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Multidimensional stationary 
probability distribution for 
interacting active particles
Claudio Maggi1, Umberto Marini Bettolo Marconi2, Nicoletta Gnan3 & Roberto Di 
Leonardo1,4

We derive the stationary probability distribution for a non-equilibrium system composed by an 
arbitrary number of degrees of freedom that are subject to Gaussian colored noise and a conservative 
potential. This is based on a multidimensional version of the Unified Colored Noise Approximation. 
By comparing theory with numerical simulations we demonstrate that the theoretical probability 
density quantitatively describes the accumulation of active particles around repulsive obstacles. In 
particular, for two particles with repulsive interactions, the probability of close contact decreases 
when one of the two particle is pinned. Moreover, in the case of isotropic confining potentials, the 
radial density profile shows a non trivial scaling with radius. Finally we show that the theory well 
approximates the “pressure” generated by the active particles allowing to derive an equation of state 
for a system of non-interacting colored noise-driven particles.

A generic system, that is in thermal equilibrium at a temperature T, will be found in the neighbour-
hood of a configuration of energy E with a probability density given by the the Boltzmann factor exp 
[ −  E/kBT]1,2. As an example, two Brownian colloidal particles, interacting through a conservative attrac-
tive force, will show an increased probability density for the low energy bound state. A quite different 
behaviour is observed in active particle systems3. Generally speaking, active matter is composed by bio-
logical or synthetic objects that are capable of absorbing energy from the environment and convert 
it into different kinds of persistent motions. Even when stationary states are reached, the probability 
distributions can display large deviations from their equilibrium Boltzmann counterparts. Those devi-
ations are not just a matter of quantity, but a radically different qualitative behaviour may be observed, 
like the widespread tendency to accumulate around repulsive objects. This “attraction for repulsion” is 
responsible for phenomena like, particle accumulation at solid walls4 or the formation of bound states 
between repulsive objects5,6. Our intuitive notion that particles like to stay where external forces attract 
them to is biased by our familiarity with equilibrium statistical mechanics and needs to be replaced by 
novel statistical mechanics concepts that are capable to describe the stationary probability distributions 
in systems of interacting active particles. In this context some schematic models have been proposed 
to model the dynamics of active particles as, for example, the “run and tumble” (RnT) model. The RnT 
dynamics is appropriate to describe the motion of bacteria such as E. coli7–10 that swim along almost 
straight runs interrupted by random reorientations. In the case of colloids propelled by chemical reac-
tions the “active Brownian” model describes the motion of particles pushed by a force of constant mag-
nitude that gradually reorient by rotational Brownian motion11–14. However, despite the simplicity of 
the dynamics of these systems, it is hardly possible to find the analogue of the Boltzmann distribution. 
Indeed, the Boltzmann prescription assigns a precise weight to a given configuration of positions and 
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momenta of particles at equilibrium. These particles are embedded in a space of dimensionality d, are 
subject to arbitrary external fields and mutually interact via whatsoever potential1,2. On the contrary, in 
the case of active particles the exact stationary probability distribution is known only in rare instances 
as, for example, in the 1-dimensional RnT model in an external force field9. The impossibility of writ-
ing explicitly the stationary probability density prevents one from applying the standard methods of 
statistical mechanics. A Gaussian colored-noise model (GCN) can be used to reproduce the dynamics 
of passive colloidal particles immersed in a bath of dense swimming bacteria15,16. This model has been 
intensively studied in the past as the simplest model that could elucidate the basic physics of systems 
subject to time-correlated noise. Interestingly GCN was originally used to interpret the behaviour of 
very different physical systems such as noisy electronic circuits17 and dye-laser radiation18. The analytical 
study of GCN-driven systems resulted very challenging and led to the development of different approxi-
mation schemes aimed to reduce the complexity of the GCN-model to a tractable level19,20. Among these 
approaches one emerges by having a number of advantages with respect to the others. This is the Unified 
Colored Noise Approximation (UCNA) developed by Hänggi and Jung20 that, under certain conditions, 
describes both the small and the large correlation-time regimes, both in the high and low-friction limit21. 
More importantly for the present work the UCNA scheme can be generalized to a phase space of arbi-
trary dimensionality22. In this work we report, for the first time, the explicit formula of the stationary 
probability (obtained within the UCNA) for a system that is subject to a generic conservative potential 
and that is composed by an arbitrary number of degrees of freedom. We name this “multidimensional 
unified colored noise approximated stationary probability” (MUCNASP). The MUCNASP plays basically 
the same role as the Boltzmann distribution for the approximated GCN-driven system. We show how the 
MUCNASP allows to predict several non-equilibrium properties of the active system in experimentally 
relevant cases where a simple external potential acts on a small number of degrees of freedom. We focus 
on the case of steep repulsive interactions and spherically symmetric external potentials. In all these situ-
ations we use numerical simulation to test the quality of the approximation and find that the GCN-driven 
and the RnT particles display a strikingly similar behavior. In particular we show how our approximated 
probability density captures very well the accumulation of the active particles around repulsive obstacles. 
Moreover the theory describes well the dependence on dimensionality of the probability density function 
when the active particles are confined by a circular repulsive wall. Understanding how the concept of 
pressure generalizes to active matter has become recently the subject of intense theoretical research 23–25.  
In this context we show how our theoretical probability density allows us to derive the pressure that 
the active particles exert on the repulsive walls and leads to the derivation of equations of state for the 
non-interacting active particle system. Finally we discuss the most relevant limitations of the present 
theory and suggest new routes to follow in the theoretical study of active matter.

