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We consider two qubits undergoing local dissipation and subject to local driving. We then determine the
optimal Markovian feedback action to preserve initial entanglement as well as to create stationary entanglement
with the help of an XY interaction Hamiltonian. Such feedback actions are worked out in a way not depending
on the initial two-qubit state, whence called universal.
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I. INTRODUCTION

Quantum entanglement has been recognized in recent
decades as a resource for quantum information processing
[1]. As such, it should be controllable. Several efforts have
been devoted to control entanglement [2]. Control can take
place with open-loop or and closed-loop strategies according
to the principle of controllers design [3]. Quite generally,
closed-loop control performs better than open-loop control
because it involves gathering information about the system
state and then, according to that, actuates a corrective action
on its dynamics, but results are more difficult to implement [4].
A good compromise between these two tensions is probably
represented by Markovian feedback [5], which brings the
advantages of closed-loop control but is not very difficult
to realize. In fact, it rests on an actuation based on the
measurement result obtained immediately before, hence the
name Markovian. Nevertheless, it carries an inherent double
optimization, over the measurement and over the actuation
[6]. This makes designing optimal control a daunting task
even for Markovian feedback, especially when dealing with
composite systems and hence with entanglement control (we
refer here to local control, i.e., measurement and actuation are
both local operations). The best results (in terms of optimality)
have been achieved in the context of Gaussian systems [7]. For
qubit systems, due to their inherent nonlinearity, the situation
is more complicated. With two qubit, on the one hand, a proof
of principle of the effectiveness of Markovian feedback in
stabilizing entanglement was given in [8], but it is not optimal.
On the other hand, the effectiveness of Markovian feedback in
protecting initial entangled states has been shown in [9]. This
action, though optimal, was derived in a way depending on the
initial state.

Here we generalize these results by determining the optimal
Markovian feedback action to preserve initial entanglement as
well as to create stationary entanglement with the help of an
XY interaction Hamiltonian. Moreover, such feedback actions
are worked out in a way not depending on the initial two-qubit
state, whence referred to as universal.
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The layout of the paper is as follows. We start by introducing
the model feedback action in Sec. II. Then we address the issue
of preserving initial entanglement in Sec. III and subsequently
the issue of stabilizing entanglement in Sec. IV. Finally, Sec. V
is the conclusion. Throughout the paper we will use ι to denote
the imaginary unit.

II. THE MODEL

Consider a two-qubit system whose dynamics is governed
by the following master equation:

ρ̇ = −ι[H,ρ] + D[σ1]ρ + D[σ2]ρ, (1)

where H denotes the Hamiltonian and σi and σ
†
i (i = 1,2)

are the lowering and raising Pauli operators, respectively.
Furthermore,

D[c]ρ ≡ cρc† − 1
2c†cρ − 1

2ρc†c (2)

is the dissipative superoperator and the way it appears in Eq. (1)
shows qubit dissipation into local environments.

The master equation (1) can be unraveled by stochastic
equations driven either by point processes or by Wiener
processes (Gaussian white noise) [6]. Different unraveling
corresponds to different kinds of measurements. A point
process consists of intervals of deterministic (smooth) motion,
interleaved by instantaneous events in which the state of
the system changes. In particular, following the reasoning of
Ref. [5] and generalizing it, we may consider selective evo-
lutions under local point processes with probability operator
value elements

�1(dt) =
√

dtσ1, (3a)

�2(dt) =
√

dtσ2, (3b)

�3(dt) = 1 − (
ιH + 1

2σ
†
1 σ1 + 1

2σ
†
2 σ2

)
dt, (3c)

describing detection (jump) on the first (respectively, second)
environment �1 (respectively, �2) and no detection �3. The
measurement time is the infinitesimal dt as it is appropriate for
continuous measurement. This corresponds to local excitation
detection of qubits, namely, measuring σ

†
i σi − I .
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It is then easy to verify that the nonselective evolution under
this measurement

ρ(t + dt) =
3∑

j=1

�j (dt)ρ(t)�†
j (dt), (4)

is equivalent to the master equation (1).
The selective evolution allows us to incorporate the feed-

back action. This one, in order to be Markovian, must cause
an immediate state change based only on the result of the
measurement in the preceding infinitesimal time interval.
Hence it must occur immediately after a detection and cause a
finite amount of evolution.

