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Abstract. The purpose of this paper is to exploit the geometric structure of quantum
mechanics and of statistical manifolds to study the qualitative effect that the quantum
properties have in the statistical description of a system. We show that the end points of
geodesics in the classical setting coincide with the probability distributions that minimise
Shannon’s entropy, i.e. with distributions of zero dispersion. In the quantum setting this
happens only for particular initial conditions, which in turn correspond to classical sub-
manifolds. This result can be interpreted as a geometric manifestation of the uncertainty
principle.
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1. Introduction

In quantum mechanics the pure states of a system are described as elements
of R(H), the complex projective space of a complex separable Hilbert space
H or space of rays. From a geometric point of view, cf. [10,7], the space
of rays is a Kéhlerian manifold, i.e. it has the structure of a differentiable
manifold endowed with a Riemannian metric g known as the Fubini-Studi
metric, a symplectic structure w and an almost complex structure J that
satisfy the compatibility condition

g(u,v) = w(Ju,v), u,veX(R(H)), (1.1)

where X(R(H)) is the space of vector fields on R(H). At the level of quan-
tum mechanics, the symplectic structure possesses a clear role. Indeed, the
Schrodinger equation, as a first order evolution equation, is Hamiltonian with
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respect to it. In contrast, the role of the Riemannian metric is less under-
stood. It was shown in [2] that the geodesic distance between points in
R(H), i.e. between two states, with respect to the Levi-Civita connection
can be associated with the transition amplitudes to go from one state to the
other. Moreover, in [19,12,6] it is shown that there is a much deeper re-
lationship between the Riemannian structure and the underlying statistical
structure of the problem. Indeed, consider that the Hilbert space is the space
of square integrable functions over a measure space (X, p). In this case the
states of the quantum system are normalised wave functions v : X — C,
Ix |¢(z)|?dp = 1, whose moduli square represents the probability densities
over the measure space X. Now, consider that a particular subset of R(H)
is parametrised by a family M = {8 = (§',...,0™)} C R™. Assuming that
the parametrisation is one-to-one, the polar representation of the elements

in R(H), ‘
U(z;0) = \/p(x;0) =0, (1.2)

provides an embedding of the family M into R(H). Here «a(z;0) is a real-
valued function and p € £1(X) is a probability density on the space X. The
hermitian tensor h(-,-) = g(-, -) +iw(-, -) on the space of rays can be
pulled-back to M where it takes the form

h = iEp[(dlnp)ﬂ +E,[(da)?] — Eylda]? — i E,[dInp A da] . (1.3)
In this expression E,[f] = [y p(x;0) f(x)dx stands for the expectation value
of the measurable function f. The exterior derivative and the wedge prod-
uct are defined in the usual way [13]. Remarkably, the hermitian tensor h
coincides with the classical Fisher-Rao information metric when da = 0, cf.
[11,17]. As happens for the Fisher-Rao metric [4], the probability densities
have to be taken such that p(z;0) > 0 for all & € M and = € X. If this is
not the case, the pull-back of the metric may not be well defined. Hence, the
parameter space M associated with the polar decomposition inherits the Rie-
mannian structure provided by Fisher-Rao metric if the quantum behaviour
represented by the phase a vanishes. However, this will not happen in gen-
eral and, in particular, the manifold may acquire the structure of a Kahlerian
manifold. Its symmetric part is a Riemannian metric that coincides with the
Fisher-Rao metric when the variation of the phase vanishes. Otherwise, there
is a contribution of the phase even in the symmetric part of the hermitian
tensor h.

It is the purpose of this paper to explore the difference between the two
Riemannian structures, the Fisher-Rao metric and the Fubini-Study metric.
A full statistical interpretation of the latter is still to be unveiled and might
help in the understanding of problems of fundamental nature in quantum
mechanics such as the measurement process or to find more physically mean-
ingful generalisations of the Cramer-Rao inequality, see [1, Chapter 7] for an
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introduction to this problem. There exist generalisations of the Cramer-Rao
inequality that apply in the quantum setting [14, 15]. However, the interpre-
tation of the resulting inequalities (generically) comes only after restriction
to very special situations. For instance, when restricted to the classical set-
ting where one recovers the standard Cramer-Rao bound. A study of the
statistical properties of the geometric structures that are already available in
the quantum setting can lead to new and more meaningful results.