Results
We consider the following set of stochastic differential equations:

x 1η= − ∇Φ + ( )

where the position variables x =  (x1,…,xN) are determined by the deterministic velocity −  ∇ Φ  generated 
by a conservative potential Φ (x) and by a set of stochastic processes η =  (η1,…,ηN). We assume that these 
are N independent Gaussian processes with zero mean 〈 ηj〉  =  0 and exponential time-correlation: 〈 ηi(t)η−
j(s)〉  =  eij

D t sδ
τ

τ− − / . Here D is the diffusion coefficient characterizing the amplitude of the noise and τ is 
its relaxation time. Note that here we absorb the mobility μ in the velocity field −  ∇ Φ  =  μf, where f =   
−  ∇ U is the deterministic force generated by the potential energy function U(x) =  Φ (x)/μ. By using the 
UCNA Eq. (1) reduces to the (Stratonovich) Langevin equation22:

Dx x x[ ] 21 2I Hτ Γ+ ( ) = − ∇Φ( ) + ( )/


where ij δ=  is the identity matrix, x xx xi j
( ) = ∂ ∂ Φ( ) is the Hessian associated with the potential Φ , 

and Γ is a set of independent white-noise sources having 〈 Γ j〉  =  0 and 〈 Γ i(t)Γ j(s)〉  =  2δijδ(t −  s). We have 
found that, in the flow-free case, the steady state probability of finding the dynamical system of Eq. (2) 
in a specific configuration x is always proportional to the weight:

τ
τΩ( ) =
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where |…| represents the norm of a vector and ||…|| indicates the absolute value of the determinant of 
a matrix. We have demonstrated the validity of Eq. (3) by deriving the corresponding Fokker-Planck 
equation from Eq. (2)26 and solving it in the zero-current case by using the Jacobi’s formula27 (see 
Supplemental Material).

One single degree of freedom. As Eq. (3) is used for specific choices of the potential it reveals 
several interesting non-equilibrium properties of the active system under study. We initially focus on a 
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simple one-dimensional case and study GCN-driven particles when they are subject to a steep repulsive 
potential of the form Φ (x) =  Ax−12 setting A =  1. Such a potential can be thought as a repulsive obstacle 
that perturbs the dynamics of the particles28. To verify the quality of the UCNA, we integrate numerically 
the stochastic equation of motion (1) in the presence of such a potential. To this aim we have imple-
mented a code for Euler integration of Eq. (1), to be executed on GPU where the dynamics of many 
independent particles can be simulated in parallel29. We consider several different values of 0.1 ≤  τ  ≤  1 s 
and 0.1 ≤  D ≤  100 μm2/s, ranges that cover the typical persistence times and diffusivities of colloids 
in bacterial baths, swimming bacteria such as E. coli30,31 and of chemically self-propelled Janus-type 
particles13. The size of the simulation box is chosen to be L =  20μm (with periodic boundaries located 
at ±  L/2). Fig. 1(a) shows that in equilibrium (τ =  0) the probability density decreases rapidly before the 
core of the repulsive potential is reached, whereas in the GCN the distribution peaks substantially in a 
region where the potential is very high before vanishing at the core. Note that the specific choice of the 
constant A =  1 defines the size of the repulsive “wall” created by the external potential. The thickness of 
this impenetrable region is about 2μm and it depends very little on the values of D and τ considered 
since the potential is steeply repulsive. In the GCN-driven system the exact probability distribution is 
unknown but it can be approximated by Eq. (3) that reduces, for a single degree of freedom, to the 
known form19:

