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Abstract

Most existing cosmological entanglement studies are focused on the isotropic Robertson–Walker (RW) 
spacetime. Here we go beyond this limitation and study the influence of anisotropy on entanglement gen-
erated by dynamical spacetime. Since the isotropic spacetime is viewed as a background medium and 
the anisotropy is incorporated as perturbation, we decompose entanglement entropy into isotropic and 
anisotropic contributions. The latter is shown to be non-negligible by analyzing two cosmological mod-
els with weak and conformal coupling. We also show the possibility of using entanglement to infer about 
universe features.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Relativistic quantum information, started out from the seminal paper [1], is a new promising 
field that aims at understanding how special or general relativity can affect quantum informa-
tion processing (see [2–6] for reviews on different aspects of the theory). In particular, it has 
been understood that entanglement [7], a useful resource in quantum information science, is not 
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a covariant quantity, which means that it depends on the observer [8–10]. Important examples 
can be found in cosmology, where the expansion of the universe can populate with particles the 
vacuum state [11]. The created pairs result entangled and such entanglement has been studied in 
[12,13], where it was shown that entanglement also stores information about the history of the 
universe (see also [14–16]). As a further step, generation of entanglement between occupation 
numbers, vacuum and 1/2-particle state, and polarizations (spins) of particles has been investi-
gated [17,18]. All such works employed Robertson–Walker (RW) models with the assumption 
of homogeneity and isotropy, so that it is yet unclear whether entanglement may be sensitive to 
spacetime anisotropies and to what extent universe’s features are imprinted on it. Taking into 
account anisotropic models is necessary because of anisotropy found in the Cosmic Microwave 
Background radiation [19,20]. Another open question is how emerging entanglement is affected 
when going beyond the conformal coupling case.

In the theory of quantum fields in curved spacetime (see e.g. [21]), matter creation is asso-
ciated with conformal symmetry breaking of the underling geometry, where the created pairs 
of particles with opposite momenta are entangled. We shall consider in the present paper three 
physical entities responsible for conformal symmetry breaking, namely mass of particles as-
sociated with the field, coupling between field and spacetime curvature, small gravitational 
disturbance (anisotropy). We then characterize entanglement generated from the vacuum state 
by the anisotropic expansion of the universe assuming that we have access to particles modes 
only, and then evaluating the subsystem entropy. Given the relation between entanglement and 
cosmological parameters we show how it is possible to extract information regarding the under-
lying geometry from the detected entanglement.

The paper is organized as follow. In Section 2 we recall the Bogoliubov transformations and 
we show how to relate their coefficients to the amount of created entanglement. In Section 3
we introduce a suitable cosmological model and explicitly compute the Bogolyubov coefficients 
for a scalar field. Next, in Section 4, we show how entanglement within this model is affected 
by mass of particles, field-spacetime coupling strength, and anisotropy. Section 5 deals with the 
possibility of deriving cosmological parameters from the detected entanglement. The concluding 
section 6 is devoted to summarize the results and to discuss possible extensions of the present 
work. In Appendix A, for the sake of comparison with Section 4, are shown results concerning a 
cosmological model with a different scale factor in the case of conformal coupling.

2. Particles production and entanglement

Consider a scalar field1 φ(�x, t) and two spacetime regions, called in-region and out-region, 
which we assume to be Minkowskian. Let us define two different basis {φin

i , φin∗
i } and 

{φout
i , φout∗

i }, with support on the relative region only, which can be used to decompose the 
field. Elements in the basis set are orthonormal, which means (φi, φj ) = δij , (φ∗

i , φ∗
j ) = −δji

and (φi, φ∗
j ) = 0, according to the Klein–Gordon inner product, defined by

(φ1, φ2) = −i

∫
�

d�μ φ1
←→
∂μ φ∗

2 , (1)

where φ1
←→
∂ μφ2 = φ1∂μφ2 − φ2∂μφ1 and d�μ = nμd�, being nμ a unit vector orthogonal to 

the spacelike hypersurface � and d� the volume element in �. Notice that the inner product 

1 Throughout the paper we shall consider real field for the sake of simplicity.
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(1) is independent of � [21]. After that, we can associate to each mode φin/out
i and to its com-

plex conjugate φin/out∗
i annihilation operators ain/out

k and creation operators ain/out †
k , such that 

they satisfy the usual commutation relations [ain/out
k , ain/out †

k′ ] = δkk′ and [ain/out
k , ain/out

k′ ] = 0. 
Therefore, we have two equivalent representations of the scalar field

� =
∑

k

{
ain
k φin

k + a
in †
k φin∗

k

}

=
∑
k′

{
aout
k′ φout

k′ + a
out †
k′ φout∗

k

}
.