Let this finite evolution following a detection on qubit i at
time t be determined by a Liouville superoperator Ki , then

ρ̃i(t + dt) = eKi [�i(dt)ρ(t)�†
i (dt)], (5)

where the tilde means that the density operator is unnormal-
ized. From Eq. (5) it is clear that the feedback action is local.

The nonselective evolution of the system is then given by

ρ(t + dt) ∝ ρ̃1(t + dt) + ρ̃2(t + dt) + ρ̃3(t + dt), (6)

where ρ̃3(t + dt) = �3(dt)ρ(t)�†
3(dt). Since the latter is

unchanged by feedback, we get for the normalized density
operator

ρ̇ = −ι[H,ρ] +
2∑

i=1

[
eKi σiρσ

†
i − 1

2
σ
†
i σiρ − 1

2
ρσ

†
i σi

]
.

(7)

Assuming that Ki’s act in a Hamiltonian way (so to avoid
introducing further noise),

Kiρ = −ι[Fi,ρ], (8)

we will further get

ρ̇ = −ι[H,ρ] + D[e−ιF1σ1]ρ + D[e−ιF2σ2]ρ, (9)

where F1,F2 are Hermitian operators on C2.
In contrast, unraveling master equation (1) by stochastic

equations driven by Wiener processes (Gaussian white noise)
corresponds to measurement techniques that are quite different
from excitation detection, e.g., measuring σ

†
i ζ − ζ ∗σi , with

ζ ∈ C. Nevertheless, the feedback master equation can be
derived from (9) by letting

H → H + ι 1
2 (σ †

1 ζ − ζ ∗σ1 + σ
†
2 ζ − ζ ∗σ2) − ζ (F1 + F2),

D[e−ιFi σi] → D[e−ιFi/ζ (σi + ζ )], (10)

then expanding to second order in 1/|ζ | and finally taking the
limit |ζ | → ∞. As such, it can be considered as a special case
of the feedback with point process. Therefore, for the sake of
generality, hereafter we focus our attention on the latter.

Operators Fi in (9) play the role of (local) feedback
Hamiltonians and they concur to implement unitary local
actuations e−ιFi . Hence these latter can be parametrized as
follows:

e−ιFi =
(

e−ι(αi+γi )/2 cos(βi/2) −e−ι(αi−γi )/2 sin(βi/2)
eι(αi−γi )/2 sin(βi/2) eι(αi+γi )/2 cos(βi/2)

)
,

(11)

with 0 � αi,βi,γi � 2π (i = 1,2).

Furthermore, it is

e−ιFi σi =
(−e−ι(αi−γi )/2 sin(βi/2) 0

eι(αi+γi )/2 cos(βi/2) 0

)

= −e−ι(αi−γi )/2 sin(βi/2)|1〉i〈1|
+ eι(αi+γi )/2 cos(βi/2)|0〉i〈1|, (12)

having assumed |1〉i as the excited state and |0〉i as the ground
state of the ith qubit.

Quite generally we can split the Hamiltonian H into two
contributions: a local driving term, e.g.,

Hdrive = ια(σ1 − σ
†
1 ) + ια(σ2 − σ

†
2 ), (13)

with driving amplitude α ∈ R and an interaction term Hint to
be specified.

Then Eq. (9) explicitly becomes

ρ̇ = −ι
[
ασ

(y)
1 + ασ

(y)
2 ,ρ

] − ι[Hint,ρ]

−
2∑

i=1

(
1

2
(|Ai |2 + |Bi |2)(|1〉i〈1|ρ + ρ|1〉i〈1|)

+ (Ai |1〉i〈1| + Bi |0〉i〈1|)ρ(A∗
i |1〉i〈1| + Bi |1〉i〈0|)

)
,

(14)

with

Ai = −e−ι(αi−γi )/2 sin(βi/2), (15a)

Bi = eι(αi+γi )/2 cos(βi/2). (15b)

This means that |Ai |2 + |Bi |2 = 1.
At this point the aim would be the optimization of a measure

of entanglement over the parameters characterizing F1 and F2,
or equivalently e−ιF1 and e−ιF2 .

