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Partially isolated bridges are a particular class of bridges in which isolation bearings are placed only between the piers top and
the deck whereas seismic stoppers restrain the transverse motion of the deck at the abutments. This paper proposes an analytical
formulation for the seismic analysis of these bridges, modelled as beams with intermediate viscoelastic restraints whose properties
describe the pier-isolator behaviour.Different techniques are developed for solving the seismic problem.Thefirst technique employs
the complex mode superposition method and provides an exact benchmark solution to the problem at hand. The two other
simplified techniques are based on an approximation of the displacement field and are useful for preliminary assessment and
design purposes. A realistic bridge is considered as case study and its seismic response under a set of ground motion records is
analyzed. First, the complex mode superposition method is applied to study the characteristic features of the dynamic and seismic
response of the system. A parametric analysis is carried out to evaluate the influence of support stiffness and damping on the
seismic performance. Then, a comparison is made between the exact solution and the approximate solutions in order to evaluate
the accuracy and suitability of the simplified analysis techniques for evaluating the seismic response of partially isolated bridges.

1. Introduction

Partially restrained seismically isolated bridges (PRSI) are a
particular class of bridges isolated at intermediate supports
and transversally restrained at abutments.This type of partial
isolation is quite common in many bridges all over the
world (see, e.g., [1–4]). The growing interest on the dynamic
behaviour of bridges with partial restrain is demonstrated by
numerous recent experimental works [3, 4] and numerical
studies [5–11] discussing the advantages and drawbacks with
respect to full isolation.

An analytical model commonly employed for the analysis
of the transverse behaviour of PRSI bridges consists in a
continuous simply supported beam resting on discrete inter-
mediate supports with viscoelastic behaviour representing
the pier-bearing systems (see, e.g., [6, 8, 9]). The damping is
promoted by two different mechanisms: the bearings, usually
characterized by high dissipation capacity, and the deck,
characterized by a lower but widespread dissipation capacity.

The strongly inhomogeneous distribution of the dissipation
properties along the bridge results in nonclassical damping
and this makes the rigorous analysis of the analytical PRSI
bridge model very demanding.

In general, the exact solution of the seismic problem
for a nonclassically damped system requires resorting to the
direct integration of the equations of motion or to modal
analysis [12] based on complex vibration modes. The first
analysis approach is conceptually simple, though computa-
tionally costlywhen large-scale systems are analyzed,whereas
the second approach is computationally efficient but often
not appealing for practical engineering applications since
it involves complex-valued functions and it is difficult to
implement in commercial finite element codes. For this
reason, many studies have been devoted to the definition of
approximate techniques of analysis and to the assessment of
their accuracy [13–17]. With reference to the classical case
of fully isolated bridges, the studies of Hwang et al. [18]
and Lee et al. [19] have shown that acceptable estimates
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of the modal damping ratios are obtained by considering
the real undamped modes and the diagonal terms of the
modal damping matrix. Franchin et al. [20] have analyzed
some realistic bridge models by showing that this decoupling
approximation gives also quite accurate estimates of the
response to a seismic input, as compared to the rigorous
response estimates obtained through complex modal anal-
ysis. With reference to the specific case of PRSI bridges,
characterized by deformation shapes and dynamic properties
very different from those of fully isolated bridges, the work
of Tubaldi and Dall’Asta [9] has addressed the issue of
nonclassical damping within the context of the free-vibration
response.The authors have observed that nonclassical damp-
ing influences differently the various response parameters
relevant for the performance assessment (i.e., the transverse
displacement shape is less affected than the bending moment
demand by the damping nonproportionality). However, the
effects of the decoupling approximation on the evaluation of
the seismic response of the proposed PRSI bridgemodel have
not been investigated yet. This issue becomes of particular
relevance in consequence of the numerous studies on PRSI
bridges that completely disregard nonclassical damping [6–
8]. Thus, a closer examination is still required to ensure
whether the use of proportionally damped models provides
acceptable estimates of the seismic response of these systems.

Another approximation often introduced in the analysis
of PRSI bridges concerns the transverse deformation shape.
In this regard, many studies are based on the assumption of a
prefixed sinusoidal vibration shape [6, 8, 10].This assumption
permits deriving analytically the properties of a generalized
SDOF system equivalent to the bridge and estimating the
system response by expressing the seismic demand in terms
of a response spectrum reduced to account for the system
composite damping ratio. In Tubaldi and Dall’Asta [8, 9], it
is shown that the sinusoidal approximation of the transverse
displacements may be accurate for PRSI bridges if the
following conditions are met: (a) the superstructure stiffness
is significantly higher than the pier stiffness, (b) the variations
of mass and stiffness of the deck and of the supports are
not significant, (c) the span number is high, and (d) the
displacement field is dominated by the first vibration mode.
However, even if the displacements are well described by a
sinusoidal shape, other response parameters of interest for
the performance assessment such as the transverse bending
moments may not exhibit a sinusoidal shape. Thus, further
investigations are required to estimate the error arising due
to this approximation.

The aim of this study is to develop an analytical formu-
lation of the seismic problem of PRSI bridges, modelled as
nonclassically damped continuous systems, and a rigorous
solution technique based on the complexmode superposition
(CMS) method [12, 21–24]. The application of this method
requires the derivation of the expression of the modal
orthogonality conditions and of the impulsive response
specific to the problem at hand. It permits describing the
seismic response in terms of superposition of the complex
vibration modes, which is particularly useful for this case in
consequence of the relevant contribution of higher modes of
vibration to the response of PRSI bridges [8, 10]. Moreover,
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Figure 1: Analytical model for PRSI bridges.

the proposed technique permits testing the accuracy of
two simplified analysis techniques introduced in this study
and commonly employed for the PRSI bridge analysis. The
first approximate technique describes the transverse motion
through a series expansion in terms of the classic modes
of vibration, obtained by neglecting the damping of the
intermediate restraints, whereas the second technique is
based on a series expansion in terms of sinusoidal func-
tions, corresponding to the vibration modes of the system
without the intermediate restraints.The introduction of these
approximations of the displacement field results in a coupling
of the equation of motions projected in the space of the
approximating functions, which is neglected in the solution
to simplify the response assessment.

A realistic case study is considered and its response to a set
of groundmotion records is examined first through the CMS
method with these two objectives: to unveil the characteristic
features of the performance of PRSI bridges and to assess the
influence of higher vibration modes and of the intermediate
support stiffness and damping on the response of the resisting
components. Successively, the seismic response estimates
according to the CMS method are compared with the
corresponding estimates obtained by applying the proposed
simplified techniques, in order to evaluate their accuracy and
reliability.

2. Dynamic Behavior of PRSI Bridges

The PRSI bridge model (Figure 1) consists of beam pinned at
the abutments and resting on discrete viscoelastic supports
representing the pier-bearing systems.

Let 𝐻
2
[Ω] be the space of functions with square inte-

grable second derivatives in the spatial interval Ω = [0, 𝐿], 𝑉

the space of transverse displacement functions satisfying the
kinematic boundary conditions (e.g., 𝑉 = {V(𝑥) ∈ 𝐻

2
[Ω] :

V(0) = V(𝐿) = 0}), and 𝑢(𝑥, 𝑡) ∈ 𝑈 ⊆ 𝐶
2
(𝑉; [𝑡
0
, 𝑡
1
])

the motion, defined in the time interval considered [𝑡
0
, 𝑡
1
],

belonging to the space of continuous functions𝐶
2 and known

at the initial instant together with its time derivative (initial
conditions).The differential dynamic problem can be derived
from the D’Alembert principle [25] and expressed in the
following form:

∫

𝐿

0

𝑚 (𝑥) �̈� (𝑥, 𝑡) 𝜂 (𝑥) 𝑑𝑥 + ∫

𝐿

0

𝑐 (𝑥) �̇� (𝑥, 𝑡) 𝜂 (𝑥) 𝑑𝑥

+

𝑁
𝑐

∑

𝑟=1

𝑐
𝑐,𝑟

�̇� (𝑥
𝑟
, 𝑡) 𝜂 (𝑥

𝑟
) + ∫

𝐿

0

𝑏 (𝑥) 𝑢


(𝑥, 𝑡) 𝜂


(𝑥) 𝑑𝑥
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+

𝑁
𝑐

∑

𝑟=1

𝑘
𝑐,𝑟

𝑢 (𝑥
𝑟
, 𝑡) 𝜂 (𝑥

𝑟
) = − ∫

𝐿

0

𝑚 (𝑥) �̈�
𝑔

(𝑡) 𝜂 (𝑥) 𝑑𝑥

∀𝜂 ∈ 𝑉; ∀𝑡 ∈ [𝑡
0
, 𝑡
1
] ,

(1)

where 𝜂 ∈ 𝑉 denotes a virtual displacement consistent
with the geometric restrains, 𝑁

𝑐
denotes the number of

intermediate supports, prime denotes differentiation with
respect to 𝑥 and dot differentiation with respect to time 𝑡.

