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A rise in NAD precursor nicotinamide mononucleotide
(NMN) after injury promotes axon degeneration

M Di Stefano1,8, I Nascimento-Ferreira2,8, G Orsomando3, V Mori3, J Gilley2, R Brown4, L Janeckova2, ME Vargas5,6, LA Worrell2, A Loreto1,
J Tickle1, J Patrick2, JRM Webster1, M Marangoni1, FM Carpi7, S Pucciarelli7, F Rossi1, W Meng1, A Sagasti6, RR Ribchester4, G Magni7,
MP Coleman*,2,8 and L Conforti*,1,8

NAD metabolism regulates diverse biological processes, including ageing, circadian rhythm and axon survival. Axons depend on
the activity of the central enzyme in NAD biosynthesis, nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2), for their
maintenance and degenerate rapidly when this activity is lost. However, whether axon survival is regulated by the supply of NAD or
by another action of this enzyme remains unclear. Here we show that the nucleotide precursor of NAD, nicotinamide
mononucleotide (NMN), accumulates after nerve injury and promotes axon degeneration. Inhibitors of NMN-synthesising enzyme
NAMPT confer robust morphological and functional protection of injured axons and synapses despite lowering NAD. Exogenous
NMN abolishes this protection, suggesting that NMN accumulation within axons after NMNAT2 degradation could promote
degeneration. Ectopic expression of NMN deamidase, a bacterial NMN-scavenging enzyme, prolongs survival of injured axons,
providing genetic evidence to support such a mechanism. NMN rises prior to degeneration and both the NAMPT inhibitor FK866
and the axon protective protein WldS prevent this rise. These data indicate that the mechanism by which NMNAT and the related
WldS protein promote axon survival is by limiting NMN accumulation. They indicate a novel physiological function for NMN in
mammals and reveal an unexpected link between new strategies for cancer chemotherapy and the treatment of axonopathies.
Cell Death and Differentiation (2015) 22, 731–742; doi:10.1038/cdd.2014.164; published online 17 October 2014

Axon degeneration in disease shares features with the
progressive breakdown of the distal segment of severed
axons as described by Augustus Waller in 1850 and named
Wallerian degeneration.1 The serendipitous discovery of
Wallerian degeneration slow (WldS) mice, where transected
axons survive 10 times longer than in wild types (WTs),2

suggested that axon degeneration is a regulated process, akin
to apoptosis of the cell bodies but distinct in molecular
terms.3,4 This process appears conserved in rats, flies,
zebrafish and humans.5–8 WldS blocks axon degeneration in
some disease models, indicating a mechanistic similarity.3

Therefore understanding the pathway it influences is an
excellent route towards novel therapeutic strategies.
WldS is a modified nicotinamide mononucleotide adenylyl-

transferase 1 (NMNAT1) enzyme, whose N-terminal extension
partially relocates NMNAT1 from nuclei to axons, conferring
gain of function.9,10 In mammals, three NMNAT isoforms,

nuclear NMNAT1, cytoplasmic NMNAT2 and mitochondrial
NMNAT3, catalyse nicotinamide adenine dinucleotide (NAD)
synthesis from nicotinamide mononucleotide (NMN) and
adenosine triphosphate (ATP; Figure 1a).11,12 Several reports
indicate WldS protects injured axons by maintaining axonal
NMNAT activity.13–15 In WT injured axons, without WldS,
NMNAT activity falls when the labile, endogenous axonal
isoform, NMNAT2, is no longer transported from cell bodies.16

NMNAT2 is required for axon maintenance16 and for axon
growth in vivo and in vitro,17,18 andmodulation of its stability by
palmitoylation19 or ubiquitin-dependent processes both in
mice or when ectopically expressed in Drosophila19–21 has a
corresponding effect on axon survival.
WldS partially colocalizes with mitochondria14,22 and was

shown to increase mitochondria motility and Ca2+-buffering
capacity.23 Inhibiting mitochondrial permeability transition
pore protects degenerating axons.24 However, WldS is
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protective in axons devoid of mitochondria,8 and targeting a
cytosolic variant of NMNAT2 to mitochondria abolished its
protective effect,19 suggesting a late mitochondrial involve-
ment in Wallerian degeneration.
Despite the importance of NMNAT activity in axon survival

and degeneration, the molecular players remain elusive.
Although NMNAT activity is required for protection,13 the
hypothesis that increased NAD levels are responsible25,26

does not fit some data.27,28

While further investigating the role of NAD, we found that
blocking nicotinamide phosphoribosyltransferase (NAMPT,
the enzyme preceding NMNAT, Figure 1a), was surprisingly
axon-protective despite lowering NAD. NAMPT catalyses the
synthesis of NMNAT-substrate NMN, the rate-limiting step
in the NAD salvage pathway from nicotinamide (Nam)
(Figure 1a). Here, we show that NMN accumulates after axon
injury, and we provide genetic and pharmacological evidence
supporting a role for this NMN increase in axon degeneration
when NMNAT2 is depleted. We reveal an unexpected new

direction for research into the degenerative mechanism, a
novel class of protective proteins and new players in an axon-
degeneration pathway sensitive to drugs under development
for cancer.

