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Suppression of Stokes scattering and improved optomechanical cooling with squeezed light
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We develop a theory of optomechanical cooling with a squeezed input light field. We show that Stokes
heating transitions can be fully suppressed when the driving field is squeezed below the vacuum noise level at an
appropriately selected squeezing phase and for a finite amount of squeezing. The quantum backaction limit to
laser cooling can be therefore moved down to zero and the resulting final temperature is then solely determined by
the ratio between the thermal phonon number and the optomechanical cooperativity parameter, independently of
the actual values of the cavity linewidth and mechanical frequency. Therefore, driving with a squeezed input field
allows us to prepare nanomechanical resonators, even with low resonance frequency, in their quantum ground
state with a fidelity very close to one.
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I. INTRODUCTION

Mechanical resonators hold promise for the development of
novel quantum devices that make use of quantum mechanics
to achieve enhanced performances for sensing, metrology,
storage, and transduction of information, and possibly to
explore the validity of quantum mechanics at the macroscopic
scale [1–4]. In order to operate a mechanical resonator at the
quantum level, and overcome the detrimental effects of thermal
noise, it has to be cooled to the ground state of motion. Many
approaches have been discussed, including feedback schemes
[5–7], cavity-assisted approaches [8–10], the coupling with
artificial atoms and with spins [11,12], the use of electrons
in place of photons [13,14], and the application of coherent
control techniques [15]. Cavity sideband-cooling is one of the
most promising approaches, already realized in a number of
experiments [16–24]. It consists in the engineering, by means
of laser light, of an effective low-temperature bath for the
mechanical excitations. The effective bath compete with the
natural thermal environment to determine the final temperature
of the mechanical mode, which can be expressed in terms of
the steady-state number of excitations Nst as [4,8–10]

Nst = γ Nth + � Na

γ + �
, (1)

where Nth is the number of excitations corresponding to
the natural thermal reservoir, γ is the dissipation rate into
the thermal bath, Na is the quantum back-action limit, i.e.,
the effective number of excitations of the thermal bath realized
by the light, and � is the cooling rate, i.e., the corre-
sponding light-induced dissipation rate. Cooling is achieved
by engineering fast dissipation (� � γ ) into an effective
low-temperature bath (Na � Nth). The values of � and Na

are determined by the response of the mechanical resonator to
the incident light, and more specifically by the scattering rate
of light at the Stokes (A+) and anti-Stokes (A−) sidebands,
corresponding to the increase and decrease of one mechanical
energy quantum, respectively. Hence, cooling is achieved
when the laser cooling rate � = A− − A+ is positive, while
the back-action limit is Na = A+/�. In cavity-optomechanics
the unbalance between Stokes and anti-Stokes processes is
obtained by means of an optical cavity. The resonator interacts

with the cavity photons which are pumped by a laser drive,
red-detuned with respect to the relevant cavity resonance;
the anti-Stokes scattered photons are hence made resonant,
and cooling takes place. However, the residual nonresonant
Stokes heating processes sets a fundamental limit to the
achievable occupancy: in fact, in the optimal case � � γ

and not too large temperature γNth/� < Na , one achieves
the quantum back-action limit Nst ∼ Na , which is determined
by the effective temperature of the light-induced thermal bath.
In standard laser cooling the nonresonant Stokes scattering is
minimized using a narrow cavity linewidth κa , much smaller
than the mechanical frequency ωm, thus entering the so-called
resolved sideband regime, where Na � κ2

a /4ω2
m. This limit is

observed also in atomic laser cooling under specific conditions,
and it has been suggested to overcome it by engineering
quantum destructive interference processes with multilevel
systems [25–28]. In optomechanics it has been proposed to
realize a similar destructive interference by exploiting the
effect of optomechanical induced transparency [29] and by
engineering cavity dissipation modulated by the resonator
position [30,31].

Here we demonstrate that the full suppression of Stokes
scattering (corresponding to A+ = 0, and hence to an effective
zero-temperature light-induced thermal reservoir with Na =
0) can be achieved when an optomechanical system is driven
by a light field squeezed below the vacuum noise level by a
finite amount and at well defined squeezing phase. One has to
consider an experimental setup very close to that realized in
the experiments reported in Refs. [32–34], where the squeezed
light is generated by parametric amplification. Correspond-
ingly, it can be described in the framework of cascaded open
quantum systems [35,36]. Squeezed light is the fundamental
resource in quantum information with continuous variables
and in many application of quantum metrology [37,38]. A
number of recent experiments have started to explore the
potentiality of squeezed light for the manipulation of quantum
systems [32–34,39–44], and various proposals suggested to
generate nonclassical states of mechanical systems through
the injection of squeezed light [36,45–47].

