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Abstract

We study the cone avoidance and the upper cone avoidance of two substructures of m-introimmune Turing degrees.
We show that the substructure of the m-introimmune Turing degrees satisfies the cone avoidance property, and that the
substructure of the computably enumerable m-introimmune Turing degrees satisfies the upper cone avoidance property.
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1. Introduction

The study of sets of natural numbers with no subsets of higher Turing degrees started with Soare (Soare 1969) and
continued with Jockusch (Jockusch 1973) and Simpson (Simpson 1978). From their works we know that such sets exist
and that they cannot be arithmetic. On the other hand, for stronger reducibilities ≤r there are arithmetic sets with no
subsets of higher ≤r-degrees (Cintioli and Silvestri 2003), (Ambos-Spies 2003). We recall that a reducibility is stronger
if it is strictly contained in the Turing reducibility.

Given one of the common reducibility ≤r studied in computability theory, a possible way to define the property of having
no subsets of higher ≤r-degrees is that of being r-introimmune, a property introduced in (Cintioli and Silvestri 2003): an
infinite set A of natural numbers is r-introimmune if for every B ⊆ A with |A − B| = ∞ is A ̸≤r B.

We know that for some stronger reducibilities ≤r there are arithmetic r-introimmune sets. In particular, there are m-
introimmune sets in the class Π0

1 (Cintioli 2005), where m stands for the many-one reducibility ≤m. This suggests to
study which properties satisfies the substructure of the computably enumerable (c.e.) m-introimmune Turing degrees. Let
Im = {a : a is a c.e. Turing degree containing a m-introimmune set}, and let Im = (Im,≤) be the substructure of the c.e.
m-introimmune Turing degrees. For example, we know of this substructure that it has no minimum and it has maximum
(Cintioli 2005). Moreover, a portion of Im is an upper semilattice (Cintioli 2014) . In section 3 we continue the study of
the substructure Im by considering the upper cone avoidance property. The upper cone avoidance property is one of the
main properties studied in the structure of the c.e. Turing degrees, and we prove that Im satisfies this property.

In section 4 we consider the substructure Jm = (Jm,≤) of the m-introimmune Turing degrees, that is the structure where
Jm = {a : a is a Turing degree containing a m-introimmune set}. We know that Jm has minimal elements and that it does
not have maximum. We consider here the cone avoidance property, and we prove that Jm satisfies this property.

2. Notations and Preliminaries

For the notations we refer to the Soare’s book (Soare, 1987). Letter N denotes the set of natural numbers. Given two sets
A, B ⊆ N, the complement of A is denoted by A, while A − B denotes the difference of A and B. For every set A ⊆ N and
for every natural number n, A � n = A ∩ {0, 1, . . . , n}. We identify the characteristic function of a set A with A itself, that
is A(x) = 1 if x ∈ A and A(x) = 0 if x < A, for every x ∈ N. We use the standard enumeration of all the Turing functionals
Φ0,Φ1, . . ., where for every e ∈ N and for every X ⊆ N ΦX

e is the partial function computated by the e-th oracle Turing
machine with the aid of the oracle X. We write ΦA

e (x) ↓ if the e-th oracle Turing machine with oracle A halts on input
x. For every natural numbers e, s, x and for every oracle X we define ΦX

e,s(x) := ΦX
e (x) if there exists t ≤ s such that the

e-th oracle Turing machine on input x with oracle X halts in exactly t steps; in this case we say that ΦX
e,s(x) is defined

and we write ΦX
e,s(x) ↓; we say that ΦX

e,s(x) is undefined otherwise. We fix also an acceptable enumeration f0, f1, . . . of all
the unary Turing computable functions. W0,W1, . . . is the corresponding enumeration of all the computably enumerable
(c.e.) sets. For every e, s, x ∈ N we define fe,s(x) := fe(x) if there exists t ≤ s such that the e-th Turing machine on input
x halts in exactly t steps; in this case we say that fe,s(x) is defined and we write fe,s(x) ↓; we say that fe,s(x) is undefined
otherwise. For every e, s ∈ N, We,s is the finite approximation of We given by performing s steps in the enumeration of
We. Given two sets A, B ⊆ N:
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- A is many-one reducible to B, in short A ≤m B, if there exists a total computable function f : N → N such that for
every x ∈ N, x ∈ A if and only if f (x) ∈ B.