The figure of merit we shall employ for entanglement is the
concurrence defined as [10]

C(ρ) := max{0,λ1 − λ2 − λ3 − λ4}, (16)

where λi’s are, in decreasing order, the non-negative square
roots of the moduli of the eigenvalues of

ρ (σ1 − σ
†
1 ) ⊗ (σ2 − σ

†
2 ) ρ∗ (σ1 − σ

†
1 ) ⊗ (σ2 − σ

†
2 ). (17)

Furthermore, in the following we will distinguish
two tasks: entanglement preservation and entanglement
stabilization.

III. PRESERVING ENTANGLEMENT

Suppose we want to preserve as much as possible an initial
entangled state by using feedback and considering Hint = 0 in
Eq. (14). Then, in the basis {|11〉,|10〉,|01〉,|00〉} such equation
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becomes

ρ̇ = −ι

⎛
⎜⎝

0 −ια −ια 0
ια 0 0 −ια

ια 0 0 −ια

0 ια ια 0

⎞
⎟⎠ρ + ιρ

⎛
⎜⎝

0 −ια −ια 0
ια 0 0 −ια

ια 0 0 −ια

0 ια ια 0

⎞
⎟⎠

+

⎛
⎜⎝

A1 0 0 0
0 A1 0 0
B1 0 0 0
0 B1 0 0

⎞
⎟⎠ρ

⎛
⎜⎝

A∗
1 0 B∗

1 0
0 A∗

1 0 B∗
1

0 0 0
0 0 0 0

⎞
⎟⎠

+

⎛
⎜⎝

A2 0 0 0
B2 0 0 0
0 0 A2 0
0 0 B2 0

⎞
⎟⎠ρ

⎛
⎜⎝

A∗
2 B∗

2 0
0 0 0 0
0 0 A∗

2 B∗
2

0 0 0 0

⎞
⎟⎠

− 1

2

⎛
⎜⎝

2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎠ρ − 1

2
ρ

⎛
⎜⎝

2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎠. (18)

Writing

ρ =

⎛
⎜⎜⎜⎝

A BR + ιBI CR + ιCI DR + ιDI

BR − ιBI E FR + ιFI GR + ιGI

CR − ιCI FR − ιFI H IR + ιII

DR − ιDI GR − ιGI IR − ιII 1 − A − E − H

⎞
⎟⎟⎟⎠, (19)

Eq. (18) can be put in the following form:

v̇ = Mv − w, (20)

where v is the unknown vector

v := (A,BR,BI ,CR,CI ,DR,DI ,E,FR,FI ,GR,GI ,H,IR,II ), (21)

with entries depending on time t , while

M :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−|B1|2 − |B2|2 −2α 0 −2α 0 0 0 0 0 0 0 0 0 0 0
r2 + α χ1 0 0 0 −α 0 −α −α 0 0 0 0 0 0

i2 0 χ1 0 0 0 −α 0 0 α 0 0 0 0 0
r1 + α 0 0 χ2 0 −α 0 0 −α 0 0 0 −α 0 0

i1 0 0 0 χ2 0 −α 0 0 −α 0 0 0 0 0
0 r1 + α −i1 r2 + α −i2 −1 0 0 0 0 −α 0 0 −α 0
0 i1 r1 + α i2 r2 + α 0 −1 0 0 0 0 −α 0 0 −α

|B2|2 2α 0 0 0 0 0 −|B1|2 0 0 −2α 0 0 0 0
0 r1 + α i1 r2 + α i2 0 0 0 −1 0 −α 0 0 −α 0
0 i1 −r1 − α −i2 r2 + α 0 0 0 0 −1 0 −α 0 0 α