τ
′ τ ′′Ω( ) =
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Φ( )

− |Φ ( )





+ Φ ( )
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x

x
D D

x xexp
2

1
4

2

where the prime indicates differentiation with respect to x. The approximate probability, obtained by 
normalizing Eq. (4) , is plotted in Fig. 1(a) as a dashed line and it is found to reproduce well the numer-
ical distribution at two well separated values of D and τ. Knowing the probability we can also compute 

Figure 1. (a) Probability density function of the position of a single GCN-driven particle in presence of the 
external potential Φ  =  x−12 (shaded area) . Full lines: simulations, dashed lines: theory, dashed-dotted line: 
Boltzmann distribution. The curve with the higher peak corresponds to D =  100μm2 /s, τ  =  1 s and the one 
with the lower peak to D =  0.4μm2 /s, τ  =  0.1 s, (zoomed in the inset) (b) Average value of |Φ '| as a function 
of D for three different values of τ =  0.1, 0.325, 1 s from top to bottom respectively. Points: simulations, full 
lines: theory, dashed lines: theory in the limit of a hard potential, dashed dotted line: white noise case with a 
hard potential. (c) Probability density function of the distance between two GCN-driven particles interacting 
via the potential Φ  =  Δ x−12, same legend as Fig. (a). (d) Average value of |Φ '| as a function of D for three 
different values of τ =  0.1,0.325,1 s from top to bottom respectively, same legend as as Fig. (b).
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all the average quantities of interest, such as the average value of the modulus of the velocity 
dxP x x∫′ ′Φ = ( ) Φ ( ) . The theoretical (approximated) 〈 |Φ '|〉  is compared with the numerical value 

in Fig. 1(b) where one sees that the 〈 |Φ '|〉  UCNA prediction is very close to the numerically result at all 
values of D and τ here investigated. The behaviour of the P(x) and of 〈 |Φ '|〉  can be qualitatively under-
stood by considering the strong peaking of the Ω (x) close to the repulsive barrier. When the potential is 
very steep, as in the case of Φ  =  x−12, the maxima of Ω (x) are found at x =  x* where x D′ τΦ ( ) ≈ /⁎ . 
It is clear that the probability peaks where the external potential balances the root mean-squared veloc-
ity of the particle induced by GCN D2η τ= / . In this hard-wall limit is possible to approximate 
Ω (x) in the neighborhood of x* by a strongly peaked function k(x) whose integral is Dτ≈ , as found by 
a saddle-point approximation, while far away from x* Eq. (4) reduces to unity (see Supplemental Material) 
and we can write: Ω (x) ≈  k(x −  x*) +  k(x +  x*) +  1. Note that Dτ  corresponds to the typical corre-
lation length of the active motion. Integrating from −  L/2 to L/2 we find the average velocity 

D L D2 2′ τΦ = /( + )⁎ , where L* =  L −  2x* is the overall length available to the particles and report 
this result as a dashed line in Fig. 1(b) where it captures the trend of 〈 |Φ '|〉  obtained in simulations with 
the potential Φ  =  x−12. By considering the force exerted by the particles located only on the right-hand 
side of the potential (x >  0) we find the force fx > 0: f D L D2x 0

1µ τ= /( + )>
− ⁎ , which corresponds 

to an equation of state being fx > 0 the 1-dimensional pressure that the particles exert on the “wall” rep-
resented by the external potential. Note that if we consider N independent particles, in the limit τ → 0, 
and set D = μkBT we arrive to the ideal gas law in 1d: 〈 fx > 0〉  =  NkBT/L* and that this equilibrium value 
constitute an upper bound for the pressure of the active system (see dashed-dotted line in Fig.  1(b). 
Interestingly these results can be derived exactly for the RnT model, in particular the stationary proba-
bility distribution of the RnT model in presence of two hard walls is composed by two Dirac deltas plus 
a constant and the expression of 〈 |Φ '|〉  has the same form of the one found in the UCNA (see Supplemental 
Material).

