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Via Madonna delle Carceri, I-62032, Camerino, INFN Perugia, Italy

(Dated: January 17, 2018)

We consider the steady-state behavior of pairs of active particles having different persistence
times and diffusivities. To this purpose we employ the active Ornstein-Uhlenbeck model, where the
particles are driven by colored noises with exponential correlation functions whose intensities and
correlation times vary from species to species. By extending Fox’s theory to many components,
we derive by functional calculus an approximate Fokker-Planck equation for the configurational
distribution function of the system. After illustrating the predicted distribution in the solvable
case of two particles interacting via a harmonic potential, we consider systems of particles repelling
through inverse power-law potentials. We compare the analytic predictions to computer simulations
for such soft-repulsive interactions in one dimension, and show that at linear order in the persistence
times the theory is satisfactory. This work provides the toolbox to qualitatively describe many-body
phenomena, such as demixing and depletion, by means of effective pair potentials.

I. INTRODUCTION

The study of active particles has recently attracted
rapidly increasing attention of scientists belonging to dif-
ferent disciplines due to the current interest in the physi-
cal principles governing the behavior of fish schools, herds
of animals, bacteria, collections of cells and/or man-made
active colloids [1–3]. All these systems in order to move
convert energy via metabolic or chemical reactions and
are thus out of equilibrium [4]. On the theory side, many
fundamental aspects of active systems can be described
with some minimalistic models based on spherical par-
ticles [5, 6]. Even in the absence of attractive inter-
actions such particles can exhibit intriguing individual
and collective behavior, induced solely by their persis-
tent motion, such as the accumulation at the system
boundary [7, 8], the separation into a dilute and a dense
phase [9, 10] and wetting or capillary condensation tran-
sitions [8, 11].
While the majority of studies are concerned with sys-

tems whose constituents are all identical, in real situa-
tions it is common to observe assemblies of active par-
ticles of different nature. The obvious question is how
does the heterogeneity affect the collective behavior of
such mixtures [3]. For example, doping a passive fluid
with a small number of active particles significantly al-
ters its structural and dynamical properties by support-
ing the formation of clusters [12] and, at higher den-
sities, crystallization [12, 13]. On the other hand, ac-
tive dopants with a short persistence length were re-
ported to aggregate in cages [14]. On immersing large
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colloids into a bath of smaller active colloids, the former
effectively are rendered active, which becomes manifest
through activity-enhanced diffusivities [15, 16] and de-
pletion forces [8, 17–19]. Employing shape-anisotropic
colloids [19–21] or manufacturing activity gradients [22],
these effects can be used to generate directed motion of
the colloids. Moreover, the segregation between two pas-
sive species has been reported as the result of coupling
only one species to the active bath [23].

The mixtures described so far consist of species which
differ in their shape (interaction potential) and particle
number. Seeking for the closest analogy to the motility-
induced phenomena observed for a single active species,
we are particularly interested in particles solely distin-
guished by a difference in their activity. The most in-
triguing feature of such multicomponent active systems is
their capability to demix, which cannot be attributed to
the physical mechanisms also present in equilibrium mix-
tures. Some recent investigations have focused on such a
binary mixture of an active and a passive species [24–26]
or particles with different finite activities [26–29]. Quite
intuitively, active phase separation phenomena can be
described using the concept of an effective temperature,
enhanced by activity [30], which has also been applied to
mixtures [27, 31, 32]. Relatedly, the demixing of particles
with the same mobility but different diffusion coefficients
has been recently reported [33].

The model of active particles propelled by so-called
Ornstein-Uhlenbeck processes (OUPs) provides a conve-
nient starting point of many theoretical studies [34–39],
since their equations of motion do not resolve the ori-
entational degrees of freedom. A minimalistic strategy
is based on the multidimensional generalizations of the
unified colored noise approximation (UCNA) [40, 41] or
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a similar approach by Fox [42, 43], see Ref. [44] for a
detailed comparison. This procedure yields an approxi-
mate Smoluchowski equation, which, in the steady state,
admits an analytic solution for the configurational prob-
ability distribution [45], and closed formulas for active
pressure and interfacial tension [46–48]. The former al-
lows to define effective interaction potentials, which can
be directly used to determine density profiles [44, 49, 50]
and rate equations [51] of individual ideal particles and,
when implemented in equilibrium liquid-state theory,
the structure and phase behavior of interacting systems
[11, 52, 53]. The described effective equilibrium ap-
proach is most accurate in one spatial dimension and for
small persistence time, which can be explicitly verified
by studying exactly solvable models [48].
In the present work we take the effective equilibrium

model to the next level by further generalizing the Fox
approach, which turns out to be more promising, to mix-
tures of different active particles. For two particles, we
demonstrate that the theory yields a pairwise potential
which agrees well with simulations of active OUPs. The
paper is organized as follows. The description of the
model and the generalization of the Fox approach are
presented in Sec. II. We then verify in Sec. III the ac-
curacy of the theory at linear order in the persistence
times by studying an exactly solvable harmonic problem.
In Sec. IV we discuss the configurational probability dis-
tribution and compare to numerical results. Finally, in
Sec. V, we draw some conclusions regarding the meaning
of our results on the many-particle level.

II. THEORY

In order to study a system of N active particles in
d spatial dimensions having species dependent diffusivi-

ties D
(i)
a and persistence times τ

(i)
a where the index i ∈

{1 . . .N}, we generalize the microscopic one-component
active OUPs model of Refs. [44, 45, 49] to the case where
different types of Gaussian stochastic driving terms are
present. To do so, we introduce a component-wise nota-
tion (compare, e.g., Ref. [49]) for dN -dimensional arrays
xα(t) denoting the coordinates of the particles evolving
according to

ẋα(t) = DtβFα(x1, x2, . . . , xdN ) + χα(t) , (1)

where α ∈ {1 . . .dN}, Fα is a conservative force due
to passive interactions and Dtβ is the inverse friction
coefficient (related to the translational diffusivity Dt in
a Brownian system).
The Gaussian stochastic noise χα(t) evolves in time

according to

χ̇α(t) = −
1

τ
(α)
a

χα(t) +

√

D
(α)
a

τ
(α)
a

ξα(t) (2)

with the white noise ξα(t), which has the time correlator

〈ξα(t)ξβ(t
′)〉=2Dtδαβδ(t− t′), and D

(α)
a = D

(α)
a /Dt. It

has zero average and the tensorial time correlator

Cαβ(t− t′) := 〈χα(t)χβ(t
′)〉=

D
(α)
a

τ
(α)
a

δαβe
−

|t−t′|

τ
(α)
a . (3)

The probability distribution functional of χα(t) has the
Gaussian representation:

PN [{χα}]∝exp



−
1

2

∫∫

ds ds′
∑

αβ

χα(s)Kαβ(s− s′)χβ(s
′)





(4)

and is equipped with a tensorial kernel Kαβ(t − t′), the
inverse of Cαβ.

