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In simple ferromagnetic quantum Ising models characterized by an effective double-well energy landscape
the characteristic tunneling time of path-integral Monte Carlo (PIMC) simulations has been shown to scale as
the incoherent quantum-tunneling time, i.e., as 1/�2, where � is the tunneling gap. Since incoherent quantum
tunneling is employed by quantum annealers (QAs) to solve optimization problems, this result suggests that
there is no quantum advantage in using QAs with respect to quantum Monte Carlo (QMC) simulations. A
counterexample is the recently introduced shamrock model (Andriyash and Amin, arXiv:1703.09277), where
topological obstructions cause an exponential slowdown of the PIMC tunneling dynamics with respect to
incoherent quantum tunneling, leaving open the possibility for potential quantum speedup, even for stoquastic
models. In this work we investigate the tunneling time of projective QMC simulations based on the diffusion
Monte Carlo (DMC) algorithm without guiding functions, showing that it scales as 1/�, i.e., even more favorably
than the incoherent quantum-tunneling time, both in a simple ferromagnetic system and in the more challenging
shamrock model. However, a careful comparison between the DMC ground-state energies and the exact solution
available for the transverse-field Ising chain indicates an exponential scaling of the computational cost required
to keep a fixed relative error as the system size increases.
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I. INTRODUCTION

Difficult optimization problems are ubiquitous in science
and engineering. Relevant examples are protein folding, the
traveling salesman problem, and portfolio optimization. Such
problems can often be formulated as the search of the lowest-
energy spin configuration in an Ising glass [1], a task that has
been proven to be NP-hard in the case of nonplanar graphs [2].

While exact classical algorithms are believed to require
computational times that exponentially grow with the problem
size (unless P = NP), various heuristic methods can often
provide quite accurate (but possibly not exact) solutions in
a feasible time. Perhaps the most versatile of such heuristic
methods is simulated classical annealing (SCA) [3], which
exploits thermal fluctuations in a Markov chain Monte Carlo
simulation to escape local minima and hopefully find the
lowest-energy state at the end of the annealing process when
the temperature has been reduced to zero.

Also adiabatic quantum computers, such as the quantum
annealers (QAs) built using superconducting flux qubits [4–6],
or, potentially, with Rydberg atoms trapped in arrays of optical
tweezers [7], can be used to solve complex combinatorial
optimization problems. They implement a quantum anneal-
ing process [8–10], in which quantum mechanical tunneling
through tall barriers is used to escape local minima and
quantum fluctuations are gradually removed by reducing to
zero the transverse field of a quantum Ising model. While
in problems with energy landscapes characterized by tall but

thin barriers quantum tunneling definitely makes QAs more
efficient than classical optimization methods such as SCA
[11,12], certain examples are known where the opposite seems
to be true [13,14].

Giving a definitive answer to the question of which opti-
mization problems can show a definite quantum advantage of
some sort [15] is a formidably difficult task, since simulating
the real-time dynamics of QAs using classical computers is
feasible only for very small system sizes (up to, say, ∼30
qubits), which typically tend to be not representative of the real
difficulty of a large size problem. However, quantum annealing
can also be implemented on classical computers using quantum
Monte Carlo (QMC) algorithms, giving one access to large
system sizes. This approach, which is now often referred to
as simulated quantum annealing (SQA) [9,16–19], represents
an alternative heuristic optimization algorithm running on
classical computers. It might be competitive with, or even
superior to, its classical counterpart SCA. The performance
of SQA in solving large ensembles of Ising-glass instances
has been compared to the one of QAs, finding high correlations
between the instances that were easy or hard for the two solvers
[6,20]. However, the dynamics of QMC simulations definitely
does not coincide with the unitary dynamics of an ideal, i.e.,
perfectly isolated, quantum annealer; therefore, it is not clear
if SQA is a trustworthy probe to predict when physical QAs
may or may not outperform classical optimization algorithms
[9,19].
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In a recent study [21], which aimed at shedding light
on the relation between the dynamics of SQA and the one
of QAs, it was found that the characteristic time scale of
tunneling events occurring during path-integral Monte Carlo
(PIMC) simulations increases with the system size as 1/�2,
where � is the energy gap between the ground state and the
first exited state (see also Ref. [22]). This 1/�2 scaling was
found to hold in ferromagnetic quantum Ising models [21],
which are characterized by an effective double-well energy
landscape (the two symmetric minima are the ground states
with opposite magnetizations) and also in one-dimensional
and two-dimensional continuous-space double-well models
relevant for quantum chemistry applications [23]. Remarkably,
this is the same scaling of the time of incoherent quantum
tunneling in symmetric double-well models [24]. Furthermore,
according to the adiabatic theorem, also the annealing time
required in a coherent adiabatic quantum computation to avoid
diabatic transitions [25] to the first exited state must increase
as the squared inverse of the smallest instantaneous gap. The
similar scaling of the respective tunneling times, which was
explained using an instanton theory [26], suggests that PIMC
simulations can efficiently simulate incoherent quantum tun-
neling. This latter phenomenon is supposed to be one of the em-
powering resources of QAs (although quantum superposition
and entanglement might also be crucial ingredients). It allows
them to explore different localized states far away in Hamming
distance, like those typically emerging in the glassy phases
characteristic of Ising-glass models at small transverse field.
On the one hand, this finding suggests that SQA can be used to
predict the performance of QAs, providing us with a useful tool
to guide the engineering of these devices. On the other hand, it
might also imply that SQA has the same potential efficiency in
solving complex optimization problems as QAs have, meaning
that quantum speedup is unlikely to be achieved (apart for a
prefactor), at least as long as the Hamiltonian under consider-
ation is stoquastic, i.e., free of any sign problem [27,28].