The piecewise continuous functions 𝑚(𝑥), 𝑏(𝑥), and 𝑐(𝑥)

denote the mass per unit length, the transverse bending
stiffness per unit length, and the deck distributed damping
constant. The constants 𝑘

𝑐,𝑟
and 𝑐

𝑐,𝑟
are the stiffness and

damping constant of the viscoelastic support located at
the 𝑟th position = 𝑥

𝑟
, while �̈�

𝑔
(𝑡) denotes the ground

acceleration.
The local form of the problem is obtained by integrating

by parts (1) and can be formally written as

𝑀�̈� (𝑥, 𝑡) + 𝐶�̇� (𝑥, 𝑡) + 𝐾𝑢 (𝑥, 𝑡) = −𝑀�̈�
𝑔

(𝑡) ,

𝑢


(𝑥, 𝑡) 𝜂


𝐿

0
= 0, 𝑢


(𝑥, 𝑡) 𝜂



𝐿

0
= 0,

(2)

where 𝑀, 𝐶, and 𝐾 denote, respectively, the mass, damping,
and stiffness operator. They are expressed as (𝛿 is the Dirac’s
delta function)

𝑀 = 𝑚 (𝑥)

𝐾 = 𝑏 (𝑥)
𝜕
4

𝜕𝑥4
+

𝑁
𝑐

∑

𝑟=1

𝑘
𝑐,𝑟

𝛿 (𝑥 − 𝑥
𝑟
)

𝐶 = 𝑐 (𝑥) +

𝑁
𝑐

∑

𝑟=1

𝑐
𝑐,𝑟

𝛿 (𝑥 − 𝑥
𝑟
) .

(3)

3. Eigenvalue Problem for PRSI Bridges

The free-vibrations problem of the beam is obtained by
posing �̈�

𝑔
= 0 in (2). The corresponding differential

boundary problem is then reduced to an eigenvalue problem
solvable by expressing the transverse displacement 𝑢(𝑥, 𝑡) as
the product of a spatial function 𝜓(𝑥) and a time-dependent
function 𝑍(𝑡) = 𝑍

0
𝑒
𝜆𝑡:

𝑢 (𝑥, 𝑡) = 𝜓 (𝑥) 𝑍 (𝑡) . (4)

After substituting (3) and (4) into (2) for �̈�
𝑔

= 0, the following
transcendental equation is obtained:

[𝑚 (𝑥) 𝜆
2

+ 𝑐 (𝑥) 𝜆] 𝜓 (𝑥) + 𝑏 (𝑥) 𝜓
𝐼𝑉

(𝑥)

+

𝑁
𝑐

∑

𝑟=1

(𝑘
𝑐,𝑟

+ 𝑐
𝑐,𝑟

𝜆) 𝛿 (𝑥 − 𝑥
𝑟
) 𝜓 (𝑥) = 0.

(5)

Equation (5) is satisfied by an infinite number of eigenvalues
and eigenvectors that occur in complex conjugate pairs [26].
The 𝑖th eigenvalue 𝜆

𝑖
contains information about the system

vibration frequency and damping, while the 𝑖th eigenvector
𝜓
𝑖
(𝑥) is the 𝑖th vibration shape.The solution of the eigenvalue

problem for constant deck properties is briefly recalled in
the appendix. The orthogonality conditions for the complex
modes are [9]

(𝜆
𝑖
+ 𝜆
𝑗
) ∫

𝐿

0

𝑚 (𝑥) 𝜓
𝑖
(𝑥) 𝜓
𝑗
(𝑥) 𝑑𝑥

+ ∫

𝐿

0

𝑐 (𝑥) 𝜓
𝑖
(𝑥) 𝜓
𝑗
(𝑥) 𝑑𝑥 +

𝑁
𝑐

∑

𝑟=1

𝑐
𝑐,𝑟

𝜓
𝑖
(𝑥
𝑟
) 𝜓
𝑗
(𝑥
𝑟
) = 0

(6)

∫

𝐿

0

𝑏 (𝑥) 𝜓


𝑖
(𝑥) 𝜓


𝑗
(𝑥) 𝑑𝑥 − 𝜆

𝑖
𝜆
𝑗
∫

𝐿

0

𝑚 (𝑥) 𝜓
𝑖
(𝑥) 𝜓
𝑗
(𝑥) 𝑑𝑥

+

𝑁
𝑐

∑

𝑟=1

𝑘
𝑐,𝑟

𝜓
𝑖
(𝑥
𝑐,𝑟

) 𝜓
𝑗
(𝑥
𝑐,𝑟

) = 0.

(7)

4. Seismic Response of PRSI Bridges
Based on CMS Method

4.1. Series Expansion of the Response. In the CMS method,
the displacement of the beam is expanded as a series of the
complex vibration modes as

𝑢 (𝑥, 𝑡) =

∞

∑

𝑖=1

𝜓
𝑖
(𝑥) 𝑞
𝑖
(𝑡) , (8)

where 𝜓
𝑖
(𝑥) = 𝑖th complex modal shape and 𝑞

𝑖
(𝑡) = 𝑖th

complex generalized coordinate. It is noteworthy that, in
practical applications, the series is truncated at the term 𝑁

𝑚
.

Substituting (8) into (1) written for 𝜂(𝑥) = 𝜓
𝑗
(𝑥) one

obtains

∞

∑

𝑖=1

[∫

𝐿

0

𝑚 (𝑥) 𝜓
𝑖
(𝑥) 𝜓
𝑗
(𝑥) 𝑑𝑥] ̈𝑞

𝑖
(𝑡)

+

∞

∑

𝑖=1

[∫

𝐿

0

𝑐 (𝑥) 𝜓
𝑖
(𝑥) 𝜓
𝑗
(𝑥) 𝑑𝑥

+

𝑁
𝑐

∑

𝑟=1

𝑐
𝑐,𝑟

𝜓
𝑖
(𝑥
𝑐,𝑟

) 𝜓
𝑗
(𝑥
𝑐,𝑟

)] ̇𝑞
𝑖
(𝑡)

+

∞

∑

𝑖=1

[∫

𝐿

0

𝑏 (𝑥) 𝜓


𝑖
(𝑥) 𝜓


𝑗
(𝑥) 𝑑𝑥

+

𝑁
𝑐

∑

𝑟=1

𝑘
𝑐,𝑟

𝜓
𝑖
(𝑥
𝑐,𝑟

) 𝜓
𝑗
(𝑥
𝑐,𝑟

)] 𝑞
𝑖
(𝑡)

= − ∫

𝐿

0

𝑚 (𝑥) 𝜓
𝑗
(𝑥) �̈�
𝑔

(𝑡) 𝑑𝑥.

(9)
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Upon substitution of (7) into (9) the following expression is
obtained

∞

∑

𝑖=1

̈𝑞
𝑖
(𝑡) [∫

𝐿

0

𝑚 (𝑥) 𝜓
𝑖
(𝑥) 𝜓
𝑗
(𝑥) 𝑑𝑥]

+

∞

∑

𝑖=1

̇𝑞
𝑖
(𝑡) [∫

𝐿

0

𝑐 (𝑥) 𝜓
𝑖
(𝑥) 𝜓
𝑗
(𝑥) 𝑑𝑥

+

𝑁
𝑐

∑

𝑟=1

𝑐
𝑐,𝑟

𝜓
𝑖
(𝑥
𝑐,𝑟

) 𝜓
𝑗
(𝑥
𝑐,𝑟

)]

+

∞

∑

𝑖=1

𝑞
𝑖
(𝑡) [𝜆

𝑖
𝜆
𝑗
∫

𝐿

0

𝑚 (𝑥) 𝜓
𝑖
(𝑥) 𝜓
𝑗
(𝑥) 𝑑𝑥]

= − ∫

𝐿

0

𝑚 (𝑥) 𝜓
𝑗
(𝑥) �̈�
𝑔

(𝑡) 𝑑𝑥.

(10)

4.2. Response to Impulsive Loading. For �̈�
𝑔
(𝑡) = 𝛿(𝑡), the

generalized coordinate assumes the form [22]

𝑞
𝑖
(𝑡) = 𝐵

𝑖
𝑒
𝜆
𝑖
𝑡 (11)

with ̇𝑞
𝑖
(𝑡) = 𝜆

𝑖
𝑞
𝑖
(𝑡) and ̈𝑞

𝑖
(𝑡) = 𝜆

𝑖

2
𝑞
𝑖
(𝑡).