A. Fokker-Planck equation

In appendix A, by extending Fox’s approximation to an
arbitrary number of (active) components, we show that
the configurational distribution fN ({xα}, t) of positions
xα of particles evolves according to the following Fokker-
Planck equation:

∂fN({xα}, t)

∂t
= −

∑

β

∂

∂xβ

(

DtβFβ({xα})fN({xα}, t)

−D(β)
a

∑

γ

∂

∂xγ
fN ({xα}, t)Γ

−1
γβ({xα})

)

(5)

with friction matrix

Γγβ = δγβ − τ (β)
a Dtβ∂βFγ (6)

and the short notation ∂β :=∂/∂xβ for the partial deriva-
tive employed here and in the following.
Intriguingly, the generalized Unified Colored Noise Ap-

proximation (UCNA) [40, 41] gives rise to a friction ma-
trix

Γucna
γβ = δγβ − τ (γ)

a Dtβ∂βFγ = Γβγ , (7)

which is the transpose of the Fox result in Eq. (6), since,
for a conservative force, we have ∂βFγ = ∂γFβ. In ei-
ther case, Γβγ = Γγβ only holds if the particles labeled
β and γ belong to the same species. Most importantly,

we find that D
(β)
a (Γucna)−1

γβ = D
(β)
a Γ−1

βγ does in general
not even correspond to the transpose of the Fox expres-

sion D
(β)
a Γ−1

γβ entering in Eq. (5), contrasting the rela-

tion in Eq. (7). Therefore, UCNA and Fox only share
the same steady state in a (non-thermal) one-component
system. As detailed later, differences between these two
approaches arise even at linear order in the persistence
times.
While the steady-state condition ∂fN/∂t = 0 requires

in general the vanishing of the divergence of the probabil-
ity current, the condition of detailed balance involves the
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vanishing of all components of the probability current, so
that from Eq. (5) we find

fN

(

βFβ −D(β)
a

∑

γ

∂γΓ
−1
γβ

)

= D(β)
a

∑

γ

Γ−1
γβ∂γfN . (8)

In the case of mixtures considered here, the solution
of such an equation is not known, but it reduces to a
Boltzmann-like distribution for a single species [45]. Only

if all diffusivities D
(β)
a are equal, Eq. (8) is fulfilled by

Γucna
γβ but not by Γγβ, which shows that Fox theory is,

in general, less equilibrium-like than UCNA.
Although the derivation of Eq. (5) is valid for any di-

mensionality, we will restrict ourselves to d = 1 spatial
dimensions in the remainder of this work, so that the
Greek indices become particle labels. Some more general
results for higher dimensions are stated in appendix B.
Assuming that the conservative force arises from an in-
teraction potential uγα(xγ − xα) between each pair of
particles, we can recast Eq. (6) as

Γγβ = δγβ + τ (β)∂β∂γ

N
∑

α 6=γ

βuγα , (9)

where we define the dimensionless persistence times [44]

τ (α) = Dtτ
(α)
a /d2 = Dtτ

(α)
a , (10)

setting the unit of length d, entering in the specifica-
tion of the pair potential, to unity. Since this friction
matrix enters Eq. (5) in a non-trivial way, our further
strategy involves approximating many-body by pairwise
quantities, which we explore in the following by further
restricting ourselves to N = 2 particles, i.e., α ∈ {1, 2}.

III. AN ELEMENTARY TEST

As a first step, we consider perhaps the simplest model
of interacting particles which lends itself to an analytic
solution and may serve as a benchmark for our theory.
An elastic dimer in a one-dimensional well and subject
to two different colored Gaussian baths is represented by
two particles mutually coupled by a harmonic potential
βu(x1 − x2) = α2(x1 − x2)

2/2 and each confined by a
harmonic external potential βv(xα) = ω2x2α/2. Their
dynamics is described by the evolution equations

ẋα(t) = DtβFα(x1, x2) + χα(t) , (11)

where Fα = −∂α(v(xα) + u(xα − xβ)). The friction
1/(Dtβ) is the same for both species, but the parame-

ters τ
(α)
a and D

(α)
a characterizing the stochastic driving

term χα(t), defined in Eq. (2), are different. Explicitly
we have

ẋ1 = −Dt(ω
2x1 + α2(x1 − x2)) + χ1(t) , (12)

ẋ2 = −Dt(ω
2x2 − α2(x1 − x2)) + χ2(t) . (13)

This model has been first used in statistical mechanics in
the context of the virial theorem by Riddell and Uhlen-
beck [54] and recently by one of us [48] in the framework
of active systems.
The model, being linear, can be solved analytically by

direct integration of equations of motion. It is convenient
to switch to collective variables q = x1 − x2 and Q =
(x1+x2)/2 and to the renormalized spring constant Ω2=
ω2 + 2α2. The steady-state equal-time pair correlations
read

〈Q(t)Q(t)〉 =
1

4ω2

( D
(1)
a

1 + τ (1)ω2
+

D
(2)
a

1 + τ (2)ω2

)

,

〈q(t)q(t)〉 =
1

Ω2

( D
(1)
a

1 + τ (1)Ω2
+

D
(2)
a

1 + τ (2)Ω2

)

. (14)

Such an exact result will now be used to compare with
the generalized Fox approximation.

A. Fox’s approximation for two oscillators

We now compute the averages featuring in Eq. (14)
using the approximate Fox theory, as described in ap-
pendix A, for two components. For the case of the
Riddell-Uhlenbeck model, let us introduce the following
symbols to shorten the notation: DtβFα =

∑

βMαβxβ
with M11=M22=−Dt(ω

2 + α2) and M12=M21=Dtα
2.