The use of squeezed light driving for improving cooling
has been proposed in Ref. [48] in the case of the motion of
a trapped ion. However, in Ref. [48], cooling to the ground

2469-9926/2016/94(5)/051801(6) 051801-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevA.94.051801


RAPID COMMUNICATIONS

MUHAMMAD ASJAD, STEFANO ZIPPILLI, AND DAVID VITALI PHYSICAL REVIEW A 94, 051801(R) (2016)

state is achieved only for the unrealistic limit of an infinitely
squeezed field, and in this limit the cooling rate tends to
zero, i.e., cooling becomes extremely slow. On the contrary,
in the optomechanical case studied here optimal cooling is
achieved with finite squeezing, and the cooling rate remains
unchanged, as a result of destructive quantum interference due
to the scattering of the correlated photons of the squeezed
field.

II. THE SYSTEM

The system can be described in terms of linearized quantum
Langevin equations for the annihilation and creation operators
of cavity photons, a and a†, and of mechanical excitations,
b and b†, given by [1] ȧ = −(κa + i�a) a + i G (b + b†),
+ √

2κa ain and ḃ = −(iωm + γ

2 )b + i G(a† + a) + √
γj bin,

where �a is the detuning between the relevant cavity mode
and the driving laser field, G is the linearized optomechanical
coupling strength, and bin(t) is the delta correlated mechanical
noise operators, which accounts for the mechanical effects
of the thermal environment at temperature T , such that
[bin(t),b†in(t ′)] = δ(t − t ′) and 〈bin(t)b†in(t ′)〉 = (Nth + 1)δ(t −
t ′), with Nth = (e�ωm/KBT − 1)−1. Finally, the noise operator
ain accounts for the effect of the external electromagnetic en-
vironment. It describes a squeezed reservoir whose properties
are determined by the output light of the parametric oscillator
(with annihilation operator c

(s)
out), which drives the system

in a cascade configuration. The corresponding description
is based on the theory of open quantum cascade systems
developed in Refs. [35] (a similar model have been discussed
in detail in Ref. [36]). Specifically, ain can be written as
ain = 1√

κa

(
√

κ (s)
a c

(s)
out + √

κ ′
a a′

in), where we have decomposed

it as the sum of two uncorrelated bosonic operators: c
(s)
out for

the squeezed reservoir, which exchanges photons with the
cavity at rate κ (s)

a , and a′
in for residual vacuum modes of the

electromagnetic environment into which the cavity can decay
at rate κ ′

a (optical losses), with κa = κ (s)
a + κ ′

a . The residual
vacuum modes are characterized by the correlation function
〈a′

in(t) a′
in
†(t ′)〉 = δ(t − t ′), while the squeezed reservoir by

〈c(s)
out(t) c

(s)
out

†
(t ′)〉 = δ(t − t ′) + n(t − t ′) and 〈c(s)

out(t) c
(s)
out(t

′)〉 =
m(t − t ′), where we have introduced the functions n(τ ) and
m(τ ), whose specific form is given below. They determine,
respectively, the number of excitations and the strength of the
field self-correlations, and can be expressed in terms of the
parameters of the parametric oscillator, namely the nonlinear
self-interaction strength χ , and the linewidth of the optical
resonator κc, such that the variables of the parametric oscillator
(annihilation and creation operators c and c†) fulfill the equa-
tion ċ = −κc c + χ c† +

√
2κccin. Here the optical mode of

the parametric oscillator is resonant with the laser field, which
drives the optomechanical system. The input noise operator
fulfills the relation 〈cin(t) c

†
in(t ′)〉 = δ(t − t ′), and also in this

case can be decomposed as cin = 1√
κc

(
√

κ (s)
c c(s)

in +
√

κ ′
c c′

in) ,

with κc = κ (s)
c + κ ′

c, where c(s)
in corresponds to the external

modes of the electromagnetic field, which are controlled and
used to drive the optomechanical system, while c′

in accounts
for residual uncontrolled modes; furthermore, the output field
fulfill the standard relation c

(s)
out =

√
κ (s)

c c − c(s)
in . In detail we

find

n(τ ) = χ κ (s)
c

2

[
e−r−|τ |

r−
− e−r+|τ |

r+

]
,

m(τ ) = χ κ (s)
c

2

[
e−r−|τ |

r−
+ e−r+|τ |

r+

]
e−2i φ , (2)

where r± = κc ± χ and φ is the phase of squeezing. In
particular, r+ is the decay rate of the fluctuations of the
maximum squeezed quadrature of the output field, which in

this case is Y
(s)
out = cout e

i(π/2+φ) + c
(s)
out

†
e−i(π/2+φ) (namely r+

is the squeezing bandwidth). Instead, r− is the decay rate of
the fluctuations of the antisqueezed quadrature.