After substituting into (10), one obtains

∞

∑

𝑖=1

̈𝑞
𝑖
(𝑡)

𝜆
𝑖

[(𝜆
𝑖
+ 𝜆
𝑗
) ∫

𝐿

0

𝑚 (𝑥) 𝜓
𝑖
(𝑥) 𝜓
𝑗
(𝑥) 𝑑𝑥

+ ∫

𝐿

0

𝑐 (𝑥) 𝜓
𝑖
(𝑥) 𝜓
𝑗
(𝑥) 𝑑𝑥

+

𝑁
𝑐

∑

𝑟=1

𝑐
𝑐,𝑟

𝜓
𝑖
(𝑥
𝑐,𝑟

) 𝜓
𝑗
(𝑥
𝑐,𝑟

)]

= −𝛿 (𝑡) ∫

𝐿

0

𝑚 (𝑥) 𝜓
𝑗
(𝑥) 𝑑𝑥.

(12)

It can be noted that the right-hand side of (12) vanishes
for 𝜆
𝑖

̸= 𝜆
𝑗
by virtue of (6). Thus, the problem can be

diagonalized and the 𝑖th decoupled equation reads as follows:

2�̂�
𝑖

̈𝑞
𝑖
(𝑡) + 𝐶

𝑖
̇𝑞
𝑖
(𝑡) = −�̂�

𝑖
𝛿 (𝑡) , (13)

where �̂�
𝑖

= ∫
𝐿

0
𝑚(𝑥)𝜓

𝑖

2
(𝑥)𝑑𝑥, 𝐶

𝑖
= ∫
𝐿

0
𝑐(𝑥)𝜓

𝑖

2
(𝑥)𝑑𝑥 +

∑
𝑁
𝑐

𝑟=1
𝑐
𝑐,𝑟

𝜓
𝑖

2
(𝑥
𝑐,𝑟

), and �̂�
𝑖
= ∫
𝐿

0
𝑚(𝑥)𝜓

𝑖
(𝑥)𝑑𝑥.

By assuming that the system is at rest for 𝑡 < 0, the
following equation holds at 𝑡 = 0

+:

2�̂�
𝑖

̇𝑞
𝑖
(0
+
) + 𝐶
𝑖
𝑞
𝑖
(0
+
) = −�̂�

𝑖
. (14)

Thus, since 𝑞
𝑖
(0
+
) = 𝐵

𝑖
and ̇𝑞

𝑖
(0
+
) = 𝜆𝐵

𝑖
, one can finally

express 𝐵
𝑖
as

𝐵
𝑖
=

�̂�
𝑖

2�̂�
𝑖
𝜆
𝑖
+ 𝐶
𝑖

= − (∫

𝐿

0

𝑚 (𝑥) 𝜓
𝑖
(𝑥) 𝑑𝑥)

⋅ (2𝜆
𝑖
∫

𝐿

0

𝑚 (𝑥) 𝜓
𝑖

2
(𝑥) 𝑑𝑥 + ∫

𝐿

0

𝑐 (𝑥) 𝜓
𝑖

2
(𝑥) 𝑑𝑥

+

𝑁
𝑐

∑

𝑟=1

𝑐
𝑐,𝑟

𝜓
𝑖

2
(𝑥
𝑐,𝑟

))

−1

.

(15)

The corresponding expression of the complex modal impulse
response function is ℎ

𝑖

𝑐
(𝑥, 𝑡) = 𝐵

𝑖
𝜓
𝑖
(𝑥)𝑒
𝜆
𝑖
𝑡 and the sum

of the contribution to the complex modal impulse response
function of the 𝑖th mode and of its complex conjugate yields
a real function ℎ

𝑖
(𝑥, 𝑡), which may be expressed as

ℎ
𝑖
(𝑥, 𝑡) = 𝐵

𝑖
𝜓
𝑖
(𝑥) 𝑒
𝜆
𝑖
𝑡
+ 𝐵
𝑖
𝜓
𝑖
(𝑥) 𝑒
𝜆
𝑖
𝑡

= 𝛼
𝑖
(𝑥)

𝜆𝑖
 ℎ
𝑖
(𝑡) + 𝛽

𝑖
(𝑥) ℎ̇
𝑖
(𝑡) ,

(16)

where 𝛼
𝑖
(𝑥) = 𝜉

𝑖
𝛽
𝑖
(𝑥) − √1 − 𝜉

𝑖

2
𝛾
𝑖
(𝑥), 𝛽

𝑖
(𝑥) = 2Re[𝐵

𝑖
𝜓
𝑖
],

𝛾
𝑖
(𝑥) = 2 Im[𝐵

𝑖
𝜓
𝑖
], and ℎ

𝑖
(𝑡) denotes the impulse response

function of a SDOF system with natural frequency 𝜔
0𝑖

= |𝜆
𝑖
|,

damping ratio 𝜉
𝑖

= −Re(𝜆
𝑖
)/|𝜆
𝑖
|, and damped frequency

𝜔
𝑑𝑖

= 𝜔
0𝑖

√1 − 𝜉
𝑖

2, whose expression is

ℎ
𝑖
(𝑡) =

1

𝜔
𝑑𝑖

𝑒
−𝜉
𝑖
𝜔
0𝑖
𝑡 sin (𝜔

𝑑𝑖
𝑡) . (17)

4.3. CMS Method for Seismic Response Assessment. By tak-
ing advantage of the derived closed-form expression of
the impulse response function, the seismic input �̈�

𝑔
(𝑡) is

expressed as a sum of Delta Dirac functions as follows:

�̈�
𝑔

(𝑡) = ∫

𝑡

0

�̈�
𝑔

(𝜏) 𝛿 (𝑡 − 𝜏) 𝑑𝜏. (18)

The seismic displacement response is then expressed in terms
of superposition of modal impulse responses:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑖=1

∫

𝑡

0

�̈�
𝑔

(𝜏) ℎ
𝑖
(𝑥, 𝑡 − 𝜏) 𝑑𝜏

=

𝑁
𝑚

∑

𝑖=1

𝛼
𝑖
(𝑥)

𝜆𝑖
 𝐷
𝑖
(𝑡) + 𝛽

𝑖
(𝑥) �̇�
𝑖
(𝑡) ,

(19)

where 𝐷
𝑖
(𝑡) and �̇�

𝑖
(𝑡) denote the response of the oscillator

with natural frequency 𝜔
0𝑖
and damping ratio 𝜉

𝑖
, subjected to

the seismic input �̈�
𝑔
(𝑡).

It is noteworthy that in the case of 𝑐
𝑐,𝑟

= 0, correspond-
ing to intermediate supports with no damping, the system
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becomes classically damped and one obtains 𝜆
𝑖

= −𝜉
𝑖
𝜔
0𝑖

+

𝑖𝜔
0𝑖

√1 − 𝜉
𝑖

2, 𝜉
𝑖

= 𝑐
𝑑
/(2𝜔
0𝑖

𝑚
𝑑
), 𝐵
𝑖

= −𝜌
𝑖
𝑖/(2𝜔
0𝑖

√1 − 𝜉
𝑖

2
),

𝛼
𝑖

= 𝜌
𝑖
/𝜔
0𝑖
, 𝛽
𝑖

= 0, and 𝛾
𝑖

= −𝜌
𝑖
/(𝜔
0𝑖

√1 − 𝜉
𝑖

2
), where 𝜌

𝑖
=

𝑖th is the real mode participation factor. Thus (19) reduces to
the well-known expression:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑖=1

𝜌
𝑖
𝐷
𝑖
(𝑡) . (20)

The expression of the other quantities that can be of interest
for the seismic performance assessment of PRSI bridges can
be derived by differentiating (19). In particular, the abutment
reactions are obtained as 𝑅

𝑎𝑏
(0, 𝑡) = −𝑏(0)𝑢


(0, 𝑡) and

𝑅
𝑎𝑏

(𝐿, 𝑡) = −𝑏(𝐿)𝑢


(𝐿, 𝑡), the 𝑟th pier reaction is obtained
as 𝑅
𝑝𝑟

= 𝑘
𝑐,𝑟

𝑢(𝑥
𝑟
, 𝑡) + 𝑐

𝑐,𝑟
�̇�(𝑥
𝑟
, 𝑡) for 𝑟 = 1, 2, . . . , 𝑁

𝑐
, and

the transverse bending moments are obtained as 𝑀(𝑥, 𝑡) =

−𝑏(𝑥)𝑢


(𝑥, 𝑡).

