Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

DNA and BSA Binding, Anticancer and Antimicrobial Properties of Co(II), Co(II/III), Cu(II) and Ag(I) Complexes of Arylhydrazones of Barbituric Acid

Jessica Palmucci,^{*a,b*} Kamran T. Mahmudov,^{*a,c,**} M. Fátima C. Guedes da Silva,^{*a,**} Fabio Marchetti,^b Claudio Pettinari,^{*d*} Dezemona Petrelli,^{*e*} Luca A. Vitali,^{*f*} Luana Quassinti,^f Massimo Bramucci,^{*d*} Giulio Lupidi,^{*f,**} Armando J. L. Pombeiro^{*a,**}

^a Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001 Lisbon, Portugal

^b School of Science and Technology, University of Camerino, Chemistry Section, via S. Agostino 1, 62032 Camerino, Italy

^c Department of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan ^d School of Pharmacy, University of Camerino, Chemistry Section, via S. Agostino 1, 62032 Camerino, Italy

^e School of Biosciences and Veterinary Medicine, University of Camerino, Piazza dei Costanti 4, 62032 Camerino, Italy

^f School of Pharmacy, University of Camerino, Biological Section, via Gentile III da Varano, 62032 Camerino, Italy

*Corresponding authors *E-mail addresses:* <u>kamran_chem@mail.ru</u>, <u>kamran_chem@yahoo.com</u> (Kamran T. Mahmudov) fatima.guedes@tecnico.ulisboa.pt (M. Fátima C. Guedes da Silva) giulio.lupidi@unicam.it (Giulio Lupidi) pombeiro@tecnico.ulisboa.pt (Armando J. L. Pombeiro)

1. Synthesis of 2

Scheme 1S. RAHB to CAHB transformations in the synthesis of 2.

2. NMR and IR spectra of H_3L^2 , 1, 2, 7 and 8.

Figure 1S. ¹H NMR spectra of H_3L^2 .

Figure 2S. ¹³C NMR spectra of H_3L^2 .

Figure 3S. IR spectra of H_3L^2 .

Figure 5S. ¹H NMR spectra of 2.

Figure 7S. ¹H NMR spectra of 7.

Figure 8S. ¹³C NMR spectra of 7.

Figure 11S. ¹H NMR spectra of 1.

Figure 13S. IR spectra of 7.

Figure 15S. IR spectra of 1.

3. X-ray analysis

Compound	2	7	8
Empirical formula	C ₃₆ H ₄₉ Cl ₃ N ₁₈ O ₁₁	C ₁₀ H ₉ AgN ₄ O ₇ S	C ₁₃ H ₁₆ N ₆ O ₈ S
Formula weight	1016.28	437.14	416.38
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	<i>P</i> 21/c	P -1	P -1
<i>a</i> (Å)	10.4057(3)	8.4530(2)	7.1448(18)
(Å)	21.2989(6)	9.1802(3)	11.280(4)
<i>c</i> (Å)	21.0249(6)	9.5557(3)	12.049(4)
a (deg)	90	69.666(3)	116.777(12)
β (deg)	100.811(1)	69.858(2)	98.803(11)
γ (deg)	90	79.279(2)	97.186(11)
Ζ	4	2	2
$V(Å^3)$	4577.0(2)	650.93(4)	835.8(4)
T (K)	296	150	150
pcalc (g/cm ³)	1.475	2.230	1.655
μ (Mo K α) (mm ⁻¹)	0.279	1.757	0.256
Rfl collected/unique/obs	66617/5164/3794	11649/4749/4228	13696/3413/2364
$R1^{a} (I \ge 2\sigma)$	0.0857	0.0465	0.0590
wR2 ^b ($I \ge 2\sigma$)	0.2558	0.1401	0.1523
GOF on F^2	1.135	1.093	0.957

Table 1S. Crystal data, experimental parameters and selected details of the refinement calculations of compounds **2**, **7** and **8**.

[a] $R1 = \sum ||Fo| - |Fc|| / \sum |Fo|$. [b] wR2 = $[\sum [w(Fo^2 - Fc^2)2] / \sum [w(Fo^2)^2]]^{1/2}$.