Results

NAMPT inhibitor FK866 acts within axons to delay
degeneration after injury. To test whether intra-axonal
NAD depletion affects injury-induced axon degeneration we
used FK866, a potent and specific inhibitor of NAMPT29

(Figure 1a). As in other cell types29–31 FK866 promptly
lowered NAD in cultured superior cervical ganglia (SCG)
explants, neurites and cell bodies (Figure 1b). These
remained healthy for 472 h (Supplementary Figures S1A
and S5). Surprisingly, 1–100 nM FK866 added 1 day before
neurite transection potently promoted axon survival (Figures
1c–d; Supplementary Figures S1B and C). Protection was
optimal when FK866 was added 0–3 h postaxotomy and
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Figure 1 FK866 acts within axons to delay degeneration after injury. (a) The salvage pathway of NAD biosynthesis from nicotinamide (Nam) and nicotinic acid (Na). Only NAD
biosynthesis from Nam is sensitive to FK866, which potently inhibits NAMPTwhile having no effect on nicotinic acid phosphoribosyltransferase (NaPRT).29 The reaction catalysed
by bacterial NMN deamidase is also shown. (b) SCG explants were treated with 100 nM FK866 for the indicated times, and then the whole explants (top panel) or the cell bodies
(bottom left panel) and neurite fractions (bottom right panel) were separately collected. NAD was determined with an HPLC-based method (see Materials and Methods; n= 3,
mean and S.D. shown). (c) SCG neurites untreated (top panels) or treated with 100 nM FK866 the day before transection (bottom panels) and imaged after transection at the
indicated time points. (d) SCG explants were treated with 100 nM FK866 1 day before or at the indicated times after cutting their neurites. Degeneration index was calculated from
three fields in 2–4 independent experiments. The effect of treatment is highly significant when the drug is preincubated or added at 0–4 h after cut (mean ±S.E.M., n= 6–12,
one-way ANOVA followed by Bonferroni’s post-hoc test, *Po0.05, **Po0.01, ***Po0.001, ****Po0.0001, compared with untreated)

NMN accumulation initiates axon degeneration
M Di Stefano et al

732

Cell Death and Differentiation



detectable when added 4 h after axotomy (Figure 1d), the
time when cut WT neurites commit to degenerate.16 FK866
does not affect rapid turnover of NMNAT2 in cut neurites, so
protection does not reflect stabilizing NMNAT2 (Supplementary
Figure S1D).
These results were reproducible in dorsal root ganglia

(DRG) explants (Supplementary Figure S2). A second
NAMPT inhibitor, CHS-828, also protected injured neurites
at slightly higher concentrations consistent with its lower
potency32 (Supplementary Figures S3A–C). The presence of
NAMPT in SCG neurites (Supplementary Figures S3D–F) is
consistent with FK866 and CHS-828 exerting their protective
effects by blocking its action within axons.
Thus NAMPT inhibitors unexpectedly phenocopy WldS,

preserving axons locally, independent of any effects on the
nucleus or soma.

A rise in NMN promotes Wallerian degeneration. NAMPT
inhibition by FK866 and maintenance of NMNAT activity by
WldS both preserve transected axons, but they have opposite
effects on flux through the NAD salvage pathway (Figure 1a).
However, a common feature is preventing an increase in

NMN, the product of NAMPT and substrate of NMNAT, once
NMNAT2 is degraded. Therefore, we tested the hypothesis
that NMN promotes axon degeneration.
First, we confirmed that NAMPT persists for 424 h in

transected SCG neurites (Supplementary Figures S3E and F),
long after NMNAT2 degrades, indicating NMN synthesis
continues when it can no longer be converted to NAD.16

Second, we tested whether exogenous NMN could overcome
FK866 to restore rapid axon degeneration. 25 μM–1mMNMN,
co-administered with FK866, dose-dependently reverted
neurite protection (Figures 2a and b). The EC50 at 8 h was
60 μM, and degeneration was complete at all NMN concentra-
tions tested by 24 h after injury (Figure 2b), with some
reversion even at 2.5 μM (data not shown). To exclude
intracellular conversion of NMN to NAD, mediated by any
residual axonal NMNAT2, we also added 1mM NMN to
FK866-protected neurites 12 h after cutting, a time when little
or no NMNAT2 remains.16 Here, NMN restored axon
degeneration within 3 h of addition (Figure 2d).
The likely mechanism of NMN uptake is extracellular

conversion to nicotinamide riboside (NR).33–35 Although direct
uptake of phosphorylated nucleotides may occur,31 the
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ectoenzymes nucleotide pyrophosphatase and 5′ nucleoti-
dase are proposed to catalyse two- or one-step conversion of
NAD and NMN to NR33 (Supplementary Figure S4A).
Intracellular NR kinases (NRKs) use NR to resynthesize
NMN,36 which in turn is used to synthesize NAD, but only if
NMNAT is present. Consistently, exogenous NR (Figure 2c)
and NAD (Figure 2d; Supplementary Figure S4C) also
abolished FK866-induced neurite protection. The likely
explanation is that both metabolites feed through to intra-
cellular NMN, but cut axons fail to convert this to NAD. In
support, NMN and NAD showed a greatly reduced effect in the
presence of inhibitors either of the ectoenzymes converting
them toNRor of NRuptake (Supplementary FiguresS4BandC).
In contrast, nicotinic acid (Na), nicotinic acid mononucleo-
tide (NaMN) and nicotinic acid adenine dinucleotide (NaAD),
all intermediates of NAD synthesis that do not generate NMN
but feed into the Preiss-Handler NAD biosynthetic pathway
from Na (also called deamidated pathway, see Figure 1a and
Nikiforov et al.33 and Belenky et al.34), were unable to revert
FK866-protective effect (Supplementary Figure S5). Their
ability to protect cell bodies from long-term FK866 toxicity
(Supplementary Figure S5) confirmed they had entered the
cell and could be converted to NAD as long as NMNATactivity
is present, as this enzyme is required to convert NaMN to NAD
(see Figure 1a and Nikiforov et al.33 and Belenky et al.34).
Taken together, these results strongly suggest that FK866

protects injured axons by blocking an accumulation of NMN, a
nucleotide which WldS and NMNAT2 remove, and conse-
quently that NMN could promote axon degeneration.

