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We study the crossover in a zero-temperature superconducting nanofilm from a single to a double
superconducting slab induced by a barrier in the middle. We use the Bogoliubov–de Gennes (BdG) equations in
the Anderson approximation to show that the single-phase superconducting ground state of this heterostructure
is intrinsically multigapped and has a new type of resonance caused by the strength of the barrier, thus distinct
from the Thompson–Blatt shape resonance which is caused by tuning the thickness of the film. The simplest
theoretical framework able to describe a finite height and very thin tunable insulating potential barrier in the
middle is provided by a δ-function potential. In this framework, the even single-particle states are affected by
the insulating barrier, whereas the odd ones are not. The new type of resonance, hereafter called barrier-driven
resonance, is caused by the crossing of the even single-particle states through the Fermi surface. The lift of the
even-odd degeneracy at the barrier reconfigures the pairing interaction and leads to a multigapped superconducting
state with barrier-driven resonances.
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I. INTRODUCTION

Since two-gap superconductivity has been discovered in
MgB2 [1–7] an intense research activity has been devoted
to multiband and multigap superconductors. In fact two-
gap superconductivity has been theoretically proposed long
ago [8,9] and recently found in many compounds [10]
ranging from composites [11] to metallic Pb [12,13]. Nano-
engineered superconducting films tailored to atomic preci-
sion thickness [14–16] are pivotal to this research because
they display multibands and multigapped superconductivity.
Superconductivity in ultrathin nanofilms was demonstrated to
be very robust and can survive even in monatomic layers of In
and Pb [16].

In this paper we show that a superconducting nanofilm
develops new properties by the addition of a potential barrier
in its center. These properties are an intrinsic multigapped
structure and a new type of resonance driven by the potential
barrier. It is well known that a superconducting nanofilm (with-
out the potential barrier) displays a multigapped structure, but
only within the narrow window of shape resonances, as shown
by Thompson and Blatt [17]. However, this narrow window,
defined by the nanofilm width and by the pairing energy
scale, renders very difficult its experimental observation.
The potential barrier turns the superconducting film into
a SIS nanofilm: a superconductor-insulator-superconductor
“sandwich.” The two superconductors are thin slabs in the
quantum-size regime separated by a very thin insulating slab,
represented by the potential barrier itself. We show here that
the SIS nanofilm is multigapped because it remains as such
outside the shape-resonance windows and possesses a new
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type of resonance hereafter called barrier-driven resonance,
which is distinct from the well-known shape-driven resonance
occurring in single-slab superconducting nanofilms. Thus the
SIS nanofilm displays very distinct and novel properties with
respect to the single-slab nanofilm which stem from the
additional parity properties brought by the insulating barrier
put in its center. Single-particle states can be either even or
odd with respect to it. Even states strongly feel the presence of
the barrier while odd ones do not and this causes an additional
splitting of the single-particle energy levels which is at the
heart of the multigapped structure of the superconducting state.

The well-known shape-driven resonances predicted by
Thompson and Blatt [17] more than fifty years ago and the
present barrier-driven resonances proposed here share a single
common origin albeit their distinct properties. To understand
these common features, recall that single-particle electronic
states in films are a sum over continuum and discrete degrees
of freedom, associated with the parallel and perpendicular
to the film surface degrees of freedom, respectively. The
origin of the discreteness is in the quantum size regime that
renders the superconducting gap smaller than the splitting
between two consecutive energy levels perpendicular to the
nanofilm. The discreteness no longer holds for a thick film
since consecutive single-particle states become so close in
energy that their splitting is smaller than the superconducting
gap. The continuum treatment is always suited for the degrees
of freedom parallel to the nanofilm surface, where the
separation between consecutive levels is always smaller than
the superconducting gap.

Superconducting nanofilms have a far richer structure than
a bulk superconductor, the latter defined here by the simplest
possible model, i.e., that of a single spherically symmetric
three-dimensional Fermi surface. Even within this simple
description, nanofilms are far more complex than the bulk.
They display multiple two-dimensional Fermi surfaces, each
associated with a distinct discrete state induced by the perpen-
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dicular confinement. Shape and barrier-driven resonances are
a consequence of these multiple Fermi surfaces in nanofilms
that cause a reconfiguration of the pairing interaction. The
intersection of the chemical potential with the parabolic
parallel bands defines multiple Fermi surfaces, where an
attractive interaction leads to superconducting gaps around the
Debye energy window centered in the chemical potential itself.
A resonance in the superconducting gap is the consequence of
the entrance (exit) of a two-dimensional Fermi surface into the
Debye energy window. An intersection with a two-dimensional
Fermi surface can be either added or removed and this affects
the superconducting gap of the nanofilm. This phenomenon
has no counterpart in the simplest description of the bulk
superconductor. The adjustment of some nanofilm parameters
moves the discrete levels and is responsible for resonances.
The shape-driven resonance [18,19] is triggered by a change
in the nanofilm thickness that affects the discrete levels.
This is the only way to make a single-slab superconducting
nanofilm resonate because it lacks any other internal structure.
However, the SIS nanofilm has an internal structure given
by the insulating barrier, and this opens a new venue for
resonances through the adjustment of the discrete levels by the
barrier strength. As shown here the even discrete levels are very
sensitive to the barrier strength and through this mechanism
can be moved to enter the Debye energy window and cause a
resonance in the superconducting gap.

To unveil the intrinsic multigap structure and the existence
of barrier-driven resonances in the SIS nanofilm we study its
zero-temperature properties under a fixed chemical potential.
Indeed the chemical potential can be considered approximately
constant in case the number of atomic monolayers in the
superconducting nanofilm surpasses a small number, known
to be nearly five according to Fig. 1 of Ref. [17]. Such
assumptions add simplicity to our study without compromising
the present goals.