(2)

Each mode can now be expanded in terms of the others

φout
k′ =

∑
k

{αk′kφ
in
k + βk′kφ

in∗
k } , (3)

which, when substituted in (2) implies the so-called Bogoliubov transformation and its inverse

ain
k =

∑
k′

{αk′ka
out
k′ + β∗

k′ka
† out
k′ } ,

aout
k′ =

∑
k

{α∗
k′ka

in
k − β∗

k′ka
† in
k } .

(4)

These relate the ladder operators in the two different representations. The coefficients α and β are 
the well known Bogoliubov coefficients, defined as αij = (φout

i , φin
j ) and βij = −(φout

i , φin∗
j ).

Imposing now that a† out
k and aout

k , defined through Eq. (4), satisfy the standard commutation 
relations, we get[

aout
k1

, a
† out
k2

]
=
∑

k

(
α∗

k1k
αk2k − β∗

k1k
βk2k

)= δk1 k2 ,

[
a

† out
k1

, a
† out
k2

]
=
∑

k

(
αk1kβk2k − βk1kαk2k

)= 0 .
(5)

We will be working with an homogeneous metric, meaning that the propagation of the field 
through the space can be decomposed into modes that will remain plane waves throughout, each 
with proper wave length, φk(x) = χk(t)e

i�k·�x . Therefore, the inner product between modes gives 
a Dirac delta and the Bogoliubov coefficients have to be

αk′k = αk δk k′ βk′k = βk δk −k′ . (6)

Plugging these into (4), gives diagonal Bogoliubov transformations

ain
k = αka

out
k + β∗

k a
† out
−k ,

aout
k = α∗

k ain
k − β∗

k a
† in
−k ,

(7)

whose main feature is that they do not mix modes. Furthermore Eq. (5) gives

|αk|2 − |βk|2 = 1 . (8)

The expectation value of the number operator for the out mode, Nout
k = a

† out
k aout

k , in the vacuum 
state of the in mode reads

in〈0|Nout |0〉in = |βk|2 , (9)

thanks to Eq. (7).
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In the context of cosmology, |βk|2 is the number of created particles per mode due to the 
dynamical nature of spacetime. Let us consider now a vacuum state as seen by an observer in 
the early past (in region) of our expanding universe. We focus only on modes k and −k, so that 
the input state we are considering is |0〉ink |0〉in−k . Being a pure state of a bi-partite system, the 
in-vacuum can be seen by an observer in the far future (out region) as

|0〉ink |0〉in−k =
∞∑

n=0

cn |n〉out
k |n〉out−k (10)

by using the Schmidt decomposition. To find the coefficients cn of (10), following [12], we use 
linear independence and the fact that ak|vac〉 = 0, obtaining

cn =
(

−β∗
k

αk

)n

c0 . (11)

Then, imposing normalization on (10) we find that c0 = √
1 − γ , with

γ =
∣∣∣∣β∗

k

αk

∣∣∣∣
2

. (12)

Note that γ is always less than one because of (8). What we want now is to measure the entan-
glement between modes k and −k in the physical state (10). To accomplish it we consider, first 
of all, the corresponding density operator ρout

k ,−k . After that, the amount of entanglement can be 
evaluated using the Von Neumann entropy of the reduced density operator (e.g. for particles) [7]

S(k) = −T r
(
ρout

k log2 ρout
k

)
, (13)

where

ρout
k = T r−k

(
ρout

k,−k

)= (1 − γ )

∞∑
n=0

γ n |n〉k〈n|out . (14)

It then results

S(k) = − log2(1 − γ ) − γ

1 − γ
log2 γ = log2

(
γ

γ
γ−1

1 − γ

)
. (15)

3. Anisotropic cosmological model

Let us now look into a specific model of an anisotropic universe filled with a matter field. The 
conformal symmetry breaking that leads to particles production can arise by the departure of the 
background spacetime from conformal flatness. Following [22,23], let us consider a Bianchi I
spacetime with metric

ds2 = dt2 −
∑

i

a2
i (t)dx2

i . (16)