NMN promotes Wallerian-like degeneration without phy-
sical injury. Degeneration of continuous axons after axonal
transport block in some neurodegenerative disorders is
mechanistically related to Wallerian degeneration, as WldS

blocks some of these too.3,37 We tested whether FK866 and
NMN also influence the Vincristine primary culture model
of Wallerian-like degeneration, a pathology underlining
chemotherapy-induced peripheral neuropathy.38 Here too,
100 nM FK866 protected axons and this was reversed by
1mM exogenous NMN, indicating a similar degenerative
mechanism to that after axotomy (Supplementary Figure S6).

Genetic data confirm that NMN and NAMPT are neces-
sary for rapid Wallerian degeneration. In order to confirm
genetically that a rise in NMN promotes axon degeneration,
we tested whether axons could be protected by scavenging
NMN; the data above suggest that this is also how WldS and
NMNAT enzymes promote axon survival so we aimed to
replicate this independently of NMNAT. Many bacterial
species have an NMN deamidase enzyme that mammals
lack. This enzyme converts NMN to NaMN (Figure 1a) and
was recently identified and characterized in two bacterial
species.39 When ectopically expressed in HEK293T or PC12
cells, Escherichia coli NMN deamidase (kindly supplied by
Professor Nadia Raffaelli) retains its enzyme activity and
promptly converts NMN to NaMN (Figure 3a) without altering
NAD levels, as expected (Figure 1a). We then microinjected
plasmid complementary DNA (cDNA) constructs encoding
E. coli NMN deamidase, fused to enhanced green fluorescent
protein (EGFP), into SCG neurons (Figure 3b) and found a

robust delay in the degeneration of transected neurites
(Figures 3c and d), stronger than the effect of FK866 and
similar to that of WldS.27 Mutations that greatly reduce
catalytic activity (Figure 3a) caused a closely corresponding
decline in neurite protection, confirming that NMN deamidase
activity is required (Figures 3c–d). Shewanella oneidensis
NMN deamidase also showed robust axon protection
(Supplementary Figures S7A–C). In contrast to WldS, NMN
deamidase is unlikely to maintain NAD levels in transected
axons as NaMN cannot be converted to NAD due to NMNAT2
rapid degradation. These genetic data indicate that
an increase in NMN levels is required for Wallerian
degeneration; the ability of NMN deamidase to phenocopy
WldS strongly suggests that both enzymes act by
scavenging NMN.
We also sought genetic evidence directly implicating

NAMPT. Inhibitors such as FK866 block NAMPT almost
instantly but conditional genetic ablation and RNA interference
are gradual processes requiring time for messenger RNA and
protein turnover; NAMPT is a relatively stable protein in
neurites (Supplementary Figures S3E and F). Thus we found
that, over the longer period needed to deplete NAMPT
genetically, neurons and neurites die, probably reflecting the
gradual decline in NAD (Supplementary Figures S1A and S5).
Likely NAMPT inhibitors expose a time window when abruptly
lowering axonal NMN is protective but depletion of NAD has
not yet become harmful, an effect that cannot be mimicked by
NAMPT gradual genetic depletion.
To overcome these difficulties, we asked whether expres-

sing a drug-resistant NAMPT mutant restored rapid Wallerian
degeneration in the presence of FK866. We engineered the
mouse homolog of the human drug-resistant mutant,
NAMPTG217R, 32 and showed that, in contrast to WT NAMPT
control, it significantly maintained NAD synthesis in
HEK293T cells in the presence of FK866 (albeit to only 27%
of that in the absence of the drug), confirming its enzyme
activity and drug resistance (Supplementary Figures S7D–F).
Although absolute nucleotide levels in axons could differ from
HEK293T cells, the relative sensitivities to FK866 of these
proteins are likely to be similar. When these cDNA constructs
were microinjected into dissociated SCG neurons along with
plasmid pDsRed2-N1 to visualize their neurites, even this
limited enzyme activity of NAMPTG217R was sufficient to fully
revert neurite protection by FK866 at 24 h after transection,
while theWT, drug-sensitive protein had no effect (Figures 3e–f).
Thus NAMPTactivity has to be completely silenced for FK866
to protect injured neurites, further illustrating why gradual
genetic ablation (above) cannot mimic FK866.
Together, these genetic experiments show that both NMN

and NAMPT activity are necessary for rapid Wallerian
degeneration and confirm that FK866 protects axons through
on-target inhibition of NAMPT.

NMN accumulates in vivo before injured axons degen-
erate. We then tested in vivo the hypothesis that NMN
accumulates in injured axons before degeneration. In WT
mice, sciatic nerve axons first fragment around 36 h after
injury.40 However, we found that NMN begins to rise within
12 h, reaching 2.5 times normal levels by 30 h (Figure 4A(a)).
Interestingly, this NMN concentration (around 4 nmol/g) is
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broadly similar to that needed to kill axons (Figure 2b),
considering the contribution of non-axonal material in the
nerve and partial penetration of exogenous NMN. Simulta-
neously, NAD decreases (Figure 4A(b)). We saw no other
gross change in the high-performance liquid chromatography
(HPLC) profile (Supplementary Figure S8A), and using HPLC
and mass spectrometry we also excluded a rise in NR
(Supplementary Figure S8A(b and c) and B). Both NMN and
NAD remained stable in lesioned WldS nerves (Figure 4B).