In this paper we consider that the SIS nanofilm has only one
single superconducting state in thermodynamical equilibrium,
which means that there is no Josephson current between the
left and right sides of the potential barrier. The Josephson
current exists in the case of a phase difference between
two superconducting states separated by the potential bar-
rier [20,21]. Here, Cooper pairs tunnel through the insulating
barrier and there is no phase difference between these two
sides. Although we compute here excited states (multigaps)
of the SIS nanofilm those are assumed to be translational
invariant along the film surface and so there is no spontaneous
current passing from one side to the other of the SIS nanofilm.
Thus Josephson vortices are excluded because those induce
localized circulating currents from one slab to the other.

We use the Bogoliubov–de Gennes (BdG) equations in the
Anderson approximation to show that superconductivity is
multigapped and also to show the existence of barrier-driven
resonances in the SIS nanofilm. We do it in the simplest
possible theoretical framework where the finite insulating
barrier is described by a repulsive δ-function potential which
retains the following two properties: The single-particle
electronic states are either affected (even) or not (odd) by
the barrier. The even states are only affected if their wave
number falls below a threshold which describes the height of
the finite barrier. Therefore we stress here that the δ-function

approach is able to describe a finite potential barrier. We
find the present simple approach useful with respect to more
elaborate treatments [22,23] that can deal with features such
as the proximity effect in the SIS nanofilm.

Thus our results are consistent with those found in Ref. [24],
which shows that, for reduced dimensionality, the effect of
impurities is significant and cannot be ignored. Indeed, the
δ-function barrier in the SIS nanofilm can be regarded as a
translational invariant line of impurities cast in the center.
Consequently, the symmetries of the superconducting subband
gaps are affected, resulting in a multigapped homogeneous
state only along the surface of the SIS nanofilm but not
orthogonal to it, where the state has been known to be
inhomogeneous [25].

The importance of the boundary conditions must be
emphasized in the description of nanofilms through the BdG
equations [26]. Here we take the standard Thompson–Blatt
boundary conditions to show that the SIS nanofilm possesses
barrier-driven resonances and an intrinsic multigap structure
whose effects on the critical temperature will be considered
elsewhere. A recent detailed investigation of the shape reso-
nances at the critical temperature for a single superconducting
nanofilm has been reported in Refs. [27,28] by an exact
numerical solution of the BCS mean-field equations at fixed
density. The main outcome is that the precise form of the shape
resonance and the enhancement (or suppression) of the critical
temperature depend on the strength of the confining potential at
the nanofilm surface and on the value of the pairing interaction.

The enhancement of superconductivity in a shape-
resonance scenario has been proposed and measured; namely,
that obtained by shrinking all the dimensions of a supercon-
ductor to the nanoscale, as in nanoparticles, nanoclusters,
and nanocubes [29–32]. In addition, there has been the
proposal of shape resonances in superconducting nanofilms
of Pb [14,33,34].

From the experimental point of view there are several ways
to realize the insulating barrier of the SIS nanofilms. One
possibility is to deposit on the Nb nanofilm a thin film of Al
and then proceed with the in situ oxidation of Al at room
temperature. The thickness of the AlOx insulating barrier will
change depending on the oxygen exposure time, allowing for
a control of the barrier-potential strength [35]. AlOx barriers
with thickness of the order of 1 nm should be realizable.
Another possibility could be to use silicon as an insulating
barrier in the SIS nanofilms.

The paper is organized as follows: In Sec. II we introduce
the physical parameters of the three metals, aluminum, lead,
and niobium, which are used here to discuss the SIS nanofilm.
Nevertheless, niobium is chosen to obtain physical values for
the gaps. Notice that the SIS nanofilm has two distinct but
equivalent limits of no barrier and of an extremely strong
barrier. In these two limits the BdG equations should describe
the same physics which indeed it does, as shown here. The
multiband and multigap properties in these two limits are
described in Sec. III. In particular, we show that, for an
extremely strong barrier, the present formalism no longer
holds because even and odd levels are so close to each
other that cross pairing must be considered. The general
formalism and equations to obtain the gaps for the even states,
which are those that feel the barrier, are developed here. In
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Sec. IV we describe in detail the multigap structure close to a
shape resonance. Section V is dedicated to the barrier-driven
resonance proposed herein. We discuss our results in the
context of other contributions to this field in Sec. VI and
finally reach conclusions in Sec. VII. Appendix A summarizes
the Anderson approximation for the Bogoliubov–de Gennes
equations applied to a superconducting thin film, while the
Schrödinger equation is analyzed in Appendix B, where the
analytical expression of the interaction matrix can be found.

II. DESCRIPTION OF INSULATING SLAB

The potential barrier of the SIS nanofilm is modeled by a δ

function [36],

Vb(x) = �
2

m
�δ(x) = V0δ

( x

2ε

)
, (1)

and the parameter � has the physical meaning of a wave
number that sets the height of the barrier. Single-particle
states with wave numbers much higher than � do not feel
it. Thus the δ function, which diverges at the origin, is able
to describe the physical properties of a very thin finite-height
barrier. The thickness 2a and 2ε are of the SIS nanofilm and of
the potential barrier, respectively, as shown in Fig. 1. The
potential height V0 describes the very thin insulating slab
2ε sandwiched between two superconducting nanofilms of
thickness a − ε. The particles are confined inside the SIS
nanofilm since at the edges −a and a there is an infinite barrier,
such as considered by Thompson and Blatt [17]. Figure 2

FIG. 1. A pictorial view of the SIS nanofilm composed of two
superconducting slabs with thickness a − ε and an insulating barrier
with thickness 2ε such that the total thickness is 2a.