We write the evolution equations under the form:

∂

∂t
〈xαxβ〉 =

∑

γ

[Mαγ〈xγxβ〉+Mβγ〈xγxα〉]

+Dt[D
(β)
a Γ−1

αβ +D(α)
a Γ−1

βα] (15)

with Γαβ=δαβ− τ (β)β∂βFα according to Eq. (6). Since
the motion is confined by the external potential, the cho-
sen observables are limited, and by the ergodic theo-
rem [55] the left-hand side of Eq. (15) vanishes as t→∞
and the system approaches the steady state. In this case,
we obtain a simple set of linear equations for the correla-
tors 〈xαxβ〉, which can be easily solved and we find the
general expressions

〈Q(t)Q(t)〉 =
1

4ω2

∑

αβ

D(β)
a Γ−1

αβ ,

〈q(t)q(t)〉 =
1

Ω2

∑

αβ

(−1)α+βD(β)
a Γ−1

αβ (16)

for the equal-time correlations of the collective variables.
Explicitly, the inverse matrix Γ−1

αβ reads

Γ−1
11 = |Γ|−1

(

1 + τ (2)(ω2 + α2)
)

→ 1− τ (1)(ω2 + α2) ,

Γ−1
22 = |Γ|−1

(

1 + τ (1)(ω2 + α2)
)

→ 1− τ (2)(ω2 + α2) ,

Γ−1
12 = |Γ|−1 τ (1)α2 → τ (2)α2 ,

Γ−1
21 = |Γ|−1 τ (2)α2 → τ (1)α2 , (17)
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where |Γ| = 1+(τ (1)+τ (2))(ω2+α2)+τ (1)τ (2)(ω4+2ω2α2)
is the determinant of Γαβ and the last expressions are

valid to first order in τ (α). Plugging these expressions
into Eq. (16) and comparing with the corresponding ex-
act correlators 〈QQ〉 and 〈qq〉, we recognize that these
cannot be expressed in terms of a single spring constant,
ω2 or Ω2, as in Eq. (14). However, we can identify the
common leading terms

〈QQ〉=
1

4ω2

(

D(1)
a (1− τ (1)ω2) +D(2)

a (1− τ (2)ω2)
)

,

〈qq〉=
1

Ω2

(

D(1)
a (1− τ (1)Ω2) +D(2)

a (1 − τ (2)Ω2)
)

(18)

of both results, which means that Fox’s theory is exact
to linear order in τ (α).
One can easily see from comparing Eq. (6) and Eq. (7)

that the UCNA results for the off-diagonal friction matrix
elements in Eq. (17) and for the correlators in Eq. (16)
are different from those found in the present treatment,
based on the Fox approximation, even in the small τ (α)

limit, given by Eq. (18). This observation makes sense
regarding the nature of the derivation in appendix A,
whereas the UCNA becomes uncontrolled when more
than one time scale is involved. Therefore, we shall
not digress to further discuss the multicomponent UCNA
equations.

IV. PROBABILITY DISTRIBUTION
FUNCTION

Having seen that a system of two active particles with
different diffusivities and (small) persistence times are ac-
curately described by the multicomponent Fox approach,
our goal is to describe a system with κ components in d

dimensions. As shown in Sec. II, the effective Fokker-
Planck equation (5) does, in general, not admit current-
free steady states. It is thus not possible to identify a
Boltzmann-like expression for the configurational proba-
bility distribution fN(rN ), which fulfills Eq. (8). How-
ever, although such a solution is known analytically for a
one-component system [45], further approximations are
unavoidable in order to turn this advantage into a work-
able theory for the many-body system [44].
To make progress, we aim to provide the recipe

to reconstruct a pairwise-additive approximation for
the many-body effective interaction potential βH[N ] =
− ln fN , associated with a (presumably) Boltzmann-like
distribution fN [44, 52]. Given this objective, we con-
sider only N = 2 particles in the first place and deter-
mine the solution for f2. As before, we only discuss a
one-dimensional system and show some more general for-
mulas in appendix B.
For completeness, we also consider the case where some

particles are subject to an additional translational Brow-
nian white noise (referred to as thermal noise in the fol-
lowing) entering in Eq. (1), which facilitates establishing
the connection to mixtures of active Brownian particles.

Within the Fox approximation, this simply amounts to

adding the term I
(β)
t Dt∂

2
βfN on the right-hand-side of

Eq. (5) [44, 51, 52], where I
(β)
t takes the values 1 in the

presence and 0 in the absence of thermal noise acting on
particle β ∈ {1, 2}.

A. Two-particle current

Explicitly, for N = 2, we can rewrite Eq. (5) as
∂f2/∂t = −Dt

∑

β ∂βJβ. The two-body probability cur-
rent reads

Jβ(x) = βFβ(x)f2(x) −
∑

γ

∂γ(Dγβ(x)f2(x)) , (19)

where all quantities only depend on the (relative) dis-

tance x=x1 − x2 and Dγβ = δγβI
(β)
t + D

(β)
a Γ−1

γβ is the
effective 2 × 2 diffusion tensor, which can be written in
matrix notation, introducing the common derivative op-
erator ∂x ≡ ∂1=−∂2, as

D(x) =





I
(1)
t +D(1)

a (1+τ (2)∂2
xβu(x))

1+(τ (1)+τ (2))∂2
xβu(x)

D(1)
a τ (1)∂2

xβu(x)

1+(τ (1)+τ (2))∂2
xβu(x)

D(2)
a τ (2)∂2

xβu(x)

1+(τ (1)+τ (2))∂2
xβu(x)

I
(2)
t +D(2)

a (1+τ (1)∂2
xβu(x))

1+(τ (1)+τ (2))∂2
xβu(x)



 ,

(20)

where γ denotes the column and β denotes the row.
The steady-state condition ∂f2/∂t = 0 is equivalent to

− ∂xJ1 + ∂xJ2 = 0 . (21)

Explicitly, the two currents are given by:

J1(x) =f2(x) ∂x(−βu(x) −D11 +D21)

+ (−D11 +D21) ∂xf2 ,

J2(x) =f2(x) ∂x(βu(x) −D12 +D22)

+ (−D12 +D22) ∂xf2 . (22)

Considering two members of the same species, where
D11 = D22 and D21 = D12, we easily see that Eq. (21)
is trivially fulfilled. In general, this zero-divergence con-
dition is satisfied by J1 = J2+X , where X is a constant.
Suppose the two particles belonging to different species

interact with the same finite-range and symmetric pair
potential u(x) with limx→±∞ u(x) = 0. By subtracting
the second current in Eq. (22) from the first one we obtain

X = −2f2(x) ∂x

(

βu(x) +Dm

)

− 2Dm∂xf2(x) , (23)

where we defined

Dm(x) :=
1

2

(

D11 −D21 +D22 −D12

)

. (24)

Such an inhomogeneous first order linear differential
equation can be solved by introducing the so-called inte-
grating factor

