closed circular conformations

indeed exists.
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