-a -ε aε

E>V0

E<V0

V0

FIG. 2. Profile of the insulating barrier in the middle of the
superconducting nanofilm. Single-particle energy levels above or
below the barrier (height V0) are shown here.

depicts the rectangular barrier of height Vb(x) = V0 and two
examples of single-particle energies, representative of states
that lie above and below the barrier. For the very thin barrier,
described by the δ-function potential, the odd states have a
node at the barrier and so are not sensitive to it. Even states
instead do not vanish at the barrier and their energy is increased
by the interaction with the barrier.

To get an estimate for V0 and �, consider the characteristic
energy of the discrete levels, caused by the perpendicular
confinement:

ε0 ≡ �
2

2m

(
π

x0

)2

= 0.38 eV, x0 ≡ 1.0 nm. (2)

Then one obtains that

V0 = ε0

( x0

π2ε

)
(x0�). (3)

Taking ε ∼ 0.1x0, then V0 ∼ 0.38� eV, where � is in nm−1.
In our calculations we use the physical parameters of

niobium described in Tables I and II. We also list parameters
for aluminum and lead, which are close and for which we
expect similar results. All three materials reasonably satisfy
the BCS theory relationship 2�/kBTc ≈ 3.5 [37–39]. Table I
also contains other parameters needed for the study of the
SIS nanofilm, such as �bulk, E3D

F , eD, and the Fermi wave
number, kF. The chemical potential at zero temperature is fixed

TABLE I. The aluminum, lead, and niobium parameters required
for the study of the SIS nanofilm. The critical temperature is given
for completeness since our study is restricted to T = 0. The bulk
gap �bulk is retrieved in the limit of a very thick film from Eq. (15).
The bulk Fermi surface, E3D

F , sets the chemical potential for T = 0,
as given by Eq. (4). The Fermi wavelength kF enters in Eq. (15), as
shown in Ref. [17]. The Debye energy eD is defined in Eq. (6).

Metal Tc (K) �bulk (K) E3D
F (104 K) eD (K) kF (nm−1)

Al 1.2 1.97 13.6 433 17.5
Nb 9.3 17.7 6.18 276 11.8
Pb 7.2 15.8 11.0 105 15.8
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TABLE II. The aluminum, lead, and niobium energy parameters
required for the study of the SIS nanofilm are shown here in units
of the Debye energy, eD = �ωD. The coupling λ is set to obtain the
bulk gap �bulk from Eq. (15) in the limit of a very thick film. The
critical barrier strength �c is when cross pairing becomes important,
as discussed in Sec. III.

Metal μ/eD ε0/eD �bulk/eD λ �c (nm−1)

Al 314.1 10.08 4.56 × 10−3 0.1640 2.21 × 103

Nb 223.9 15.81 6.41 × 10−2 0.2901 2.46 × 102

Pb 1048 41.56 1.51 × 10−1 0.2889 2.75 × 102

and equal to the three-dimensional Fermi energy of the bulk
system,

μ ≡ E3D
F , (4)

and the multiple two-dimensional Fermi surfaces are defined
by

ε2D
Fj = μ − εj > 0, (5)

where the discrete energy levels εj are discussed below. The
Debye energy is defined as

eD ≡ �ωD. (6)

Table II shows these parameters in units of the Debye energy.
It also shows the critical strength of the barrier, defined as �c,
which is reached when the splitting between consecutive even
and odd levels becomes comparable to the bulk gap, so that
cross pairing must be considered. This is discussed in Sec. III.
For a = x0 [see Eq. (2)] the Debye energy is much smaller than
the typical quantized energy across the film, ε0/eD = 15.81.
The chemical potential is significantly larger than the Debye
energy μ � eD, which justifies the analysis done in Sec. III.
The dimensionless parameter λ, defined in Eq. (17), gives the
strength of the pairing interaction and is determined from the
requirement that the nanofilm gaps approach the bulk gap in
the limit of increasing thickness.

We briefly summarize some key properties of the even and
odd energy levels. Even and odd single-energy levels alternate
in sequence, as shown in Figs. 3 and 4. The perpendicular
discrete levels remain parabolic for any �,

εj = 1

2m
�

2kj (�)2. (7)

The odd levels are not affected by the barrier and their wave
numbers are independent of �:

kj = jπ/a, j = 1,2,3, . . . . (8)

The even levels have their wave numbers satisfying the
condition

ka cot ka = −�a, (9)

where, for a given �, there are several possible solutions
kj (�). Useful analytic approximated solutions in the limit of
a weak and strong potential barrier are obtained as follows:
For � ∼ 0 we expand the solution as ka = k0a + η, where
k0a = (j + 1/2)π is the solution for � = 0. Assuming η small

S finite

even

even

even

odd

≥

FIG. 3. The wave function of the even single-particle ground state
is represented as a function of the barrier strength �, defined in Eq. (1).
The first-excited state is odd and its wave function remains unchanged
for any value of �. The even and odd wave functions are shown in
full (green) and dashed (red) lines, respectively.

we obtain

kja ≈
(

j + 1

2

)
+

√(
j + 1

2

)2

+ �a. (10)

We use the same strategy for �a ∼ +∞: given the solution
k0a = jπ for � = +∞, and assuming again ka = k0a + η

with η is small, we get

kja ≈ jπ
�a

1 + �a
. (11)

The physical interpretation of � becomes clear at this point.
For |kj | � �, Eq. (9) reduces to cos kja ≈ 0 with the solutions
for a nanofilm with no barrier inside kj ≈ (2j + 1)π/a, j =
0,1,2 . . ..