5. Simplified Methods for
Seismic Response Assessment

In this paragraph, two simplified approaches often employed
for the seismic analysis of structural systems are intro-
duced and discussed. These approaches are both based on
the assumed modes method [27, 28] and entail using in
(8) a complete set of approximating real-valued functions
(denoted as 𝜂

𝑖
(𝑥) for 𝑖 = 1, 2, . . . , ∞) instead of the exact

complex vibration modes for describing the displacement
field.The two analysis techniques differ for the approximating
function employed. The use of these functions leads to a
system of coupled Galerkin equations [27], and the generic
𝑖th equation reads as follows:

∞

∑

𝑗=1

𝑀
𝑖𝑗

̈𝑞
𝑗
(𝑡) +

∞

∑

𝑗=1

(𝐶
𝑐,𝑖𝑗

+ 𝐶
𝑑,𝑖𝑗

) ̇𝑞
𝑗
(𝑡)

+

∞

∑

𝑗=1

(𝐾
𝑐,𝑖𝑗

+ 𝐾
𝑑,𝑖𝑗

) 𝑞
𝑗
(𝑡) = −𝑀

𝑝,𝑖
�̈�
𝑔

(𝑡) ,

(21)

where

𝑀
𝑖𝑗

= ∫

𝐿

0

𝑚 (𝑥) 𝜂
𝑖
(𝑥) 𝜂
𝑗
(𝑥) 𝑑𝑥,

𝑀
𝑝,𝑖

= ∫

𝐿

0

𝑚 (𝑥) 𝜂
𝑖
(𝑥) 𝑑𝑥,

𝐾
𝑐,𝑖𝑗

=

𝑁
𝑐

∑

𝑟=1

𝑘
𝑐,𝑟

𝜂
𝑖
(𝑥
𝑟
) 𝜂
𝑗
(𝑥
𝑟
) ,

𝐾
𝑑,𝑖𝑗

= ∫

𝐿

0

𝑏 (𝑥) 𝜂


𝑖
(𝑥) 𝜂


𝑗
(𝑥) 𝑑𝑥,

𝐶
𝑐,𝑖𝑗

=

𝑁
𝑐

∑

𝑟=1

𝑐
𝑐,𝑟

𝜂
𝑖
(𝑥
𝑟
) 𝜂
𝑗
(𝑥
𝑟
) ,

𝐶
𝑑,𝑖𝑗

= ∫

𝐿

0

𝑐 (𝑥) 𝜂
𝑖
(𝑥) 𝜂
𝑗
(𝑥) 𝑑𝑥

𝑖, 𝑗 = 1, 2, . . . , ∞.

(22)

The coupling between the generalized responses 𝑞
𝑖
(𝑥) and

𝑞
𝑗
(𝑥) may be due to nonzero values of the “nondiagonal”

damping and stiffness terms 𝐶
𝑐,𝑖𝑗

and 𝐾
𝑐,𝑖𝑗
, for 𝑖 ̸= 𝑗. In order

to evaluate the extent of coupling due to damping, the index
𝛼
𝑖𝑗
is introduced, whose definition is [13]

𝛼
𝑖𝑗

=

(𝐶
𝑐,𝑖𝑗

+ 𝐶
𝑑,𝑖𝑗

)
2

[𝐶
𝑐,𝑖𝑖

+ 𝐶
𝑑,𝑖𝑖

] ⋅ [𝐶
𝑐,𝑗𝑗

+ 𝐶
𝑑,𝑗𝑗

]

= (

𝑁
𝑐

∑

𝑟=1

𝑐
𝑐,𝑟

𝜂
𝑖
(𝑥
𝑟
) 𝜂
𝑗
(𝑥
𝑟
) + ∫

𝐿

0

𝑐
𝑑

(𝑥) 𝜂
𝑖
(𝑥) 𝜂
𝑗
(𝑥) 𝑑𝑥)

2

⋅ ((

𝑁
𝑐

∑

𝑟=1

𝑐
𝑐,𝑟

𝜂
𝑖

2
(𝑥
𝑟
) + ∫

𝐿

0

𝑐 (𝑥) 𝜂
𝑖

2
(𝑥) 𝑑𝑥)

⋅ (

𝑁
𝑐

∑

𝑟=1

𝑐
𝑐,𝑟

𝜂
𝑗

2
(𝑥
𝑟
) + ∫

𝐿

0

𝑐 (𝑥) 𝜂
𝑗

2
(𝑥) 𝑑𝑥))

−1

.

(23)

This index assumes high values for intermediate supports
with high dissipation capacity, while in the case of deck and
supports with homogeneous properties it assumes lower and
lower values for increasing number of supports, since the
behaviour tends to that of a beam on continuous viscoelastic
restraints [9].

A second coupling index is defined for the stiffness term,
whose expression is

𝛽
𝑖𝑗

=

(𝐾
𝑐,𝑖𝑗

+ 𝐾
𝑑,𝑖𝑗

)
2

[𝐾
𝑐,𝑖𝑖

+ 𝐾
𝑑,𝑖𝑖

] ⋅ [𝐾
𝑐,𝑗𝑗

+ 𝐾
𝑑,𝑗𝑗

]

= (

𝑁
𝑐

∑

𝑟=1

𝑘
𝑐,𝑟

𝜑
𝑖
(𝑥
𝑟
) 𝜑
𝑗
(𝑥
𝑟
) + ∫

𝐿

0

𝑏 (𝑥) 𝜑


𝑖
(𝑥) 𝜑


𝑗
(𝑥) 𝑑𝑥)

2

⋅ ((∫

𝐿

0

𝑏 (𝑥) [𝜑


𝑖
(𝑥)]
2

𝑑𝑥 +

𝑁

∑

𝑟=1

𝑘
𝑐,𝑟

𝜑
𝑖

2
(𝑥
𝑟
))

⋅ (

𝑁
𝑐

∑

𝑟=1

𝑘
𝑐,𝑟

𝜑
𝑗

2
(𝑥
𝑟
) + ∫

𝐿

0

𝑏 (𝑥) [𝜑


𝑗
(𝑥)]
2

𝑑𝑥))

−1

.

(24)

It is noteworthy that 𝛽
𝑖𝑗
assumes high values in the case of

intermediate supports with a relatively high stiffness com-
pared to the deck stiffness. Conversely, it assumes lower and
lower values for homogenous deck and support properties
and increasing number of spans, since the behaviour tends
to that of a beam on continuous elastic restraints, for which
𝛽
𝑖𝑗

= 0.
An approximation often introduced for practical pur-

poses [13, 16] is to disregard the off-diagonal coupling terms



6 Shock and Vibration
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Figure 2: Bridge longitudinal profile.

to obtain a set of uncoupled equations.The resulting 𝑖th equa-
tion describes the motion of a SDOF system with mass 𝑀

𝑖𝑖
,

stiffness 𝐾
𝑐,𝑖𝑖

+ 𝐾
𝑑,𝑖𝑖

, and damping constant 𝐶
𝑐,𝑖𝑖

+ 𝐶
𝑑,𝑖𝑖

. Thus,
traditional analysis tools available for the seismic analysis
of SDOF systems can be employed to compute efficiently
the generalized displacements 𝑞

𝑖
(𝑡) and the response 𝑢(𝑥, 𝑡),

under the given ground motion excitation.

5.1. RMS Method for Seismic Response Assessment. This
method, referred to as real modes superposition (RMS)
method, is based on a series expansion of the displacement
field in terms of the real modes of vibration 𝜙

𝑖
(𝑥) for

𝑖 = 1, 2, . . . , 𝑁
𝑚
of the undamped (or classically damped)

structure. The calculation of these classic modes of vibration
involves solving an eigenvalue problem less computationally
demanding than that required for computing the complex
modes.

It is noteworthy that the real modes of vibration are
retrieved from the PRSI bridge model of Figure 1 by neglect-
ing the damping of the intermediate supports and that the
orthogonality conditions for these modes can be obtained
from (6) and (7) by posing 𝑐

𝑑
(𝑥) = 0 and 𝑐

𝑐,𝑟
= 0, for

𝑟 = 1, 2, . . . , 𝑁
𝑐
, leading to

∫

𝐿

0

𝑚 (𝑥) 𝜓
𝑖
(𝑥) 𝜓
𝑗
(𝑥) 𝑑𝑥 = 0

∫

𝐿

0

𝑏 (𝑥) 𝜓


𝑖
(𝑥) 𝜓


𝑗
(𝑥) 𝑑𝑥 +

𝑁
𝑐

∑

𝑟=1

𝑘
𝑐,𝑟

𝜓
𝑖
(𝑥
𝑐,𝑟

) 𝜓
𝑗
(𝑥
𝑐,𝑟

) = 0.