Later on, Ref. [29] introduced the so-called shamrock
model, showing that, due to topological obstructions [30],
which originate from frustrated couplings in this model, the
PIMC tunneling time increases with the system size expo-
nentially faster than the incoherent quantum tunneling time,
giving one hope that QAs can outperform SQA and so maybe
also other heuristic optimization methods running on classical
computers.

The performance of SQA in solving optimization problems
crucially depends on the specific type of QMC algorithm being
used to drive the simulation; in particular, for certain difficult
optimization problems, a projective QMC method such as the
diffusion Monte Carlo (DMC) algorithm has been shown to
represent a more efficient engine for SQA than the PIMC
method [31]. In fact, SQA optimizations powered by projective
QMC methods have proven to be competitive with state-of-the-
art classical optimization methods [32]. The above-mentioned
study [29] of the QMC tunneling time for the shamrock model
considered only finite-temperature PIMC algorithms. This
naturally raises the following questions: Can projective QMC
methods efficiently simulate quantum mechanical tunneling?
Would they be immune from the (exponential) pathological
slowdown which affects the PIMC simulations in the shamrock
model?

The main goal of this paper is to address the above two
questions. In order to do so, we implement a projective
QMC method for quantum Ising models based on the DMC
algorithm in which the stochastic dynamics is defined by the
Trotter-decomposed imaginary-time evolution operator. Then,
following Refs. [21,23], we introduce a protocol to measure
the characteristic time of tunneling events occurring in DMC
simulations and we analyze the scaling with the system size
of the so-defined tunneling time, both in the ferromagnetic
quantum Ising chain and in the shamrock model. Furthermore,
in order to understand if the DMC algorithm allows one to
efficiently simulate the behavior of QAs on classical computers,
we analyze the computational cost of DMC ground-state
simulations. In particular, we study the convergence of the
systematic biases in calculations of the ground-state energy,
using as a test bed the quantum Ising chain. It should be noted
that we focus on the simple DMC algorithm, i.e., we do not
consider the use of importance sampling techniques [33] based
on suitably constructed guiding wave functions.

We find that the DMC tunneling time grows proportion-
ally to the inverse of the gap 1/� when the system size
increases. This behavior is analogous to what was previously
found [21,23] in modified PIMC simulations performed using
open-boundary conditions in imaginary time and it represents
a quadratic speedup compared to finite-temperature PIMC
simulations, which require periodic boundary conditions in
imaginary time. Diffusion Monte Carlo simulations display
the same scaling both in the ferromagnetic Ising chain and
in the more challenging shamrock model, as opposed to the
previous finite-temperature PIMC simulations which have
demonstrated to be efficient only in the former model but are
affected in the latter by the pathological slowdown mentioned
above. Modified PIMC simulations with open boundary condi-
tions in imaginary time for the shamrock model have not been
performed yet.

The analysis of possible systematic biases of the DMC
algorithm, in particular the one due to the finite random-walker
population (see Sec. V), shows that the maximum relative
error in the prediction of the ground-state energy increases
with the system size. The convergence to the exact infinite
random-walker number limit becomes slower as the system
size increases, and the number of random walkers required
to maintain a fixed relative error increases asymptotically
exponentially with the system size. We emphasize that these
findings apply to the simple DMC algorithm considered here,
which represents the worst-case scenario in which no suitable
guiding wave function that approximates the ground state
can be defined; it is possible that the importance sampling
technique would boost the algorithm efficiency and fasten the
convergence of the systematic biases.

