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We formulate the notion of quantum channels in the framework of quantum tomography

and address there the issue of whether such maps can be regarded as classical stochastic maps.

In particular, kernels of maps acting on probability representation of quantum states are derived

for qubit and bosonic systems. In the latter case it results that a single mode Gaussian quantum

channel corresponds to non-Gaussian classical channels.
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1. Introduction

Following the general approach of [1], given a Hilbert space H and a set

of operators Û (x) acting on it, labelled by an n-dimensional real vector x =

(x1, x2, ..., xn), we construct a complex-valued function associate to an operator Â
on H as

fÂ(x) = Tr
(

Û (x)Â
)

, (1)

[165]
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and call it hereafter symbol of operator Â. Suppose now that there exists a set of

operators D̂(x) on H such that we can write

Â =

∫

D̂(x)fÂ(x)dx. (2)

The requirement that the composition of maps (1) and (2) leads to the identity
operator results in

∫

Tr
(

Û (x)D̂(y)
)

fÂ(y)dy = fÂ(x). (3)

The sets D̂(x) and Û (x) are said to be quantizer and de-quantizer respectively1. If

one defines the map for which the symbol of identity operator Î is equal to the

unit function, then operators Û (x) and D̂(x) satisfy the conditions

Tr
(

Û (x)
)

= 1,

∫

D̂(x)dx = Î. (4)

In this framework the symbol ωρ̂(x) of a quantum state (i.e. an operator ρ̂ on
H such that ρ̂ > 0 and Trρ̂ = 1) is said to be a quantum tomogram. We hereafter
denote by T(H) the set of all tomograms obtainable on H . Taking into account
(2) we get

Tr(ρ̂) =

∫

Tr
(

D̂(x)
)

fρ̂(x)dx = 1. (5)

The alternative demand to (4) is

Tr
(

D̂(x)
)

= 1,

∫

Û (x)dx = Î. (6)

In this case the symbol of a quantum state ρ̂ satisfies the relation
∫

ωρ̂(x)dx = 1. (7)

It should be noted that in general ωρ̂(x) 6≥ 0. Hence ωρ̂(x) is not always a probability
distribution. Nevertheless, it is so for important cases such as spin [4], optical [5] and

symplectic [6] tomographies. In such contexts the quantizer D̂(x) and de-quantizer

Û (x) give rise to a dual structure [7, 8]. It also should be noted that the symbol (1)
becomes a characteristic function of the quantum state ρ̂ whenever Weyl operators

are used in place of Û (x) and D̂(x) [9]. Moreover fÂ(x) can be a generalized
function [10].

A quantum channel 8 is a linear, completely positive trace-preserving map on
the set of all states S(H) that can be represented as [11]

8(ρ̂) =
∑

i

Âi ρ̂Â
†
i ,

∑

i

Â
†
i Âi = Î, (8)

1Eq. (3) can be regarded as the completeness relation for generalized tomographies [2, 3].
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Âi being operators on H .

Any quantum channel 8 generates a map 8̆ on the set T(H) by the formula

8̆(ωρ̂)(x) = ω8(ρ̂)(x), ρ̂ ∈ S(H). (9)

Here we address the problem of representing (9) in the form

8̆(ω)(x) =

∫

K(x; x′) ω(x′)dx′, ω ∈ T(H), (10)

to compare quantum channels with classical stochastic maps. The situation is
considered both for finite- and infinite-dimensional Hilbert spaces H . In particular,
it is shown that for the bosonic Gaussian quantum channel the kernel (10) gives
rise to classical stochastic maps, but having a non-Gaussian form.

By referring to (8) we can write the map (10) with the kernel given by

K(x; x′) :=
∑

i

Tr
(

Û (x)ÂiD̂(x
′)Â

†
i

)

. (11)

If (6) is satisfied and
∫

K(x; x′) dx′ = 1, (12)

then the map defined by (10) has the property
∫

8̆(ω)(x)dx =

∫

ω(x)dx

which is equivalent to preserving the trace for 8. Nevertheless (12) does not
take place in general because the set T(H) cannot coincide with the set of all
probability distributions [10]. Moreover, K(x; x′) 6≥ 0. Thus K(x; x′) is not in general
a conditional probability. Analogously the unitality of a channel 8, i.e.