ψ2(x) = exp

(

−

∫ x

−∞

ds

Dm(s)
∂s(βu(s) +Dm(s))

)

. (25)
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Due to the symmetry of the pair potential the inte-
grating factor has the property limx→±∞ ψ2(x) = 1. The
general solution of Eq. (23) must be of the form

f2(x) = ψ2(x)

(

A−
X

2

∫ x

−∞

ds

Dm(s)ψ2(s)

)

, (26)

so that limx→−∞ f2(x) = A. Now, the value of the distri-
bution function at infinity must be identical to the value
at minus infinity ( limx→∞ f2(x) = A ) and we may con-
clude that

A = lim
x→∞

ψ2(x)

(

A−
X

2

∫ x

−∞

ds

Dm(s)ψ2(s)

)

. (27)

The only solution is X=0, thus the two currents J1 = J2
must be equal and f2(x) = ψ2(x) is given by Eq. (25),
i.e., A=1. Combining Eq. (23) for X =0 with Eq. (22)
we find

J1 = J2 =
f2(x)

2Dm
((D11 −D21 − (D22 −D12)) ∂xβu(x)

+ (D11 −D21) ∂x(D22 −D12)

−(D22 −D12) ∂x(D11 −D21)) . (28)

One can see that J1 = J2 =0 only if D11 − D21 =D22 −
D12 = Dm, a condition which is realized when the two

particles are identical (or if we set D
(1)
a = D

(2)
a and use

the UCNA expression for D(x), obtained by exchanging
in the diagonal terms of Eq. (20) τ (1) with τ (2)).

B. An example of non-zero partial currents

To illustrate that the equality J1 = J2 of the (non-
vanishing) partial currents established in Sec. IVA does
not hold only for particles interacting via soft-repulsive
potentials but also for other interactions, we consider two
different active OUPs (without thermal noise) bound by
the harmonic pair potential u(x) =α2x2/2, cf., Sec. III.
In this case, we must have limx→±∞ ψ2(x)=0 for the in-
tegrating factor in Eq. (25), because the potential is con-
fining. Therefore, the argumentation leading to Eq. (28)
is no longer justified. However, we also know the form of
the equal-time pair correlation 〈q(t) q(t)〉 = Dm/(α

2) in
the Fox approximation, compare Eq. (16) with Ω2 ≡ 2α2

to Eq. (24). We can thus write the steady-state proba-
bility distribution

f2(x) ∼ exp
( −x2

2 〈q q〉

)

∼ exp
(−α2

2Dm
x2
)

∼ exp
(−βu(x)

Dm

)

(29)

explicitly as a Gaussian.
It is easily verified that a distribution of the form of

Eq. (29) gives X = 0 in Eq. (23), since Dm does not
depend on x for the employed potential. We immediately

get from Eq. (28) the position-dependent currents

J1 = J2 =
f2(x)

2Dm
(D11 −D21 −D22 +D12) ∂xβu(x)

= α2xf2(x)

(

(τ (1)−τ (2))(D(1)
a +D(2)

a )
)

α2−D(1)
a +D(2)

a
(

(τ (1)−τ (2))(D
(1)
a −D

(2)
a )
)

α2−D
(1)
a −D

(2)
a

. (30)

From these formulas it is easy to verify that the currents
vanish for two identical particles with both τ (1) = τ (2)

and D
(1)
a = D

(2)
a . The full formula for the probability

distribution f2(x) follows from the consideration in the
following section, which hold for an arbitrary bare inter-
action potential.

C. Effective potentials

With the knowledge of the two-particle probability dis-
tribution f2(x)≡ψ2(x), as given by Eq. (25), one can de-
fine an effective force F eff

α on particle α ∈ {1, 2} according
to βF eff

α f2 − ∂αf2 = 0, which has the form of a steady-
state condition in a passive system. Note that defining an
effective force as βF̃ eff

α =D−1
1αJ1 + D−1

2αJ2 + ∂αf2, which
in the one-component system is equivalent to the first
definition [44], does not yield the same result as βF eff

α in
the general case of a mixture with non-vanishing proba-
bility currents. We thus derive by equating the currents
in Eq. (22) the effective pair interaction potential

∂xβu
eff
µν(x) = −∂x ln f2 = D−1

m ∂x (βu(x) +Dm) (31)

between two members of species µ and ν, withDm defined
in Eq. (24). In general, we can then represent the effective
many-body interaction by adding up the pair potentials
ueffµν(xαβ) for all components and corresponding particle
positions. For the purpose of demonstration, we consider
µ = 1 and ν ∈ {1, 2} in the following.
The effective potentials ueff11 between members of the

same species can be obtained in various ways, e.g., simply
by requiring that either current vanishes in Eq. (22). The
explicit form of the ueff11 has been discussed in detail in
Ref. [44]. Without thermal noise, i.e., setting in Eq. (20)

I
(1)
t =I

(2)
t =0, the closed analytical expression

βueff11(x) =
βu(x) + τ (1) (∂xβu(x))

2

D
(1)
a

− ln
∣

∣

∣E
(1)
2 (x)

∣

∣

∣ (32)

can also be found from integrating Eq. (31), where

E
(µ)
2 (x) = 1 + 2τ (µ)∂2xβu(x) (33)

denote the Eigenvalues of Γαβ from Eq. (9), evaluated
for two particles of the same species µ. In this special

case, E
(µ)
2 is equivalent (up to the factor D

(µ)
a ) to the

Eigenvalues of the more general (inverse) diffusion tensor
D−1

αβ from Eq. (20).
In the most general case of two different species with

thermal noise present, we can express ueff12 from Eq. (31)
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τ
(1)=0.025

τ
(1)=0.0125 D

(1)
a =4.8

τ
(1)=0.00625

D
(1)
a =2.4

D
(1)
a =1.2 τ

(1)=0.05

D
(1)
a =0.6

Fox (ep)

1 1.1    x

-0-1

-0,5

βu
ef

f (x
)

OUPs
+noise (b)

PSfrag replacements

D
(2)
a = 9.6−D

(1)
a

τ
(2) = 0.1− τ

(1)