The rest of the article is organized as follows. In Sec. II
we describe the implementation of the DMC algorithm for
quantum Ising Hamiltonians. In Sec. III we describe the
protocol used to measure the characteristic time of tunneling
events occurring during the DMC simulations and we provide
the results for the ferromagnetic quantum Ising chain, making
comparisons with exact diagonalization calculations of the gap,
showing the 1/� scaling of the tunneling time with the system
size. In Sec. IV the system-size scaling of the DMC tunneling
time for the shamrock model is analyzed, showing also in
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this case the 1/� scaling. Section V reports the analysis of
the convergence of the systematic bias of the DMC algorithm
due to the finite size of the random-walker population. Our
conclusions and the outlook are reported in Sec. VI.

II. DIFFUSION MONTE CARLO ALGORITHM

The DMC algorithm was introduced in Ref. [34], where the
analogy between the imaginary-time Schrödinger equation and
a diffusion equation was first exploited to study ground-state
properties. In its many variants, it has demonstrated to be one of
the most powerful computational tools to predict ground-state
properties of quantum many-body Hamiltonians that describe
various physical and chemical systems, including electron
gases [35], electrons in atoms, molecules, and solids [36–38],
quantum fluids [39], nuclear matter [40], and ultracold atoms
[41]. In this section we present the implementation of the
DMC algorithm for transverse-field Ising models, following
the theoretical formalism sketched in Ref. [42]. Here we
consider a generic Ising spin Hamiltonian defined as

Ĥ = −
∑
i,j

Jij σ
z
i σ z

j − �

N∑
i=1

σx
i , (1)

where Jij is the interaction strength between the ith and the j th
spin placed on the N nodes of a graph and σ z

i and σx
i are Pauli

matrices acting at site i. Each spin experiences a transverse
field of strength �, which introduces quantum fluctuations. We
set the reduced Planck constant h̄ = 1. We do not explicitly
consider longitudinal fields; however, their effect could be
trivially included in the algorithm.

The DMC algorithm projects out the ground-state wave
function by evolving the time-dependent Schrödinger equation
in imaginary time τ = it . In the Dirac notation it is given by

− ∂

∂τ
|�(τ )〉 = (Ĥ − Eref )|�(τ )〉. (2)

Given |si〉 an eigenstate of the Pauli matrix σ z
i at site i with

eigenvalue si = 1 when |s〉 = |↑〉 and si = −1 when |s〉 = |↓〉,
the quantum state of N spins in the system is indicated by
|X〉 = |s1s2 · · · sN 〉. The ensemble of 2N states {|X〉} is chosen
as computational basis. Here �(X,τ ) = 〈X|�(τ )〉 denotes the
wave function at the imaginary time τ . Further, Eref is a
reference energy, which has to be adjusted to stabilize the
simulation, as explained below.

The Schrödinger equation (2) can be solved by applying
iteratively the equation

�(X,τ + �τ ) =
∑

X′
G(X,X′,�τ )�(X′,τ ), (3)

where �τ is a short-time step and G(X,X′,�τ ) is the Green’s
function of Eq. (2). In this article we employ the symmetrized
primitive Trotter approximation [43]

G(X,X′,�τ ) = 〈X|e−(�τ/2)(Ĥcl−Eref )e−�τĤkin

× e−(�τ/2)(Ĥcl−Eref )|X′〉 + O(�τ 3), (4)

where Ĥcl = −∑
i,j Jij σ

z
i σ z

j and Ĥkin = −�
∑N

i=1 σx
i . By

neglecting the O(�τ 3) terms in the Green’s function, one
obtains a quadratic convergence of ground-state properties in

the �τ → 0 limit [39]. The function G(X,X′,�τ ) is written
as

G(X,X′,�τ ) ≈ Gd (X,X′,�τ )Gb(X,X′,�τ ), (5)

where

Gd (X,X′,�τ ) = P δ
F (1 − PF )N−δ, (6)

with PF = sinh(�τ�)
exp(�τ�) . Here δ is the number of spins with

opposite orientation in X with respect to X′ and

Gb(X,X′,�τ )

= exp

(
−�τ

[
Ecl(X) + Ecl(X′)

2
− N� − Eref

])
. (7)