We now discuss how varying � changes the physics of the
system. For � = 0 we have the Thompson–Blatt nanofilm [17]
with no barrier inside. But we also have it in the limit � =
+∞ because two separated nanofilms each of width a must
be recovered by using the present formalism. The interesting
physics appears for intermediate values of �. Figure 3 shows
how the even ground state changes according to �, while
the first-excited state, which is odd, is unchanged. Moreover,
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FIG. 4. Scheme of the single-particle energy levels according to
their wave number represented by ka. Single-particle even and odd
states are shown as filled (green) and dashed (red) lines, respectively.
Three situations are displayed according to the potential strength
defined in Eq. (1). For � = +∞, even and odd levels are degenerate.

in the limit � → +∞ the ground state and the first-excited
state approach the same state, modulo a phase, in each of
the width a nanofilms. This can be seen at the level of wave
numbers in Fig. 4, for different values of �. From � = 0 to
� → ∞ even levels increase their energy and approach the
odd ones. Figure 5 describes the multiple Fermi surfaces in
the nanofilm. The first panel shows some of the parabolic
bands and their intersection with the Debye energy window
(μ − eD,μ + eD). The second panel shows the result of the
intersection of the parabolic bands with the chemical potential.

FIG. 5. Panel (a) shows the intersection between the parabolic
bands, defined by Eq. (A17) and the Debye energy window, defined
by Eq. (6). Panel (b) shows the multiple two-dimensional Fermi levels
defined by Eq. (5). Even and odd states alternate in growing energy
and are shown in distinct colors (green and red, respectively).

Even and odd Fermi surfaces succeed in sequence of increasing
j until a maximum jmax is reached beyond which ε2D

Fj is no
longer positive. Pairing occurs only within the Debye energy
window around each of these two-dimensional Fermi surfaces.

III. MULTIBAND AND MULTIGAP STRUCTURE OF
SUPERCONDUCTOR-INSULATOR-SUPERCONDUCTOR

NANOFILMS

The SIS nanofilm can be regarded as a tunable system
to study the interplay between parity and superconductivity
because the insulating barrier lifts the degeneracy of even
and odd single-particle states. While both the SIS and the
single-slab nanofilms are multiband systems, the SIS nanofilm
is always multigapped. The single-slab nanofilm is only
multigapped within the shape-resonance region.

We assume a constant Debye energy window for all discrete
levels, as in the Thompson–Blatt model [17]. The matrix
elements are therefore given by

Vnm = Vij θ (eD − |ζ�k‖,i |)θ (eD − |ζ�k′
‖,j

|), (12)

where θ is the Heaviside function, θ (x) = 1 for x > 0 and
θ (x) = 0 for x < 0, and where we refer the reader to the
appendix for the definition of the main quantities. The
superconducting gap is homogeneous within each Debye
energy window,

�n ≡ �j (�k‖) = �jθ (eD − |ζ�k‖,j |). (13)

There is a maximum parallel energy εmax
‖ = E2j = (μ +

eD − εj )θ [μ + eD − εj ] and a minimum one, εmin
‖ = E1j =

(μ − eD − εj )θ [μ − eD − εj ], which defines the parallel en-
ergy window, δE‖ ≡ E2j − E1j . In this paper we make the
assumption that μ � eD, so that the Debye and the (shape)
resonance windows are small. We also take that the parallel
electronic density of states is constant and given by the
standard definition,

N2D/A = m

2π�2
= π

4x2
0ε0

. (14)

Therefore, in the summation over single-particle states, we can
substitute

∑
n with N2D

∫ E2j

E1j
dε‖

∑
i(. . .). The equation that

determines the superconducting gaps is obtained by integrating
over the parallel momentum:

�i = πλ

kF2a

∑
j

VijF (�j )�j, where (15)

F (�j ) = 1

2

{
sinh−1

[
E2j + εj − μ

�j

]

− sinh−1

[
E1j + εj − μ

�j

]}
, (16)

where the interaction matrix has been defined in the appendix.
The coupling V , introduced in the appendix, is related to

the parameter λ appearing in Table II via

λ = kFN2DV

πA
, (17)

where kF is the three-dimensional Fermi wave number.
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FIG. 6. The SIS nanofilm is represented here for the cases of
no barrier (� = 0) and of an infinite barrier (� = ∞) which are
equivalent to a single and to two decoupled slabs, respectively. For
� = 0 the single-particle ground state is even and the first-excited
state is odd, whereas for � = ∞ the single-particle even and odd
states are degenerate in energy. The even and odd wave functions are
shown in full (green) and dashed (red) lines, respectively.

It is instructive to briefly describe the limits � = 0 and
� = ∞ in order to make contact with the existing results
of Thompson and Blatt [17]. In Fig. 6 the single-particle
ground state and the first-excited one, which are respectively
even and odd, are displayed for � = 0. For the single slab,
the interaction matrix becomes Vij = 1 + δij /2. The single-
particle energies can be found in the appendix for convenience.
Away from a shape resonance window, Eq. (15) becomes

�i = πλ

kF2a

jmax∑
j=1

(
1 + 1

2
δij

)
sinh−1

(
eD

�j

)
�j . (18)

The maximum quantum level is jmax = floor(
√

μ

ε0

2a
x0

), where

“floor” stands for the lowest integer and defines the number
of activated bands. One can solve Eq. (18) assuming all
superconducting gaps are equal, �i = �, and find

�

eD
= sinh−1

[
2kFa

πλ
(
jmax + 1

2

)
]
, (19)

which is the solution of Thompson and Blatt’s original
work [17]. We also confirm that all superconducting gaps are
equal away from resonance from our numerical solution of
Eq. (15), which is solved iteratively. A similar analysis is done
for � = +∞, where one expects to recover two separated
single-slab nanofilms.