FIG. 1. Effective potentials in one dimension from OUPs
simulation and the Fox theory, Eq. (36), between two active

particles with the parameters τ (1) and D
(1)
a (as labeled) with

τ
(2) = 0.1 − τ

(1) and D
(2)
a = 9.6 − D

(1)
a , such that τ̄ = 0.05

and D̄a =4.8 (the results are invariant when exchanging the
particles, i.e., the labels 1 and 2). Here we consider only

particles with at least one pair of equal parameters (τ (2)=τ
(1)

or D
(2)
a =D

(1)
a ), such that the results only depend on |∆Da| or

|∆τ |, respectively. The case of all parameters being equal is
labeled as (ep). The Fox theory predicts the same result (ep)
in all cases. We consider a system (a) without and (b) with
thermal noise; note the different scale on the vertical axes.
The legends apply to both subfigures and the colored lines
reappear in subsequent figures for comparison.

with help of the Eigenvalues

E2(x) =
Ē2(x)

D̄a −∆Da ∆E2(x) + ĪtĒ2(x)
(34)

of D−1
m from Eq. (24) with Eq. (20) and the average and

deviatoric parameters

Ξ̄ :=
Ξ(1) + Ξ(2)

2
, ∆Ξ :=

Ξ(1) − Ξ(2)

2
, (35)

where Ξ(µ) represents the EigenvaluesE
(µ)
2 from Eq. (33),

the persistence times τ (µ), the active diffusivities D
(µ)
a or

the characteristic functions I
(µ)
t of thermal noise. It is

a known problem of the present theory that, already for
the one-component system, the effective potential is only
well defined if the Eigenvalues of the diffusion tensor are
strictly positive. Systems for which this validity criterion
is fulfilled, as, for example, soft-repulsive particles in one
dimension, are rather the exception then the rule.
Regarding mixtures, we should expect that additional

difficulties arise if the term ∆Da ∆En(x) in Eq. (34),
which is not present in the result based on the UCNA,
is positive. The nature of this term can be understood
by the following example. In the present model we can
define the passive (Brownian) particle (label 2) in two

ways [44]: we always require that E
(2)
2 =1, i.e., τ (2) =0

(likewise, in the one-component UCNA, the bare poten-
tial of a passive particle can only be recovered when the
persistence time is set to zero [44]). Obviously, the persis-
tence time τ (1) of the active species has to remain finite.

Then we can set either D
(2)
a =1 with I

(2)
t =0 or D

(2)
a =0

with I
(2)
t =1. Both definitions result in the same E2 for

1 1.1    x

-0.5

-1

0

βu
ef

f (x
)

OUPs

(a)

PSfrag replacements

D
(1)
a =0.15

D
(1)
a =0.6 D

(1)
a =1.2

D
(1)
a =2.4

D
(1)
a =4.8

D
(1)
a =6.0

D
(1)
a =7.2

D
(1)
a =8.4

τ
(1)=0.025

1 1.1    x

-0.5

-1

0

βu
ef

f (x
)

OUPs

Fox

(b)
PSfrag replacements

D
(1)
a =4.7

D
(1)
a =4.8 (= ep)

D
(1)
a =4.9

D
(1)
a =5.0

D
(1)
a =5.2

D
(1)
a =6.0

(ep)

τ
(1)=0.025

FIG. 2. As Fig. 1, but for two particles with fixed τ
(1) =

0.025 and thus τ
(2) = 0.075. We qualitatively compare (a)

simulations to (b) theory, where ∆Da is chosen much smaller

for the theoretical curves, since the changes for different D
(1)
a

are more significant and the curves start to diverge for some

D
(1)
a <4.8. This is a direct consequence of the form of Eq. (36).

The colored lines for D
(1)
a =4.8 and for all parameters being

equal (ep) are the same as in Fig. 1a.

an active-passive mixture with arbitrary τ (1) and D
(1)
a

only if the term ∆Da ∆E2(x) is present.
Solving Eq. (31) we obtain the most general form

βueff12(x) =

∫ x

−∞

ds E2(s) ∂sβu(s)− ln

(

D̄a |E2(x)|

)

(36)

of the effective potential for a symmetric bare potential
with limx→∞ u(x) = 0. For two different species, it is
not possible to carry out the integral in general, even if

I
(1)
t = I

(2)
t = 0. If, in addition, both species either have

the same active diffusivity D
(1)
a =D

(2)
a or persistence time

τ (1) = τ (2), one recovers an effective potential similar to
the one-component result in Eq. (32), replacing τ (1)→ τ̄

or D
(1)
a →D̄a, respectively, with the appropriate average

parameter.
Although we restrict ourselves to the one-dimensional

case here, we briefly extend the above discussion to higher
spatial dimensions. Whereas, the effective potential for a
single species is highly accurate [44, 45] in one dimension,
implementing the general, higher dimensional, results in
would most likely come along with the following caveats
(as detailed in appendix B): (i) the exact effective po-
tentials can be written in a form similar to Eq. (36),
i.e., the argument of the logarithm follows from the de-
terminant of the effective diffusion tensor [44], only if

there is no thermal noise and we assume D
(1)
a =D

(2)
a or

τ (1)=τ (2); (ii) we have no rigorous proof that the under-
lying assumption J1 = J2 of equal probability currents
holds for d>1; (iii) already for two particles of the same
species, empirical corrections of the effective potential are
required and the quantitative agreement with computer
simulation becomes worse with increasing dimensionality.
However, we stress that most relevant cases (to be dis-
cussed later) are consistent with the assumptions under
point (i). Moreover, for a single component, it has been
shown [44] that deviations due point (i) are not severe
and, despite point (iii), qualitatively correct behavior can
be retained.
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τ
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D
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FIG. 3. As Fig. 1, but for two particles with fixed D
(1)
a =2.4

and thus D
(2)
a =7.2. As in Fig. 2, we compare (a) simulations

to (b) theory, where the curves diverge for some τ
(1)

< 0.05.

The colored lines for τ
(1)=0.05 and for all parameters being

equal (ep) are the same as in Fig. 1a.