(25)

The same expressions are obtained also in the case of mass
proportional damping for the deck, that is, for 𝑐

𝑑
(𝑥) = 𝜅𝑚(𝑥)

where 𝜅 is a proportionality constant.
The orthogonality conditions of (25) result in nonzero

values of 𝐶
𝑐,𝑖𝑗

and zero values of 𝐾
𝑐,𝑖𝑗
. These terms are

discarded to obtain a diagonal problem.

5.2. FTS Method for Seismic Response Assessment. In the
second method, referred to as Fourier terms superposition
(FTS) method, the Fourier sine-only series terms 𝜑

𝑖
(𝑥) =

sin(𝑖𝜋𝑥/𝐿) for 𝑖 = 1, 2, . . . , 𝑁
𝑚

are employed to describe
the motion. This method is employed in [8, 10] for the
design of PRSI bridges and is characterized by a very reduced
computational cost, since it avoids recourse to any eigen-
value analysis. It is noteworthy that the terms of this series
correspond to the vibration modes of a simply supported
beam, which coincides with the PRSI bridge model without
any intermediate support. The orthogonality conditions for

these terms, derived from (6) and (7) by posing, respectively,
𝑐
𝑐,𝑟

= 𝑘
𝑐,𝑟

= 0, for 𝑟 = 1, 2, . . . , 𝑁
𝑐
, are

∫

𝐿

0

𝑚 (𝑥) 𝜓
𝑖
(𝑥) 𝜓
𝑗
(𝑥) 𝑑𝑥 = 0

∫

𝐿

0

𝑏 (𝑥) 𝜓


𝑖
(𝑥) 𝜓


𝑗
(𝑥) 𝑑𝑥 = 0.

(26)

The application of these orthogonality conditions leads to a
set of coupled Galerkin equations due to the nonzero terms
𝐶
𝑐,𝑖𝑖

and 𝐾
𝑐,𝑖𝑗

for 𝑖 ̸= 𝑗. These out of diagonal terms are
discarded to obtain a diagonal problem.

6. Case Study

In this section, a realistic PRSI bridge [8] is considered as
case study. First, the CMS method is applied to the bridge
model by analyzing its modal properties and the related
response to an impulsive input. Successively the seismic
response is studied and a parametric analysis is carried
out to investigate the influence of the intermediate support
stiffness and damping on the seismic performance of the
bridge components. Finally, the accuracy of the simplified
analysis techniques is evaluated by comparing the results of
the seismic analyses obtained with the CMS method and the
RMS and FTS methods.

6.1. Case Study and Seismic Input Description. The PRSI
bridge (Figure 2), whose properties are taken from [8], con-
sists of a four-span continuous steel-concrete superstructure
(span lengths 𝐿

1
= 40m and 𝐿

2
= 60m, for a total

length 𝐿 = 200m) and of three isolated reinforced concrete
piers. The value of the deck transverse stiffness is 𝐸𝐼

𝑑
=

1.1𝐸 + 09 kNm2, which is an average over the values of
𝐸𝐼
𝑑
that slightly vary along the bridge length due to the

variation of the web and flange thickness. The deck mass
per unit length is equal to 𝑚

𝑑
= 16.24 ton/m. The circular

frequency corresponding to the first mode of vibration of the
superstructure vibrating alone with no intermediate supports
is 𝜔
𝑑

= 2.03 rad/s. The deck damping constant 𝑐
𝑑
is such that

the firstmode damping factor of the deck vibrating alonewith
no intermediate supports is equal to 𝜉

𝑑
= 0.02.The combined

pier and isolator properties are described by Kelvin models,
whose stiffness and damping constant are, respectively, 𝑘

𝑐,2
=

2057.61 kN/m and 𝑐
𝑐,2

= 206.33 kN/m for the central support
and 𝑘
𝑐1

= 𝑘
𝑐3

= 3500.62 kN/m and 𝑐
𝑐,1

= 𝑐
𝑐,3

= 322.69 kN/m
for the other supports.These support properties are the result
of the design of isolation bearings ensuring the same shear
demand at the base of the piers under the prefixed earthquake
input.
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Figure 3: Variation with period 𝑇 of the pseudo-acceleration response spectrum 𝑆
𝑎
(𝑇, 5%) (a) and of the displacement response spectrum

𝑆
𝑑
(𝑇, 5%) (b) of natural records.

Table 1: Modal properties: complex eigenvalues 𝜆
𝑖
, undamped

modal frequencies 𝜔
0𝑖
, and damping ratios 𝜉

𝑖
.

Mode 𝜆
𝑖
[–] 𝜔

0𝑖
[rad/s] 𝜉

𝑖
[–]

1 −0.1723 − 2.6165𝑖 2.62 0.0657
2 −0.2196 − 8.3574𝑖 8.36 0.0263
3 −0.2834 − 18.4170𝑖 18.42 0.0154
4 −0.1097 − 32.5180𝑖 32.52 0.0034
5 −0.1042 − 50.7860𝑖 50.79 0.0021

The seismic input is described by a set of seven records
compatible with the Eurocode 8-1 design spectrum, corre-
sponding to a site with a peak ground acceleration (PGA) of
0.35𝑆𝑔where 𝑆 is the soil factor, assumed equal to 1.15 (ground
type C), and 𝑔 is the gravity acceleration. They have been
selected from the European strong motion database [29] and
fulfil the requirements of Eurocode 8 [30]. Figure 3(a) shows
the pseudo-acceleration spectrum of the records, the mean
spectrum, and the code spectrum, whereas Figure 3(b) shows
the displacement response spectrum of the records and the
corresponding mean spectrum.

6.2. Modal Properties and Impulsive Response. Table 1 reports
the first 5 eigenvalues 𝜆

𝑖
of the system, the corresponding

vibration periods 𝑇
0𝑖

= 2𝜋/𝜔
𝑖
, and damping ratios 𝜉

𝑖
. These

modal properties are determined by solving the eigenvalue
problem corresponding to (5). It is noteworthy that the even
modes of vibration are characterized by an antisymmetric
shape and a participating factor equal to zero, and thus
they do not affect the seismic response of the considered
configurations (uniform support excitation is assumed).

In general, the effect of the intermediate restraints on
the dynamic behaviour of the PRSI bridge is to increase the
vibration frequency and damping ratio with respect to the
case of the deck vibrating alone without any restraint. In fact,
the fundamental vibration frequency shifts from the value
𝜔
𝑑

= 2.03 rad/s to 𝜔
01

= 2.62 rad/s, corresponding to a
first mode vibration period of about 2.40 s. The first mode
damping ratio increases from 𝜉

𝑑
= 0.02 to 𝜉

1
= 0.0657. It

should be observed that the value of 𝜉
1
is significantly lower

than the value of the damping ratio of the internal and exter-
nal intermediate viscoelastic supports at the same vibration
frequency 𝜔

01
, equal to, respectively, 0.13 and 0.12. This is the

result of the low dissipation capacity of the deck and of the
dual load path behaviour of PRSI bridge, whose stiffness and
damping capacity are the result of the contribution of both
the deck and the intermediate supports [8, 9]. The damping
ratio of the higher modes is in general very low and tends to
decrease significantly with the increasing mode order.

Figure 4 shows the response of the midspan transverse
displacement (Figure 4(a)) and of the abutment reactions
(Figure 4(b)), for a unit impulse ground motion �̈�

𝑔
(𝑡) =

𝛿(𝑡). The analytical exact expression of the modal impulse
response is reported in (16). The different response functions
plotted in Figure 4 are obtained by considering (1) the
contribution of the first mode only, (2) the contribution of
the first and third modes, and (3) the contribution of the
first, third, and fifth modes. Modes higher than the 5th have
a negligible influence on the response. In fact, the mass
participation factors of the 1st, 3rd, and 5th modes, evaluated
through the RMS method, are 81%, 9.2%, and 3.25%. While
the midspan displacement response is dominated by the
first mode only, higher modes strongly affect the abutment
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Figure 4: Response to impulsive loading (ℎ) versus time (𝑡) in terms of (a) midspan transverse displacement and (b) abutment reactions.

reactions. The impulse response in terms of the transverse
bending moments, not reported here due to space con-
straints, is also influenced by the higher modes contribution,
but at a less extent than the abutment reactions.