α 0 0 |B2|2 0 α 0 r1 + 2α α 0 − 1
2 0 α 0 0

0 0 0 0 |B2|2 0 α i1 0 α 0 − 1
2 0 0 0

|B1|2 0 0 2α 0 0 0 0 0 0 0 0 −|B2|2 −2α 0

α |B1|2 0 0 0 α 0 α α 0 0 0 r2 + 2α − 1
2 0

0 0 |B1|2 0 0 0 α 0 0 −α 0 0 i2 0 − 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(22)

with

ri = Re[AiB
∗
i ], (23a)

ii = Im[AiB
∗
i ], (23b)

χi = −(
3
2 − |Ai |2

)
, (23c)

and

w := (0 0 0 0 0 0 0 0 0 0 α 0 0 α 0)�. (24)

Notice that Eq. (20), thanks to (22), results independent of γi’s.
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FIG. 1. Entanglement measured by concurrence versus (dimen-
sionless) time with and without feedback. Inset: Relative improve-
ment of concurrence due to feedback versus (dimensionless) time.

Let the initial condition be

ρ(0) = |〉〈|, (25)

with a generic pure state |〉 parametrized as

|〉 = cos θ3|11〉 + eιφ2 cos θ1 sin θ3 sin θ2|01〉
+ eιφ1 cos θ2 sin θ3|10〉 + eιφ3 sin θ3 sin θ2 sin θ1|00〉,

(26)

being θi ∈ [0,π/2] and φi ∈ [0,2π ). In turn, this means

A(0) = cos2 θ3,

BR(0) = cos φ1 cos θ3 cos θ2 sin θ3,

BI (0) = − sin φ1 cos θ3 cos θ2 sin θ3,

CR(0) = cos φ2 cos θ3 cos θ1 sin θ3 sin θ2,

CI (0) = − sin φ2 cos θ3 cos θ1 sin θ3 sin θ2,

DR(0) = cos φ3 cos θ3 sin θ3 sin θ2 sin θ1,

DI (0) = − sin φ3 cos θ3 sin θ3 sin θ2 sin θ1,

E(0) = cos2 θ2 sin2 θ3,

FR(0) = cos(φ1 − φ2) cos θ2 cos θ1 sin2 θ3 sin θ2,

FI (0) = sin(φ1 − φ2) cos θ2 cos θ1 sin2 θ3 sin θ2,

GR(0) = cos(φ1 − φ3) cos θ2 sin2 θ3 sin θ2 sin θ1,

GI (0) = sin(φ1 − φ3) cos θ2 sin2 θ3 sin θ2 sin θ1,

H(0) = cos2 θ1 sin2 θ3 sin2 θ2,

IR(0) = cos(φ2 − φ3) cos θ1 sin2 θ3 sin2 θ2 sin θ1,

II (0) = sin(φ2 − φ3) cos θ1 sin2 θ3 sin2 θ2 sin θ1.

(27)

TABLE I. Values of parameters αi,βi realizing optimal feedback
action.

α1 β1 α2 β2

π/6 5π/6 5π/6 π

32.521.5

J
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1.5

C
on

cu
rr

en
ce

FIG. 2. Concurrence achieved with optimal feedback vs α and J .

Clearly depending on the values of parameters θi and φi

the initial state can be entangled or factorable. However, a
randomly chosen set of parameters almost surely gives an
entangled state [11]. Hence, we will consider the concurrence
at a given time C(ρ(t)) averaged over all possible initial states
and then maximize it over αi,βi . This will lead to a universal
control action, i.e., independent of the initial state. To this end
initial states are chosen according to the following measure
induced by Haar measure on U(4) [12]:

dμ(|〉) = 6

π3

3∏
i=1

cos θi(sin θi)
(2i−1)dθidφi. (28)

Actually, it is useful to consider

θi := arcsin
(
ξ

1/(2i)
i

)
, (29)

so to have flat probability densities for φi ∈ [0,2π ] and ξi ∈
[0,1],

P (φi) = 1

2π
, P (ξi) = 1. (30)

32.521.5
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10.500

0.5
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α

0

0.1

0.2

0.3

1.5

C
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0

FIG. 3. Difference between concurrence achieved with optimal
feedback and concurrence achieved without feedback vs α and J .
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FIG. 4. Difference between concurrence achieved with optimal
feedback and concurrence achieved with feedback as in Ref. [8] vs α

and J .