- A is Turing reducible to B, in short A ≤T B, if there exists e ∈ N such that ΦB
e = A.

The Turing degree of a set A ⊆ N is the equivalence class {B ⊆ N : A ≡T B}, where A ≡T B if and only if A ≤T B and
B ≤T A. The Turing reducibility ≤T induces the partial ordering ≤ on the Turing degrees in the obvious way. Turing
degrees, or simply degrees, are denoted with the lower case letters a, b, . . .. Two degrees a,b are incomparable if a ̸≤ b
and b ̸≤ a, and in this case we write a|b. 0 is the Turing degree of the computable sets. The jump of degree a is a′. In
particular, 0′ is the Turing degree of the set {x ∈ N : Φ∅x(x) ↓}. Given a Turing degree a,

(i) the upper cone of a is the set {b : a ≤ b}, and

(ii) the cone of a is the set {b : a ≤ b} ∪ {c : c ≤ a}.

3. Upper Cone Avoidance

In this section we consider the substructure Im = (Im,≤). Of this structure we know that it has no minimum and it has 0′
as maximum (Cintioli 2005). It is not a lattice because there is a minimal pair in Im (Cintioli 2011), and we do not know
if it is an upper semilattice. Continuing with the research of the properties of Im, we show that it satisfies the upper cone
avoidance property, that is, for every degree c ∈ Im there exists a ∈ Im such that c ̸≤ a. The upper cone avoidance property
of Im is an immediate corollary of Theorem 3.2.

Theorem 3.2 For every noncomputable c.e. degree c there exists a c.e. degree a ∈ Im such that c ̸≤ a.

Proof. Let c be a noncomputable c.e. degree and let C ∈ c be a c.e. set. Let {Cs}s≥0 be a uniformly recursive sequence of
finite sets such that C =

∪
s≥0 Cs, with Cs ⊆ Cs+1 for every s ≥ 0.

3.1 Strategy

We construct by a finite-injury priority argument a c.e. set A =
∪

s≥0 As, where As is the finite set constructed by the end
of stage s, with A0 = ∅ and As ⊆ As+1 for every s ≥ 0. For every e ∈ N the set A will satisfy the following requirements:

• P4e : |We| = ∞ ⇒ [We ∩ A , ∅] (immunity of A)

• N4e+1 : (∃x ≥ e)[x ∈ A] (infinity of A)

• N4e+2 : (∀B ⊆ A)[|A − B| = ∞ ⇒ A is not m-reducible to B by fe] (m-introimmunity of A)

• N4e+3 : ΦA
e , C (upper cone avoidance).

In our construction we combine the strategy of to make C ̸≤T A with the strategy of to make the degree of A in Im. At
each stage s of the construction we try to fulfil one requirement, if possible, among those not yet fulfilled. Requirements
{P4e}e≥0 are positive, because to fulfil them we enumerate elements in A. Requirements {N4e+1,N4e+3}e≥0 are negative,
because to fulfil them we try to keep elements out of A. Requirements {N4e+2}e≥0 are positive and negative, because to
fulfil them we enumerate elements in A and we try to keep elements out of A. From now on letter R will denote any
requirement. At every stage there could be requirements requiring attention. A requirement Rm has higher priority than
Rn if m < n. We call a requirement Rm active at the stage s if m is the minimum index such that Rm requires attention at
stage s.

3.2 Injured Requirements

At every stage s we try to satisfy a requirement Rm. If m , 4e for every e ∈ N, then we try to satisfy Rm by restraining
some element to be enumerated in A. To this end, we use a restraint function r : N2 → N. A requirement Rm is injured
at stage s if an element y ≤ r(m, s) is enumerated in A. All the positive requirements {P4e}e≥0 cannot be injured, so the
restraint function is useless for them and we define r(4e, s) = −1 for every e, s ∈ N.