Figure 6 shows the even and odd single-particle wave
functions in the limit � = +∞. They have the same energy.
Figure 7 shows the gap versus the half width a in the limits � =
0 and � = +∞, as obtained from the single-gap solutions
of Eq. (19) and its analog for � = +∞. To help visualize
the equivalence between the � = 0 and � = +∞ limits, the
points a = 1.063 nm and a = 2.126 nm are encircled. They
yield the same gap value �/eD = 7.05 × 10−2.

As discussed in the appendix, for such an extreme limit � =
+∞, the wave functions coincide apart from a phase difference
in each side of the barrier. The matrix elements between all
possible combinations are found to be equal: V

e,e′
ij = V

o,o′
ij =

V
e,o′
ij = V

o,e′
ij = 1 + δij /2. Thus one finds that, away from

shape resonances, the gaps are all equal and given by Eq. (19)
with the substitution 2a → a both in the argument of the
hyperbolic sine and in the definition of jmax.

0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13

 0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4

Δ/
e D

a (nm)

Ω=0
Ω=∞

FIG. 7. The superconducting gap versus the half width a within
the window 0.5 � a (nm) � 2.5, as obtained from Eqs. (19) and the
analog for � = +∞. The two selected points marked by an asterisk
represent the equivalence between these two curves. The � = 0 and
the � = ∞ curves are equivalent by a scaling a → 2a. The black
horizontal line sets the value of the bulk gap. It only makes sense
in this plot to consider widths aK = Ka0; namely, those that are a
multiple K of the width of a single layer, a0 (a0 ≈ 0.1 nm).

Cross pairing must be considered in case the single-particle
energy splitting becomes comparable to the bulk gap. This
happens for a sufficiently strong barrier and the present BdG
approach cannot be used anymore. Expanding the energy
splitting between even and odd states using the exact value
of the energy found in the appendix and Eq. (11), one obtains
for a fixed j and for a� large enough that

δεj ≡ εo
j − εe

j ∼ j 2
(π

a

)2 �
2

2m

1

1 + �a
. (20)

A critical level �c is reached when the single-particle energy
splitting becomes comparable to the bulk gap at δεj = �bulk.
As an example consider the case of a SIS nanofilm with
total thickness 2.0 nm; that is, a = x0 [see Eq. (2)]. Since
the smallest splitting is in the first level, j = 1, one obtains
that

x0�c = ε0

�bulk
− 1, (21)

where ε0 is defined in Eq. (2). Recall that the discreteness
along the perpendicular direction is based on ε0 � �bulk.

IV. MULTIGAP FEATURES OF
SUPERCONDUCTOR-INSULATOR-SUPERCONDUCTOR

NANOFILM AT A SHAPE RESONANCE

In this section, a Nb SIS nanofilm is studied within a very
narrow half width window (a = 1.060 to 1.066 nm) in the
presence of a very weak insulating barrier (a� � 1). The
emphasis here is to show that the SIS nanofilm (case � �= 0) is
intrinsically multigapped for any width, while the single slab
(case � = 0) is multigapped only inside the shape-resonance
window, which is very narrow when the superconducting slab
is made by conventional metals. Figure 8 shows the gaps in
the case of no barrier (� = 0), as obtained through Eqs. (19)
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FIG. 8. The superconducting gaps in a shape resonance windows
for � = 0. The (red) curve is obtained from Eq. (19), while the
values for triangles are obtained from Eq. (18). At the extremities of
the resonance window (white triangles) there is one superconducting
gap, and a second gap appears inside the resonance window (black
triangles). The black horizontal line sets the value of the bulk gap.
The values a = 1.060 and 1.066 nm are representative of any point
outside the shape-resonance region. The gap is shown here a 100
times larger than its actual value.

and (15). The first equation gives the continuous (red) lines
while the second one is used for specific points in the resonance
region; namely, a = 1.060, 1.062, 1.064, and 1.066 nm. The
points a = 1.060 nm and a = 1.066 nm are the extremities of
the shape resonance. The entrance of a new odd band into the
Debye energy window can also be seen in Table III. Recall
that, according to Table II, μ/eD = 223.9.

We comment on the small variations that we consider for
the parameter a, which are smaller than the size of the unit
cell. There exist experimental techniques that can be used
to achieve variations of the lattice of the order of 0.001 to
0.01 nm. One is the electric field effect on metallic nanofilms,
such as Nb composites, which moves the chemical potential

TABLE III. The single-particle energy levels in the case of no
barrier and at the extremities of the shape-resonance region defined by
a and a′, as described in Fig. 8. The number of energy levels changes
from seven to eight, as shown here. The Debye energy window is
μ/eD − 1 = 222.9. μ/eD + 1 = 224.9, using the values of Table II.
The Debye energy window lies below and above the highest energy
level, for a and a′, respectively, thus leading to a shape resonance.
Figures 8 and 9 show the onset of multigaps through this transition.

� = 0 a = 1.060 nm a′ = 1.066 nm

Symmetry εj (a)/eD εj (a′)/eD

Even 3.518 3.479
Even 31.66 31.31
Even 87.95 86.96
Even 172.4 170.5
Odd 14.07 13.91
Odd 56.29 55.68
Odd 126.7 125.2
Odd 222.6

by about 10–100 μeV [40,41], achieving the same effect on
the chemical-potential position with respect to the electronic
band structure as the one induced by the tiny variations of
the SIS thickness considered in this work. Another is the
pressure effect, applicable on nanofilms, which compresses
the nanofilm by exactly the desired order of magnitude of
0.001 to 0.01 nm [42].