The propagator in Eq. (6) defines a positive-definite and
column-normalized (therefore stochastic) matrix. Hence, it can
be used to define a conventional Markov chain. Specifically,
at each iteration every spin is addressed and flipped with a
probability PF . Alternatively, one samples the number δ of
spins to be reversed from a binomial probability distribution
and then randomly selects which spins to flip, uniformly. The
second term Gb(X,X′,�τ ), instead, defines a diagonal matrix
which is not column normalized. Its action does not change the
spin configuration. It could be accounted for by considering a
large population of replicas of the system, in jargon called
random walkers, and assigning to each walker a weight, which
is initially equal for all walkers, and is then updated iteratively
at each DMC step proportionally to Gb(X,X′,�τ ). However,
this process is known to lead to an exponentially decaying
signal, since most walkers would in short imaginary time
accumulate a negligible weight compared to a few others.
The most commonly adopted procedure to circumvent this
signal loss consists in implementing a cloning-death process,
in jargon called branching, in which at every iteration, say, at
imaginary time τ , each walker generates (after the spin flips)
a number of descendants for the next iteration at imaginary
time τ + �τ equal to nd = int[Gb(X,X′,�τ ) + η], where
η ∈ [0,1] is a uniform random number and the function int[ ]
gives the integer part of the argument. It is easily shown that
on average nd corresponds to the weight Gb(X,X′,�τ ) for a
sufficiently large random-walker population.

The total number of walkers does therefore fluctuate at
each iteration, and after an equilibration time the walkers
sample configurations according to the ground-state wave
function: �(X,τ → ∞) = �0(X). The ground-state energy
and, analogously, expectation values of other operators that
commute with the Hamiltonian can be correctly estimated as
E = limM→∞

∑M
i=1 Eloc(Xi)/M , where {Xi} is a large ensem-

ble of spin configurations generated by the DMC algorithm and
Eloc(X) = Ecl(X) − N� is the local energy. By tuning Eref ,
one can adjust the average random-walker number close to
a target value Nw (in the following simply referred to as the
number of walkers or population size). To do so, we follow the
textbook recipe described in Ref. [43]. The correlations among
different identical walkers generated in the branching process
and the need to control the walker population size possibly
introduce a bias, which vanishes in the Nw → ∞ limit.

The potential sources of systematic errors in the DMC
algorithm originate from the finite-time step �τ and the
finite number of random walkers Nw. As concerns the DMC
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tunneling times, we carefully analyzed these effects, and we
report in Secs. III and IV only data obtained with small
enough values of �τ and large enough values of Nw to be
in the asymptotic exact regime. As concerns predictions of
ground-state energies, a detailed analysis of the systematic bias
due to the finite Nw is reported in Sec. V. The systematic error
in the ground-state energy due to the finite �τ is less relevant
and can be made smaller than statistical uncertainties with
moderate computational effort, so its analysis is not reported
in this article.

Certain previous SQA studies [32,44] employed an alter-
native projective QMC method, which in computational con-
densed matter physics is usually referred to as Green’s function
Monte Carlo [45], based on a different short-time approxima-
tion for the Green’s function obtained with a first-order Tay-
lor expansion: exp[−�τ (Ĥ − Eref )] � I + �τEref − �τĤ .
This method represents a stochastic implementation of the
power method of linear algebra for extracting the principal
eigenvector and the corresponding eigenvalue of a matrix. It
converges to the exact ground state as long as the time step is
small enough to ensure that the right-hand side of the above
Taylor expansion is always non-negative [46]. This condition
is easily fulfilled for small systems, but it demands smaller
and smaller time steps (and therefore a reduced probability
to flip a spin) for larger systems, leading to very inefficient
simulations (see, however, the continuous-time algorithms
of Refs. [45,47]). For the same reason, this method cannot
be employed in continuous-space models with unbounded
spectra, as opposed to the DMC algorithm employed in this
article. One relevant difference between this method and the
DMC algorithm is that in the former only one spin is flipped
at each iteration, while in the latter the number of spins to
be flipped follows a binomial distribution, possibly making
the sampling dynamics more efficient. Furthermore, in the
algorithm using the Taylor expanded Green’s function the
variable τ no longer has the significance of imaginary time
[46].

III. FERROMAGNETIC QUANTUM ISING CHAIN

In this section we describe the protocol we use to measure
the characteristic time of tunneling events occurring in a DMC
simulation and we present the results for the one-dimensional
ferromagnetic transverse-field Ising model defined by the
Hamiltonian

Ĥ = −
N∑

i=1

Jσ z
i σ z

i+1 − �

N∑
i=1

σx
i , (8)

where the coupling is J > 0 and � is the intensity of the
transverse field. Periodic boundary conditions are considered,
i.e., σa

N+1 = σa
1 where a = x,y,z.