In particular, we will study what implications does the complex phase
¢@0) have in the geometric description of the problem. We will see that
the classical behaviour of the system can be recovered as a totally geodesic
submanifold of the quantum one. More interestingly, we find that the end
points of the geodesics in the classical situations are zero dispersion states
while they are never part of the geodesics nor their closures in the quantum
situation. As explained in the conclusion section, this can be interpreted
as a geometric manifestation of the uncertainty principle. The relation be-
tween the classical and the quantum setting that we are going to study is
slightly different from the usual correspondence between classical probability
distributions and diagonal mixed states. In our case, the quantum situa-
tion is described only by pure states and the relation with the corresponding
classical situation is given by means of (1.3).

In order to establish these results we consider two different situations. A
discrete probability space in Sect. 2 and a family of monovariate Gaussian
distributions in Sect. 3. We study the geodesic curves on the statistical mani-
folds so defined with respect to the given metrics. In the realm of information
geometry there are different affine connections that play a relevant role. The
most important being the so-called a-connections, cf. [3]. Since we want
to compare the classical situation with the quantum one, and in the quan-
tum setting there are no known affine connections that play such a relevant
role, we will consider only the geodesics with respect to the Levi-Civita con-
nection. The interpretation of geodesic curves in statistical manifolds relies
in the framework of inductive inference (maximum entropy methods [8,9])
and information geometry [1]. An update on the knowledge of the system,
through further measurements for instance, results in better estimates of the
states. The geodesic joining the previous estimate with the newer one is the
path that joins both points with a minimal increase of the relative entropy
during the intermediate steps. Successive measurements do not need to give
raise to points in the same geodesic. Therefore, repeated measurements will
lead to a piecewise geodesic path on the manifold and thus the study of the
endpoints of the geodesic flow on the manifold provides an understanding of
what the possible optimal estimates are.
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2. Discrete Probability Space

Let us consider the statistical manifold of all two dimensional probability
vectors, P2. In this case X = {0,1}, p(0,0) = p and p(1,0) = 1 — p with
p € (0,1). The statistical manifold is therefore M = (0,1) C R. That
is, every probability distribution is parametrised by a single real variable
p € (0,1).

Notice that since the probability space is discrete, the integrals on the
continuous variable appearing in (1.2) and (1.3) have to be replaced by a
sum. The Fisher-Rao metric for this statistical manifold has the form

g = dp ®dp. (2.1)

p(1—p)

Let us analyse the geodesic curves associated to this metric tensor. The
equations of the geodesics can be written immediately

B (- 2p)
p(1—p) 2p*(1—p)?

and the only constant of the motion is the “kinetic energy” term

=0, (2.2)

-2
p
— = C. 2.3
P19 23
The diffeomorphism
1 .
2<p - 5) = siny (2.4)
allows us to simplify the expression (2.3), which then assumes the form

7 = C.

It immediately follows that, with respect to the variable y, solutions of the
equations of motion are curves with constant velocity and all of them reach
one of the two extremes of the interval. Let us incidentally note that these
extreme points are reached in a finite time and therefore that the geodesic
vector field is not complete. This is not a problem since the parameter of
the solution has no statistical or dynamical interpretation. Therefore, all the
geodesics associated with the Fisher-Rao metric (2.1) end up in the points
that minimize Shannon’s entropy [18]. In Fig. 1 one can see the numerical
integration of the second order system (2.2). One can see that the orbits go
to the aforementioned extremal points.

Let us now consider the space of all pure states of a two-level quantum
system. This space is the complex projective Hilbert space CP' which is

1850005-4



Open Syst. Inf. Dyn. 2018.25. Downloaded from www.worldscientific.com
by WSPC on 04/19/18. For personal use only.