8

(

1

dimH
Î

)

=
1

dimH
Î,

is not equivalent to the claim
∫

K(x; x′) dx = 1. (13)

Taking into account that 8 is completely positive iff
∑

j,k

〈ξj |8
(

|ηj 〉〈ηk|
)

|ξk〉 ≥ 0, ∀|ξj 〉, |ηk〉 ∈ H, (14)

we obtain the necessary and sufficient condition on K to determine a quantum
channel in tomographic representation. That is

∑

j,k

∫ ∫

K(x; x′)〈ξj |D̂(x)|ξk〉〈ηk|Û (x
′)|ηj 〉dxdx′ ≥ 0, ∀|ξj 〉, |ηk〉 ∈ H. (15)
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2. Qubit channels

The qubit (spin- 1
2
) tomogram is given by [4, 12]

wρ̂(x) = w(x) = Tr
(

ρ̂ Û (x)
)

, (16)

where x := (m, α, β). Here m = ± 1
2

are the two possible outcomes of the spin
measurement performed along the direction (sinα cosβ, sinα sinβ, cosβ) determined
by the Euler angles α, β.

The operators Û (x) read

Û (x) =
1

2

(

1 0
0 1

)

+m

(

cosβ −eiα sinβ

−e−iα sinβ − cosβ

)

. (17)

The tomograms satisfy the normalization conditions

1/2
∑

m=−1/2

w(m, α, β) = 1,
1

2π

∫ 2π

0

∫ π

0

w(m, α, β) sinβ dβ dα = 1. (18)

Eq. (16) can be inverted by expressing the density operator in terms of tomograms
as

ρ̂ =

∫

D̂(x) w(x)dx, (19)

where
∫

dx :=

1/2
∑

m=−1/2

1

2π

∫ 2π

0

dα

∫ π

0

sinβ dβ, (20)

and
D̂(x) := 3Û (x)− Î. (21)

A channel 8 : S(C2) → S(C2) defines the linear map 8̆ on the set T(C2) of
spin- 1

2
tomograms by the formula

8̆(wρ̂)(m, α, β) = w8(ρ̂)(m, α, β). (22)

The matrix (17) can be represented as follows,

Û (x) =
1

2
Î −m cosα sinβ σ̂x −m sinα sinβ σ̂y +m cosβ σ̂z, (23)

where σ̂x , σ̂y , σ̂z are the standard Pauli operators. Thus, to determine 8̆ one should

check the action of a conjugate map 8∗, that is Tr
(

ρ̂8∗(σ̂ )
)

= Tr
(

8(ρ̂)σ̂
)

, on (23).

2.1. Unital qubit channel

All unital qubit channels 8 : S(C2) → S(C2) are mixture of unitary channels,

i.e. there are unitary operators Ûj : C2 → C2 such that

8(ρ̂) =
∑

j

πj Ûj ρ̂Û
∗
j , (24)
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πj ≥ 0,
∑

j

πj = 1. Moreover, picking up unitaries Û , V̂ : C2 → C2 we can obtain

the representation (24) for the channel 9(ρ̂) = Û8(V̂ ρ̂V̂ ∗)Û∗ with Ûj ∈ SU(2).
Let us write x = (m, n), where n := (cosα sinβ, sinα sinβ, cosβ). It follows

from (23) and (24) that

8̆(w)(m, n) =
∑

j

πjw(m, V̂jn), (25)

where V̂j ∈ O(3).

Given a unital qubit channel 8 : S(C2) → S(C2), there exist unitary operators

Û , V̂ : C2 → C2 such that

9(ρ̂) = Û8(V̂ ρ̂V̂ ∗)Û∗ = π0ρ̂+πx σ̂x ρ̂σ̂x+πy σ̂y ρ̂σ̂y+πzσ̂zρ̂σ̂z, ρ̂ ∈ S(C2), (26)

where {π0, πx, πy, πz} is a probability distribution. Thus, it suffices to study only

channels 9 of the form (26). Denote by 6̆a the unitary quantum channel implemented
by the Pauli matrix σ̂a , i.e.

6̆a(ρ̂) = σ̂aρ̂σ̂a, ρ̂ ∈ S(C2),

with a ∈ {x, y, z}.