Table 2S. Selected distances (A)	Å) and	angles (°)	for compounds 2	2, 7	and 8 .
----------------------------------	--------	------------	-----------------	------	----------------

2		7		8	
C8-O1	1.232(7)	C7-N2	1.327(4)	C7–O1	1.232(4)
С9-О2	1.238(7)	C8-O1	1.239(3)	С9–О2	1.217(4)
C7–N2	1.395(8)	С9-О2	1.224(3)	C8-N2	1.326(4)
N1-N2	1.202(8)	O1–Ag1	2.589(3)	C10–O3	1.231(4)
C4-N1	1.498(9)	O3–Ag1	2.566(2)	N1-N2	1.308(4)
C10–O3	1.229(7)	O10–Ag1	2.318(3)	N1-N2-C8	120.5(3)
N2-N1-C4	111.5(7)	O11–Ag1	2.343(2)	N2-C8-C7	124.2(3)
N1-N2-C7	118.1(7)	013–Ag1	2.359(2)	01C7C8	123.8(3)

D_HA	d(H···A)	$d(\mathbf{D}\cdots\mathbf{A})$	(D_HA)	Symmetry operation
2				Symmetry operation
2 01W···H1A···09	1.90(4)	2 758(7)	156(6)	$r \frac{1}{2} + r \frac{1}{2} + r$
01W HIA 05	1.90(4)	2.756(7)	167(7)	x, 1/2 - y, 1/2 + 2 x, 1/2 - y - 1/2 + 7
02W H2R 00	1.91(7) 2.12(8)	2.801(0)	13/(8)	<i>x</i> ,1/2- <i>y</i> ,-1/2+2
02WH2BN1	2.12(0)	2.021(0) 2.072(10)	1/3(0)	intra
N2H2N05	1.00(11)	2.972(10)	145(9)	$r \frac{1}{2} $ $r \frac{1}{2} + \pi$
NAHANO6	1.90(11)	2.900(0)	103(8) 170(11)	x, 1/2 - y, -1/2 + 2
N7H7NO2	2.08(4)	2.934(0)	170(11) 177(15)	x, 1/2 - y, -1/2 + 2
N9H9N01	1.98(3)	2.872(0)	177(13) 174(10)	1 + x, 1/2 - y, 1/2 + 2
N11H11N07	1.04(11) 1.06(12)	2.814(0)	1/4(10)	x, 1/2 - y, 1/2 + 2
N12U12N00	1.90(12)	2.024(0)	164(0)	1-x,1-y,1-2
N12····································	2.08(12)	2.938(0)	104(9)	-X, I-Y, I-Z
N31H31C02	2.06(7)	2.000(7)	148(10)	intra
N31···H31D····O1W	2.19(11)	3.042(9)	148(10)	
N32···H32C···O2	2.52(11)	3.118(7)	122(8)	intra
N32···H32C···N2	2.38(11)	3.296(8)	164(9)	intra
N32···H32D···O5	2.28(10)	3.011(7)	133(8)	intra
N32···H32D···N6	2.31(11)	3.193(7)	154(9)	intra
N32···H32E···N35	1.88(11)	2.836(8)	172(5)	- <i>I</i> + <i>x</i> , <i>y</i> , <i>z</i>
N33···H33C···O5	2.34	3.175(8)	156	intra
N33…H33D…O8	2.37	3.094(7)	138	intra
N34···H34C···N31	1.84(11)	2.811(9)	168(10)	- <i>x</i> , <i>1</i> /2+ <i>y</i> , <i>3</i> /2- <i>z</i>
N34…H34D…O2W	1.90(8)	2.785(8)	170(8)	1-x, 1/2+y, 3/2-z
N34…H34E…O8	2.38(11)	2.940(7)	125(9)	intra
N34…H34E…N9	2.28(11)	3.074(8)	159(9)	intra
N35…H35C…O4	2.42(12)	2.992(7)	124(10)	intra
N36…H36C…O1W	2.40(11)	2.991(9)	122(7)	1-x, 1/2+y, 3/2-z
N36…H36D…O7	1.93(8)	2.810(7)	170(8)	intra
N36…H36E…O4	2.13(10)	2.770(7)	124(8)	intra
N36…H36E…N5	2.13(12)	2.976(8)	149(10)	intra
7				
N1…H1N…O1	1.87(4)	2.613(4)	142(6)	intra
N1…H1N…O13	2.22(6)	2.815(4)	125(5	intra
<u>N3…H3N…O12</u>	2.17(3)	3.037(4)	166(6)	<i>1-x, 1-y, 1-z</i>
N4…H4N…O13	2.50(6)	3.059(4)	121(5)	<i>x</i> , <i>I</i> + <i>y</i> , <i>z</i>
N4···H4N···O2	2.09(6	2.912(4)	153(5)	1-x,2-y,2-z
010···HI0A···011	1.98(5)	2.911(5)	159(5)	-x, 1-y, 1-z
Q10H10B02	1.80(5)	2.813(4)	109(4)	<i>x,y,-1+z</i>
0	2.02(4)	2 820(4)	150(4)	intra
	2.02(4)	2.650(4)	139(4)	intra
	2.01(3)	2.030(3)	124(4)	intra
01W 11W2 011	1.94(4)	2.714(4)	138(4)	
	$\frac{2.2}{(4)}$	2.934(4)	140(3)	1 + x, y, z
02W···H2W1···03	1.88(3)	2.842(3)	166(4)	<i>1-x, 1-y, -z</i>
N3···H3N···UIW	1.8/(4)	2.776(4)	1/8(5)	-1+x,y,-1+z
02W···H2W2···O11	1.83(2)	2./18(4)	1/5(3)	<i>1-x,1-y,1-z</i>
N4···H4N···O3	2.09(4)	2.911(4)	1/5(5)	<i>1-x, 1-y, -z</i>
NII···HIIN···O2W	1.84(4)	2.706(4)	172(4)	Intra
N12···H12N···O13	2.21(4)	2.798(4)	127(4)	-1+x,y,z
N12…H12N…O2	2.19(5)	2.888(5)	140(3)	- <i>x</i> ,- <i>y</i> ,- <i>z</i>