D. Model calculations

To test the generalized theory we consider a soft-
repulsive bare potential u(x) = x−12 between two
particles and perform computer simulations of active
OUPs [44], evolving according to Eq. (1), as a bench-
mark for the effective potentials predicted from Fox’s
approach. Since we focus on the one-dimensional case,
we can also make quantitative statements about whether
the accuracy of the single-component theory [44, 45, 53]
is maintained if the difference in activity increases. We
checked that the qualitative behavior is not altered when
thermal noise is present and a quantitative comparison
to the simulation data is thus analogous to the single-
component case [44]. An exemplary direct comparison
of these two systems is made in Fig. 1. For the follow-

ing discussions, we assume I
(1)
t = I

(2)
t = 0 and recall the

definitions and sign of relative parameters from Eq. (35).
The most important theoretical statement of Sec. IVC

is that either for equal D
(1)
a =D

(2)
a = D̄a or τ (1)=τ (2)= τ̄

the effective potential of the mixture is equal to that of
two identical particles with averaged activity parameters.
According to Fig. 1 this prediction is indeed confirmed
numerically for the latter case, whereas, for equal diffu-
sivities, the effective potential should rather become less
attractive with increasing difference |∆τ |. We will return
to this point at the end of this section.
If the two species differ in both activity parameters,

the theoretical results do no longer depend only on the
average values due to the term ∆Da ∆E2(x) in Eq. (36).
For small differences ∆Da and ∆τ , we observe in Figs. 2
and 3 that both theory and simulations predict a deeper
minimum of the effective potential when ∆Da∆τ is in-
creased. Further increasing the absolute value of either
difference, the theory becomes quantitatively inaccurate.
For ∆Da∆τ < 0 the theoretical curves suggest a rapid de-
cline in the effective attraction, while much larger differ-
ences between the parameters are required to noticeably
shift the numerical curves. For ∆Da∆τ > 0 the theory
starts to predict diverging effective potentials, which is
qualitatively wrong.
Interestingly, the behavior of the simulation results in

1 1.1 1.2 1.3    x
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βu
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)

1 1.1 1.2 1.3    x
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a =14.4 τ
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PSfrag replacements

τ
(1)=0
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(1)=0.003125
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(1)=0.0125

τ
(1)=0.05

τ
(1)=0.1

D
(1)
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(2)
a =1

τ
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FIG. 4. Comparison between the effective potentials from the-
ory (thick lines) and simulations (dots and thin lines) for (a)

a fixed persistence time τ
(1)= τ

(2)=0.05 but different active
diffusivities (as labeled) and (b) an active-passive mixture

with fixed D
(1)
a =D

(2)
a = 1 and the passive τ

(2) = 0 but dif-
ferent active persistence times (as labeled). In this case, the
equilibration appears to proceed very slowly and the numer-
ical values only gradually approach 0 for separations larger
than shown here. However, even for large values of τ (1) there
is no attractive well, suggesting that the fully equilibrated
data should reflect the behavior of two passive particles.

the regime ∆Da∆τ > 0 distinctly depends on the param-
eters that are changed. Fixing ∆τ < 0 and decreasing
∆Da < 0 the curves in Fig. 2a begin to saturate and the
deepest minimum is reached for the minimal ∆Da i.e.,

D
(1)
a = 0. On the other hand, the curve with the deep-

est minimum in Fig. 3a at constant ∆Da < 0 is found
for an intermediate ∆τ < 0, whereas for even smaller
∆τ the trend inverts. This means that for large absolute
differences |∆τ | in the persistence time, i.e., one species
becoming more and more passive, there is no significant
attraction between two active OUPs (see also Fig. 1).
The special case of a common persistence time τ =

τ (1)=τ (2) of both particles is particularly relevant, since
τ represents the rotational diffusion of all species in a
mixture of ABPs with different self-propulsion veloci-
ties [52]. As noted before, this choice of parameters also
yields particularly simple effective potentials, which are
equivalent to the single-component results with the aver-
aged diffusivity D̄a defined according to Eq. (35). Recall
from Fig. 1 that also computer simulation results are well
represented by those with D̄a. Figure 4a nicely confirms
for different activity parameters our expectation that for
the Brownian mixture under consideration the effective
potentials are as accurate as those between identical par-
ticles in one spatial dimension [44, 45]. Accordingly, the
deviations from the simulation results are most signifi-
cant for large separations x and increase with increasing
average activity D̄a.
Another special case, which recently has attracted

much interest, is a mixture of an active and a passive
Brownian species [24–26]. Given the prior results, the
only way to set up a meaningful theoretical description

of such a system is to fix D
(1)
a = D

(2)
a = 1, since the

persistence times τ (2) = 0 of the passive and τ (1) of
the active species are different by necessity in the OUPs
model. Choosing the latter as the free activity param-
eter, as shown in Fig. 4b, makes it difficult to connect
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to ABPs, where the activity should rather be tuned by

varying the active diffusivity D
(1)
a (depending on the self-

propulsion velocity) than the (non-Brownian) reorienta-
tion time τ (1).
In general, our OUPs simulations indicate that there is

no significant effective attraction whenever one of the two
particles is passive. Putting aside the difficulties with the
equilibration, the numerical curves in Fig. 4b are practi-
cally independent of the activity of the second particle.
Inspired by Percus’ test particle approach [56], we con-
jecture that the pair distribution in a two-body system
including a passive Brownian particle always reflects the
behavior of the bare interaction potential, regardless of
the type and magnitude of self propulsion of the other
species. This conclusion is also consistent with the be-
havior of the different curves shown in Figs. 1 and 3a
upon increasing |∆τ |. As for these sets of parameters,
the theoretical effective potentials in Fig. 4b overesti-
mate the effective attraction. However, in this special
case with one passive particle the simulation result ob-
tained on the two-body level obviously does not reflect
the behavior of the many-body system.

V. CONCLUSIONS

In this paper, we derived the multicomponent general-
ization of the multidimensional Fox approximation and
applied it to pairs of active particles with different persis-
tence times and diffusivities. We argued that the present
approach better describes the non-equilibrium behavior
of such systems, compared to the UCNA. Our analytic
results for two particles in one dimension were compared
to an exact solution for harmonic potentials and com-
puter simulations for soft-repulsive interactions, which
both suggest that our theory is satisfactory at linear or-
der in the persistence times. Explicitly, the formula in
Eq. (36) with Eq. (34) for the effective interaction poten-
tial between two different particles resemble those for two
identical particles with average activity parameters plus
an additional term depending on their differences. This
term is important to make correct qualitative predictions
close to equilibrium (or for small differences between the
parameters) but also can be identified as the reason for
the wrong or even unphysical predictions beyond the low-
activity limit. It might be interesting in future work to
explore the possibility for an empirical modification of
the effective potential in the spirit of the inverse-τ ap-
proximation introduced in Ref. [44].
To understand the value of the theory for a many-

body system, one must think of possible approximations
for the effective Fokker-Planck equation (5). A conve-
nient method to achieve this goal is to construct an ef-
fective many-body force from the derived effective poten-
tials [47]. Likewise these can be readily implemented in
a density functional theory in order to make explicit pre-
dictions of the structure and phase behavior in the steady
state [11]. Keeping this in mind, we also stress that the