3.3 Actions to Fulfil Requirements

We describe informally the actions to fulfil requirements. To make C ̸≤T A we try to satisfy N4e+3 : ΦA
e , C for every

e ∈ N. We employ the Sacks’ agreement method. This method is based on the definition at each stage s and for every
e ≤ s of the length agreement function l(e, s):

l(e, s) := max{z : (∀y < z)[Cs(y) = ΦAs
e,s(y) ↓]}.
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The objective is to ensure that lims→∞ l(e, s) = le is finite for every e ∈ N, which implies ΦA
e (le) , C(le). We need

the use function u(As; e, x, s) defined in the following way: u(As; e, x, s) is 1 + the maximum element asked to As in the
computation of ΦAs

e,s(x) if ΦAs
e,s(x) ↓, and u(As; e, x, s) is 0 if ΦAs

e,s(x) is undefined. To preserve the computation of ΦAs
e,s(y) for

all y ≤ l(e, s) we define at each stage s the restraint function

r(4e + 3, s) := max{u(As; e, y, s) : y ≤ l(e, s)}.

The finite-injury method will ensure that from an opportune stage s0 onwards requirement N4e+3 will not be injured
anymore, so

lim
t→∞

l(e, t) = l(e, s0) = le.

This implies that for every t ≥ s0

Φ
At
e,t(l(e, t)) = Φ

As0
e,s0 (l(e, s0)) = Φ

As0
e,s0 (le) = ΦA

e (le)

and
ΦA

e (le) , C(le).

To make the degree of A in Im we try to satisfy every requirement N4e+2, e ≥ 0. To satisfy all such requirements we use
the strategy of to make A immune because of the following Proposition 3.3 proved in (Cintioli, 2011).

Proposition 3.3 (Cintioli 2011) Let B be an immune set, and let Y ⊆ B with |B − Y | = ∞ such that B ≤m Y via the
computable function f . Then the set { f (x) : f (x) , x ∧ x ∈ B} is infinite.

We will make A immune by satisfying all the requirements {P4e}e≥0. Thanks to the Proposition 3.3 we try to satisfy each
requirement N4e+2 by waiting for a stage s + 1 such that for some x < As is fe,s(x) ↓, x and fe,s(x) is not restrained by
requirements of higher priority than N4e+2, that is fe,s(x) > maxi<4e+2{r(i, s)}. If such a stage is found, we enumerate fe,s(x)
in A and keep out x of A by setting r(4e+ 2, s) = x. In this way N4e+2 is satisfied at stage s+ 1; if N4e+2 is not injured after
stage s + 1 then fe is not a m-reduction of A to any of its co-infinite subset.

3.4 Requirements Requiring Attention

We now define formally when a requirement requires attention. For every e, s ≥ 0, we say that

• requirement P4e requires attention at stage s + 1 ≥ 4e if

We,s ∩ As = ∅ and there is x ∈ We,s with x > max
i<4e
{r(i, s)}. (1)

• Requirement N4e+1 requires attention at stage s + 1 ≥ 4e + 1 if r(4e + 1, s) = −1.

• Requirement N4e+2 requires attention at stage s + 1 ≥ 4e + 2 via x ≤ s + 1 if r(4e + 2, s) = −1 and

x ∈ As ∧ fe,s(x) ↓, x ∧ fe,s(x) > max
i<4e+2

{r(i, s)}.

3.5 Construction of A

Stage s = 0. Set A0 := ∅ and r(m, 0) = −1 for every m ≥ 0.

Stage s+1. If there are no requirements requiring attention, then do nothing, that this define As+1 = As and r(m, s+1) :=
r(m, s) for every m , 4e + 3, for every e ≥ 0. Otherwise, let Rn be the active requirement. We distinguish three
cases on Rn.

• Rn = P4e. Let x be the minimum for which P4e requires attention. Define As+1 = As ∪ {x}.
• Rn = N4e+1. Let x be the minimum for which N4e+1 requires attention. Define r(4e + 1, s + 1) = x and

As+1 = As.