Since we assume weak anisotropy, we write ai(t) = 1 + hi(t). Furthermore we introduce the 
time parameter η = ∫ t dt ′

a(t ′) to get

ds2 = a2(η)

{
dη2 −

∑
[1 + hi(η)]

(
dxi
)2
}

, (17)

i
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with i = 1, 2, 3. The time parameter η reduces to the so-called conformal time in the isotropic 
limit. The perturbation is considered to be small, that is max |hi(η)| � 1 and also, to greatly 
simplify calculations, we require that 

∑
i hi(η) = 0. The following choice satisfies such condi-

tions

hi(η) = e−ρ η2
cos (ε η2 + δi) , (18)

where δi = π
2 , π2 + 2π

3 , π2 + 4π
3 . The cosmological parameters ρ and ε represent, respectively, 

the expansion rate of the universe and the oscillation frequency of the perturbation. Let us now 
consider a scale factor which allows us to compute the Bogoliubov coefficients for a scalar field 
coupled with the spacetime just defined. That is

a(η) = 1 − ρ2

2(ρ2 + η2)
, (19)

which represents a contracting universe bouncing back at η = 0 and expanding out again [22]. 
In the asymptotic limit, a(η → ±∞) is equal to one so the spacetime becomes static and flat. In 
this model the Ricci curvature scalar takes the form [22]

R(η) = 6ρ2 η2 − ρ2

(η2 + ρ2/2)3 . (20)

3.1. Scalar field

A massive bosonic field of mass m obeys the Klein–Gordon equation(�g + m2 + ξR(η)
)

φ(�x,η) = 0 , (21)

where �g is the D’Alambertian generalized to the metric g and the factor ξ represents the cou-
pling constant of the field with the Ricci scalar curvature R. Since the spacetime is homogeneous, 
the solution of the field equation (21) can be separated as

φk(�x,η) = 1

(2π)3/2

1

a(η)
ei�k·�xχk(η) . (22)

The function of the time parameter, χk(η), satisfies

χ̈k(η) + [ω2
k − Vk(η)]χk(η) = 0 , (23)

where ω2 = k2 + m2a2(∞) and

Vk(η) =
∑

i

hi(η)k2
i + m2

[
a2(∞) − a2(η)

]
− �R(η)a2(η) , (24)

with � = ξ − 1/6. The function Vk(η) is the sum of three contributions

V
(mass)
k (η) = m2

[
a2(∞) − a2(η)

]
,

V
(coup)
k (η) = −�R(η)a2(η) , (25)

V
(aniso)
k (η) =

∑
i

hi(η)k2
i ,
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coming from mass, curvature coupling and anisotropy respectively. Two regimes are of special 
interest in cosmology: one is when ξ = 0, called weak coupling, and the other is when ξ = 1/6, 
called conformal coupling, for which V (coup) = 0. We can think to the problem as in scattering 
theory, which means assuming the interaction of the gravitational field with the matter field 
to be zero in the early past and in the far future, i.e. Vk(±∞) = 0. Our choice of the involved 
functions is such that this condition is matched for every single contribution to the time dependent 
function Vk(η), namely limη→±∞ V

(i)
k = 0, with i = {(mass), (coup), (aniso)}. The normalized 

free-wave solution, propagating from η → −∞, reads

χin
k (η) = 1√

2ω
e−iωη . (26)

The integral form of the differential equation (23) then becomes

χk(η) = χin
k (η) + 1

ω

η∫
−∞

dη1 Vk(η1) sin (ω(η − η1))χk(η1) . (27)

In late time regions (η → ∞), again, we have a free wave propagating

χout
k (η) = αkχ

in
k (η) + βkχ

in∗
k (η) , (28)

where the Bogolyubov coefficients α and β results as

αk = 1 + i

∞∫
−∞

χin∗
k (η)Vk(η)χk(η) dη , (29)

βk = −i

∞∫
−∞

χin
k (η)Vk(η)χk(η) dη . (30)

Computing the Wronskian of the differential equation (27) results in equation (8). To solve equa-
tion (27) we resort to an iterative procedure. To the lowest order we have

χk(η) = χin
k (η), (31)

and the Bogoliubov coefficients become

αk = 1 + i

2ω

∞∫
−∞

Vk(η)dη ,

βk = − i

2ω

∞∫
−∞

e−2iωηVk(η) dη .