limitations discussed in Sec. IVD if the two particles be-
long to different species, will eventually only play a minor
role on the many-particle level. Here, the effective pair
potential between members of the same species will be
equally or, most likely, even more relevant. The same is
true if one is interested in a mixture in the presence of
external forces, which are also single-body quantities. It
might thus also constitute a fair approximation to drop
the term ∆Da ∆E2(x) in Eq. (34), i.e., to simply use the
average parameters in any case.
The most obvious application of our effective poten-

tials is also among those of most recent interest. Fol-
lowing the intuition from passive mixtures, the tendency
of a two-component system to demix arises from differ-
ences in the interactions between the members of each
species. In our case the increased effective attraction
within the (more) active species can be interpreted as the
driving force of the demixing process when its activity is
increased. It will thus come to no surprise that an explicit
(passive) calculation will predict that the effective equi-
librium state of a mixture of two different active species
is demixed/phase separated. Of course the problem of
demixing is ill-defined in one dimension, but the results
discussed here will qualitatively be the same in higher
dimensions (if an appropriate correction is employed to
avoid possible divergences [44]).
Considering the problem of active depletion it is not

as simple to draw conclusion solely from discussing the
effective potentials. The expected attraction between
the passive particles does not result directly from the
(still passive) effective potential between members of this
species. It is still quite likely that the enhancement of the
depletion interaction is also captured in our theory and
can be implicitly accounted for when studying the full
behavior of an effective mixture between an active ideal
gas (higher effective temperature) and passive colloids.
To show this explicitly, another calculation in the spirit
of the Asakura-Oosawa model [57] would be necessary.
Likewise, all other combinations of different passive po-
tentials in the active mixture can be modeled within our
approach, where the effective interactions between mem-
bers of different species, as studied here, are generally
important.
In a nutshell, the presented theoretical framework pro-

vides the basis to study active mixtures using methods
familiar from equilibrium liquid-state theory, following
the examples elaborated for a single species in arbitrary
dimensions. Apart from the possibilities discussed above
by taking advantage of the effective potentials, further
work could also address the pressure and interfacial ten-
sion [46, 47], and an extension of the theory to study
dynamical problems [44].
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Appendix A: The multicomponent Fox
approximation

We derive the Fokker-Planck evolution equation of
the probability density distribution associated with the
stochastic differential equation (1) by employing a gener-
alized Fox approximation [51, 52]. We consider here the
most general case of N particles in d spatial dimensions,
which does not increase the level of complexity of the fol-
lowing mathematical steps compared to the special case
N =2 and d=1 discussed in the main text. In the cho-
sen notation, each Cartesian coordinate of each particle
is considered as an individual component.
By differentiating with respect to time the probability

density distribution

fN ({yα}, t) =

∫

D[{χα}]PN [{χα}]

dN
∏

α=1

δ(yα − xα(t))

(A1)

associated the stochastic processes xα(t), defined in
Eq. (1) of the main text, we obtain the following equa-
tion:

∂fN({yα}, t)

∂t

= −
dN
∑

β=1

∂

∂yβ

(

DtβFβ({yα})fN({yα}, t)

+

∫

D[{χα}]PN [{χα}]

( dN
∏

α=1

δ(yα − xα(t))

)

χβ(t)

)

.

(A2)

The first term in Eq. (A2) stems from the deterministic
part of the evolution, whereas the second term accounts
for the noise contribution and is calculated as follows.
We first use the Novikov theorem and the explicit form

of the noise correlation in Eq. (3) of the main text and
rewrite the last term in Eq. (A2) as:

∫

D[{χα}]PN [{χα}]

(

dN
∏

α=1

δ(yα − xα(t))

)

χβ(t)

= −

dN
∑

γ=1

∫

dt′Cββ(t− t′)
∂

∂yγ

∫

D[{χα}]PN [{χα}]

×

(

dN
∏

α=1

δ(yα − xα(t))

)

δxγ(t)

δχβ(t′)
. (A3)

In order to evaluate the response function (the last fac-
tor) on the right-hand side of the above expression, we
use again Eq. (1) and find

δẋγ(t)

δχβ(t′)
= Dt

dN
∑

δ=1

∂βFγ({xα(t)})

∂xδ(t)

δxδ(t)

δχβ(t′)
+ δβγδ(t− t′) .

(A4)

The formal solution of Eq. (A4) with the initial condition
[

δxγ(t)

δχβ(t′)

]

t=t′

= δβγ (A5)

is given (for t > t′) by the tensor

δxγ(t)

δχβ(t′)
=

(

exp

∫ t

t′
ds F′(s)

)

γβ

Θ(t− t′)

≈
(

e(t−t′)F′(t)
)

γβ
Θ(t− t′) . (A6)

In the second step, we expanded the integral [52] in the
exponent up to linear order in (t − t′) and we intro-
duced F′(t) ≃ F′[{xα(t)}] with the components F′

γβ =
Dt∂βFγ/∂xβ.
To shorten the notation we indicate the average of a

function O({xα(t)}) as

〈O({xα(t)})〉 ≡

∫

D[{χα}]PN [{χα}]O({xα(t)}) (A7)

Now we use Eq. (A6) to rewrite Eq. (A3) as

−
∂

∂yγ

dN
∑

γ=1

∫ t

0

dt′Cββ(t− t′)
〈

dN
∏

α=1

δ(yα − xα(t))
δxγ(t)

δχβ(t′)

〉

≈ −

dN
∑

γ=1

∂

∂yγ
fN ({yα}, t)

∫ t

0

dt′Cββ(t− t′)

×
〈(

e(t−t′)F′(t)
)

γβ

〉

, (A8)

where, according to Eq. (A1), fN ≡
〈
∏

α δ(yα − xα(t))
〉

and we approximated the average of the product in the
in the first line by the product of the averages.
Using the explicit correlator (3) and further approxi-

mating the average of the exponential with the exponen-
tial of the average the integral featuring in Eq. (A8)
becomes:

∫ t

0

dt′
D

(β)
a

τ
(β)
a

e
−

|t−t′|

τ
(β)
a ×

(

e
(t−t′)

〈

F
′(t)

〉

)

γβ

≈ D(β)
a

(

I− τ (β)
a

〈

F
′(t)
〉)−1

γβ
, (A9)

where we took the small τ
(β)
a limit in the integral.

Putting together

∂fN ({yα}, t)

∂t

= −

dN
∑

β=1

∂

∂yβ

(

DtβFβ({yα})fN({yα}, t)

−D(β)
a

dN
∑

γ=1

∂

∂yγ
fN ({yα}, t)

(

I− τ (β)
a

〈

F′(t)
〉)−1

γβ

)

.