• Rn = N4e+2. Let x be the minimum for which N4e+2 requires attention. Define As+1 = As ∪ { fe,s(x)} and
r(4e + 2, s + 1) := x.

For all n , 4e+ 3 for every e ≥ 0, if Nn is injured then define r(n, s+ 1) = −1, otherwise define r(n, s+ 1) = r(n, s).
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End construction of A

To prove that set A has the desired properties it suffices to prove that all the requirements are eventually satisfied. We
prove first that all the requirements {P4e,N4e+1,N4e+2}e≥0 require attention at most finitely often. Then we show by the
Sacks’ agreement method that every negative requirement N4e+3 is fulfilled.

Lemma 3.4 For every e ∈ N, requirements P4e, N4e+1 and N4e+2 require attention at most finitely often.

Proof. The proof is by complete induction on n, n , 4e + 3, for every e ≥ 0. Given n, let s0 be the minimum stage such
that no requirement Rm with m < n requires attention after stage s0. We distinguish three cases on n.

- n = 4e. Let us suppose that P4e requires attention at stage s + 1 ≥ s0. By hypothesis P4e is active at stage s + 1, so an
element x ∈ We,s is enumerated in As+1. This means that At ∩We,t , ∅ for every t ≥ s + 1, therefore condition (1)
will be false at every stage t ≥ s + 1 and P4e will not require attention anymore.

- n = 4e + 1. If for every s ≥ s0 r(4e + 1, s) > −1, then N4e+1 does not require attention. Otherwise, let s′ + 1 ≥ s0
be a stage such that r(4e + 1, s′) = −1. By hypothesis N4e+1 is active at this stage and r(4e + 1, s′ + 1) = x for the
minimum x ≥ e and x < As. After stage s′ + 1 no requirement of higher priority of N4e+1 requires attention, so
r(4e + 1, t) = r(4e + 1, s′ + 1) = x > −1 for every t ≥ s′ + 1 and N4e+1 will not receive attention anymore.

- n = 4e + 2. Let us suppose that N4e+2 requires attention at stage s + 1 ≥ s0. By hypothesis N4e+2 is active at stage
s + 1, so an element y is enumerated in As+1 and r(4e + 2, s + 1) = y. By hypothesis at every stage t > s + 1 no
requirement Rm with m < 4e + 2 will require attention, whence no element ≤ r(4e + 2, s + 1) = r(4e + 2, t) will be
enumerated in At. This means that for every t > s + 1 it holds that r(4e + 2, t) > −1, that is N4e+2 will not require
attention anymore.

End proof of Lemma 3.4

Lemma 3.5 For every e ≥ 0, requirement N4e+3 is met.

Proof. This follows from the length agreement method of G. Sacks. Given e, let us suppose for the sake of contradiction
that N4e+3 is not met. This means that ΦA

e = C, so

lim
s→∞

l(e, s) = ∞. (2)

Let s0 be a stage such that no requirement Rn with n < 4e + 3 require attention after s0. The following is an informal
procedure to decide C. Given any number y, decide “y ∈ C” by searching for a stage s ≥ s0 with y < l(e, s), which exists
by (2). Then, decide “y ∈ C” by computing ΦAs

e,s(y).

In the following claim we prove that the procedure is correct.

Claim 3.6 C(y) = ΦAs
e,s(y).

Proof. At stage s is r(4e + 3, s) = max{u(As; e, x, s) : x ≤ l(e, s)} = re. Since no requirement Rm with m < 4e + 3 is active
after stage s, it holds that for every t ≥ s

At � re = A � re, (3)

so
Φ

At�re
e,t (y) = ΦA�re

e,t (y). (4)

However, every computation of ΦA�re
e,t (y) use only elements less than re, so for every t ≥ s

Φ
A�re
e,t (y) = ΦA

e,t(y). (5)

This implies that for every t ≥ s
ΦA

e,t(y) = ΦA
e (y) = C(y). (6)

End proof of the claim.