(32)

Inserting here the functions (25) with the explicit form of hj (η) and a(η) we can write the 
Bogoliubov coefficients as

αk(η) = 1 + α
(mass)
k + α

(coup)
k + α

(aniso)
k

β (η) = β
(mass) + β

(coup) + β
(aniso)

,
(33)
k k k k
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where

α
(mass)
k = i

7m2ρπ

16ω
,

β
(mass)
k = i

m2π ρ

16ω
(2ρω − 7)e−2ωρ ,

α
(coup)
k = i

6π�

ωρ
(5

√
2 − 7) ,

β
(coup)
k = i

π�

16ωρ
[(384ρω + 672)e−2ωρ − 480

√
2e−√

2ωρ] ,

α
(aniso)
k = i

√
π

2ω

3∑
j=1

k2
j Re

{
e−iδj

√
ρ + iε

}
,

β
(aniso)
k = − i

√
π

2ω

3∑
j=1

k2
j Re

{
e−iδj e−ω2/(ρ+iε)

√
ρ + iε

}
.

(34)

We may notice that the Boguliubov coefficients (33) have a direct dependence on the mass m, on 
the coupling constant � and on the anisotropy hi . Each of these gives independent contributions 
to particles creation, through Eq. (9), and to entanglement, through Eq. (15).

Finally, we remark that caution must be used with the approximation of (27). Actually the 
normalization condition (8) can be employed as a test for its validity [24]. In what follows, 
violations of (8) within one-percent will be considered acceptable.

4. Entanglement

Once we know the Bogoliubov coefficients for a specific model, we can use them to evaluate 
the modes entanglement according to Eq. (15). In this section we will consider the subsystem 
entropy in the two relevant cases of weak coupling (ξ = 0) and conformal coupling (ξ = 1/6). 
To realize two dimensional plots we have made the ansatz

ki = k√
2 + b

{
1,1,

√
b
}

, (35)

such that k =
√

k2
1 + k2

2 + k2
3 . The amount of anisotropy is therefore quantified by the param-

eter b. If b = 1 the anisotropy contribution in (24) would disappears because of the condition ∑
i hi(η) = 0.

4.1. Weak coupling

The total entanglement entropy and the isotropic entanglement entropy (where for isotropic
we mean the contribution from mass and curvature coupling) have been plotted in Figs. 1 and 2, 
for b > 1 and b < 1 respectively, and with ξ = 0. The validity interval of the approximation (31)
is delimited by two vertical lines. This is sensitive to cosmological parameters and therefore to 
the choice of the relevant functions (18), (19).
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Fig. 1. Isotropic (dashed line) and total subsystem entropy (solid line) S vs k for the scalar field, with various values of ρ. 
Here b = 1.1, ε = 10, ξ = 0 and m = 0.01.

The problem is twofold: for large k the anisotropic coefficients clearly are not the right ones, 
while for small k the isotropic part is troublesome. In fact when the mass is large, the approxi-
mation works well for the coupling term and badly for the mass term, while the opposite occurs 
for small mass. Anyway, even if our results are trustworthy only in a limited range of k, which 
generally exludes zero, very interesting features show up. The main is the fact that the total en-
tropy oscillates as a function of k after the contribution from isotropic quantities is dropped to 
zero. This means that for momenta higher than a certain value anisotropy plays a decisive role in 
creating and driving entanglement. Also, as expected, the oscillations are damped and their am-
plitude increase as ρ decreases. As ρ increases the entanglement entropy shrinks towards small 
momenta and oscillations tend to disappear. In this regime the isotropic contribution is dominant. 
When b > 1 the first oscillation due to anisotropy always starts at zero entropy, because the to-
tal entropy drops to zero faster than the isotropic one, while this is not the case for b < 1, see 
Fig. 2.

Let us have a closer look at the relation between mass and curvature coupling, neglecting for 
a while anisotropy. In Fig. 3-Left it can be seen the isotropic entropy and the mass entropy vs m. 
Although the approximation made to find the solution fails quite soon, we can argue that as the 
mass grows from zero its contribution becomes more significative, because the separation be-
tween the two curves increases. The curves are decreasing as a consequence of the dependence 
of βks on the negative exponents of the frequency ω (34), which is an increasing function of 
the mass m. Particles (hence entanglement) creation are in general inhibited for high energetic 
particles. Also, the contribution from the mass is expected to be more important for heavy parti-
cles, but in our model this regime cannot be explored. As already mentioned, the approximation 
(Appendix A) works well at low momenta for the mass contribution when particles are light, 
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Fig. 2. Isotropic (dashed line) and total subsystem entropy (solid line) S vs k for the scalar field, with various values of ρ. 
Here b = 0.9, ε = 10, ξ = 0 and m = 0.01.