6.3. Seismic Response. In this section, the characteristic
aspects of the seismic performance of PRSI bridges are high-
lighted by starting from the seismic analysis of the case study
and by evaluating successively the response variations due
to changes of the most important characteristic parameters
of the bridge, that is, the deck-to-support stiffness ratio and
the support damping. The bridge seismic performance is
evaluated by monitoring the following response parameters:
the midspan transverse displacement, the transverse bending
moments, and the abutment shear. The CMS method is
applied to compute the maximum overtime values of these
response parameters by averaging the results obtained for the
seven different records considered. Only the contribution of
the first three symmetric vibration modes is considered due
to the negligible influence of the other modes.

Figure 5 reports the mean of the envelopes of the trans-
verse displacements and bending moments obtained for the
different records. The displacement field coincides with a
sinusoidal shape. This can be explained by observing that
the isolated piers have a very low stiffness compared to the
deck stiffness and, thus, their restraint action on the deck
is negligible. Furthermore, the displacement response is in
general dominated by the first mode of vibration. The trans-
verse bendingmoments exhibit a different shape because they
are significantly influenced by the higher modes of vibration.
The support restraint action on the deck moments is almost
negligible. It is noteworthy that differently from the case of
fully isolated bridges, the bending moment demand in the
deck may be very significant and attain the critical value
corresponding to deck yielding, a condition that should be
avoided according to EC8-2 [30].

In order to evaluate how the support stiffness and damp-
ing influence the seismic response of the bridge components,
an extensive parametric study is carried out by considering a
set of bridge models with the same superstructure, but with
intermediate supports having different properties. Following
[9], the intermediate supports properties can be synthetically
described by the following nondimensional parameters:

𝛼
2

=
∑
𝑁
𝑐

𝑖=1
𝑘
𝑐,𝑖

⋅ 𝐿
3

𝜋4𝐸𝐼
𝑑

=
∑
𝑁
𝑐

𝑖=1
𝑘
𝑐,𝑖

𝜔
2

𝑑
𝐿𝑚
𝑑

𝛾
𝑐

=
∑
𝑁
𝑐

𝑖=1
𝑐
𝑐,𝑖

2𝛼2𝜔
𝑑
𝑚
𝑑
𝐿

=
∑
𝑁
𝑐

𝑖=1
𝑐
𝑐,𝑖

𝜔
𝑑

2 ∑
𝑁
𝑐

𝑖=1
𝑘
𝑐,𝑖

.

(27)

The parameter 𝛼
2 denotes the relative support to deck

stiffness. Low values of 𝛼
2 correspond to a stiff deck relative

to the springs while high values correspond to a more flexible
deck relative to the springs. Limit case 𝛼

2
= 0 corresponds to

the simply supported beam with no intermediate restraints.
The parameter 𝛾

𝑐
describes the energy dissipation of the

supports and it is equal to the ratio between the energy
dissipated by the dampers and the maximum strain energy
in the springs, for a uniform transverse harmonic motion of
the deckwith frequency𝜔

𝑑
.These two parameters assume the

values 𝛼
2

= 0.676 and 𝛾
𝑐

= 0.095 for the bridge considered
previously.

In the following parametric study, the values of these
parameters are varied by keeping the same distribution of
stiffness and of damping of the original bridge, that is, by
using the same scale factor for all the values of 𝑘

𝑐,𝑖
and the

same scaling factor for all the values of 𝑐
𝑐,𝑖
. In particular,

the values of 𝛼
2 are assumed to vary in the range between

0 (no intermediate supports) and 2 (stiff supports relative to
the superstructure), whereas the values of 𝛾

𝑐
are assumed to
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Figure 5: Average peak transverse displacements 𝑢max (a) and bending moments 𝑀
𝑑,max (b) along the deck.
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Figure 6: (a) Variation with 𝛼
2 of normalized transverse period 𝑇(𝛼

2
)/𝑇(𝛼

2
= 0); (b) variation with 𝛼

2 of displacement demand of the deck
in correspondence with the external piers (𝑑

1
) and the central pier (𝑑

2
).

vary in the range between 0 (intermediate supports with no
dissipation capacity) and 0.3 (very high dissipation capacity).

Figure 6(a) shows the variation with 𝛼
2 of the periods

of the first three modes of vibration that participate in the
seismic response, that is, modes 1, 3, and 5, normalized
with respect to the values observed for 𝛼

2
= 0. It can be

seen that only the fundamental vibration period is affected
significantly by the support stiffness, whereas the higher
modes of vibration exhibit a constant value of the vibration
period for the different 𝛼

2 values. Figure 6(b) provides some
information on the seismic response and it shows the influ-
ence of𝛼

2 on the averagemaximum transverse displacements
in correspondence with the outer intermediate supports and
at the centre of the deck, denoted, respectively, as 𝑑

1
and 𝑑

2
.

These response quantities do not vary significantly with 𝛼
2.

This occurs because the displacement demand is controlled
by the first mode of vibration, whose period for the different
𝛼
2 values falls within the region corresponding to the flat

displacement response spectrum.

Figure 7(a) shows the variation of the bending moment
demand in correspondence with the piers, 𝑀

𝑑1
, and at the

centre of the deck, 𝑀
𝑑2
. These response parameters follow

a trend similar to that of the displacement demand; that is,
they do not vary significantly with 𝛼

2. Figure 7(b) shows the
variation with 𝛼

2 of the sum of the pier reaction forces (𝑅
𝑝
)

and the sum of the abutment reactions (𝑅
𝑎𝑏
). In the same

figure, the contribution of the first mode only to these quan-
tities (𝑅

𝑝,1
, 𝑅
𝑎𝑏,1

) is also reported. It can be observed that the
total base shear of the system increases for increasing values
of 𝛼
2, consistently with the increase of spectral acceleration

at the fundamental vibration period. Furthermore, while the
values of 𝑅

𝑝
tend to increase for increasing values of 𝛼

2, the
values of 𝑅

𝑎𝑏
remain almost constant. This can be explained

by observing that the abutment reactions are significantly
affected by the contribution of higher modes. Thus, in the
case of intermediate support with no dissipation capacity,
increasing the intermediate support stiffness does not reduce
the shear forces transmitted to the abutments.
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Figure 7: (a) Variation with 𝛼
2 of the peak average bending moments in correspondence with the external piers (𝑀

𝑑1
) and the central pier

(𝑀
𝑑2
); (b) variation with 𝛼

2 of the peak average total pier reactions (𝑅
𝑝
) and abutment reactions (𝑅

𝑎𝑏
) and of the corresponding first mode

contribution (𝑅
𝑝,1
, 𝑅
𝑎𝑏,1

).

In the following, the joint influence of support stiffness
and damping on the bridge seismic response is analysed.
Figure 8(a) shows the variation of the transverse displace-
ment 𝑑

2
versus 𝛼

2, for different values of 𝛾
𝑐
. The values of

𝑑
2
are normalized, for each value of 𝛼

2, by dividing them
by the value 𝑑

2,0
corresponding to 𝛾

𝑐
= 0. As expected, the

displacement demand decreases by increasing the dissipa-
tion capacity of the supports. Furthermore, the differences
between the displacement demands for the different 𝛾

𝑐
values

reduce for 𝛼
2 tending to zero.

Figure 8(b) shows the total pier (𝑅
𝑝
) and abutment (𝑅

𝑎𝑏
)

shear demand versus 𝛼
2, for different values of 𝛾

𝑐
. These

values are normalized, for a given value of 𝛼
2, by dividing,

respectively, by the values 𝑅
𝑝,0

and 𝑅
𝑎𝑏,0

corresponding to
𝛾
𝑐

= 0. It can be noted that both the pier and abutment
reactions decrease by increasing 𝛾

𝑐
. Furthermore, differently

from the case corresponding to 𝛾
𝑐

= 0, the increase of the
intermediate support stiffness results in a reduction of the
abutment reactions. However, the maximum decrease of the
values of the abutment reactions, achieved for high 𝛼

2 levels,
is inferior to the maximum decrease of the values of pier
reactions.This is a consequence of the combined effects of (a)
the contribution of highermodes, which is significant only for
the abutment reactions and negligible for the pier reactions,
and (b) the reduced efficiency of the intermediate dampers in
damping the higher modes of vibration [9].

Finally, Figure 9 shows the total base shear versus 𝛼
2, for

different values of 𝛾
𝑐
. By increasing 𝛼

2, the total base shear
increases for low support damping values (𝛾

𝑐
= 0.0, 0.05)

while for very high 𝛾
𝑐
values (𝛾

𝑐
= 0.10, 0.15, 0.20) it first

decreases and then it slightly increases. Thus, for values of

𝛾
𝑐
higher than 0.05, the total base shear is minimized when

𝛼
2 is equal to about 0.5. This result could be useful for

the preliminary design of the isolator properties ensuring
the minimization of the total base shear as performance
objective.