(A10)
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Such a formula can be recast under the form of Eq. (5)
given in the main text, where, in order to reduce the
notational burden, we identify the symbol of the coor-
dinates yα with that of the stochastic processes xα(t),
which are formally equivalent, according to Eq. (A1).
The Fokker-Planck equation, Eq. (A10), can be written

in the compact form

∂

∂t
fN({yα}, t) = LFPfN({yα}, t) , (A11)

where LFP represents the Fokker-Planck operator. It fol-
lows that the average of an observable O({yα}) evolves
according to

∂

∂t
〈O({yα}, t)〉 = 〈L†

FPO({yα}, t)〉 , (A12)

where L†
FP is the adjoint operator of the

Fokker-Planck operator LFP and 〈O({yα}, t)〉 ≡
∫

d{yα}fN ({yα}, t)O({yα}).

Appendix B: Theory for N particles in d dimensions

For completeness, we restate in this appendix the most
important results of the main text in a more general fash-
ion valid in higher spatial dimensions d. For this pur-
pose, and to make connection to the notation employed
in Refs. [44, 47], it is convenient to rewrite Eq. (5) of the
main text, using Cartesian coordinates and component-
wise notation, as.

∂fN (rN , t)

∂t
= −Dt

κ
∑

υ=1

Nυ
∑

kυ

∇kυ
· Jkυ

, (B1)

Jkυ
(rN , t) = βFkυ

fN −

κ
∑

µ=1

Nµ
∑

iµ=1

∇iµ · (Diµkυ
fN ) , (B2)

Diµkυ
(rN ) = 1δiµkυ

I
(υ)
t +D(υ)

a Γ−1
iµkυ

(rN ) , (B3)

Γiµkυ
(rN ) = 1δiµkυ

+ τ (υ)∇kυ
∇iµ

κ
∑

ν=1

Nν
∑

jν=1

′

βu(riµ , rjν ) ,

(B4)

where we first sum over the different particle species µ, so
that N =

∑

µNµ. Then we sum over particles iµ of each

species, which all have the same persistence times τ (µ),

active diffusivities D
(µ)
a and characteristic functions I

(µ)
t

of thermal noise. The primed sum excludes the particle
in the first argument of the following function.
Equations (B1)-(B4) represent the full extension of

Fox’s approximation [42, 43] for one-component active
fluids [44, 51, 52] to the multicomponent case where the
fluid contains different species and each species is sub-
jected to a different active (colored) noise. In general,
the effective diffusion tensor Dkυiµ is not symmetric, i.e.,
Dkυiµ 6= Diµkυ

, if the particles belong to two different

species. Regarding the structure of Eqs. (B1) and (B2),
transposing Dkυiµ changes the components of the prob-
ability current but not the overall time evolution of the
probability distribution. With Eq. (B3) coupling the N
particle positions in a non-trivial way, the general theory
does not provide any useful simplification of Eq. (1) at
this stage.
One possibility to arrive at a computationally tractable

many-particle theory is to naively define an effective cur-
rent

J̃kυ
(rN , t) =

κ
∑

ν=1

Nν
∑

jν=1

′

Diµkυ
·
(

βF̃eff
iµ
fN −∇iµfN

)

(B5)

with the (approximate) pairwise additive effective force

F̃
eff
iµ

= −∇iµ

κ
∑

ν=1

Nν
∑

jν=1

ueffµν(riµ , rjν ) (B6)

constructed from the effective potentials ueffµν(r), as de-
fined for d=1 in Sec. IVC of the main text. Since there
is no clean definition of an exact effective many-body
force [44, 52] in the present case, the form of Eq. (B5)
has been adopted from that for a single-component sys-
tem [47]. For a mixture of N = 2 particles, it has been
explicitly discussed in the main text, that such a sepa-
ration in not exact. In the words of Ref. [47], it is not
possible to write the steady-state condition in a ther-
modynamical version [47]. However, the definition in
Eq. (B5) comes along the approximation that there ex-
ists a current-free steady state with the probability dis-
tribution fN ∝ exp(− 1

2

∑

µν

∑

iµjν
βueffµν) and therefore

closed theories can be constructed borrowing methods
from equilibrium.
To derive the effective pair potentials ueffµν in dimen-

sions higher than one, we restate the two-body steady-
state condition, Eq. (21), in Cartesian coordinates

∇ · J1 −∇ · J2 = 0 . (B7)

Explicitly, the two current vectors are given by the mul-
tidimensional version of Eq. (22), which can be easily
generalized by replacing the scalar components of the
one-dimensional effective diffusion tensor with Eq. (B3).
From now on we focus on the solutions of J1 = J2 +X,
the integral of Eq. (B7), and conjecture that the vector
field X vanishes. This is shown explicitly in Sec. IVA for
a one-dimensional system.
For d > 1, the 2d × 2d friction matrix (of two parti-

cles of the same species) from Eq. (B4) has two distinct
Eigenvalues

E(µ)
n (r) = 1 + 2τ (µ)rn−2∂nr βu(r) (B8)

with n ∈ {1, 2}, from which, following Eq. (34) of the
main text, we can define the general Eigenvalues En of
Dm := 1

2

(

D11 − D21 + D22 − D12

)

, obtained from the
effective diffusion tensor from Eq. (B3). As a general
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result, we propose to write the effective potentials in the
form

βueff12(r) =

∫ r

∞

ds E2(s) ∂sβu(s)− ln
(

D̄ 3
a |E2(r)| |E1(r)|

d−1
)

,

(B9)

where the closed expression of the second term stems
from the approximation D−1

m · ∇ · Dm ≈ ∇ ln | detDm|.
This step is always exact in one dimension, compare the
conversion from Eq. (25) to Eq. (36) of the main text,
and we expect that it results only in minor deviations in
higher dimensions, based on the similar conclusion drawn

for a single component [44].

In the absence, I
(1)
t =I

(2)
t =0, of thermal noise and for

one parameter D
(1)
a =D

(2)
a or τ (1) = τ (2) being equal in

both species, the first term in Eq. (B9) can be integrated
and the second term is no longer approximate. We then
find for these special cases

βueff12(r) =
βu(r) + τ̄ (∂rβu(r))

2

D̄a
− ln

(

∣

∣Ē2(r)
∣

∣

∣

∣Ē1(r)
∣

∣

d−1
)

(B10)

with the average parameters defined in Eq. (35), as in
one dimension.
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