Fig. 3. Left – Isotropic (solid line) and coupling (dashed line) subsystem entropy S vs m for the scalar field, with k = 1, 
ρ = 2.5 and ξ = 0. Right – Total (solid line) and mass (dashed line) subsystem entropy S vs k for the scalar field, with 
m = 0.01, ρ = 1 and ξ = 1/6.

while for the coupling contribution it works well when particles are heavy. In general we can say 
that the contribution to the entanglement from coupling to curvature is monotonically decreasing 
vs ξ , with maximum at minimal coupling ξ = 0.

To give a quantitative estimate of the relevance of anisotropy on entanglement, we can con-
sider the ratio R for the total entropy between maximal oscillations’ amplitude and maximum 
value taken at the lowest value of k admitted by our approximation. It results that R increases 
from 0.025 when ρ = 4, up to 0.136 when ρ = 1. This means that anisotropic effects are non 
negligible, unless ρ gets very large.
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Fig. 4. Isotropic (dashed line) and total subsystem entropy (solid line) S vs k for the scalar field, with various values of ρ. 
Here b = 1.1, ε = 10, ξ = 1/6 and m = 0.01.

4.2. Conformal coupling

In the case of conformal coupling, ξ = 1/6, the contribution to the isotropic part of the entan-
glement entropy comes from mass only. A relevant difference with the previous case is that now 
the normalization condition (8) holds until k = 0 for the range of ρ we have considered in the 
previous subsection and for m = 0.01, see Fig. 3-Right and Fig. 4. For larger values of m and of 
ρ deviations start at smaller values of k. Also, as ρ decreases the maximum in Fig. 4 decreases, in 
agreement to what found in Ref. [13]. There, it was shown that an asymptotic regime is reached 
by the entropy when ρ → ∞. Unfortunately, we are not able to study this regime here because of 
the sensibility of our approximation to cosmological parameters. The important thing to note in 
Fig. 3-Right is that the total entropy and mass entropy completely overlap for small values of k, 
meaning that in such a regime anisotropy is completely negligible. Furthermore, since the dashed 
line in Figs. 3 and 4 drops to zero soon, we can ascribe the contribution of isotropic entropy in 
the Figs. 1 and 2 to non-conformal coupling and conclude that the last is the most significative 
among the three contributions when ξ = 0.

In Fig. 5 we show the solely anisotropic part of the entanglement entropy, corresponding to 
a massless field conformally coupled with gravity. It is clearly shown that the amplitude of the 
oscillations increases with the cosmological parameter ε and they shift towards higher momenta. 
For conformal coupling the ratio R turns out to be increasing from 0.130 when ρ = 4, up to 6.298
when ρ = 1. Here, the value of the entanglement entropy at the lowest acceptable k (which is 
k = 0 for the conformal coupling), becomes lower than the maximal oscillations’ amplitude as ρ
decreases and hence the ratio R becomes greater than one.
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Fig. 5. Anisotropic subsystem entropy S vs k for the scalar field, with various values of ε. Here b = 1.1 and ρ = 4.

The case of conformal coupling has been also considered in Appendix A, but with a different 
scale factor.

5. Cosmological parameters from entanglement

In this Section we show how to extract information about the cosmological model from en-
tanglement. Following the idea of Ref. [12] this amounts to express cosmological parameters in 
terms of entanglement entropy. First we note that being the entanglement for scalar field (15) a 
monotonic growing function of γ , if we know S(γ ) we can consequently invert it and uniquely 
determine γ . Then, from the definition (33) and the condition (8) it is possible to write

|α(coup)| + |α(mass)| + |α(aniso)| =
√

γ

1 − γ
, (36)

where the functions on the left hand side of the equation are given in (34). Let us now assume 
that the momentum of the detected particle is in the region were only the anisotropic coeffi-
cients are important (we know from Section 4 that this region exists indeed). Thus, we can set 
to zero α(coup) and α(mass) in (36). The relevant quantities are now the parameters b, which 
somehow quantifies the anisotropy, and ε, the oscillation frequency. In our simple model where 
ki = k2√