6.4. Accuracy of Simplified Analysis Techniques. In this sec-
tion, the accuracy of the simplified analysis techniques is
evaluated by comparing the exact estimates of the response
obtained by applying the CMS method with the correspond-
ing estimates obtained by employing the RMS and FTS
methods. In the application of all these methods, the first
three symmetric terms of the set of approximating functions
are considered and the ground motion records are those
already employed in the previous section.

Figure 10 reports the results of the comparison for the
case study described at the beginning of this section. It
can be observed that the RMS and FTS method provide
very close estimates of the mean transverse displacements
(Figure 10(a)), whose shape is sinusoidal. This result was
expected, since vibration modes higher than the first mode
have a negligible influence on the displacements, as already
pointed out in Figure 4. With reference to the transverse
bending moment envelope (Figure 10(b)), the mean shape
according to RMS and FTS agrees well with the exact shape,
the highest difference being in correspondence with the
intermediate restraints. The influence of the third mode of
vibration on the bending moments shape is well described by
both simplified techniques.

Table 2 reports and compares the peak values of the
midspan displacement 𝑑

2
, the transverse abutment reaction

𝑅
𝑎𝑏
, the midspan transverse moments 𝑀

𝑑
, and the support
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Table 2: Comparison of results according to the different analysis techniques for each of the 7 ground motion records considered.

Record 𝑑
2
[m] 𝑅ab [kN] 𝑀

𝑑
[MNm] 𝑅

𝑝1
[kN] 𝑅

𝑝2
[kN]

CMS RMS FTS CMS RMS FTS CMS RMS FTS CMS RMS FTS CMS RMS FTS
#1 0.1828 0.1827 0.1824 2105.6 2103.2 2119.8 71.788 71.779 72.022 369.8 370.2 372.3 376.1 376.0 375.2
#2 0.5496 0.5496 0.5485 4114.4 4093.8 4184.5 188.809 188.837 189.684 1126.5 1125.6 1131.3 1130.9 1130.9 1128.5
#3 0.2681 0.2681 0.2676 3320.5 3317.3 3315.7 103.350 103.412 103.921 520.8 519.9 523.0 551.6 551.7 550.6
#4 0.4473 0.4474 0.4468 3185.9 3180.3 3205.0 143.742 143.659 144.171 947.7 947.4 953.5 920.5 920.6 919.2
#5 0.6227 0.6227 0.6215 3650.2 3660.8 3782.8 194.330 194.336 195.329 1219.9 1220.2 1229.3 1281.3 1281.3 1278.8
#6 0.2417 0.2418 0.2416 3335.4 3328.3 3345.6 116.320 116.249 116.587 508.7 508.3 511.6 497.4 497.5 497.1
#7 0.1680 0.1680 0.1678 1648.8 1662.8 1683.0 65.313 65.334 65.723 336.3 335.8 338.1 345.6 345.7 345.3
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Figure 10: Transverse displacements 𝑢max (a) and bending moments 𝑀
𝑑,max (b) along the deck according to the exact and the simplified

analysis techniques.

Table 3: Comparison of results (mean values and CoV of the response) according to the different analysis techniques.

Response parameter CMS RMS FTS
Mean CoV Mean CoV Mean CoV

𝑑
2
[m] 0.3543 0.519 0.3543 0.519 0.3537 0.519

𝑅ab [kN] 3051.55 0.284 3049.47 0.282 3090.92 0.287
𝑀
𝑑
[kNm] 126235.75 0.411 126249.35 0.411 126778.66 0.411

𝑅
𝑝1

[kN] 718.52 0.515 718.22 0.515 722.73 0.515
𝑅
𝑝2

[kN] 729.05 0.519 729.09 0.519 727.83 0.519

reactions 𝑅
𝑝1

and 𝑅
𝑝2

according to the three analysis tech-
niques, for the 7 records employed to describe the record-to-
record variability effects. These records are characterized by
different characteristics in terms of duration and frequency
content (Figure 3). Thus, the values of the response param-
eters of interest exhibit significant variation from record
to record. The level of accuracy of the simplified analysis
techniques is in general very high and it is only slightly
influenced by the record variability.The highest relative error,
observed for the estimates of the bending moment demand,
is about 0.84% for the RMS method and 3.6% for the FTS
method. The coupling indexes for the damping matrix are
𝛼
13

= 0.0454, 𝛼
15

= 0.2259, and 𝛼
35

= 0.1358 for the RMS
method and 𝛼

13
= 0.0461, 𝛼

15
= 0.2242, and 𝛼

35
= 0.1365 for

the FTSmethod.The coupling indexes for the stiffnessmatrix
are 𝛽
13

= 5.59𝑒−4, 𝛽
15

= 9.04𝑒−5, and 𝛽
35

= 1.83𝑒−6 for the
FTSmethod.Thus, the extent of coupling in both the stiffness
and damping terms is very low and this explains why the
approximate techniques provide accurate response estimates.

Table 3 reports themean value and coefficient of variation
of the monitored response parameters. With reference to
this application, it can be concluded that both the simplified
analysis techniques provide very accurate estimates of the
response statistics despite the approximations involved in
their derivation.The highest relative error between the results
of the simplified analysis techniques and those of the CMS

method is observed for the estimates of the mean bending
moment demand and it is about 0.01% for the RMS method
and 0.43% for the FTS method.

The accuracy of the approximate techniques is also evalu-
ated by considering another set of characteristic parameters,
corresponding to 𝛼

2
= 2 and 𝛾

𝑐
= 0.2, and representing

intermediate supports with high stiffness and dissipation
capacity.

The displacement shape of the bridge, reported in
Figure 11(a), is sinusoidal, despite the high stiffness and
damping capacity of the supports. However, the bending
moment shape, reported in Figure 11(b), is significantly influ-
enced by the higher modes of vibration and by the restrain
action of the supports. The RMS method provides very
accurate estimates of this shape, whereas the FTS method is
not able to describe the support restraint effect.

Table 4 reports the peak values of the response parame-
ters of interest for each of the 7 natural records considered,
according to the different analysis techniques. The highest
relative error, observed for the estimates of the bending
moment demand, is less than 3.6% for the RMS method and
9.2% for the FTS method.

The mean and coefficient of variation of the response
parameters of interest are reported in Table 5. The highest
relative error, with respect to the CMS estimate, is observed
for the mean bending moment demand and it is less than
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Figure 11: Transverse displacements 𝑢max (a) and bending moments 𝑀
𝑑,max (b) along the deck according to the exact and the simplified

analysis techniques.

Table 4: Comparison of results according to the different analysis techniques for each of the 7 ground motion records considered.

Record 𝑑
2
[m] 𝑅ab [kN] 𝑀

𝑑
[MNm] 𝑅

𝑝1
[kN] 𝑅

𝑝2
[kN]

CMS RMS FTS CMS RMS FTS CMS RMS FTS CMS RMS FTS CMS RMS FTS
#1 0.1556 0.1557 0.1548 1468.2 1512.9 1435.2 65.801 65.840 65.878 846.0 832.5 846.0 948.2 947.8 942.4
#2 0.2099 0.2096 0.2077 2114.9 2175.0 2175.6 74.322 73.745 72.942 1197.8 1187.6 1200.9 1279.6 1275.7 1264.2
#3 0.1504 0.1505 0.1490 1854.3 1871.9 1905.0 60.887 59.777 59.856 890.7 883.8 890.5 916.9 916.0 907.0
#4 0.2164 0.2167 0.2144 2169.8 2198.6 2198.9 78.089 78.244 77.744 1183.2 1171.2 1190.7 1319.0 1318.6 1305.0
#5 0.3471 0.3475 0.3439 2088.8 2016.8 2239.5 105.322 104.517 103.797 2107.2 2099.2 2128.0 2115.7 2114.8 2093.3
#6 0.1971 0.1966 0.1954 1948.0 1955.0 1783.2 83.645 82.237 82.389 1088.8 1102.9 1126.8 1201.4 1196.8 1189.1
#7 0.0799 0.0799 0.0790 968.2 958.5 932.9 30.202 29.984 30.055 464.0 459.4 464.6 486.8 486.3 480.6

Table 5: Comparison of results (mean values and CoV of the response) according to the different analysis techniques.