In Fig. 9 the � parameter is added. At the extremities of the
shape-resonance region, while for � = 0 there is degeneracy
between even and odd states, this is broken for � �= 0. The
gap splitting due to the potential barrier is small (∼0.5%)
in comparison with the shape-resonance splitting (∼3.0%).
The even single-particle states in the range 0 < a� < 1, are

7.78

7.80

7.82

7.84

0 0.2 0.4 0.6 0.8 1.0

Ω (nm−1)

a=1.066 nm

7.40

7.42

7.44

7.46

7.48

Δ/
e D

a=1.064 nm

5.16

5.22

5.28

5.34

5.40

a=1.062 nm

5.10

5.12

5.14

5.16

a=1.060 nm

FIG. 9. The superconducting gaps of the SIS nanofilm for half
widths a = 1.060, 1.062, 1.064, and 1.066 nm versus the insulating
barrier strength �; see the text for a discussion on the tiny variation
of the widths considered here. The � = 0 gaps, due to the shape
resonance and also shown in Fig. 8, are marked by triangles. Even
and odd gaps are presented by gray (green) and dark (red) lines,
respectively. The insulating barrier (� �= 0) lifts the degeneracy
among the superconducting gaps. In particular, the multigap structure
is a general feature outside the narrow shape resonance region. The
gap is shown here a 100 times larger than its actual value.
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FIG. 10. The superconducting gap versus half thickness is shown
within the window 0.5 � a (nm) � 2.5. This is for a finite barrier
whereas Fig. 7 corresponds to the extreme cases of no and of infinite
barriers. This plot shows that shape resonances are also present in the
case of a finite (� �= 0) barrier. Even and odd gaps are presented by
gray (green) and dark (red) lines, respectively. The tick marks on the
x axis are set at the top of the individual branches, where the onset
of single-particle states is found with equal number of even and odd
states. The first three branches can be found in Table IV. The black
horizontal line sets the value of the bulk gap. Obviously it only makes
sense in this plot to consider widths aK = Ka0; namely, those that
are a multiple K of the width of a single layer, a0 (a0 ≈ 0.1 nm).

well described by Eq. (10). The gaps are obtained by solving
Eqs. (15) and (16) with matrix elements given in Appendix B.

Figure 10 shows the gaps within the same half width
window of Fig. 7, 0.5 � a (nm) � 2.5, now for a finite
� = 90 nm, and Table IV has information about the number of

TABLE IV. This table contains the half widths where there are
changes in the number of even and odd single-particle states, referred
to by the pair of integers (e,o). The barrier strength is � = 90 nm−1.
The number of even (odd) single-particle states is the same as the
number of distinct even (odd) superconducting gaps whose maximum
and minimum values are shown here. These gaps are also seen in
Fig. 10. Notice that the highest superconducting gaps are always odd
while the lowest ones are even.

a (nm) (even, odd)
102�max

e /eD

102�min
e /eD

102�max
o /eD

102�min
o /eD

0.50 (1,1) 2.52 2.55
0.52 (2,1) 2.43 2.45
0.52 (2,1) 1.67 2.45
0.54 (2,2) 11.85 11.96
0.54 (2,2) 11.76 11.89
0.79 (3,2) 6.16 6.18
0.79 (3,2) 5.56 6.17
0.80 (3,3) 10.16 10.23
0.80 (3,3) 10.09 10.18
1.05 (4,3) 4.09 4.11
1.05 (4,3) 3.49 4.09
1.07 (4,4) 9.06 9.11
1.07 (4,4) 9.00 9.07

gaps and their range. The number of distinct gaps is the same as
the number of accessible bands. Table IV shows the critical half
widths where there is a change in the number of even and odd
bands within part of the studied range 0.5 � a (nm) � 1.07.
We conclude from Fig. 10 that shape resonances still exist
for finite �. Nevertheless the shape resonance acquires a
more elaborate structure since the number of even and odd
single-particle levels, which here is the same as the number of
distinct gaps, change in similar but not equal widths.

V. INTERACTION-DRIVEN RESONANCE

In this section we show that the adjustment of the barrier
strength, �, can bring the SIS nanofilm into resonance for
a fixed half width a. The new phenomenon of barrier-driven
resonance appears, which means that a sudden change of the
superconducting gaps takes place without changing the half
width a. We consider two Nb SIS nanofilms with fixed values
a = 1.49 nm and a = 1.05 nm. As discussed before, only even
states are affected by the barrier, and so the cause of a barrier-
driven resonance is the passage of an even single-particle state
through the Debye energy window that makes a new even
band accessible for pairing. Figures 11 and 12 show the gaps
obtained by solving Eqs. (15) and (16).

The first example is for a = 1.49 nm and a� = 1,2, . . . 10.
The single-particle energy level j = 7 lies above the Debye
energy window and for this reason does not contribute to the
superconducting state. The level j = 6 falls below (or inside)
the Debye energy window from �a = 1.0 to �a = 6.0, and
above from 7.0 to 10.0. The single-particle energy level j = 5
lies below the Debye energy window. Within this range of
solutions the barrier-driven resonance can also be observed for
other half widths in the proximity of a = 1.49 nm. The barrier-
driven resonance moves out of this fixed a� window for values
of a significantly different from that above. Figure 11 shows
the gaps, as obtained from Eq. (15), versus the insulating
barrier strength. An abrupt change of the gaps takes place
near to � = 4.03 nm−1 which characterizes the barrier-driven
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0.065

0.070

0.075

 0  1  2  3  4  5  6  7

Δ/
e D

Ω (nm-1)

a=1.49 nm

odd
even

FIG. 11. A barrier-driven resonance is shown here for a fixed set
of ten insulating barrier strengths, given by a� = 1,2, . . . 10. Even
and odd gaps are presented by gray (green) and dark (red) lines,
respectively. The multigap structure of the SIS nanofilm is seen for a
fixed �.
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FIG. 12. A barrier-driven resonance is shown here within the
range 50.0 < a� < 200.0 for a specific half width a. Notice that
this range falls below the critical value �c of Eq. (21) and Table II.
Even and odd gaps are presented by gray (green) and dark (red)
lines, respectively. The distinct gaps are seen at fixed �, showing the
multigap structure of the SIS nanofilm.

resonance. Notice in this figure the multigap structure with
odd gaps (triangles, red) above the even gaps (upside-down
triangle, green). By increasing the barrier strength, the number
of single-particle states inside and below the Debye energy
window changes from 6 to 5. The three values of � that
characterize the transition are � = 3.36 (below), 4.03 (in), and
4.70 (above) nm−1. The odd single-particle energy levels are
not affected by changes in the barrier strength. Figure 11 shows
that the change in the gap values through the barrier-driven
resonance can be quite high (∼20%).