These data support the notion that NMNAT2 rapidly degrades
in injured axons and that WldS directly substitutes for it when
present.16,19 The early rise in NMN suggests that NMNAT2 is
depleted after axotomy in vivo as well as in primary
culture,16,19 although possibly less quickly consistent with
the slower onset of Wallerian degeneration in vivo. We also
found that whole brains of embryos lacking NMNAT2 (which
die perinatally with severely truncated peripheral nerves) also
show raised NMN levels (Figure 4C(a)). Crucially, these
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measurements may underestimate the increase in axons,
where the consequences of the lack of NMNAT2 are most
evident; indeed, axons in many parts of the brains of mice
lacking NMNAT2 are additionally likely to be severely stunted
due to an underlying outgrowth defect.18 This might also
explain why there is no significant reduction in NAD levels in
the whole brains of these mice (Figure 4C(b)).
Intriguingly, ATP and energy charge remain remarkably

constant in injured sciatic nerves during the latent phase of
degeneration (Supplementary Figure S8A), so axons in vivo
do not undergo an early bioenergetic deficit. Finally, for a first
indication of where NMN may act, subcellular fractionation
experiments showed that NMN concentrations in cytosol 30 h
post-lesion were much higher than in any other compartment,
in contrast to a previous study where cytosol had the lowest
NMN level in two cell lines,41 and consistent with the cytosolic
location of NAMPT and cytoplasmic location of NMNAT2
(Supplementary Figure S8B). However, the possibility of an
NMN increase, especially highly localized, also in other
subcellular compartments cannot be completely ruled out.
We also cannot completely exclude a rise in NMN in Schwann
cells. However, axons are known to lose both NMNATand its
product NAD after axotomy,16,26 and this would likely be
accompanied by a rise in axonal NMN, as NAMPT is stable
and can continue to synthesize NMN (Supplementary Figures
S3E and F). In contrast, there is neither data nor a rationale at
present to suggest such a change in Schwann cells. Thus

NMN accumulates in the cytosol prior to axon degeneration,
and although NAD also declines, there is no concomitant
reduction in ATP.

FK866 prevents NMN accumulation in injured nerves and
preserves functional axons and neuromuscular
synapses. We confirmed that FK866 blocks the rise in
NMN using explanted nerves cultured for 30 h. Explanting
nerves necessarily involves axotomy, and we previously
showed that this system discriminates the WldS and WT
phenotypes.40 Similar to in vivo, NMN rose in these nerves
while both NMN and NAD were significantly depleted after
treatment with 10 μM FK866 (Figure 5A(a)). The higher
concentration required to achieve this reflects the thickness
of the nerve and the presence of abundant myelin. We found
that axons in cultured FK866-treated yellow fluorescent
protein (YFP-H) nerves40 fragmented significantly later than
vehicle-treated nerves (Figures 5A(b)).
To test whether these axons remain functional and whether

neuromuscular synapses can also be preserved, we isolated
nerve–muscle preparations of flexor digitorum brevis (FDB)
and cultured them overnight in oxygenated mammalian
Ringer’s solution, with or without FK866 (1 and 10 μM). Wild-
type muscle fibres lose both evoked and spontaneous
miniature end-plate potentials (mEPPs) during overnight
incubation, whereas WldS prevents this loss and preserves
excitability and competence to release the neurotransmitter
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points after nerve transection, and in the contralateral uncut nerve, and normalized to the total adenylate pool (ATP+ADP+AMP) as a measure of nucleotide yield (n= 4 per time
point; mean± S.E.M., two-way ANOVA with Bonferroni’s post-hoc test, ****Po0.0001). Minor changes in the unlesioned, contralateral nerves likely reflect that they are not
completely isolated from the effects of the operation such as anaesthesia and secondary effects. (B) NMN (a) and NAD (b) levels in sciatic nerves lesioned for 30 h of WTand
WldS mice (n= 3–4, one-way ANOVAwith Bonferroni’s post-hoc test, **Po0.01). (C) NMN (a) and NAD (b) levels were determined in the whole brain of WT E18.5 embryos (+/+)
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(Figure 5B). FK866 showed a dose-dependent protection on
WT fibres at 16–20 h that became statistically significant at
10 μM (Figures 5B(a) and (b)). FK866 also potentiated WldS

protective capacity at 42–48 h (Figure 5B(c)). Thus FK866
maintains structural and functional integrity of both the distal
axon stump and the neuromuscular junction.

FK866 delays Wallerian degeneration in vivo. To assess
FK866 protection in vivo, we treated zebrafish larvae 48–54 h
postfertilization, transiently expressing DsRed-Express in
trigeminal and Rohon–Beard somatosensory neurons
(Figure 6a), with FK866 for 2 h prior to two-photon laser
axotomy. FK866 delayed degeneration of zebrafish sensory
axons dose-dependently, up to a five-fold, similar to in vitro
(Figures 6b and c and Supplementary Videos S1 and S2).
Interestingly, degeneration was synchronous for axonal
branches in vehicle-treated fish but asynchronous with
FK866, such that around 20% of branches survived eight-
fold longer than normal (Figures 6b–c). To determine whether
escalating doses of FK866 cause axon or neuronal toxicity

in vivo, we treated fish with 1mM FK866 and found a
decrease in the potency of protection but no cell death or
axon regeneration defects during 12–20 h of imaging.
These results demonstrate that treatment with NAMPT

inhibitor FK866 potently delays axonal degeneration in vivo in
a vertebrate model organism.