PROPOSITION 1. The linear maps 6̆x , 6̆y and 6̆z act on the set T(C2) of qubit
tomograms as follows

6̆x :w(m, α, β) → w

(

m,α −
π

2
, β +

π

2

)

,

6̆y :w(m, α, β) → w

(

m,α +
π

2
, β +

π

2

)

,

6̆z :w(m, α, β) → w

(

m,α, β −
π

2

)

. (27)

Proof : It is

6̆a(wρ̂)(x) = Tr(σ̂aρ̂σ̂aÛ (x)) = Tr(ρ̂σ̂aÛ (x)σ̂a),

a ∈ {x, y, z}. Taking into account (23) we get

σ̂xÛ (m, α, β)σ̂x = Û

(

m,α −
π

2
, β +

π

2

)

,

σ̂yÛ (m, α, β)σ̂y = Û

(

m,α +
π

2
, β +

π

2

)

,

σ̂zÛ (m, α, β)σ̂z = Û

(

m,α, β −
π

2

)

. �

COROLLARY 1. The linear map 8̆ on the set T(C2) of qubit tomograms is
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associated with a unital quantum channel iff it is (up to unitary equivalence)
a convex linear combination of the identity map and the three maps (27).

Proof : It immediately follows from the representation of unital channel in the
form (26). �

PROPOSITION 2. The maps 6̆x , 6̆y and 6̆z can be represented in the form of
integral operators

6̆a(w)(x) =

∫

Ka(x; x′)w(x′) dx′, a ∈ {x, y, z},

with the kernels defined by the formulae:

Kx(x; x′)=
1

2
δmm′(1+3 cosα sinβ cosα′ sinβ ′−3 sinα sinβ sinα′ sinβ ′−3 cosβ cosβ ′),

Ky(x; x′)=
1

2
δmm′(1−3 cosα sinβ cosα′ sinβ ′+3 sinα sinβ sinα′ sinβ ′−3 cosβ cosβ ′),

Kz(x; x′)=
1

2
δmm′(1−3 cosα sinβ cosα′ sinβ ′−3 sinα sinβ sinα′ sinβ ′+3 cosβ cosβ ′).

Proof : Let us define the inner product by the formula

(f, g) :=

2π
∫

0

π
∫

0

f (α, β)g(α, β) sinβdβ dα. (28)

Then, the functions

f0(α, β) = 1, f1(α, β) = cosα sinβ,

f2(α, β) = sinα sinβ, f3(α, β) = cosβ,
(29)

become orthogonal with respect to (28). Moreover,

‖f0‖
2 = 2, ‖f1‖

2 = ‖f2‖
2 = ‖f3‖

2 =
2

3
.

To fullfil the transformation from Proposition 1 one can construct the kernels using
this set of orthogonal functions. �

REMARK 1. The kernels determined in Proposition 3 are not positive definite.

Thus, the maps 6̆x, 6̆y and 6̆z are not classical channels.

2.2. Nonunital qubit channels

Given a qubit channel 8 : S(C2) → S(C2) there exist unitaries Û , V̂ : C2 → C2,
and a set of real numbers (tx, ty, tz, λx, λy, λz) such that

9(ρ̂) = Û8(V̂ ρ̂V̂ ∗)Û∗ =
1

2

(

Î+ (tx +λxax)σ̂x + (ty +λyay)σ̂y + (tz+λzaz)σ̂z
)

, (30)
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where

ρ̂ =
1

2
(Î + ax σ̂x + ay σ̂y + azσ̂z).

The image of the Bloch sphere of pure states under a map of the form (30) is the
ellipsoid

(

x1 − t1

λ1

)2

+

(

x2 − t2

λ2

)2

+

(

x3 − t3

λ3

)2

= 1.

The conditions on the parameters (tx, ty, tz, λx, λy, λz) for which 9 is a channel are
quite complicated and derived in [13].

The extreme points of the set (30) for nonunital case correspond (up to unitary
equivalence) to

tx = ty = 0, λz = λxλy, t2z = (1 − λ2
x)(1 − λ2

y). (31)

For the conjugate map we obtain

9∗(ρ̂) = Û8(V̂ ρ̂V̂ ∗)Û∗

=
1

2

(

(1 + txax + tyay + tzaz)Î + λxax σ̂x + λyay σ̂y + λzazσ̂z
)

. (32)

Substituting (23) into (32) we get

9∗(Û(x))=
1

2

(

1 − txm cosα sinβ − tym sinα sinβ + tzm cosβ
)

Î

− λxm cosα sinβ σ̂x − λym sinα sinβ σ̂y + λzm cosβ σ̂z. (33)

PROPOSITION 3. The map (22) associated with the channel (30) can be represented
in the form of integral operator

9̆(w)(x) =

∫

K(x; x′)w(x′) dx′,

with the kernel

K(x; x′) =
δmm′

2
(1 −m cosα sinβtx −m sinα sinβty +m cosαtz)

+
3

2
δmm′

(

− cosα sinβ cosα′ sinβ ′λx − sinα sinβ sinα′ sinβ ′λy + cosβ cosβ ′λz
)

.