The second example is for the half width a = 1.05 nm and
takes place in the range of potential barrier strength 50.0 <

a� < 200. In this example, the even single-particle states are
obtained as approximate solutions of Eq. (9) given by Eq. (11).
Figure 12 shows the multigaps versus � with significant
changes in the gap at the barrier-driven resonance (∼40%). The
barrier-driven resonance observed at � = 85.71 nm−1 also ex-
ist in a different � but still within the studied range for similar
half widths. Notice that the studied range falls below �c ∼
246 nm−1 (Table II), beyond which cross-pairing between the
even and odd levels must be included, which is not done here.

We conclude this section with a comment. The barrier-
driven resonances share a common origin with the shape
resonances, i.e., the entrance or exit of a single-particle state
in or from the Debye energy window. In this respect they share
the same behavior with respect to the main parameters that
change them, which are the effective coupling and the width
of the Debye window. An increase in the former leads to a more
rounded seesaw pattern with smaller jumps, while an increase
in the latter leads to a larger region in which the jump occurs.
This behavior has been studied in detail for shape resonances
in Ref. [43]. So the most pronounced resonances will happen
for weakly coupled superconductors.

VI. DISCUSSION

The study of nanostructured superconductors is important
for many reasons, among them the quest to predict and realize

metallic heterostructures that are multiband and multigap and
present BCS-BEC crossover from momentum to position
space pairing that can be tuned by system parameters.
Theoretical and experimental evidence has shown that nanos-
tructuring of bulk superconductors, in the form of nanofilms,
nanostripes, and nanoclusters is able to induce multigap and
multiband superconductivity and superconducting shape reso-
nances [16,18,44,45]. Reference [46] contains an overview
of the experimental state of the art for superconducting
nanofilms. Multiband and multigap superconductors bring
new paradigms to the understanding of coherent quantum
phenomena, such as the enhancement of the superconducting
critical temperature and the pairing energy gaps [47] through
tunable parameters. The BCS-BEC crossover is also a central
issue in present studies of high-Tc superconductivity. It has
been proposed in aluminum-doped MgB2 [48] through a
two-band, two-gap resonant superconductivity model. The
BCS-BEC crossover has been studied in two-band and two-
gap superconductors [49] and also in quantum confined
superconductors and superfluids [50,51]. Most important for
connections with the results of the present work is the
prediction that superconducting nanofilms can show BEC
(molecule like) pairing induced by quantum confinement when
the number of monolayer is reduced to a few units [52]. From
the other side the shape resonances in superconducting gaps
and critical temperature are expected to be generally present in
a quasi-two-dimensional electron gas formed at an oxide-oxide
interface [53], which is another system that could be used to
realize the SIS structure investigated in this paper. Finally, we
note that the shape resonances in superconducting nanofilms
discussed at length in this paper are always accompanied by
a topological change in the geometry of the Fermi surfaces,
which is a Lifshitz transition. The Lifshitz transitions seem to
be a general feature of high-Tc superconductors, in particular
in iron-based systems. Key predictions associated with the
Lifshitz transitions are resonances and amplifications in the
superconducting critical temperature, as recently observed in
electron-doped FeSe monolayers [54] and a typical chemical-
potential (density) dependence of the superconducting isotope
effect on the critical temperature [55].

VII. CONCLUSION

In this paper we have shown that a thin finite-height
potential barrier between two identical superconducting slabs
in the quantum size regime brings novel and interesting effects
not found in single-superconducting-slab nanofilms. The even
states are strongly affected by the insulating barrier whereas the
odd states are not, and the pairing interaction between any two
levels leads to a nontrivial splitting of the gaps. Consequently,
both even and odd superconducting gaps feel the presence
of the barrier. The SIS nanofilm is intrinsically multigapped,
which means that it remains multigapped independently of any
resonance condition while the single slab features multigaps
only within the shape resonance region, which is generally
narrow for metallic nanofilms. The multigap structure of
the SIS nanofilm is homogeneous along the surface but not
orthogonal to it because of quantum confinement [25]. The SIS
nanofilm displays barrier-driven resonances which are distinct
from the well-known Thompson–Blatt shape resonance. While
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barrier-driven resonances are controlled by the strength of
the potential barrier in the middle, the shape resonances
are controlled by the thickness of the superconducting slab.
The results presented in this paper have been applied to a
Nb-I-Nb nanofilm but the conclusions of intrinsic multigap
superconductivity and barrier-driven resonances remain valid
for other metals as well.
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APPENDIX A: FORMALISM: THE ANDERSON
APPROXIMATION TO THE BOGOLIUBOV

–DE GENNES EQUATIONS FOR
SUPERCONDUCTOR-INSULATOR-
SUPERCONDUCTOR NANOFILM

We briefly review the Anderson approximation [56] to
the Bogoliubov–de Gennes equations [57] applied to the SIS
nanofilm.