Discussion

The ability of WldS, an NMNAT1 fusion protein, to delay
axon degeneration10 has led to the widely held assumption
that NAD synthesis is central to its neuroprotective
mechanism.25,26 In contrast, our data show that NMNAT-
substrate NMN accumulates before injured nerves degener-
ate, that exogenous NMN promotes axon degeneration when
NMNAT is absent and that scavenging NMN delays degen-
eration. To our knowledge, NMN has no previously known
function in mammals other than as an NAD precursor.
Considerable NAD depletion causes no overt harm to axons

within the timescale of Wallerian degeneration. Instead,
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Figure 5 FK866 is effective ex vivo and preserves functional axons and neuromuscular synapses. (A) FK866 delays Wallerian degeneration ex vivo. (a) NAD (left panel) and
NMN (right panel) levels were determined in mouse sciatic nerve explants cultured for 30 h in the presence of 10 μM FK866 or vehicle (DMSO) and normalized against the total
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more rapid ex vivo than in vivo,64 probably reflecting the shorter nerve stump length and altered environment. However, the phenotype is readily distinguished from WT ex vivo,
with incubation in MPS at 32 °C. het= heterozygous
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consistent with the rapid degradation of endogenous
NMNAT2,16,19 a rise in NMN is detectable within 12 h of nerve
lesion, 24 h before the first axons degenerate.40 Stable ATP
levels indicate that there is no bioenergetic deficit by 30 h,
shortly before axons degenerate.40 The suggestions that a
bioenergetic imbalance initiates axon and synaptic
dysfunction42,43 and that FK866 protects axons bymaintaining
ATP44,45 are difficult to fit with this observation.
Instead, our data strongly suggest that FK866 prolongs the

functional survival of transected axons and their synapses
in vitro, ex vivo and in vivo and delays neurite degeneration
induced by vincristine, by blocking a rise in NMN. Three
independent methods to prevent NMN accumulation delay
Wallerian degeneration: sequestering with WldS, blocking
synthesis by NAMPT inhibition, or deamidating with ectopi-
cally expressed bacterial NMN deamidase. We cannot
completely exclude a role for a related, potentially even
unknown, endogenous metabolite of NMN, but there is no
detectable rise in NR. Similarly, we cannot completely rule out
any off-target or additional effects of FK866, even on
neuromuscular junctions, although the high specificity of
FK866 and our genetic evidence make it unlikely as a
mechanism of protection from Wallerian degeneration. We
conclude that a rise in NMN is necessary for Wallerian
degeneration and its exogenous delivery promotes degenera-
tion when there is no enzyme to remove it.

In other cellular circumstances, NMN can have cyto-
protective properties,46–49 making our findings particularly
unexpected. However, all cells and tissues in those studies
contained NMNAT to convert NMN into NAD and cytoprotec-
tion reflects NAD production not NMN itself. The effect of NMN
on glucose tolerance was accompanied by an NMN peak
15min after systemic administration, before falling back to
normal levels as NAD rose,48 and in ischemic models
exogenous NAD was also protective.46 In contrast, lesioned
nerves have insufficient NMNAT to metabolize NMN. Hence,
its levels rise continually for 430 h, eventually reaching a
threshold that we propose activates downstream degenerative
events. In contrast, NAD falls (Figures 4 and 5). Several
studies report beneficial effects of NAD or its precursors in
axonal or neuronal degeneration models but in these NMNAT
was still present when these compounds were administered.
Here, in contrast, we add NMN up to 12 h after axotomy
(Figure 2d) when NMNAT is degraded. We suggest this
underlies the different effect we observe.
Downstream of NMN, possible mechanisms include direct

actions on an essential protein or a signal activating an axon
degeneration program. For example, myeloid differentiation
factor 88-5/sterile alpha and TIR motif-containing protein 1
(MyD88-5/SARM1) is required for axotomy-induced axon
degeneration,50 and membrane occupation and recognition
nexus repeat containing 4 (MORN4) is required for

Figure 6 FK866 delays Wallerian degeneration in vivo. (a) Schematic of larval zebrafish head indicating position of trigeminal neurons and axons, relative to the fish eye.
(b) Time to beginning of fragmentation following laser axotomy in larvae pretreated for 2 h with vehicle (1% DMSO) (n= 25), 50 μM (n= 9), 200 μM (n= 11) or 1 mM (n= 10)
FK866. Each circle represents one experiment; horizontal bar denotes average degeneration time (# indicates data from axon still intact 424 h, *Po0.05; **Po0.001).
(c) Confocal images of trigeminal neurons postaxotomy labeled with DsRed-Express and treated with 1% DMSO or FK866. Arrowheads point to the site of axotomy. Scale bar,
100 μm
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Taxol-induced degeneration.51 Due to structural homology,
inhibition of NAD-dependent enzymes by NMN is another
possibility, although NAD remains in a high molar excess over
NMN. We found no effect on four dehydrogenases (inosine
monophosphate dehydrogenase, glycerol-3P dehydrogen-
ase, L-glutamate dehydrogenase, malic dehydrogenase),
although we cannot rule out an effect on other NAD-
dependent proteins, similar to inhibition of NAD-dependent
DNA ligase in bacteria. Alternatively, excess cytoplasmic NMN
may interfere with poorly understood mechanisms that
exchange pyridine nucleotides between mitochondria
and cytoplasm,33 potentially leading to mitochondrial
dysfunctions.23,24