Response parameter CMS RMS FTS
Mean CoV Mean CoV Mean CoV

𝑑
2
[m] 0.1938 0.425 0.1938 0.425 0.1920 0.424

𝑅ab [kN] 1801.7 0.243 1812.6 0.243 1810.0 0.266
𝑀
𝑑
[kNm] 71181.2 0.324 70620.6 0.324 70380.0 0.322

𝑅
𝑝1

[kN] 1111.1 0.456 1105.2 0.458 1121.1 0.458
𝑅
𝑝2

[kN] 1181.1 0.425 1179.4 0.425 1168.8 0.424

0.79% for the RMS method and 1.12% for the FTS method.
The coupling indexes for the damping matrix are 𝛼

13
=

0.0625, 𝛼
15

= 0.4244, and 𝛼
35

= 0.2266 for the RMS
method and 𝛼

13
= 0.0652, 𝛼

15
= 0.4151, and 𝛼

35
=

0.2305 for the FTS method. The coupling indexes for the
stiffness matrix are 𝛽

13
= 0.0027, 𝛽

15
= 4.43𝑒 − 4, and

𝛽
35

= 1.56𝑒 − 5. In general, these coefficients assume higher
values compared to the values observed in the other bridge
(Tables 2 and 4). In any case, the dispersion of the response
due to the uncertainties in the values of the parameters
describing the pier and the bearings might be more impor-
tant than the error due to the use of simplified analysis
methods.

7. Conclusions

This paper proposes a formulation and different analysis
technique for the seismic assessment of partially restrained
seismically isolated (PRSI) bridges. The formulation is based
on a description of the bridges by means of a simply sup-
ported continuous beam resting on intermediate viscoelastic
supports, whose properties are calibrated to represent the
pier/bearing systems. The first analysis technique developed
in this paper is based on the complex modes superposition
(CMS) method and provides an exact solution to the seis-
mic problem by accounting for nonclassical damping. This
technique can be employed to evaluate the influence of
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the complex vibration modes on the response of the bridge
components and also provides a reference solution against
which simplified analysis approaches can be tested.The other
two proposed techniques are based on the assumed modes
method and on a simplified description of the damping
properties. The real mode superposition (RMS) method
employs a series expansion of the displacement field in terms
of the classic modes of vibration, whereas the Fourier terms
superposition (FTS) method employs a series expansion
based on the Fourier sine-only series terms.

A realistic PRSI bridge model is considered and its
seismic response under a set of ground motion records
is analyzed by employing the CMS method. This method
reveals that the bridge components are differently affected
by higher modes of vibration. In particular, while the dis-
placement demand is mainly influenced by the first mode,
other parameters such as the bendingmoments and abutment
reactions are significantly affected by the contribution of
higher modes. A parametric study is then carried out to
evaluate the influence of intermediate support stiffness and
damping on the seismic response of the main components of
the PRSI bridge. These support properties are controlled by
two nondimensional parameters whose values are varied in
the parametric analysis. Based on the results of the study, it
can be concluded that (1) in the case of intermediate support
with low damping capacity, the abutment reactions do not
decrease significantly by increasing the support stiffness;
(2) increasing the support damping results in a decrease
in the abutment reactions which is less significant than the
decrease in the pier reactions; (3) for moderate to high
dissipation capacity of the intermediate supports, there exists
an optimal value of the damping that minimizes the total
shear transmitted to the foundations.

Finally, the accuracy of the simplified analyses techniques
is evaluated by comparing the results of the seismic analyses
carried out by employing the CMS method with the corre-
sponding results obtained by employing the two simplified
techniques. Based on the results presented in this paper, it is
concluded that, for the class of bridges analyzed, (1) the extent
of nonclassical damping is usually limited and (2) satisfactory
estimates of the seismic response are obtained by considering
the simplified analysis approaches.

Appendix

The analytical solution of the eigenvalue problem is obtained
under the assumption that 𝑚(𝑥), 𝑏(𝑥), and 𝑐(𝑥) are constant
along the beam length and equal, respectively, to 𝑚

𝑑
, 𝐸𝐼
𝑑
,

and 𝑐
𝑑
. The beam is divided into a set of 𝑁

𝑠
segments,

each bounded by two consecutive restraints (external or
intermediate).The function 𝑢

𝑠
(𝑧
𝑠
, 𝑡) describing themotion of

the 𝑠th segment of length 𝐿
𝑠
is decomposed into the product

of a spatial function 𝜓
𝑠
(𝑧
𝑠
) and of a time-dependent function

𝑍(𝑡) = 𝑍
0
𝑒
𝜆𝑡. The function 𝜓

𝑠
(𝑧
𝑠
) must satisfy the following

equation:

𝜓
𝑠

𝐼𝑉
(𝑧
𝑠
, 𝑡) = Ω

4
𝜓
𝑠
(𝑧
𝑠
, 𝑡) , (A.1)

where Ω
4

= −(𝜆
2
𝑚
𝑑

+ 𝜆𝑐
𝑑
)/𝐸𝐼
𝑑
.

The solution to (A.1) can be expressed as

𝜓
𝑠
(𝑧
𝑠
) = 𝐶
4𝑠−3

sin (Ω𝑧
𝑠
) + 𝐶
4𝑠−2

cos (Ω𝑧
𝑠
)

+ 𝐶
4𝑠−1

sinh (Ω𝑧
𝑠
) + 𝐶
4𝑠
cosh (Ω𝑧

𝑠
)

(A.2)

with 𝐶
4𝑠−3

, 𝐶
4𝑠−2

, 𝐶
4𝑠−1

, and 𝐶
4𝑠

to be determined based
on the boundary conditions at the external supports and
the continuity conditions at the intermediate restraints. This
involves the calculation of higher order derivatives up to the
third order.

In total, a set of 4𝑁
𝑠
conditions is required to determine

the vibration shape along the whole beam. At the first span
the conditions 𝜓

1
(0) = 𝜓



1
(0) = 0 apply while at the last span

the support conditions are 𝜓
𝑁
𝑠

(𝐿
𝑁s

) = 𝜓


𝑁
𝑠

(𝐿
𝑁
𝑠

) = 0. The
boundary conditions at the intermediate spring locations are

𝜓
𝑠−1

(𝐿
𝑠−1

) = 𝜓
𝑠
(0)

𝜓


𝑠−1
(𝐿
𝑠−1

) = 𝜓


𝑠
(0)

𝜓


𝑠−1
(𝐿
𝑠−1

) = 𝜓


𝑠
(0)

𝐸𝐼
𝑑

[𝜓


𝑠−1
(𝐿
𝑠−1

) − 𝜓


𝑠
(0)] − (𝑘

𝑐,𝑠
+ 𝜆𝑐
𝑐,𝑠

) 𝜓
𝑠
(0) = 0.

(A.3)

By substituting (A.2) into the boundary (supports and conti-
nuity) conditions, a system of 4𝑁

𝑠
homogeneous equations

in the constants 𝐶
1
, . . . , 𝐶

4𝑁
𝑠

is obtained. Since the system
is homogeneous, the determinant of coefficients must be
equal to zero for the existence of a nontrivial solution. This
procedure yields the following frequency equation in the
unknown 𝜆:

𝐺 (𝑚
𝑑
, 𝐸𝐼
𝑑
, 𝑐
𝑑
, 𝐿
1
, . . . , 𝐿

𝑁
𝑠

, 𝑘
𝑐,1

, . . . , 𝑘
𝑐,𝑁
𝑐

, 𝑐
𝑐,1

, . . . , 𝑐
𝑐,𝑁
𝑐

, 𝜆)

= 0.

(A.4)

In the general case of nonzero damping, the solution of the
equation must be sought in the complex domain. It is note-
worthy that, since the system is continuous, an infinite set of
eigenvalues 𝜆 are obtained which satisfy (A.4). However, only
selected values of 𝜆 are significant, because they correspond
to the first vibration modes which are usually characterized
by the highest participation factors. It is also noteworthy
that the eigensolutions appear in complex pairs. Thus, if 𝜆

𝑖

satisfies (A.4), then also its complex conjugate 𝜆
𝑖
satisfies

(A.4). The eigenvectors corresponding to these eigenvalues
are complex conjugate, too. Finally, it is observed that the
undamped circular vibration frequency𝜔

𝑖
and damping ratio

𝜉
𝑖
corresponding to the 𝑖th mode can be obtained by recalling

that 𝜆
𝑖
𝜆
𝑖
= 𝜔
𝑖

2 and 𝜆
𝑖
+𝜆
𝑖
= −2𝜉

𝑖
𝜔
𝑖
. For zero damping, 𝜆 = 𝑖𝜔

and the vibration modes are real.
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