Aspects of Geodesical Motion with Fisher-Rao Metric

— Do = 05, po =0.5

06 j o py=102,py =02
l - po=02,p=-02
04 R — i e gy = 0.5, Py = —0.5

_ i i i
0'%.0 0.2 04 0.6 0.8 1.0

p

Fig. 1: (Colour online) Plot of p against p for different initial conditions

diffeomorphic to the two-dimensional sphere as a real manifold, cf. [2, 16].
By referring to (1.2) we can write a generic pure state on CP! with

z=0

and
0 =0

oy = {0 8

with ¢ € [0, 27).

As explained in the introduction, we have to exclude the two poles of
the sphere, since the pull-back of the Fubini-Study metric is not going to be
defined there. The resulting space is therefore going to be (CIP% ~ (0,1) x St
With the chosen parametrisation we get

1
g = ———dp®dp+ p(l —p)dp ® dp 2.5
4p(1 —p) (1=2) (25)
and the corresponding geodesic equations are
P TUZW Lo g =0, (26

dp(1—p) 8p2(1—p)2 2
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% w1 -p)) = 0. (2.1
First, let us notice that the space of probability vectors P? discussed previ-
ously can be recovered as any of the totally geodesic submanifolds that satisfy
¢ = const, cf. [13]. Taking into account that ¢ is a cyclic variable, there are
two constants of the motion which can be used in order to get information
on the solutions:

p(l—p)gb = A7 (28)
-2
M%E+%wmﬁ:0- (2.9)

Also in this case we can perform the transformation (2.4) to get a simplified
set of equations

cos’(y)p = 4A, (2.10)
1., 242
- = . 2.11
Y + cos?(y) ¢ (2.11)

We are interested in studying the motion relative to variable p or, equiva-
lently, relative to variable y, and compare the motion with the previous case.
The second equation can be interpreted as the equation which defines the
“energy” level sets of a particle with a potential Uy (y) that depends on the
external parameter A, and that has two vertical asymptotes at y = £ /2.

In Fig. 2 there is a plot of this potential for some values of A. A qualitative
analysis of the solutions shows that for all A # 0 a single equilibrium point
exists corresponding to the position y, = 0, equivalently p. = 1/2. Moreover,
for A # 0 all the admissible orbits are bounded. In particular, it must hold
that

2 2
— 1—%§Sin(y)§ 1—%.

In Fig. 3 there is a plot of the numerical integration of the second order
system. In this case the extreme points are not part of the closure of any
orbit. In fact this holds true only if A = 0, but this is precisely the condition
for being in the totally geodesic submanifold that corresponds to the previous
case. Therefore, the presence of the phase ¢ affects the geodesic motion
deeply, since all the orbits are bounded and the points of minimum entropy,
corresponding to y = 4 7/2 cannot be reached. Furthermore, there is a stable
fixed point, y. = 0, i.e. p = 1/2, which corresponds to the maximum entropy
probability distribution. In addition to these geodesics there is another type
of solution for the case C' = 0. These correspond to the particular case pg = 0
and whose geodesics are just given by the points p(t) = po.

1850005-6



Open Syst. Inf. Dyn. 2018.25. Downloaded from www.worldscientific.com
by WSPC on 04/19/18. For personal use only.

Aspects of Geodesical Motion with Fisher-Rao Metric

108

; i

10°

102}

10t

Fig. 2: (Colour online) The potential U (y; A) = 1642/ cos?(y) for some values
of A. The vertical axis is in logarithmic scale.

3. Gaussian Probability Space

We will perform now a similar analysis on a different statistical model. We
will consider the set of Gaussian probability distributions over the real line.
Every distribution can be parametrised by points of a two dimensional man-
ifold =R x R, namely:

1 _(e-w? (3.1)
e 202 . .
oV 2T

The Fisher-Rao metric for this manifold of Gaussian probability distributions
becomes

N3 (u,0) — plz;p,o) =

1
and the associated geodesic equations are, cf. [5],
d p
ail57) = 0 (3:3)
d/o (2 + 262
— (= L 4
dt <02> * 203 0 (34)
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Fig. 3: (Colour online) Plot of p against p for different initial conditions and
different values of the constant of the motion A. All the orbits are bounded
and the extreme points p = 0 and p = 1 are never on them nor on their
closures.