Two interacting particles in one dimension. Up to this point we have derived results from the 
known formula (4) considering only one degree of freedom. We now use Eq. (2) to characterize the 
steady state properties of two interacting GCN-driven particles moving in 1d. We consider the positions 
x1 and x2 of two particles interacting via a pair potential that is a function of the distance Δ x =  |x1 −  x2| 
between the particles: Φ (x1,x2) =  Φ (Δ x). We further assume that the particles are free to move in a 1d 
space of extension L with periodic boundaries located at ±  L/2. In this case Eq. (2) can be used to com-
pute the probability of finding the two particles separated by Δ x:

τ
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which is identical to Eq. (4) with τ replaced by 2τ. This is at variance with equilibrium statistical mechan-
ics in which the probability of finding two particles at a given distance does not vary if one of the two 
particles is pinned at some fixed position32–34. To be more specific let us consider a repulsive potential of 
the form Φ (x1, x2) =  (x1 −  x2)−12. In this case again the probability is well described by the MUCNASP 
as shown in Fig. 1(b). Similarly the deterministic velocity component experienced by one particle 〈 |Φ '|〉  
resulting from simulations is well approximated by the theory (see Fig.  1(c). Again, in the limit of an 
infinitely steep potential (see Supplemental Material), we find that the area of the peak of Ω (Δ x) is 
approximated by D2 τ  and D L D2 2 2′ τΦ = /( + )⁎  which is plotted in Fig. 1(c) as a dashed line. 
This can be physically interpreted as follows: when both particles are free to move they can be more often 
found in contact since they move coherently in the same direction, this happens without the particles 
pushing onto each other, yielding a lower value of the average interaction force. It is important to note 
that these theoretical results cannot be derived analytically in the RnT model since the coupled dynam-
ics of more particles makes the problem far too complicated. Nevertheless we have found that the 
MUCNASP produces results for the average 〈 |Φ '|〉  that are very similar those found numerically for the 
RnT model despite the stationary probability density has a very different form (see Supplemental 
Material). This suggests that the MUCNASP can be used as a convenient approximation also for calcu-
lating the averages in RnT dynamics at least in the case of steeply repulsive potentials. Note also that such 
a scenario is in agreement with the findings of Ref.5 where it was demonstrated, by combining experi-
ments and simulations, that two colloids suspended in a bacterial bath tend to stay in contact because of 
the colored-noise forces induced by swimming bacteria.

Radially symmetric potentials. When the d-dimensional potential is spherically symmetric, i.e. 
Φ (x) =  Φ (r), Eq. (3) simplifies to

r
r

D D
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where r xi
d

i
2

1
2= ∑ =  and Θ  is the d-dimensional solid angle. Note that the Boltzmann distribution, 