Thus the set C is computable, contrary to the assumption that c was noncomputable.

End proof of Lemma 3.5.

It remains to prove that all the requirements {P4e,N4e+1,N4e+2}e≥0 are met. We observe first that lims→∞ r(4e + 3, s) exists
and is finite.
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Lemma 3.7 For every e ∈ N, lims→∞ r(4e + 3, s) exists and is finite.

Proof. Fix e ∈ N. The proof is part of the Sacks’ agreement method, and it follows from the fact that N4e+3 is satisfied
and that all the requirement {P4m,N4m+1,N4m+2}m≥0 require attention at most finitely often, that is N4e+3 is not injured after
an opportune stage. The interested reader can see also either (Soare 1987, page 123, cf. Lemma 2) or (Odifreddi 1999,
page 464 et seq.)

Let le be the minimum number for which Φe(le) , C(le), which exists because N4e+3 is met. Let s0 be such that no
requirement Rm with m < 4e + 3 requires attention after s0 and such that for every s ≥ s0,

Cs(y) = C(y)

for every y ≤ le, and
ΦAs

e,s(y) = ΦA
e (y)

for every y < le. If for every s ≥ s0 Φ
As
e,s(le) is undefined, then

lim
s→∞

r(4e + 3, s) = r(4e + 3, s0).

Otherwise, if s1 is the first stage after s0 such that Φ
As1
e,s1 (le) is defined, then for every t ≥ s1

(∀y < le)[ΦAt
e,t(y) = ΦA

e (y)]

because N4e+3 is not injured after s1 ≥ s0. Moreover, by hypothesis ΦA
e (le) , C(le), so lims→∞ l(e, s) = l(e, s0) = le and by

the definition of r(4e + 3, s) is lims→∞ r(4e + 3, s) = r(4e + 3, s1).

End proof of Lemma 3.7

Lemma 3.8 For every e ∈ N, P4e, N4e+1 and N4e+2 are met.

Proof. By Lemma 3.4 and Lemma 3.7 it follows that lims→∞ r(n, s) exists and is finite for every n ∈ N. To prove the
lemma, fix Rn and let s0 be the minimum stage after which no requirement Rm with m < n requires attention. Distinguish
three cases on n.

- n = 4e. If We is finite then P4e is met, so let us suppose that We is infinite. If at stage s0 is We,s0 ∩ As0 , ∅, then
P4e is met. Otherwise, let s + 1 > s0 be the minimum stage such there is x ∈ We,s with We,s ∩ As = ∅ and
x > max{r(n, s) : n < 4e}. At stage s + 1 requirement P4e requires attention and by hypothesis on s0 is active.
Therefore x is enumerated in As+1 and for every t ≥ s + 1 is We,t ∩ At , ∅, that is We ∩ A , ∅ and P4e is met.

- n = 4e+1. If r(4e+1, s0) = x ≥ e, then by hypothesis on s0 no requirement will enumerate x in A, so x ∈ A and N4e+1 is
met. If r(4e+1, s0) = −1, let s+1 be the minimum stage with s+1 ≥ max{s0, 4e+1} and let x ≥ e be the minimum
element not in As. N4e+1 requires attention and by hypothesis on s0 is active at stage s + 1, so r(4e + 1, s + 1) = x.
After stage s + 1 ≥ s0 requirement N4e+1 is not injured, hence x ∈ At for every t ≥ s + 1, that is x ∈ A and N4e+1 is
met.

- n = 4e + 2. If the domain of fe is different from N then N4e+2 is met, so let us suppose that domain of fe is N.
For the sake of contradiction let us suppose that N4e+2 is not met, and let X ⊆ A such that A ≤m X via fe, with
|A − X| = ∞. Since for every e ≥ 0 requirement P4e is met it follows that A is immune. By Proposition 3.3 the set
{ fe(x) : fe(x) , x ∧ x ∈ A} is infinite. So, there are a stage s + 1 ≥ s0 and x ∈ N such that:

(i) x < As,
(ii) fe,s(x) ↓, x and fe,s(x) > max{r(n, s) : n < 4e + 2}.