2+b
{1, 1, 

√
b}, the parameter b can be expressed as

b =

⎧⎪⎪⎨
⎪⎪⎩

4ω
√

r
√

γ /(1−γ )−k2√π(λ1+λ2)

k2√πλ3−2ω
√

r
√

γ /(1−γ )
, λ1 + λ2 + bλ3 ≥ 0

− 4ω
√

r
√

γ /(1−γ )+k2√π(λ1+λ2)

k2√πλ3+2ω
√

r
√

γ /(1−γ )
, λ1 + λ2 + bλ3 < 0

, (37)

where λi = cos(δi + φ/2), r =√ρ2 + ε2 and tanφ = ε .

ρ
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To get ε one has to solve the following fourth order equation

4A2(γ, k)ε4 + 8A(γ, k) c(b, k) s(b, k)ε3

+
[

4A2(γ, k)ρ2 + 4A(γ, k)ρ
(
s2(b, k) − c2(b, k)

)
−
(
s2(b, k) − c2(b, k)

)2
]

ε2

+ 4ρ c(b, k) s(b, k)
[
s2(b, k) − c2(b, k) +A(γ, k)ρ

]
ε

= ρ2
(
c2(b, k) + s2(b, k)

)2 −
[
ρ
(
s2(b, k) − c2(b, k)

)
+A(γ, k)ρ2

]2
,

where A(γ, k) = 4ω2

π
γ

1−γ
, c(b, k) =∑i k

2
i cos δi and s(b, k) =∑i k

2
i sin δi .

Much easier would be getting an expression for the parameter ρ, assuming the momentum of 
the detected particle is in the region were only the contribution from coupling with curvature 
matters. This region is just before the anisotropic region as seen in Section 4. For massless 
particles, setting α(mass) = 0 and α(aniso) = 0, we can easily find from eq. (36)

ρ = 6

∣∣∣∣(7 − 5
√

2)
�π

ω

∣∣∣∣
√

1 − γ

γ
. (38)

If we assume ρ  ε that would give r � ρ and cos(δi + φ/2) ∼ √
2 cos δi . In contrast, if 

ρ � ε it gives r � ρ
√

2 and cos(δi + φ/2) �
√√

2+1
2
√

2
cos δi −

√√
2−1

2
√

2
sin δi .

6. Concluding remarks

Summarizing, we have investigated particles entanglement arising from conformal symmetry 
breaking induced by three factors: mass of particles associated with the field, coupling between 
field and spacetime curvature, small gravitational disturbance (anisotropy). To this end we have 
viewed the isotropic spacetime as a background medium and considered the anisotropy as pertur-
bation. We have then shown that, in the range of validity of the first order approximate solution 
of scalar field equation, anisotropy provides non negligible effects on the entanglement spec-
trum (entanglement entropy vs momentum). In particular it changes its behavior (introducing 
oscillations) and for some values of momentum it results the only contribution. While conformal 
coupling does not give contribution to the entanglement spectrum, weak coupling gives the most 
relevant one. The mass is significant only for very small value of momentum. This is also con-
firmed by the considerations in Appendix A of a different scale factor, which additionally shows 
the possibility of entanglement generation even for a massless field.

The ranges of momentum where the various contributions are important are almost separated 
between isotropic and anisotropic part. This fact can be used to get a system of equation, relating 
entanglement and Bogoliubov coefficients, from which the relevant cosmological parameters can 
be explicitly computed. Obviously this kind of calculation should be refined with more realistic 
cosmological models.

Entanglement has been studied in cosmological isotropic settings also for half spin particles 
[13,16–18]. There, in particular, it was shown that the Dirac field is better suited than the scalar 
field to get information regarding the dynamics of the universe [13]. Therefore it seems to be im-
portant looking at half spin particles in a more general background as we did for scalar particles 
in the present paper. This is left for future work. In addition our analysis can be generalized to 
the massive charged Klein–Gordon field in an anisotropic background with electric or magnetic 
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field. For created charged particles the amount of entanglement for real and charged scalar field 
would be the same unless there is an external electric or magnetic field.