Equation (20) is solved analytically (not reported here for
the sake of simplicity) subjected to the initial condition (27).
Then the average concurrence has been calculated numerically
at each time t using an ensemble of 105 states. The procedure
is repeated for values of αi,βi in the range 0,2π with step
π/12. Finally, the maximum value is taken as corresponding
to optimal feedback and the value αi = βi = 0 is taken as
corresponding to no feedback action.

The remarkable thing is that the average concurrence does
not depend on the driving parameter α. Then the results
comparing the average concurrence with optimal feedback
and without feedback are reported in Fig. 1. We can see
that feedback is advantageous at any time, although its
benefit increases with time, has a maximum at t = 0.4, and
then tends to decrease. Actually, the relative improvement
(Cf b−C0

C0
), where Cf b (respectively, C0) is the concurrence with

(respectively, without) feedback, plotted versus time (in the
inset of Fig. 1) shows a maximum around t = 0.7.

Another remarkable result is that the optimal feedback is
achieved by the same values of αi,βi at any time. These values

are reported in Table I and show a clear asymmetry between
the action on the two subsystems.

IV. STABILIZING ENTANGLEMENT

Suppose now we want to stabilize entanglement, i.e., we
want to achieve the maximum entanglement at stationary state.
In this case we also need an interaction Hamiltonian, e.g.,

Hint = 2J (σ †
1 σ1 − I )(σ †

2 σ2 − I ). (31)

Then we have to solve (14) with null left-hand side.
Subsequently, maximize the concurrence (16) over αi , βi , and
γi , as well as over α and J .

In the basis {|11〉,|10〉,|01〉,|00〉} the involved master
equation reads

0 = −ι

⎛
⎜⎝

2J −ια −ια 0
ια −2J 0 −ια

ια 0 −2J −ια

0 ια ια 2J

⎞
⎟⎠ρ

+ ιρ

⎛
⎜⎝

2J −ια −ια 0
ια −2J 0 −ια

ια 0 −2J −ια

0 ια ια 2J

⎞
⎟⎠

+

⎛
⎜⎝

A1 0 0 0
0 A1 0 0
B1 0 0 0
0 B1 0 0

⎞
⎟⎠ρ

⎛
⎜⎝

A∗
1 0 B∗

1 0
0 A∗

1 0 B∗
1

0 0 0
0 0 0 0

⎞
⎟⎠

+

⎛
⎜⎝

A2 0 0 0
B2 0 0 0
0 0 A2 0
0 0 B2 0

⎞
⎟⎠ρ

⎛
⎜⎝

A∗
2 B∗

2 0
0 0 0 0
0 0 A∗

2 B∗
2

0 0 0 0

⎞
⎟⎠

− 1

2

⎛
⎜⎝

2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎠ρ − 1

2
ρ

⎛
⎜⎝

2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎠. (32)

Writing again ρ as (19), Eq. (32) can be put in the same form
of (20), where, however, now M is defined as

M :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−|B1|2 − |B2|2 −2α 0 −2α 0 0 0 0 0 0 0 0 0 0 0
r2 + α χ1 4J 0 0 −α 0 −α −α 0 0 0 0 0 0

i2 −4J χ1 0 0 0 −α 0 0 α 0 0 0 0 0
r1 + α 0 0 χ2 4J −α 0 0 −α 0 0 0 −α 0 0

i1 0 0 −4J χ2 0 −α 0 0 −α 0 0 0 0 0
0 r1 + α −i1 r2 + α −i2 −1 0 0 0 0 −α 0 0 −α 0
0 i1 r1 + α i2 r2 + α 0 −1 0 0 0 0 −α 0 0 −α

|B2|2 2α 0 0 0 0 0 −|B1|2 0 0 −2α 0 0 0 0
0 r1 + α i1 r2 + α i2 0 0 0 −1 0 −α 0 0 −α 0
0 i1 −r1 − α −i2 r2 + α 0 0 0 0 −1 0 −α 0 0 α

α 0 0 |B2|2 0 α 0 r1 + 2α α 0 − 1
2 −4J α 0 0

0 0 0 0 |B2|2 0 α i1 0 α 4J − 1
2 0 0 0

|B1|2 0 0 2α 0 0 0 0 0 0 0 0 −|B2|2 −2α 0

α |B1|2 0 0 0 α 0 α α 0 0 0 r2 + 2α − 1
2 −4J

0 0 |B1|2 0 0 0 α 0 0 −α 0 0 i2 4J − 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(33)
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FIG. 5. Optimal values of α1 and α2 leading to maximum amount
of entanglement along the curve α = a(J ).