WldS and other NMNATs protect through a gain of
function,52 so moving this towards translation has been
challenging. Here, by investigating the action of WldS, we
observed that FK866 and CHS-828, two drugs already in
human clinical trials for cancer, are axon protective.29,53 We
confirm significant protection of neuromuscular synapses,
potentiation of WldS phenotype in organotypic nerve/muscle
explants and prevention of Vincristine-induced axon damage
in primary culture. Importantly, FK866 protection in the
absence of general toxicity is observed also in vivo. The
marked contrast between axon preservation by FK866 and
CHS-828 and the dose-limiting peripheral neuropathy caused
by many existing cancer therapeutics54 suggests that combi-
nation therapies could simultaneously enhance chemotherapy
and reduce neuropathy. FK866 was well tolerated in phase I
trials and has shown some effect in cases of cutaneous T-cell
lymphoma (http://www.clinicaltrials.gov), opening the pro-
spect of its combinatorial use with compounds reported to
cause peripheral neuropathy such as platinum compounds,
vinka alkaloids, taxol or more recent chemotherapeutics (e.g.,
methotrexate, etoposide and AraC), although toxicity from
long-term NAD depletion could arise.
In summary, we identify a key role for NMN accumulation in

promoting Wallerian degeneration and reveal NMN-
synthesising enzymeNAMPTas an important new therapeutic
target in axonopathies. Remarkably, NMN starts rising long
before axons fragment, suggesting ample time for down-
stream events. Our results tie an NMN increase to axon
degeneration, suggesting it could be the long hypothesized
‘deleterious factor’55 and key player in the activemechanism of
axon degeneration.56,57 They identify pharmacological agents
that delay axon degeneration and suggest an important
potential for combinatorial cancer treatments.

Materials and Methods
Plasmids. Murine NAMPT was generated by amplification of the full coding
region by reverse transcriptase-PCR (RT-PCR) (see below) from 1 μg total mouse
brain RNA and cloned in pcDNA3.1(+) (Invitrogen, Paisley, UK). Inhibitor-resistant
murine NAMPTG217R was obtained from WT NAMPT in pcDNA3.1(+) by site-
directed mutagenesis using the QuikChange site-directed mutagenesis kit (Agilent
STRATAGENE, Stockport, UK), following the manufacture’s instructions, using the
following primer: 5′-TGGTTAACTTTAAAAGAACAGCAGATACTGTGGC-3′ and its
reverse complementary. E. coli (Uniprot ID: P0A6G3) NMN deamidase (WT, Mut1
and Mut2) open reading frame (ORF) was amplified by PCR from bacterial
expression plasmids39 (kind gift of Professor Nadia Raffaelli) using primers carrying
BglII and HindIII restriction overhangs for directional cloning into pEGFP-C1 vector
(BD Biosciences Clontech, Saint-Germain-en-Laye, France) (primer sequence: For:
5′-GGAAGATCTACTGACAGTGAACTGATG-3′ and Rev: 5′-GCTGAAGCTTCTAAG

TGTTTTGTAGAAATTG-3′). S. oneidensis (Uniprot ID: Q8EK32) NMN deamidase
ORF was subcloned from a bacterial expression plasmid39 (kind gift of Professor
Nadia Raffaelli) into pCDNA3.1/HISA vector (Invitrogen) using BamHI/NotI
restriction enzymes. The resulting plasmids were replicated in DH5-alpha and
sequence verified (Beckman Coulter, High Wycombe, UK).

Other plasmids used were pDsRed2-N1 for expression of variant Discosoma red
fluorescent protein (DsRed2) and pEGFP-C1 for expression of eGFP (both BD
Biosciences Clontech).

RT-PCR. RT-PCR from total brain RNA was performed as described16 using the
following primer pair to amplify murine NAMPT: 5′-CGGCCCGAGATGAATGCTGC-3′
and 5′-CTAATGAGGTGCCACGTCCTGCT -3′.

Mouse origin and genotyping. C57BL/6 WT mice were obtained by
Charles River (Saffron Walden, UK). YFP-H mice58 were obtained from The
Jackson’s Laboratory (Bar Harbor, ME, USA) and genotyped by Southern blotting
(YFP probe generated by PCR from YFP-H mouse genomic DNA using the primers
5′-CGAACTCCAGCAGGACCATGTGAT-3′ and 5′-CTTCTTCAAGGACGACGGCAA
CTACAAG-3′).

All animal work was performed in accordance with the 1986 Animals (Scientific
Procedures) Act under project licences PPL 80/1778, PPL 80/2254 and PPL 40/3482.

Nerve lesions. Sciatic nerve lesions were performed as previously described.27

Right sciatic nerves were transected at the upper thigh and wounds closed with
sutures. After 6–30 h, mice were killed by cervical dislocation, and the swollen first
2 mm of distal nerve was discarded. The remaining distal sciatic nerve stump was
used for nucleotide content determination or for imaging of axon degeneration.