(34)

Proof : Following the idea of proof in Proposition 3, take into account that the
functions (29) are orthogonal. Then, by means of them we construct the kernel
corresponding to the transformation (33). �

REMARK 2. Like for unital channels the kernel (34) is not positive definite and

the map 9̂ is not a classical channel determined by conditional probabilities.
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3. One-mode bosonic channel

In this section we shall move to the framework of optical homodyne tomography
of a single-mode radiation field (see e.g. [14, 15]). The optical tomogram ωρ̂(x, ϕ)

of a state ρ̂ in L2(R) is given by the formula [5]

ω(x, ϕ) = ωρ̂(x, ϕ) = Tr
(

ρ̂ δ
(

x − cosϕQ̂− sinϕP̂
))

, (35)

where Q̂, P̂ are the canonical conjugate quadratures operators and x ∈ R, ϕ ∈ [0, 2π ].
The characteristic function F(q, p) relative to ρ̂ is defined as

F(q, p) = Fρ̂(q, p) = Tr
(

ρ̂ ei(qQ̂+pP̂ )
)

. (36)

The optical tomogram ω(x, ϕ) is connected with the characteristic function
F(q, p) as follows,

F(t cosϕ, t sinϕ) =

∫

R

eitxω(x, ϕ)dx, (37)

ω(x, ϕ) =
1

2π

∫

R

e−ixtF(t cosϕ, t sinϕ)dt. (38)

Following up (9), consider a map 8̆ on the set of optical tomograms given by
the formula

8̆(ωρ̂)(x, ϕ) = ω8(ρ̂)(x, ϕ). (39)

Below we shall deal with quantum Gaussian channels, widely used in quantum
information (see e.g. [16]).

3.1. Covariant channel

Let us take a one-mode covariant bosonic channel 8 transforming the characteristic
function F(q, p) by the formula [9]

F(q, p) → F(kq, kp)e−
α(q2+p2)

2 , (40)

where

k ≥ 0, k 6= 1, α ≥
|k2 − 1|

2
.

PROPOSITION 4. The map (39) associated with the bosonic channel (40) can be
represented as an integral operator with a Gaussian kernel

8̆(ω)(x, ϕ) =
1

√
2πα

∫

R

e−
(x−kx′)2

2α ω(x ′, ϕ)dx ′. (41)

Proof : Taking into account the relations (37), (38) and (40) we get

8̆(ω)(x, ϕ) =
1

2π

∫

R

e−ixye−
αy2

2

∫

R

eikyx
′
ω(x ′, ϕ)dx ′dy.
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Changing the order of integration we arrive at

1

2π

∫

R

ei(kx
′−x)ye−

αy2

2 dy =
1

√
2πα

e−
(kx′−x)2

2α . �

REMARK 3. The kernel

K(x, ϕ; x ′, ϕ′) =
1

√
2πα

e−
(x−kx′)2

2α δ(ϕ′ − ϕ)

resulting from (41) is positive definite and
∫

K(x, ϕ; x ′, ϕ′)dxdϕ = 1,

∫

K(x, ϕ; x ′, ϕ′)dx ′dϕ′ =
1

k
.

Hence the map (41) results stochastic, but not bi-stochastic. As a matter of fact
K(x, ϕ; x ′, ϕ′) does not represent a conditional probability distribution.

3.2. Contravariant channel

Let us now take a one-mode contravariant bosonic channel 8 transforming the
characteristic function F(q, p) by the formula [9]

F(q, p) → F(kq,−kp)e−
α(q2+p2)

2 , (42)

where

k ≥ 0, α ≥
k2 + 1

2
.

PROPOSITION 5. The map (39) associated with the bosonic channel (42) can
be represented as an integral operator with a Gaussian kernel

8̆(ω)(x, ϕ) =
1

√
2πα

∫

R

e−
(x−kx′)2

2α ω

(

x ′, ϕ −
π

2

)

dx ′. (43)

Proof : Taking into account the relations (37), (38) and (42) we get

8̆(ω)(x, ϕ) =
1

2π

∫

R

e−ixye−
αy2

2

∫

R

eikyx
′
ω

(

x ′, ϕ −
π

2

)

dx ′dy.