obtained by setting τ =  0 in Eq. (6), depends on the dimensionality only via the trivial term rd–1 while in 
the GCN-case this dependence is more complicated. To understand this issue, we consider GCN-driven 
particles in d =  2 in the presence of a circular repulsive potential of radius R of the form Φ (r) =  (r −  R)−12 
where r x y2 2= +  and R =  5μm. Simulation results show that particles accumulate near the ring at 
r =  R and the theoretical probability reproduces well this behaviour (see Fig. 2(a). From Eq. (6) we can 
compute the averages of interest as the radial component of the velocity field 〈 |Φ '|〉  and compare it with 
simulation results in Fig. 2(d) showing a good agreement. In the limit of an infinitely steep potential we 
have that Ω (r) strongly peaks where D′ τΦ ≈ /  and reduces to unity elsewhere. The area of the peak 
can be approximated by D R D2π τ τ+⁎  (see Supplemental Material), where R* =  R −  r* is the radial 
coordinate of the peak with r* ≈  1 in the D-τ range considered. For the average radial velocity compo-
nent we get D R D R D R D2 2 22′ τ τ τΦ = ( + )/( + + )⁎ ⁎ ⁎  which is plotted as dashed lines in 
Fig. 2(d) and follows nicely the trend displayed by the numerical data. This is practically a colored-noise 
version of the ideal gas law in a circular container. This is clear if we set τ =  0 to obtain 〈 |Φ '|〉  =  2D/R* 
which is proportional to the average radial force 〈 f〉  =  2D/(R*μ). Dividing this by the 2d “surface” 2πR* 
we get the ideal gas pressure p =  N〈 f〉 /(2πR*) =  NkBT/(πR*2) for N independent particles and D =  μkBT. 
The unperturbed dynamics of the RnT model in 2d is well understood35, while the problem of a 2d 
symmetric potential is not tractable analytically. However we have found that the simulation results for 
the 〈 |Φ '|〉  in RnT model are very similar to those produced by the MUCNASP (see Supplemental 
Material) suggesting that MUCNASP could actually describe the behaviour of a wider class of active 
particles. An experimental situation, that is close to the spherically symmetric case treated here, has been 
recently studied36. In these experiments it was observed a marked accumulation of swimming bacteria 
at the border of spherical liquid droplets. In this kind of experiment it would be interesting to check 
whether, in the dilute regime, the number of bacteria found in contact with the border scales with the 
droplet radius and the characteristic run length as predicted by the MUCNASP (Eq. (6)) in the spherical 
case.

Discussion
By using the unified colored noise approximation, we have derived the explicit formula for the 
non-equilibrium stationary probability (MUCNASP, Eq. (3)) of a system composed by an arbitrary num-
ber of degrees of freedom subject to GCN. We have focused onto the case of steep repulsive potentials 
where the probability distribution of one single active particle tends to concentrate on the repulsive 
part of the potential oppositely to the case of a Brownian particle. Moreover we have verified that, as 
predicted by the MUCNASP, two active particles interacting repulsively behave differently with respect 
to equilibrium and are found in contact more often than if one particle is fixed. Finally the MUCNASP 
predicts that, when active particles are confined inside a repulsive ring-shaped barrier, the probability 
peaks on the boundary and the area of this peak increases with increasing radius and with increasing 
persistence length. Surprisingly the results obtained by the MUCNASP are very close to those obtained 
for RnT particles for which an analytical solution is not available. As discussed before19,20,22, the UCNA 
is accurate in those portions of phase space where the all the eigenvalues of the Hessian matrix are 

Figure 2. (a) Probability density function of the radial distance of one GCN-driven particle in presence 
of the spherically symmetric external potential Φ  =  (r −  R)−12 in 2d (shaded area) . Full lines: simulations, 
dashed lines: theory, dashed-dotted line: Boltzmann distribution. The curve with the higher peak 
corresponds to D =  100μm2 /s, τ  =  1 s, and the one with the lower peak to D =  0.4μm2 /s, τ  =  0.1 s, (zoomed 
in the inset) (b) Average value of |Φ '| as a function of D for three different values of τ =  0.1, 0.325, 1 s from 
top to bottom respectively. Points: simulations, full lines: theory, dashed lines: theory in the limit of a hard 
potential, dashed dotted line: white noise case with a hard potential.
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positive. This restriction defines where Eq. (3) can be used as a valid approximation for the probabil-
ity of GCN-driven system. Moreover it appears difficult to derive an explicitly formula for probability 
including also Brownian fluctuations. Nevertheless, to our knowledge, the MUCNASP is the only availa-
ble explicit probability formula accounting for multiple active degrees of freedom and, provided that all 
eigenvalues are positive, becomes exact both in the limit of τ → 0 and τ → ∞. This makes the MUCNASP 
a valuable schematic model for tackling the many-body problem in active matter. For example it would 
be interesting to check whether, at the mean-field level, the MUCNASP can predict a motility-induced 
phase separation10,37,38 or the colored-noise induced shift in the synchronization threshold of the noisy 
Kuramoto model39.