Subcellular fractionation. Sciatic nerves from WT mice were dissected as
described above and processed either immediately or after 30 h ex vivo culture.
Nerves were homogenized in buffer containing 0.22 M mannitol, 70 mM sucrose,
10 mM Tris pH7.4, 0.5 mM EDTA and protease inhibitor cocktail. The homogenate
was then centrifuged at 4 °C at 800 × g/10 min to eliminate cell debris and nuclei,
and the supernatant further was centrifuged at 12 000 × g/20 min to separate the
mitochondrial pellet from the supernatant containing cytosol and non-mitochondrial
membranes. Pellets and supernatant were rapidly frozen and analysed by HPLC or
Mass Spectrometry-based determination of NMN and NAD levels.

Sciatic nerve explant culture. Unlesioned sciatic nerves from YFP-H or
WT mice killed by cervical dislocation were quickly removed and transferred into a
sterile dish containing cold Hanks Buffered Saline Solution (PAA, Yevil Sommerst,
UK). The non-neuronal tissue was removed under a dissection microscope, and
nerves were cultured in Opti-MEM supplemented with 1% penicillin/streptomycin
and with glutamax (both Invitrogen) in a humid atmosphere at 30 °C, 5% CO2 for the
times specified, as previously described.40 The nerves were forced down using
insect pins placed onto a sterile 3-cm dish previously coated with Sylgard (Dupont,
Retford, UK) (for future HPLC analysis) or placed directly into an uncoated dish
using a microscope chamber. FK866 (kind gift of Professor Armando Genazzani)
10 μM or dimethyl sulfoxide (DMSO) were added to the explants at the beginning of
the cultures and replaced every 24 h. The degeneration was assessed using an
inverted Olympus microscope (Olympus, Southend-on-Sea, UK) to visualize the
direct YFP fluorescence. Some nerves were rapidly frozen after 30 h in culture for
HPLC-based determination of NMN and NAD levels.

Explant or dissociated cell cultures and treatment. SCG and DRG
explants were dissected and cultured, and axons were transected as previously
described.59 Neurites were allowed to extend for 5–7 days in all cultures before cut.
All compounds were from Sigma-Aldrich (Dorset, UK) unless otherwise stated. In
the Vincristine experiments, this was used at a 0.02-μM final concentration, and the
day of treatment was considered time 0. When FK866 and CHS-828 (synthesized at
the Babraham Institute by Dr. Jonathan Clark) were used, the appropriate
concentration of the drug was applied 16–20 h before cut, at the same time of cut or
of Vincristine treatment or at 2–6 h after cut. When used, all nucleotides were added
at the time of cut at 1 mM unless otherwise indicated in the text. Axon degeneration
was followed during time for up to another 72 h. Degeneration index was calculated
as described.28 To determine NAD levels, SCG and DRG explants were cultured for
7 days before FK866 treatment. At the established time points, SCG explants were
collected and processed as described below. For some cultures, neurites were
separated from their cell bodies by cutting around the explant with a scalpel, and
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cell body and neurite fractions were collected separately, washed in phosphate-
buffered saline (PBS) and processed as described below. For some experiments
and for microinjections, SCG explants were dissociated in single SCG neurons and
cultured as described.16

Microinjection. Microinjection was performed as previously described16 with
minor modifications. Dissociated cells were microinjected using a Zeiss Axiovert
S100 microscope (Cambridge, UK) with an Eppendorf FemtoJet transjector and
5171 micromanipulator system and Eppendorf Femtotips (Stevenage, UK).
Plasmids were diluted in 0.5 × PBS to a concentration of 100 ng/μl and passed
through a Spin-X filter (Costar, Fisher, Loughborough, UK). The mix was
injected directly into the nuclei of SCG neurons in dissociated cultures. All plasmids
were co-injected with DsRed2 at a concentration of 25 ng/μl. In all, 70–200 neurons
were injected per dish. Injection of relatively few neurons per dish facilitated
visualization of individual labelled neurites, as neurites tend to cluster together
in bundles.

Acquisition and processing of images. Bright field images were
acquired on an IX8I (Olympus) coupled to a digital camera (U-TV 0.5XC; Olympus)
using the AnalySIS software (Soft Imaging System, GmbH, Southend-on-Sea, UK)
or on an Observer Z1 (Zeiss, Cambridge, UK) microscope coupled to an EMCCD
(Photometrics PVCam, Marlow, UK) camera using the Axiovision software (Carl
Zeiss Inc., Cambridge, UK). The objectives used were UPlanFI 4 × NA 0.13,
LCPlanFI 20 × NA 0.40 (all air objectives) and Zeiss EC Plan Neoflur 20 × 0.5NA
objectives. Fluorescent images were acquired using Observer Z1 (Zeiss)
microscope coupled to an EMCCD (Photometrics PVCam) camera using the
Axiovision software (Carl Zeiss Inc.). The fluorophores used were GFP and
DsRed2. Images were acquired at 37 °C or room temperature.

HEK293T and PC12 culture and transfection. HEK293T and PC12
cells were cultured under standard conditions in the following media: Dulbecco’s
modified eagle’s medium (DMEM) with 4500 mg/l glucose and 110 mg/l sodium
piruvate (PAA) supplemented with 2 mM glutamine, 1% penicillin/streptomycin (both
Invitrogen) and 10% foetal bovine serum (PAA) for HEK293T cells; DMEM with
4500 mg/l glucose and 110 mg/l sodium piruvate (Sigma, Dorset, UK) supplemented
with 2 mM glutamine, 1% penicillin/streptomycin (both Invitrogen) and 5% foetal
bovine serum (PAA) and 10% horse serum (Invitrogen) for PC12 cells. For
transfection, cells were plated so that they reached 60–80% confluence on the day
of transfection and were transfected using Lipofectamine 2000 reagent (Invitrogen).
Cells in a 24-well dish format were transfected with 800 ng/well of the plasmids.
Cells were collected 48–72 h after transfection.