Changing the order of integration we arrive at

1

2π

∫

R

ei(kx
′−x)ye−

αy2

2 dy =
1

√
2πα

e−
(kx′−x)2

2α . �

REMARK 4. The kernel

K(x, ϕ; x ′, ϕ′) =
1

√
2πα

e−
(x−kx′)2

2α δ(ϕ′ − ϕ + π/2)
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resulting from (43) is positive definite and
∫

K(x, ϕ; x ′, ϕ′)dxdϕ = 1,

∫

K(x, ϕ; x ′, ϕ′)dx ′dϕ′ =
1

k
.

Hence the map (43) results stochastic, but not bi-stochastic. As a matter of fact
K(x, ϕ; x ′, ϕ′) does not represent a conditional probability distribution.

3.3. The representation on the plane

Following [7] let us define the function �(x, y) on the plane R2 in polar
coordinates by the formula

�(r cosϕ, r sinϕ) = �ρ̂(r cosϕ, r sinϕ) :=
1

r
ω(r, ϕ). (44)

Then,
�(x, y) ≥ 0,

1

2π

∫

R2

�(x, y)dxdy = 1,

hence � results to be probability distribution function on R2. It follows from the
definition (44) that the characteristic function can be reconstructed from (44) by the
formula

F(t cosϕ, t sinϕ) =

+∞
∫

0

reitr�(r cosϕ, r sinϕ)dr. (45)

Consider now the linear map on the set of functions (44)

8̆(�ρ̂)(x, y) = �8(ρ̂)(x, y). (46)

PROPOSITION 6. The map (46) associated with the bosonic channel (40) is the
integral operator

8̆(�)(x, y) =

∫

R2

K(x, y; x ′, y ′)�(x ′, y ′)dx ′dy ′,

with the kernel

K(x, y; x ′, y ′) =
1

√
2πα

exp

(

−
(x − kx ′)2 + (y − ky ′)2

2α

)

δx,y(x
′, y ′), (47)

where

〈δx,y, ψ〉 :=
1

√

x2 + y2

+∞
∫

0

rψ

(

r
x

√

x2 + y2
, r

y
√

x2 + y2

)

dr.

Proof : It is

8̆(�)(ρ cosϕ, ρ sinϕ) =
1

2πρ

∫

R

e−itρe−α
t2

2

+∞
∫

0

reiktr�(r cosϕ, r sinϕ)drdt.
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Changing the order of integration we get

1

2π

∫

R

eit (kr−ρ)e−α
t2

2 dt =
1

√
2πα

e−
(ρ−kr)2

2α ,

and

8̆(�)(ρ cosϕ, ρ sinϕ) =
1

√
2παρ

+∞
∫

0

re−
(ρ−kr)2

2α �(r cosϕ, r sinϕ)dr.

Substituting x = ρ cosϕ, y = ρ sinϕ we obtain

8̆(�)(x, y) =
1

√

2πα(x2 + y2)

+∞
∫

0

re−
(

√
x2+y2−kr)2

2α �

(

r
x

√

x2 + y2
, r

y
√

x2 + y2

)

dr.

�

REMARK 5. It is worth remarking that the same conclusion of Proposition 7
can be drawn for contravariant channels simply changing (x, y) to (y,−x) for �.

REMARK 6. The kernel (47) is positive definite and
∫

K(x, y; x ′, y ′)dxdy = 1
and

∫

K(x, y; x ′, y ′)dx ′dy ′ = 1/k. Hence the map (46) results to be stochastic, but
not bi-stochastic. As matter of fact K(x, ϕ; x ′, ϕ′) does not represent a conditional
probability distribution. Anyway, the one-mode bosonic channel (either covariant or
contravariant) can be intended through the representation on the plane as a two-mode
classical channel, i.e. acting on probability distribution functions on R×R. This is
in contrast to the map (39) where the argument is defined on R × [0, 2π ].

4. Conclusion

In conclusion, we have formulated the notion of quantum channel in the framework
of quantum tomography, that is as a map acting on probability representation of
quantum states (tomograms). Kernels for such maps were derived for qubit and
bosonic systems. They show the existence of cases in which a quantum channel can
be regarded as a classical stochastic map. In particular, this happens for the one-mode
bosonic channel that corresponds to classical channels, though non-Gaussian.

The present study paves the way for finding further correspondences between
quantum channels and classical stochastic maps. This could be helpful for char-
acterizing the information transmission capabilities of quantum channels without
the necessity of resorting to regularization procedures [17]. In fact it is known
that (unlike quantum channels) classical channels admit single letter formula for
capacity [18].
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