References
1. Richard, P. Feynman. Statistical Mechanics, A set of lectures. (Frontiers in Physics, Perseus Books 1972).
2. Huang, K. Introduction to statistical physics (CRC Press, 2001).
3. Cates, M. E. Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics ?. Rep. 

Prog. Phys. 75 042601 (2012).
4. Ni, R., Stuart, M. A. C. & Bolhuis, P. G. Tunable long range forces mediated by self-propelled colloidal hard spheres. Phys. Rev. 

Lett. 114 018302 (2015).
5. Angelani, L., Maggi, C., Bernardini, M. L., Rizzo, A. & Di Leonardo, R. Effective interactions between colloidal particles 

suspended in a bath of swimming cells. Phys. Rev. Lett. 138302 107 (2011).
6. Buttinoni, I. et al. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 

110 238301 (2013)
7. Berg, H. C. (Ed.) E. coli in Motion (Springer Science & Business Media 2004).
8. Schnitzer, M. J. Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48 2553 (1993)
9. Tailleur, J. & Cates, M. E. Sedimentation, trapping, and rectification of dilute bacteria. EPL, 86, 60002 (2009)

10. Tailleur, J. & Cates, M. E. Statistical mechanics of interacting run-and-tumble bacteria. Phys. Rev. Lett. 100, 218103. (2008)
11. Zheng, X. et al. Non-Gaussian statistics for the motion of self-propelled Janus particles: Experiment versus theory. Phys. Rev. E 

88, 032304 (2013).
12. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 

339, 936–940 (2013)
13. Golestanian, R. Anomalous diffusion of symmetric and asymmetric active colloids. Phys. Rev. Lett. 102, 188305 (2009)
14. Palacci, J., Cottin-Bizonne, C., Ybert, C. & Bocquet, L. Sedimentation and effective temperature of active colloidal suspensions. 

Phys. Rev. Lett. 105, 088304 (2010)
15. Koumakis, N., Maggi, C. & Di Leonardo, R. Directed transport of active particles over asymmetric energy barriers. Soft matter 

10, 5695–5701 (2014)
16. Maggi, C. et al. Generalized Energy Equipartition in Harmonic Oscillators Driven by Active Baths. Phys. Rev. Lett. 113, 238303 

(2014)
17. O’Doherty, F. & Gleeson, J. P. Phase diffusion coefficient for oscillators perturbed by colored noise. Circuits and Systems II: 

Express Briefs, IEEE Transactions on 54, 435–439 (2007)
18. Jung, P. & Hänggi, P. Optical instabilities: new theories for colored-noise-driven laser instabilities. J. Opt. Soc. Am. B 5, 979–986 

(1988).
19. Hanggi, P. & Jung, P. Colored noise in dynamical systems. Adv. Chem. Phys. 89, 239–326 (1995).
20. Jung, P. & Hänggi, P. Dynamical systems: a unified colored-noise approximation. Phys. Rev. A 35, 4464 (1987).
21. H’walisz, L., Jung, P., Hänggi, P., Talkner, P. & Schimansky-Geier, L. Colored noise driven systems with inertia. Zeitschrift für 

Physik B Condensed Matter 77, 471–483 (1989).
22. Cao, L., Wu, D. J. & Luo, X. L. Effects of saturation in the transient process of a dye laser. III. The case of colored noise with 

large and small correlation time. Phys. Rev. A 47, 57 (1993).
23. Takatori, S. C., Yan, W. & Brady, J. F. Swim Pressure: Stress Generation in Active Matter. Phys. Rev. Lett. 113, 028103 (2014)
24. Solon, A. P. et al. Pressure and Phase Equilibria in Interacting Active Brownian Spheres arXiv:1412.5475 [cond-mat.soft]
25. Solon, A. P. et al. What is the Pressure of an Active Particle Fluid ? arXiv:1412.3952 [cond-mat.stat-mech]
26. Risken, H. Fokker-Planck Equation. (Springer Berlin Heidelberg 1984).
27. Bellman, R. Introduction to matrix analysis Vol. 960. (McGraw-Hill, 1970)
28. Angelani, L. & Di Leonardo, R. Numerical modeling of bacteria propelled micromotors. Comput. Phys. Commun. 182, 1970–

1973 (2011).
29. Januszewski, M. & Kostur, M. Accelerating numerical solution of stochastic differential equations with CUDA. Comput. Phys. 