Requirement N4e+2 requires attention at stage s + 1 and by hypothesis on s0 is active. This means that fe,s(x) is
enumerated in As+1 and r(4e + 2, s + 1) = x. After stage s0 no requirement of higher priority than N4e+2 requires
attention, so N4e+2 is never injured, in particular x ∈ At for every t ≥ s+1 ≥ s0, that is x < A. This is a contradiction,
because x ∈ A and fe(x) < A, which implies fe(x) < X ⊆ A, contrary to the assumption that fe was a m-reduction of
A to X.

End proof of Lemma 3.8

This also concludes the proof of the theorem.

2

Corollary 3.9 In the substructure of the c.e. m-introimmune Turing degrees holds the upper cone avoidance property.
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4. Cone Avoidance

In this section we consider the substructure Jm = (Jm,≤) of the m-introimmune degrees. Of this substructure we know
that it has minimal elements and that it does not have maximum. These properties follow from results concerning cohesive
degrees. First of all, in (Cintioli 2005) it has been proved that every cohesive set is m-introimmune. Then, by (Jockusch
1973) we know that if b is a cohesive degree and b ≤ a then a is a cohesive degree, from which we derive that Jm does
not have maximum. Moreover, it follows from (Jockusch 1973, Corollary 2) and (Cooper 1973, Theorem 1) that there are
cohesive minimal degrees, so there are minimal elements in Jm. We consider the cone avoidance property and we show
thatJm satisfies this property, that is for every b ∈ Jm there exists a ∈ Jm such that b ̸≤ a and a ̸≤ b. Actually, the degree a
that avoids the cone of degree b is bi-m-introimmune, that is a contains a set A such that both A and A are m-introimmune.

For convenience we will use the notion of string to denote finite subsets of N. Formally, a string is a function α :
{0, 1, . . . , n} → {0, 1}, where n ∈ N. For every n ∈ N the length of a string α : {0, 1, . . . , n} → {0, 1}, in short |α|, is n + 1.
Given two strings α and β, we write:

- α ⊆ β if |α| ≤ |β| and α(m) = β(m) for every m < |α|,

- α ⊂ β if α ⊆ β and α , β.

We represent any string α : {0, 1, . . . , n} → {0, 1} with the binary word α(0)α(1) · · ·α(n). If α : {0, 1, . . . , n} → {0, 1} and
β : {0, 1, . . . ,m} → {0, 1} are two strings, then αβ denotes the concatenation of α and β, that is the string of length |α| + |β|
whose representation is

α(0)α(1) · · ·α(n)β(0)β(1) · · · β(m).

Given b ∈ {0, 1} and any positive integer n, we write bn to represent the string α of length n such that α(i) = b for every
0 ≤ i < n. We will denote strings with letters σ, τ. From now on we identify any string σ with the set {n ∈ N : n <
|σ| ∧ σ(n) = 1}. Furthermore, for every e, x, t ∈ N and for every string σ, Φσe,t(x) ↓ implies that all the queries made to the
oracle σ are less than |σ|.
Theorem 4.1 For every degree b > 0 there exists a bi-m-introimmune degree a < b′ such that a|b.

In order to prove the theorem we introduce some few concepts and a result concerning them.

First of all, we say that a function f : N → N is injective almost everywhere if the set {(x, y) ∈ N2 : x , y ∧ f (x) = f (y)}
is finite.

Definition 4.2 A function g : N → N is dominating if for every computable total function f : N → N there exists m ∈ N
such that

(∀n > m)[g(n) > f (n)].

Definition 4.3 (Kämper 1990) Given any set D ⊆ N and given any strictly increasing function g : N→ N, we say that D
has g-gaps if there are infinitely many m ∈ N such that D ∩ {x : m ≤ x < g(m)} = ∅.
Finally, we define the concept of strongly bi-m-immunity.

Definition 4.4 (Balcázar and Schöning 1985) A set X ⊆ N is strongly bi-m-immune if and only if every m-reduction of X
to any Y ⊆ N is injective almost everywhere.