The energy of the excitations above the superconducting
ground state at zero temperature, En, is obtained from the
BdG equations:[

H0(r) �(r)
�∗(r) −H0(r)

][
un(r)
vn(r)

]
= En

[
un(r)
vn(r)

]
, (A1)

where the single-particle Hamiltonian is

H0(r) = − �
2

2m
∇2 − μ + U (r). (A2)

The potential U (r) confines particles inside the thin film and
may contain an internal structure. The BdG equations are
nonlinear in un(r) and vn(r) since

�(r) = V
∑

n

v∗
n(r)un(r), (A3)

where V is the strength of the pairing interaction (V > 0 in the
following). The number of particles and the density are given
by

N ≡
∫

drn(r), n(r) = 2
∑

n

|vn(r)|2. (A4)

One seeks normalized wave functions:∫
dr[u∗

n(r)um(r) + v∗
n(r)vm(r)] = δn,m. (A5)

In the case of a single superconducting slab, the summation
index represents the set of parallel and perpendicular degrees

of freedom, associated with continuous and discrete wave
numbers, respectively.

In the Anderson approximation one solves the single-
particle Schrödinger equation

H0(r)n(r) = ζnn(r) (A6)

and uses the following ansatz for the approximate solution to
the BdG equations:

un(r) = cnn(r), vn(r) = dnn(r), (A7)

where the eigenfunctions are normalized:∫
drψ∗

n (r)m(r) = δn,m. (A8)

A set of equations independent of position are then obtained
as follows: The ansatz (A7) is introduced into Eq. (A1)
and then multiplied by ∗

n (r). By using the normalization
condition (A8) one obtains[

ζn �n

�n −ζn

][
cn

dn

]
= En

[
cn

dn

]
. (A9)

The solution of the above equations is given by

cn =
[

1

2

(
1 + ζn

En

)]1/2

, (A10)

dn =
[

1

2

(
1 − ζn

En

)]1/2

, and (A11)

En =
√

ζ 2
n + �2

n, (A12)

where

�n ≡
∫

dr�(r)|n(r)|2. (A13)

Therefore the excitation energies En are given in terms of
the superconducting gaps �n that must obey self-consistent
equations, equivalent to Eq. (A3):

�n =
∑
m

Vnm

�m

2
√

ζ 2
m + �2

m

. (A14)

The pairing interaction is given by the matrix elements:

Vnm = V

∫
dr|n(r)|2|m(r)|2. (A15)

A detailed comparison between the Anderson approximation
and the full BdG solution is reported in Ref. [58].

The BdG equations applied to the SIS nanofilm must take
into account the perpendicular and parallel degrees of freedom
of electron motion, such that the single-particle states, defined
by Eq. (A6), satisfy

n ≡ (�k‖,kj ), (A16)

ζn = ε‖ + εj − μ, ε‖ = �
2�k2

‖
2m

, εj = �
2k2

j

2m
, (A17)

ψn(�x‖,x) = 1√
A

ei�k‖·�xψj (x). (A18)
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The nanofilm surface area is A and the wave-function
component ψkj

(x) satisfies the uni-dimensional Schrödinger
equation,

− �
2

2m

d2ψkj

dx2
+ U (x)ψkj

= εkj
ψkj

. (A19)

All kj states, j being an integer, are bounded and for simplicity
also labeled by k or just by j . The wave functions are assumed
to be normalized:∫ a

−a

dxψ∗
j (x)ψj ′ (x) = δjj ′ . (A20)

Thus, the general Eqs. (A6) and (A8) are reduced to the
perpendicular ones, Eqs. (A19) and (A20), respectively. The
dimensionless interaction matrix component in Eq. (A15) is
associated with these wave functions defined below:

Vij ≡ 2a

∫ a

−a

dx|ψi(x)|2|ψj (x)|2, (A21)

and 2a is the total width of the SIS nanofilm.

APPENDIX B: SOLUTION OF THE
SCHRÖDINGER EQUATION

Consider the one-dimensional Schrödinger equation of
Eq. (A19) with the potential

U (x) =
{+∞ if |x| � a

�
2

m
�δ(x) if |x| < a.

(B1)

The energy levels are given by εk = (�k)2

2m
. There are two

families of solutions according to their parity properties.
Even solutions are given by

ψk(x) = 1√
a − sin 2ka

2k

{
sin k(x − a), 0 � x � a

− sin k(x + a), −a � x � 0,
(B2)

where, according to Eq. (9), the wave number satisfies
ka cot ka = −�a.

Odd solutions are given by

ψk(x) = 1√
a

{
sin k(x − a), 0 � x � a

sin k(x + a), −a � x � 0,
(B3)

where the wave number is given by ka = jπ , j = 1,2,3, . . ..
The two limits of no barrier and infinite barrier represented

in Fig. 6 are recovered as follows: In the limit of no barrier,
�a = 0, the energy for even states is

εj = (2j + 1)2
( π

2a

)2 �
2

2m
, (B4)

and that for odd states is

εj = j 2
(π

a

)2 �
2

2m
. (B5)

Instead, in the limit of an infinite barrier, �a = +∞, both
the even states and odd states correspond to the energy levels,

εj = j 2
(π

a

)2 �
2

2m
. (B6)

As can be seen from the general formulas, the eigenstates
are identical in each of the −a � x � 0, 0 � x � a intervals
modulo a −1 factor.

For the potential considered in this section the generic
matrix element (A21) can be expressed analytically as

Vkk′ = 1√
1 − sin 2ka

2ka

1√
1 − sin 2k′a

2k′a

×
{

1 −
[

sin 2ka

2ka
+ sin 2k′a

2k′a

]

+ 1

2

[
sin[2(k − k′)a]

2(k − k′)a
+ sin[2(k + k′)a]

2(k + k′)a

]}
. (B7)
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