Western blotting. Western blotting of cell body or neurite homogenates were
performed as described previously.27 In addition to NAMPT (1 : 2000, Enzo Life
Sciences, Exeter, UK), mouse monoclonal anti-histone H1 (1 : 500; Millipore,
Nottingham, UK), and mouse monoclonal anti β-actin (1 : 5000; Abcam, Cambridge,
UK) were used as loading controls for the cell body and the neurite fraction,
respectively. For quantification, western blotting for NMNAT2 (2.0 μg/ml, Abcam)
was performed as described in.16 Western blotting band intensities were
determined and analysed with the ImageJ software (National Institutes of Health,
Bethesda, MD, USA). Western blotting of HEK293T or PC12 cell homogenates
were performed as described,27 and blots were probed with an anti-his antibody
(Sigma, H1029).

Determination of nucleotide levels. To determine NAD levels, SCG and
DRG explants or cells cultured, treated and collected as described above were
lysed by resuspension in water and by passing through a syringe needle. Cell
lysates were first acidified and then neutralized by adding HClO4 and K2CO3,
respectively, and finally loaded on LC18 Supelcosil column (Sigma-Aldrich).60

For determination of NMN, NAD and other nucleotides content, whole brains of
WT, E18.5 embryos or E18.5 embryos heterozygous or homozygous for the
Nmnat2gtE allele18 or alternatively dissected sciatic nerves or sciatic nerve explants
were rapidly frozen in liquid nitrogen and stored at − 80 °C until processed. Then,
N2-ground tissue aliquots were extracted in HClO4 by sonication and neutralized by
adding K2HPO4. Finally, NAD was measured by UV-C18-HPLC and referred to the
total adenylate pool (= adenosine monophosphate+adenosine diphosphate+ATP)
extracted. In each extract, NMN was instead measured upon derivatization with
acetophenone and spectrofluorometric HPLC analysis, carried out as described,41 by
using a duplicate sample analysed in parallel containing NMN spike of a known

amount. Nucleotide levels in subcellular fractions were determined by liquid
chromatography electrospray ionization–tandem mass spectrometry.

Determination of NMN deamidase activity. HEK and PC12 cells
transfected with the empty vector or S. oneidensis or E. coli NMN deamidase (WT
and mutant) expressing vectors were lysed by sonication in 50 mM Tris HCl,
150 mM NaCl, 1 mM DTT and protease inhibitors. NMN deamidase activity was
measured by coupling NaMN formation to its adenylation to NaAD by the bacterial
enzyme NaMN adenylyltransferase (NadD, kind gift of Professor Nadia Raffaelli),
which is strictly specific for the deamidated form of the mononucleotide. The
reaction mixtures contained 100 mM potassium phosphate buffer pH 8, 10 mM NaF,
10 mM MgCl2, 1.6 mM ATP, 0.1 mM NMN, 10 mUnits recombinant NadD from E. coli
and cell lysates. After 30 min incubation at 37 °C, the formed NaAD was quantified
by an HPLC-based method.60

Electrophysiological assay of synaptic degeneration
ex vivo. Mice were killed by cervical dislocation. Tibial nerve/FDB muscle
preparations were dissected and pinned onto small strips of cured Sylgard resin.
These were then placed in sterile 20 ml tubes containing filtered MPS mammalian
physiological saline (MPS; 120 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2,
0.4 mM NaH2PO4, 23.8 mM NaHCO3, 5.6 mM Glucose) equilibrated with 95% O2,
5% CO2. The preparations were maintained at 32 °C in a water bath for up to 48 h.
Preliminary investigations established that, at this time, the amount of synaptic
degeneration in muscles from WldS and WT mice were readily distinguished. FK866
(1–10 μM) was added to the bathing medium. The muscles were bubbled in fresh
MPS for 20 min at room temperature prior to electrophysiological estimation of the
number of innervated muscle fibres. Intracellular recordings were made using
standard microelectrode techniques as described previously.61,62 The WinWCP
(Strathclyde Electrophysiological Software, Glasgow, UK) and MiniAnalysis
(Synaptosoft, Atlanta, GA, USA) softwares were used for EPP and mEPP61

recording and analysis.

Assessment of Wallerian degeneration in zebrafish larvae. To
obtain mosaic labelling of somatosensory neurons, 10 pg of the plasmid CREST3:
LexA, LexAop:DsRed-Express N1 was injected into one-cell stage embryos. Larvae
were anaesthetized in 0.01% tricaine and mounted in 1% low melt agarose, and
two-photon laser axotomy was carried out as previously described.63 Time-lapse
images were obtained at 20–25 min intervals from 12 to 20 h using a Zeiss LSM
510 confocal microscope. Larvae were kept at 28.5 °C during the imaging period.
Fish were pretreated with FK866 in DMSO/pluronic or with vehicle alone 2 h before
axotomy.

Statistical analysis. Data were analyzed with Prism5 (Graph Pad) using
ANOVA (analysis of variance) and Student’s t-tests, with P-values of o0.05 being
considered significant for any set of data.
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