We observe that a set is strongly bi-m-immune if and only if its complement is strongly bi-m-immune. It is known that a
strongly bi-m-immune set with g-gaps for a dominating function g is m-introimmune.

Lemma 4.5 (Cintioli 2005) Let X be a strongly bi-m-immune set, and let g : N → N be a strictly increasing dominating
function. If X has g-gaps, then X is m-introimmune.

Now, we can proceed with the proof of Theorem 4.1.

Proof. Let B ∈ b, and let h : N → N be any strictly increasing dominating ∅′-computable function. We construct by the
finite-extension method a set A ≤T B′ which is strongly-bi-m-immune, Turing incomparable with B, and such that both
A and A have h-gaps. So, by Lemma 4.5 A is bi-m-introimmune. The construction is by stages. At every stage s we will
define a finite string σs. The final set A will be

∪
s≥0 σs, with σ0 = ∅ and σs ⊂ σs+1, for every s ∈ N. The set A will

satisfy for every e ∈ N the following requirements.

- Ge: there are m1,m2 ≥ e such that A ∩ {x : m1 ≤ x < h(m1)} = ∅ and A ∩ {x : m2 ≤ x < h(m2)} = ∅.

- He: if fe is not injective almost everywhere, then fe does not m-reduce A to any X.
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- Re: ΦB
e , A

- S e: ΦA
e , B.

All the requirements {Ge}e≥0 guarantee that both A and A have h-gaps and all the requirements {He}e≥0 guarantee that A is
strongly-bi-m-immune. All the requirement Re and S e guarantee that the two sets A and B are Turing incomparable. The
construction of A is the following.

4.1 Construction of A (with the aid of oracle B′ = {x ∈ N : ΦB
x (x) ↓}).

Stage 0. Let σ0 be the empty string.

Stage s + 1. Let σs be the string defined at stage s and let n = |σs|. Distinguish four cases on s + 1.

- Case s + 1 = 4e. In this case we insert a h-gap in both A and A. Set σs+1 = σs0h(n)−n1h(h(n))−h(n).

- Case s + 1 = 4e + 1. In this case we try to satisfy He. Check if

(∃σ)(∃i)(∃ j)(∃t)[σ ⊃ σs ∧ σ(i) , σ( j) ∧ fe,t(i) = fe,t( j)]. (7)

If (7) is false then set σs+1 = σs0. Otherwise, enumerate the set {(σ, i, j, t) : σ ⊃ σs and i, j < |σ| and t ∈ N}
until a quadruple (σ, i, j, t) satisfying the matrix of the formula (7) is found. Set σs+1 = σ.

- Case s + 1 = 4e + 2. In this case we try to satisfy Re. Check if ΦB
e (n) ↓. If not, then set σs+1 = σs0. Otherwise,

set σs+1 = σs1 if ΦB
e (n) = 0, and σs+1 = σs0 if ΦB

e (n) , 0.

- Case s + 1 = 4e + 3. In this case we try to satisfy S e. Check if

(∃σ)(∃τ)(∃x)(∃t)[σ, τ ⊃ σs ∧ Φσe,t(x) ↓, Φτe,t(x) ↓]. (8)

If (8) does not hold, then set σs+1 = σs0. Otherwise, enumerate the set {(σ, τ, x, t) : σ, τ ⊃ σs and x, t ∈ N}
until a quadruple (σ, τ, x, t) satisfying the matrix of the formula (8) is found. If B(x) , Φσe,t(x) then set
σs+1 = σ, otherwise set σs+1 = τ.

End construction of A

We observe first that for every s ∈ N |σs+1| ≥ |σs| + 1, which implies that |σs| ≥ s. In the next claim we prove that A is
B′-computable.

Claim 4.6 A ≤T B′.

Proof. It is enough to show that with oracle B′ it is possible to define σs, for every s ≥ 0. The proof is by induction on s.
Fix stage s+1, and let us suppose that σs can be constructed with oracle B′. At stage s+1 we have to consider four cases.