At zero temperature this model undergoes a quantum phase
transition from a paramagnetic phase at � > J to a ferromag-
netic phase at � < J . In the � → 0 limit quantum fluctuations
are suppressed and one has two degenerate (classical) states
with all spins up |↑↑ · · · ↑〉 or all spins down |↓↓ · · · ↓〉. In
order to go from one state to the other, the system would
have to overcome an energy barrier separating the two minima,
with the magnetization playing the role of a one-dimensional
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FIG. 1. Plot of the DMC tunneling time ξ for the ferromagnetic
Ising chain (open symbols) as a function of the number of spins N

for different values of the transverse field � with J = 1. The closed
symbols represent the inverse gap values 1/� obtained with exact
diagonalization and rescaled by a parameter α(�) = O(1). The thin
dashed curves represent exponential fits of the tunneling time ξ in
the large-N regime. Here and in the other graphs the error bars are
smaller than the symbol size if not visible.

reaction coordinate which parametrizes a symmetric double-
well profile. For small � > 0, in the thermodynamic limit
there are still two degenerate ground states with opposite
magnetizations, but in a finite chain the degeneracy is lifted
by an exponentially small (in the system size) energy gap due
to the quantum tunneling which couples the two states. This
scenario is reminiscent of what happens in a QA towards the
end of the annealing process when the transverse field is small
and the system explores different well-separated local minima
via incoherent quantum tunneling. For this reason, shedding
light on how tunneling events take place in QMC simulations,
even in the simple double-well scenario, is important to
understand if QAs have the potential to outperform classical
heuristic optimization algorithms, such as SQA.

We define the DMC quantum tunneling time ξ by imple-
menting the following protocol. The simulation starts with all
random walkers initialized in the basis state with all spins
pointing up; we then measure the imaginary time τ (computed
as the time step �τ times the number of DMC iterations)
required to first reach a certain percentage of walkers, some-
what arbitrarily taken to be 25%, with negative magnetization
(majority of spins pointing down), meaning that they have
crossed the energy barrier. This definition is analogous to
the one employed in Refs. [21,23,29] in the case of PIMC
simulations, where a certain percentage of imaginary-time
slices, instead of walkers, is considered. The simulation is
repeated approximately 250 times for larger systems and small
� and approximately 2500 times for smaller systems and larger
values of �. We then take the average value to define ξ and its
standard deviation to define the error bar.

The DMC tunneling times for the ferromagnetic Ising chain
are shown in Fig. 1 as a function of the number of spins N

and for different values of �. For large N the data display
an exponential growth, quite similar to the dependence of the
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inverse gap 1/�, which we obtain via exact diagonalization of
the Hamiltonian matrix. In fact, by multiplying the inverse gap
1/� by an appropriate numerical prefactor α, we obtain precise
matching between the two data sets. The coefficient α turns out
to be a number O(1). We also consider different definitions of
DMC tunneling time, using percentages of walkers that have to
cross the barrier between 10% and 25%, obtaining again results
which follow the 1/� scaling but with a slightly different value
of the prefactor α.

The inverse-gap scaling displayed by the DMC tunneling
times is similar to the result found in Ref. [21] using modified
PIMC simulations performed using open boundary conditions
in imaginary time. This is not surprising, since such a modified
PIMC method had been originally introduced as a computa-
tional tool to study ground-state properties [48,49]. However,
it is usually employed in combination with guiding wave
functions that accurately describe the ground state so that the
convergence to the zero-temperature limit as a function of the
total path length is quite rapid. How this algorithm converges to
the ground state in the absence of the guiding wave function has
not been analyzed in detail yet. It is also worth stressing that in
the PIMC formalism the tunneling time is defined by counting
the number of Monte Carlo sweeps (a sweep corresponds to
one Monte Carlo step per spin) and therefore it does not bear
the significance of imaginary time as in the DMC method
employed in this article. In Ref. [21], also finite-temperature
PIMC simulations (with periodic boundary conditions) have
been performed, finding that the PIMC tunneling times scale
as 1/�2. This behavior was found in ferromagnetic Ising
models, which are characterized by a one-dimensional reaction
coordinate, and it was later confirmed also in one-dimensional
and two-dimensional continuous-space models [23], showing
that it persists also when the reaction coordinate is multidi-
mensional.

Considered together, the above findings suggest that QMC
algorithms are either as efficient as (in the case of the finite-
temperature PIMC algorithm) or quadratically faster than (in
the case of the PIMC algorithm with open boundary conditions
in imaginary time or of the DMC algorithm) QAs in tunneling
through energy barriers and therefore, if one assumes that
incoherent quantum tunneling is the major resource of QAs,
also in solving optimization problems.