There are two constants of the motion. The first one is the Lagrangian itself
and the second one is the momentum associated to the cyclic variable pu.
Again, in order to get simplified expressions, let us consider the following
diffeomorphism:

o= €Y, (3.5)
and p — p. Having introduced these new coordinates, the constants of the
motion can be written as

L
1
—P A% = O (3.7)

2

By means of a qualitative analysis of the second equation, we can notice that
the potential U(y) = 2A42e?Y does not possess any minimum. Equation (3.7)
then shows that every orbit is bounded from above. In particular, whatever
the initial conditions are, the motion will reach a maximum value

Ve
Ym = log (ﬁ)
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equivalent to
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Al

and will then bounce back. There is a limiting point for all these solutions,
y — —o0, which corresponds to ¢ — 0. Also £ must tend to zero in the same
limit and therefore all the geodesic curves tend to the “delta” probability
distribution with zero variance. Its support, which corresponds to the final
value of p, is fixed according to the initial conditions. This result is analogous
to the one recovered for the discrete probability space in Sect. 2. Indeed, the
limiting points for the geodesics are those which correspond to the probability
distributions that minimize Shannon’s entropy [18].

Let us now consider a quantum counterpart of the statistical manifold just
introduced. Let R(#) be the infinite dimensional projective Hilbert space
associated to the Hilbert space H = L2?(R,dx), where dx is the Lebesgue
measure on the real line. We can select a family of pure states according to
the following injective map:

Om =

M=R*xR, 30 = (u,a,0) — p(z;0) =

Comparing with (1.2) this means that

1 _(e-w?

p(z,0) = e 2% a(z,0) =azx.

oV 2

In other words, to any point of the manifold M it corresponds a probability
amplitude whose associated probability distribution in the position represen-
tation is a Gaussian. As explained in the introduction, the pull-back of the
hermitian tensor on R(#) defines two tensors on the manifold M, see (1.3),
one being symmetric and the other anti-symmetric. In this case these tensors
have the form

gMm = ﬁ(du@du—i—wa@da)—i—ﬂda@da, w = daANdu. (3.9)
The symmetric part, which defines a Riemannian tensor, is a quantum “ex-
tension” of the classical Fisher-Rao metric, cf. [11]. One can see the similarity
with the Fisher-Rao metric, see (3.2), on the statistical manifold defined by
the monovariate Gaussian model. In order to make a comparison with the
previous analysis, let us consider the geodesic equations of the metric gas of
(3.9):

%(%) = 0, (3.10)
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10°

Fig. 4: (Colour online) The potential U(y; A, B) = A%e? + % for some
values of A and fixed B = 1. The vertical axis is in logarithmic scale. The
behaviour of the potential for y — —oo is determined only by the value of B.

d

a(2020'4) = 0, (3.11)
d /o (2 4 262 5
E(?) 20" = 0. (3.12)

As in the case for the discrete probability space of the previous section, we
have that the manifold N, associated to the space of the classical probability
densities, is a totally geodesic submanifold of M characterised by o = const.

In order to analyse the behaviour of the geodesics let us perform again the
diffeomorphism (3.5). Then we can write the equations defining the constants
of the motion:

I
2¢%4 = B, (3.14)
1. 2 2% B? _

By looking at the third equation (3.15), one can notice that the parametric
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potential
2 2 B?
. - Yy
U(yaA7B) - Ae +2€2y’
possesses a minimum for y, = %log(%), as can be seen from the plots in

Fig. 4. Therefore, all the orbits for B # 0 are bounded. For the variable o
the bounds read