- Case s + 1 = 4e. In this case we have to compute h(|σs|). But by hypothesis h is ∅′-computable, hence B′-computable.

- Case s + 1 = 4e + 1. In this case oracle ∅′ suffices to check test (7), so oracle B′ suffices.

- Case s + 1 = 4e + 2. In this case oracle B′ suffices to both check whether or no ΦB
e (n) ↓ and to compute ΦB

e (n).

- Case s + 1 = 4e + 3. In this case oracle ∅′ suffices to check test (8), thus B′ suffices. Furthermore, oracle B′ suffices to
check whether or no B(x) , Φσe,t(x).

End proof of the Claim 4.6

Now, it remains to show that all the requirements are met.

Lemma 4.7 For every e ∈ N requirements Ge, He, Re and S e are met.

Proof. Fix e. For Ge, let s + 1 = 4e. At this stage we set σs+1 = σs0h(n)−n1h(h(n))−h(n) with n = |σs| ≥ s ≥ e. Therefore

σs+1(x) = 0 for every |σs| ≤ x < h(|σs|) (9)

and
σs+1(x) = 1 for every h(|σs|) ≤ x < h(h(|σs|)). (10)
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From (9) it follows that
A ∩ {x : |σs| ≤ x < h(|σs|)} = ∅

with |σs| ≥ e, while from (10) it follows that

A ∩ {x : h(|σs|) ≤ x < h(h(|σs|))} = ∅

with h(|σs|) ≥ e. Whence Ge is met.

For He, let us suppose that fe is total and not 1-1 almost everywhere, that is the set

I = {(x, y) : x , y ∧ fe(x) = fe(y)}

is infinite, and let X be any set. This means that there are infinitely many strings σ ⊃ σs and infinitely many (i, j) ∈ I with
σ(i) , σ( j). So at stage s + 1 = 4e + 1 test (7) is true. Let (σ, i, j, t) be the first quadruple appearing in the subsequent
enumeration. Then we set σs+1 = σ. Without loss of generality let us suppose that σs+1(i) = 0 and σs+1( j) = 1, that is
i < A and j ∈ A. Then,

- if fe(i) = fe( j) ∈ X, then i < A and fe(i) ∈ X;

- if fe(i) = fe( j) < X, then j ∈ A and fe( j) < X.

Thus fe does not m-reduce A to X.

For Re, let n = |σs| at stage s + 1 = 4e + 2 and let us suppose that ΦB
e is total, which implies that ΦB

e (n) ↓. Then
σs+1(n) , ΦB

e (n), that is n ∈ A⇔ ΦB
e (n) = 0, therefore ΦB

e , A and Re is met.

For S e, the splitting method ensures that it is met. In fact, for the sake of contradiction let us suppose that S e is not met,
which means that

ΦA
e = B. (11)

Then we claim that B is computable, contrary to the assumption b > 0. Let s + 1 = 4e + 3 and let σs be the string
constructed up to the end of stage s. By (11), for every n ∈ N there are σ ⊂ A and t ∈ N such that Φσe,t(n) = B(n). The
following is an informal algorithm to decide B. Given n ∈ N, enumerate the set {(σ, t) : σ ⊇ σs ∧ t ∈ N} and stop when
for some (σ, t) is Φσe,t(n) ↓. Then

Φσe,t(n) = B(n),

because if not then there would be τ ⊂ A, τ ⊇ σs, such that B(n) = Φτe(n) , Φσe (n). This means that the matrix of the
formula of test (8) is satisfied for σ, τ, n, t. Since at stage s+1 = 4e+3 we choose σs+1 making Φσs+1

e (n) , B(n), and since
σs+1 ⊂ A, it follows that ΦA

e (n) , B(n), contrary to (11).

This concludes the proof of Lemma 4.7.

Hence A ̸≤T B and B ̸≤T A, with A, B ≤T B′ and A bi-m-introimmune, so the statement of the theorem follows.

2

Corollary 4.8 In the substructure of the m-introimmune Turing degree holds the cone avoidance property.
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