IV. SHAMROCK MODEL

The results for the ferromagnetic Ising chain presented in
the previous section indicate that, in an effective double-well
system, QMC simulations can efficiently simulate incoherent
quantum tunneling and therefore they might potentially be
as efficient as or even faster than QAs in solving complex
optimization problems. In order to understand if this finding
is valid in a more general setup, the authors of Ref. [29]
considered a model, named shamrock, which contains the
minimal elements of frustration. This model is described by
the Hamiltonian

Ĥ = −J

K∑
i=1

2i+1∑
j=2i

σ z
1 σ z

j + (J − ε)
K∑

i=1

σ z
2iσ

z
2i+1 − �

N∑
i=1

σx
i .

(9)

FIG. 2. The shamrock, a model of N frustrated spins in a trans-
verse field, is made up of K = (N − 1)/2 leaves, each having three
spins. The solid dark-green lines depict ferromagnetic interactions
(with interaction strength J = 6) between the central spin and all
the other N − 1 spins. The dashed light-green lines instead show
the antiferromagnetic interactions (with interaction strength J − ε)
between the outer spins of the same leaf [see Eq. (9)]. The overall
effect results in creating 2K tunneling paths between the degenerate
classical ground states in the incoherent quantum tunneling regime.

The N spins are grouped in K rings, which form the leaves of
the shamrock (see Fig. 2). Each ring is made of three spins
and the K rings all share one spin, which is placed in the center.
The number of spins is related to the number of rings by the
formula N = 2K + 1. In Eq. (9) ε  J is a small interaction
energy. The first term in Eq. (9) describes ferromagnetic
interactions between the central spin and the outer N − 1 spins.
The two outer spins of each ring are coupled to each other by
an antiferromagnetic interaction, described by the second term
in Eq. (9). The intensity of the transverse field in the last term
in Eq. (9) is �.

We investigate the DMC tunneling time using the protocol
described in Sec. III. The results are shown in Fig. 3. They
display the same 1/� scaling already observed in the case of
the ferromagnetic Ising chain, corresponding to a quadratic
speedup with respect to incoherent quantum tunneling. The
value of the prefactor α used to superimpose the inverse-gap
data to the DMC tunneling time is, as in the ferromagnetic
Ising chain, a number of O(1). This suggests that frustrated
couplings do not play a fundamental role in the tunneling
dynamics of DMC simulations.

In Fig. 4 we also report the scaling of the tunneling times ξ

obtained in finite-temperature PIMC simulations in Ref. [29].
As opposed to the DMC data, which display the same 1/�

scaling in the ferromagnetic Ising chain and in the shamrock
model, the PIMC results display, in the latter model, a faster
growth of ξ with the system size, very accurately described
by the scaling law ξPIMC ∝ 2K/�2. Due to the 2K term, this
growth is exponentially faster than the scaling of the DMC
tunneling time and of the time scale of incoherent quantum
tunneling. This pathological slowdown of PIMC simulations
was indeed anticipated by the perturbation theory of Ref. [29].
This theory predicts that in frustrated models where the
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FIG. 3. Plot of the DMC tunneling time ξ for the shamrock model
DMC (open symbols) as a function of the number of spins N for
different values of the transverse field �. The other system parameters
are J = 6 and ε = 0.2. The closed symbols represent the inverse gap
values 1/� obtained with exact diagonalization and rescaled by a
parameter α(�) = O(1). The thin dashed curves are exponential fits
to the tunneling time ξ in the large-N regime.

two competing ground states are connected by a number of
homotopy-inequivalent paths which grows with system size,
incoherent quantum tunneling can display a quantum speedup
if many interpath transitions are inhibited by topological
obstructions (related to the obstructions discussed in Ref. [30]).
The shamrock model was indeed introduced as an example
of this scenario, with the PIMC simulations confirming the
theoretical prediction also beyond the perturbative regime.
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FIG. 4. Comparison between the tunneling times of the finite-
temperature PIMC algorithm and the DMC algorithm for the sham-
rock model at � = 0.5. The PIMC data are obtained from the formula
ξ = 2K/�2, which was found in Ref. [29]. The closed blue points
represent the scaling 1/�2, characteristic of incoherent quantum
tunneling. The red triangles represent the DMC data. They are well
described by the scaling law α/� (closed green circles), where the gap
� is obtained via exact diagonalization. The simulation parameters
are J = 6 and ε = 0.2.
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E with respect to the exact Jordan-Wigner theory EJW as a function
of the transverse field intensity � for different system sizes N . The
average number of random walkers is Nw = 20 000. The inset shows
erel as a function of the inverse number of walkers 1/Nw for different
transverse field intensity �. The size of the spin chain is N = 60.