C —+V(C?-2A2B? 9 C+ V0% —2A2B?
< o° < .
2A2 2A2

First notice that the situation for the statistical manifold built from the
monovariate Gaussian model is recovered for the particular case B = 0. This
in turn corresponds to the case a = const. So again, the classical geometric
situation corresponding to the Fisher-Rao metric is recovered as a totally
geodesic submanifold. In the first case the limiting points of the geodesics
are the Dirac-delta distibutions, i.e. probability densities that minimise Shan-
non’s entropy in the given model. In this latter situation, those limiting
points are only available if one starts in the totally geodesic submanifold,
otherwise they are forbidden. In Fig. 5 there is a plot comparing these two
situations for different initial data and values of the constants of the motion.
As can be seen, for B # 0 the orbits bounce between the respective extreme
values for ¢ while for B = 0 they tend to the limiting point ¢ = 0.

Again, as in the previous section, the geodesics of the quantum Fisher-
Rao metric have a completely different behaviour with respect to the corre-
sponding quantum motion. The main difference consisting in the fact that
the probability density with minimum Shannon’s entropy is forbidden.? It
remains to say that there is a third special kind of orbit which corresponds
to the situation A = 0. These geodesics exist in both the manifold M and in
its totally geodesic submanifold A. As can be checked, in either case, these
geodesics have as limiting point the distribution corresponding to the limit
o — 00, while the mean value of the Gaussian is © = const. This can be
interpreted as the analogue of the fixed points obtained in Sect. 2 for the case
C=0.

4. Conclusions

We have performed a comparative analysis of the geodesics in two situations.
The first situation corresponds to the statistical manifold associated to a dis-
crete probability space and its quantum counterpart, a finite level quantum
system. The second situation corresponds to the statistical manifold asso-
ciated to a monovariate Gaussian model, while its quantum counterpart is

#Since we are talking about probability densities, it makes sense to compute Shannon’s
entropy even if we are in a quantum setting.
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0y =05,60=07,A=10,B=00
; . 0y=05,60=07,A=10,B=1.0
s | y=05,60=1.0,A=05,B=0.0

5 00 =0.5,60=1.0,A=05 B=1.0

Fig. 5: (Colour online) Plot of ¢ against ¢ for different initial conditions and
different values of the constants of the motion. The dashed lines represent
the situation with B # 0. The continuous lines represent the curves in the
totally geodesic submanifold. The value of C' is determined in each case from
(3.15) by the values of A and B and the initial data.

given by an embedding of Gaussian wave packets into the space of rays R(H).
The geodesics compared are respectively those arising from the Fisher-Rao
metric with those arising from the pull-back of the Fubini-Study metric. We
have observed that the classical situations are naturally described in this con-
text as totally geodesic submanifolds of the respective quantum counterparts.
Interestingly, in the classical scenarios the limiting points for the geodesics
turn out to be those points that represent probability distributions which
minimise Shannon’s entropy, i.e. p = 1 or p = 0 in the discrete probability
space and o = 0 in the Gaussian model. This situation is forbidden in the
quantum counterparts, except for those initial conditions that coincide with
the totally geodesic submanifolds. This amounts to say that the quantum
contribution to the problem manifests itself by preventing to achieve states
of zero dispersion. Due to the nature of the examples chosen, which are
simple but general enough, we expect that this will be the general case. An
argument in favour of this consideration is that this can be seen as a mani-
festation of the uncertainty relations. Indeed, provided a pair of observables
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that do not commute, one has that
AxzAp > Elxp — pz].

Hence, one can take Az as small as needed at the price of enlarging Ap.
However, the value Az = 0 is forbidden. This is completely analogous to the
situation that we encountered, where Az = o and Ap = % Therefore, this
behaviour can be interpreted as a geometric manifestation of the uncertainty
principle. While the choice of a(x, @) was particular in the Gaussian model, it
was general in the case of the two-level system. This supports the generality
of the derived results.

The geometric approach presented here could be applied to investigate
further and shed some light on the relation between classical and quantum
correlations. For instance, one could consider multipartite systems and the
appearance of entanglement. We leave such investigations for future work.
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