Commun. 181, 183–188 (2010).
30. Martinez, V. A. et al. Differential dynamic microscopy: A high-throughput method for characterizing the motility of 

microorganisms. Biophys. J. 103, 1637–1647 (2012)
31. Maggi, C., Lepore, A., Solari, J., Rizzo, A. & Di Leonardo, R. Motility fractionation of bacteria by centrifugation. Soft Matter 9, 

10885–10890 (2013).
32. Cammarota, C. & Biroli, G. Ideal glass transitions by random pinning. Proc Natl Acad Sci USA 109, 8850–8855. (2012).
33. Karmakar, S. & Parisi, G. Random pinning glass model. Proc Natl Acad Sci USA 110, 2752–27 (2013)
34. Kob, W., Roldán-Vargas, S. & Berthier, L. Non-monotonic temperature evolution of dynamic correlations in glass-forming 

liquids. Nature Phys. 8, 164–167 (2012).
35. Martens, K., Angelani, L., Leonardo, R. & L. Bocquet, Probability distributions for the run-and-tumble bacterial dynamics: An 

analogy to the Lorentz model. Eur. Phys. J. E Soft Matter 35, 1–6, (2012)
36. Vladescu, I. D. et al. Filling an Emulsion Drop with Motile Bacteria Phys. Rev. Lett. 113 268101 (2014)
37. Cates, M. E., Marenduzzo, D., Pagonabarraga, I. & Tailleur, J., Arrested phase separation in reproducing bacteria creates a generic 

route to pattern formation. Proc Natl Acad Sci USA 107, 11715–11720 (2010)
38. Levis, D. & Berthier, L., Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks 

Phys. Rev. E 89 062301 (2014)
39. Bag, B. C., Petrosyan, K. G. & Hu, C. K. Influence of noise on the synchronization of the stochastic Kuramoto model. Phys. Rev. 

E 76, 056210 (2007).

Acknowledgements
The research leading to these results has received funding from the European Research Council under 
the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 



www.nature.com/scientificreports/

7Scientific RepoRts | 5:10742 | DOi: 10.1038/srep10742

307940. NG acknowledges support from MIUR (“Futuro in Ricerca” ANISOFT/RBFR125H0M). We also 
acknowledge NVIDIA for hardware donation.

Author Contributions
C.M. conjectured the main result, U.M.B.M. derived it from the F.P.E. equation, C.M. and N.G. realized 
the numerical simulations, C.M., U.M.B.M. and R.D.L. wrote the paper.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Maggi, C. et al. Multidimensional Stationary Probability Distribution for 
Interacting Active Particles. Sci. Rep. 5, 10742; doi: 10.1038/srep10742 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Multidimensional stationary probability distribution for interacting active particles
	Results
	One single degree of freedom. 
	Two interacting particles in one dimension. 
	Radially symmetric potentials. 

	Discussion
	Acknowledgements
	Author Contributions
	Figure 1.  (a) Probability density function of the position of a single GCN-driven particle in presence of the external potential Φ = x−12 (shaded area) .
	Figure 2.  (a) Probability density function of the radial distance of one GCN-driven particle in presence of the spherically symmetric external potential Φ = (r − R)−12 in 2d (shaded area) .



 
    
       
          application/pdf
          
             
                Multidimensional stationary probability distribution for interacting active particles
            
         
          
             
                srep ,  (2015). doi:10.1038/srep10742
            
         
          
             
                Claudio Maggi
                Umberto Marini Bettolo Marconi
                Nicoletta Gnan
                Roberto Di Leonardo
            
         
          doi:10.1038/srep10742
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep10742
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep10742
            
         
      
       
          
          
          
             
                doi:10.1038/srep10742
            
         
          
             
                srep ,  (2015). doi:10.1038/srep10742
            
         
          
          
      
       
       
          True
      
   