Also, in this case the dynamics results are independent
from the γi’s. Furthermore, we have no dependence from the
initial state, hence the feedback action can again be considered
universal.

The solution ρ(∞) is obtained analytically (not reported
here for the sake of simplicity) and then optimization of
concurrence has been pursued numerically by varying (for
each value of α and J ) αi and βi in the range 0,2π with step
π/12. Finally, the maximum value is taken as corresponding
to optimal feedback and the value αi = βi = 0 is taken
as corresponding to no feedback action. The concurrence
C(ρ(∞)) achieved with optimal feedback is plotted Fig. 2
vs α and J . The results have a mirror symmetry with respect
to α = 0, so only positive values of α are considered.

Figure 3 demonstrates the difference between the con-
currence C(ρ(∞)) achieved with optimal feedback and that
without feedback action.

Furthermore, in order to show the supremacy of our
optimized feedback, in Fig. 4 we plotted the difference between
the concurrence C(ρ(∞)) achieved with optimal feedback and
that with suboptimal feedback of Ref. [8].

By referring to Fig. 2 we may notice that for each value of
J there is an optimal value of α giving the largest concurrence.
This determines a curve α = a(J ) in the plane J,α along which
we have maxima of concurrence. Then, in Figs. 5 and 6 we
show the values of parameters αi and βi , respectively, that
allow one to attain the maxima values of concurrence along
a. As we can see, they oscillate and depend sensibly on the
values of α and J .

V. CONCLUSION

We have addressed two main problems when control-
ling entanglement in two qubits dissipating into their own
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FIG. 6. Optimal values of β1 and β2 leading to maximum amount
of entanglement along the curve α = a(J ).

environments, namely, protecting initial entanglement and
stabilizing entanglement. We have determined for both tasks
optimal Markovian feedback control by resorting to analytical
solutions of the dynamics as well as to numerical optimization
of concurrence. The feedback actions are worked out in a way
not depending on the initial two-qubit state, hence resulting as
universal.

The present work fills the gap of Ref. [8] where a proof
of principle of the effectiveness of Markovian feedback in
stabilizing entanglement was given, but it was not optimal,
as well as of Ref. [9] where the optimal Markovian feedback
in protecting initial entangled states was derived in a way
depending on the initial state and not continuous in time.

The proposed feedback can be realized in practice. In fact,
we may notice that each feedback operator (11) representing a
rotation inR3 can be considered as the composition of rotations
along two directions (ZYZ). As such, it can be performed, for
example, with a single laser pulse programed to be a chirped
pulse with a temporal hole. The temporal hole in the middle of a
chirped pulse induces a strong nonadiabatic evolution, which is
a Y rotation, amid an otherwise monotonic adiabatic evolution,
a Z rotation, due to the chirped pulse. The predicted behavior
of the ZYZ decomposition can be experimentally verified
with cold atomic qubits and as-programed femtosecond laser
pulses [13]. Whether single qubits are in the excited or
ground state can be detected, e.g., through ionization, using
a frequency-doubled split-off of an unshaped laser pulse
and a microchannel plate detector [14]. More generally, the
found results could be helpful in designing experiments of
entanglement control in settings such as cavity QED, trapped
ions, and solid-state-based qubits [15].

The presented analysis can be extended rather easily to other
interaction Hamiltonians, or even to more than two qubits. The
exploitation of Bayesian (state-estimation-based) feedback
control of two-qubit entanglement seems more challenging,
following up the single-qubit control performed in Ref. [16].
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