We conclude with a brief discussion regarding an operative way to extract information on 
spacetime parameters from entanglement. In Ref. [25], the authors showed that a comoving de-
tector in a DeSitter background has a thermal response to the conformal vacuum state. More 
recently, in [15], it has been shown that two spacelike separated detectors placed in satellites 
and interacting with the same quantum field become entangled in a way that is sensitive to the 
spacetime background. Then we foresee the possibility of applying the same technique to reveal 
anisotropic effects. A broad discussion regarding possibly realizable experiments with satellite 
can be found in Ref. [3].
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Appendix A. Entanglement from a different scale factor

In Section 4 we were able to show the behavior of entanglement entropy for small values of k
only in the conformally-coupled case and for very low mass. Here, we will consider a different 
scale factor with respect to (19) which gives us the opportunity to compare the anisotropic contri-
bution with the isotropic one, when the mass contribution is relevant and the field is conformally 
coupled.

A contracting and expanding universe, with asymptotically Minkowskian regions, is described 
also by the following scale factor [22]

a(η) = 1 − Ae−ρ2η2
, (A.1)

where ρ is the expansion rate and A gives the minimum value of the scale factor a(η = 0) =
1 − A. The mass contribution to the Bogoliubov coefficients then becomes

αiso
k = im2A

√
π

2ωρ
[2 − A

√
2

2
],

βiso
k = − im2A

√
π

2ωρ
e−ω2/ρ2[2 − A

√
2

2
eω2/2ρ2], (A.2)

while the anisotropic contribution is the same as in (34). Referring to the equation (15), using 
(A.2) and the anisotropic coefficients in (34), we get

γ = π

[
m2 A(2 − A√

2
eω2/2ρ2

)e−(ω2/ρ2) + ρ√
r
e−(ω2ρ/r2)

∑
i k

2
i cos(δi + φ

2 − εω2

r2 )
]2

4ω2ρ2 + π
[
m2 A(2 − A√

2
) + ρ√

r

∑
i k

2
i cos(δi + φ

2 )
]2 ,

(A.3)

where, like in Sec. 5, we have r =√ρ2 + ε2 and tanφ = ε
ρ

.
In Fig. 6 we can see that the isotropic entropy starts from a maximum value greater than 

zero at k = 0, and then drops to zero quite fast for increasing values of k, and subsequently 
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Fig. 6. Isotropic (dashed line) and total subsystem entropy S vs k for the scalar field, with various values of ρ. Here 
b = 0.9, A = 0.99 and m = 0.1.

oscillations start to show up. As the cosmological parameter ρ decreases, the entropy peak at 
k = 0 increases, as opposite to the behavior appearing with the scale factor (19). In the isotropic 
case, where hi = 0, expression (A.3) reduces to

γ =
[
2e−ω2/ρ2 − A√

2
e−ω2/2ρ2

]2

(2 − A√
2
)2 + 4ω2ρ2

πm4A2

, (A.4)

which is a clear monotonic decreasing function of k and its maximum, at k = 0, depends on 
the value of the cosmological parameter ρ. Here, γ → 0 as long as m → 0, which means that 
entanglement is not present in the massless limit. This is expected because in this case there is 
no particles creation. In contrast, taking m → 0 when the conformal symmetry breaking – and 
the subsequent particles creation – is due to anisotropy of spacetime only, we have from (A.3)

γ = π

[∑
i k

2
i cos

(
ε k2/r2 − δi − φ

2

)]2

4k2 r + π
[∑

i k
2
i cos

(
δi + φ

2

)]2 e−2(k2ρ/r2) . (A.5)

This case is particularly interesting because entanglement is generated even for a massless field. 
Something that does not happen for isotropic spacetime. The total entropy oscillates as k gets 
larger than zero. Plots in Fig. 6 clearly show that the first oscillation appears when the isotropic 
contribution is already zero, so that the oscillatory behavior has to be ascribed only to anisotropy. 
As ρ decreases the maximum of anisotropic contribution does not change appreciably, showing 
a weak dependence on this cosmological parameter. Notice also the difference in the behavior of 
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the total entropy when b is lower or greater than zero. In the first case it falls down to the value 
zero faster than the isotropic curve, while in the second case slower.

The behavior of the ratio R is now opposite to that of Sec. 4.2 and we have R = 0.309 for 
ρ = 2.5 decreasing up until R = 0.160 for ρ = 1. This means that anisotropic effects are non 
negligible, unless ρ gets very small, in which situation by the way the approximation (31) is no 
longer valid.
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