V. ANALYSIS OF THE SYSTEMATIC BIAS IN DMC
SIMULATIONS DUE TO THE FINITE
RANDOM-WALKER POPULATION

As explained in Sec. II, the ground-state energy obtained
via DMC simulations is subject to two sources of possible
systematic bias, originating from the finite time step �τ and
from the finite random-walker number Nw. The convergence
to the �τ → 0 limit is quadratic, and all results presented
in this paper have been performed using sufficiently small
�τ to make its systematic effect negligible compared to the
statistical uncertainty. In this section we focus on the bias
resulting from the finite value of Nw. All data reported here
have been obtained with DMC simulations much longer than
the equilibration time, meaning that there is no bias due to the
initial random-walker configuration (see also the discussion on
equilibration times reported below).

We consider the ferromagnetic quantum Ising chain defined
in Eq. (8). Its ground-state energy per site can be exactly
determined via Jordan-Wigner transformation, obtaining in the
thermodynamic limit EJW/N = − 2J

π
(1 + �/J )E(θ ), where

E(x) is the complete elliptic integral of the second kind and
θ2 = 4�/J (1 + �/J )2 [50]. As a reference for the outcomes
of the DMC simulations, we use the ground-state energy results
obtained from the Jordan-Wigner transformation applied on
the corresponding finite-size systems. In fact, for system
sizes larger than N = 30, the relative discrepancy between
the ground-state energies of the finite systems and the one
corresponding to the thermodynamic limit is below 0.02% and
is negligible on the scale considered in this section.

In Fig. 5 we plot the relative error erel = |E − EJW|/|EJW|
of the DMC result E with respect to the Jordan-Wigner theory
as a function of the transverse field intensity for different
system sizes. These data correspond to a fixed random-walker
population Nw = 20 000. One notices that in the paramagnetic
phase � > J , as well as in the � → 0 limit, the systematic bias
due to the finiteNw is negligible. However, in the ferromagnetic
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FIG. 6. Relative error erel as a function of the inverse number
of walkers 1/Nw for different system sizes. The transverse field
intensity is � = 0.95J . The dashed curves represent power-law fitting
functions (see the text).

phase 0 < � < J a systematic bias is observable and this bias
increases with the system size N . The maximum relative error
appears to drift to smaller � values as N increases, giving one
the (wrong) impression that high accuracy is more difficult
to achieve when quantum fluctuations vanish. However, by
analyzing how the relative error vanishes in the Nw → ∞
limit for different � values at fixed system size (see the inset
of Fig. 5), one understands that in the asymptotic large-Nw

regime the largest relative error occurs for � values close to
(but smaller than) the quantum critical point �/J = 1. We
attribute this effect to the large ferromagnetic fluctuations
characteristic of the critical regime. To better understand the
effect of the finite random-walker population, we analyze
in Fig. 6 the convergence to the exact Jordan-Wigner result
in the Nw → ∞ limit, considering different system sizes, at
� = 0.95. The data are well described by power-law fitting
functions of the type erel = c/Nβ

w , where c and β are fitting
parameters. The exponent β decreases with the systems size,
meaning that, as the system size increases, it takes a larger
population of walkers to obtain accurate predictions. In order
to quantify this dependence, in Fig. 7 we show how the number
of walkers required to have a fixed relative error increases with
the system size. In the large-N limit, the data are well described
by an exponential fitting function, possibly indicating that
the computational complexity of the simple DMC algorithm
(i.e., without the use of the importance sampling technique) is
exponential in the system size.

It is worth mentioning that the equilibration time (infor-
mally, the number of DMC steps required to reach a configu-
ration which is statistically uncorrelated with the initial one)
might increase with the system size or with other Hamiltonian
parameters. Also such an effect could affect the scaling of
the computational cost required to determine with the DMC
algorithm the ground-state energy within a target accuracy.
We investigate this possibility by analyzing the scaling of the
equilibration time with system size close to the ferromagnetic
transition of the ferromagnetic quantum Ising chain. We set
� = 0.95J . For concreteness, we define the equilibration time
as the number of DMC iterations, times the time step �τ ,
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FIG. 7. Random-walker number necessary to have 0.5%, 1%, and
2% relative error as a function of the system size N . The transverse
field intensity is � = 0.95J .

required to reach a random-walker population with an average
energy within 10% of the equilibrium (i.e., long DMC time)
value. The random walkers are initialized with random spin
configurations and their number is scaled so that the systematic
bias due to the finite population size is 1% for all system
sizes. The results show that the equilibration time is constant,
within 5%, when the system size varies from N = 20 to
N = 80 (not shown). This (admittedly nonexhaustive) analysis
indicates that the finite number of random walkers is the most
relevant source of systematic bias in simple DMC simulations.
A thorough analysis of the equilibration time in more complex
(e.g., disordered) models would be quite useful, but is beyond
the scope of this article.