Table 3S. Hydrogen bond interactions (Å, °) in complexes 2, 7 and 8.

Figure 16S. Hydrogen bond interactions in **2** (in dashed blue lines; see also Table 3S) grouped by hydrazonium anion and monoprotonated ethylenediamine cation.

Figure 17S. 3D network arrangement in 2 viewed down the crystallographic a, b and c axis, respectively. Hydrogen atoms were omitted for clarity.

Figure 18S. 1D polymeric chain arrangement in 7. Hydrogen atoms were omitted for clarity.

Figure 19S. The bridging mode of the sulfonyl groups in 7 which generate $\{Ag_2S_2O_4\}$ dimetallic cores. i) 1-x,1-y,1-z; ii) x,-1+y,z; iii) 1-x,2-y,1-z

Figure 20S. Hydrogen bond interactions (in dashed blue lines; see also Table 3S) in 7 and 8.

4. Electronic absorption spectra

Compound	λ_{max} (nm)	ε (M ⁻¹ cm ⁻¹)×10 ⁻³
H_4L^1	414	37.6
	266	8.10
	388	37.5
H_3L^2	262	7.51
	389	50.1
1	234	2.41
	388	76.5
2	262	16.9
	480	23.0
3	366	12.5
C C	269	15.7
	424	72.2
4	350	25.3
	269	63.4
	393	18.3
5	350	14.9
	260	16.3
	388	21.6
6	265	6.04
7	388	21.1
_	388	33.3
8	262	13.2
	384	64.1
9	262	20.2

Table 4S. Electronic absorption spectral data of proligands H_4L^1 and H_3L^2 and complexes 1–9.

Figure 21S. UV–vis spectra for different compounds 15 μ M in DMSO (H₄L¹, H₃L², 2-9) and water (1) solution.

Figure 22S. Absorption spectral traces of different complexes (**panel A**) and ligands (**panel B**) in phosphate buffer (10mM, pH 7.2) after gradual addition of calf thymus DNA (from a = 0 to h = 24 mM). Inset shows the plot of [DNA]/ $|\varepsilon_a - \varepsilon_f| vs$. [DNA] (equation 1).

Figure 23S. Emission spectra of EB bound to ct-DNA upon excitation at 490 nm in the presence of increasing concentration of different complexes from (a) 0 to (g) 39 μ M; ([EB] = 6 μ M, [ct-DNA] = 50 μ M. Inset: Stern Volmer plot of F_0/F vs. [complex] for the titration of the complexes to EB-ct-DNA complex.

Figure 24S. Emission fluorescence spectra of DAPI-ct-DNA complex upon excitation at 338 nm in the presence of increasing concentration of different compounds and proligands in the range 0-36 μ M. Experiments were performed in 10 mM phosphate buffer, pH 7.2. Inset: Stern-Volmer plot of **F**₀/**F** *vs.* [complex] for the titration of the complexes to DAPI-ct-DNA complex

Figure 25S. Fluorescence emission spectra of BSA upon excitation at 280 nm, in the absence and presence of different concentrations of compounds and proligands. Inset, Stern-Volmer plots of F_0/F vs. [complex 4] for the titration of the complexes to BSA.