VI. CONCLUSIONS AND OUTLOOK

We implemented a projective QMC method for quantum
Ising models based on the DMC algorithm, in which the
transition matrix is defined using a Trotter approximation of
the Green’s function, and we investigated the characteristic
time of tunneling events in problems characterized by an
effective double-well energy landscape. We found that the
DMC tunneling time increases with the system size as the
inverse of the gap, that is, more favorably than the incoherent
tunneling time, which increases as the inverse gap squared.
This inverse-gap scaling was found to hold both for a ferro-
magnetic quantum Ising chain and for the more challenging
shamrock model. This is in contrast with previous studies based
on finite-temperature PIMC simulations, where a pathological
slowdown due to topological obstructions originating from
frustrated interactions was found to cause, in the shamrock
model, an increase of the PIMC tunneling time which is
exponentially faster [29] than the inverse-gap-squared scaling
observed in the case of simple ferromagnetic models [21]. Our
findings indicate that the DMC algorithm is not affected by the
obstructions that slow down the PIMC tunneling dynamics,
thus suggesting that this algorithm is a more efficient engine
for SQA considered as a heuristic optimization method.
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Motivated by the arguments of Ref. [29], according to
which a classical algorithm is to be considered an efficient
simulation of QAs only if it reproduces both their tunneling
dynamics and their equilibrium properties, we analyzed the
computation time required by the DMC algorithm to accurately
predict ground-state properties. The analysis of the systematic
bias in the ground-state energy due to the finite random-
walker population revealed an exponential increase of the
population size and therefore of the computation time, required
to keep a fixed relative error as the system size increases. This
suggests that, in general, the computational effort required to
simulate the behavior of QAs via simple DMC simulations
running on classical computers scales exponentially, leaving
the possibility open for potential quantum speedup.

The finding of this exponential scaling is consistent with
the statement of Ref. [51] that the problem of estimating
the ground-state energy of a stoquastic Hamiltonian with a
small additive error is at least NP-hard.1 This statement is
based on the observation that any Hamiltonian diagonal in the
computational basis is stoquastic and that finding its ground
state encompasses hard optimization problems such as k-SAT

and MAX-CUT. This essentially rules out the possibility that a
polynomially scaling algorithm applicable to generic stoquas-
tic Hamiltonians can be found. Still, for certain ferromagnetic
models, including the transverse-field Ising chain considered
in this article, algorithms which, albeit being far from practical,
have a provably polynomial scaling have recently been found

1In some cases, ground-state energies of stoquastic models might
be obtained in polynomial time using continuous-time PIMC sim-
ulations. However, the path-integral length has to increase with the
system size, likely leading to increasing equilibration and correlation
times, and so perhaps to the exponential scaling of the computational
cost in the worst-case scenario. In fact, it is known that close
to the superfluid to Mott-insulator transition, ground-state PIMC
simulations are feasible only with the use of very accurate trial wave
functions [52].

[53]. However, since the DMC algorithm we employ in
this article is not tailored to a specific (e.g., ferromagnetic)
Ising model, it is natural to observe the exponential behavior
corresponding to a generic model.

We stress once again that the above-mentioned findings cor-
respond to the simple DMC algorithm considered in this article.
It is plausible that the computational cost could be drastically
reduced by using importance sampling techniques based on
suitably constructed guiding wave functions, possibly at the
point of modifying the scaling of the required random-walker
population, at least in cases where accurate approximations of
the ground-state wave functions can be constructed. The use
of importance sampling might also allow one to efficiently
simulate the models described in Refs. [32,54], for which
simple (i.e., without importance sampling) projective QMC
methods have been shown to fail due to the large discrepancy
between the L1-normalized ground-state wave function, which
is the probability distribution sampled from in simple projec-
tive QMC simulations, and the L2-normalized ground-state
wave function, which is sampled from when performing a
measurement on the ground state of the adiabatic process.
These issues are left to future investigations.

Building accurate trial wave functions for generic optimiza-
tion problems is an important, but highly nontrivial, task. We
argue that finding models where such importance sampling
technique is not feasible (because no accurate and efficiently
computable guiding wave function exists) could help us in
identifying optimization problems where quantum advantage
can be achieved. For the same purpose, it would be useful
to identify which features of a Hamiltonian might cause a
pathological slowdown of the DMC dynamics.
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