It is convenient to consider the correlation functions for the
total noise operator for the optical cavity ain. They are given by
〈ain(t) a†in(t ′)〉 = δ(t − t ′) + nξ (t − t ′) and 〈ain(t) ain(t ′)〉 =
mξ (t − t ′) e−2i φ , with

nξ (τ ) = ξ n(τ ) and mξ (τ ) = ξ m(τ ), (3)

where we have introduced the scaling factor ξ = κ (s)
a κ (s)

c /κaκc,
which accounts for possible uncontrolled dissipation channels
whose effect is that of reducing the purity of the driving
squeezed field. In particular, this model describes a thermal
squeezed bath, with pure squeezing obtained for ξ = 1 when
no uncontrolled optical losses are taken into account. In the
opposite limit of maximum loss, ξ = 0, only standard optical
vacuum noise enters the cavity. Correspondingly, the spectra
of correlations of the input field operators [i.e., the Fourier
transform of nξ (t) and mξ (t), which are used below in the
expressions for the Stokes and anti-Stokes scattering rates] are
given by

ñξ (ω) = ξ χ κc

(
1

r2− + ω2
− 1

r2+ + ω2

)
,

m̃ξ (ω) = ξ χ κc

(
1

r2− + ω2
+ 1

r2+ + ω2

)
.

III. COOLING

When γ � G � r±,κ,ωm the dynamics of the mechanical
resonator can be approximated by eliminating the cavity
degrees of freedoms at the lowest relevant order in the
coupling parameter G. The resulting equation for the aver-
age number of mechanical excitations N (t) = 〈b†(t) b(t)〉 is
given by

Ṅ (t) = −(γ + �) N (t) + γ Nth + A+, (4)

so that the steady state is given by Eq. (1). The lowest-
order expressions for the Stokes and anti-Stokes scatter-
ing rates are given by A± = G2 sa(∓ωm), where sa(ω) =∫ ∞
−∞ dt eiωt 〈Y (t) Y (0)〉st is the spectrum of fluctuations of

the cavity field quadrature, which couples to the mechanical
resonator Y = a + a† (the spectrum of fluctuations of the force
operator [4]), and where the correlation function is evaluated
in the steady state and at zeroth order in the optomechanical
coupling G (namely it is evaluated in the steady state of an
empty cavity driven by a squeezed field). It is explicitly given

051801-2



RAPID COMMUNICATIONS

SUPPRESSION OF STOKES SCATTERING AND IMPROVED . . . PHYSICAL REVIEW A 94, 051801(R) (2016)

by

sa(ω) = 2κa

κ2
a + (�a − ω)2

{
1 + ñξ (ω)

[
1 + κ2

a + (�a − ω)2

κ2
a + (�a + ω)2

]
− 2 m̃ξ (ω)

(
�2

a − κ2
a − ω2

)
cos 2φ + 2κa �a sin (2φ)

κ2
a + (�a + ω)2

}
. (5)

We first note that the value of � does not depend
on the squeezed light, and it is actually equal to the
standard optomechanical cooling rate � = A− − A+ =
2κa G2[ 1

κ2
a +(�a−ωm)2 − 1

κ2
a +(�a+ωm)2 ] [8–10]. The largest cooling

rate is, therefore, achieved in the resolved sideband regime,
κ � ωm, and when the laser is set at the red mechanical
sideband frequency �a = ωm [8–10]. However, more im-
portantly, the back-action limit Na can be strongly affected
by the squeezed light. In particular the term proportional to
m̃ξ (ω) in Eq. (5) can be made negative and can contribute to
the suppression of the light-induced heating processes. The
power spectrum sa(ω) may become like the one in Fig. 1(a)
when particular conditions on the phase and on the amount
of squeezing are satisfied as specified below. It displays
the characteristic Fano-like profile typical of interference
phenomena. In this case it is due to the interference between
processes involving the exchange of photons between the
squeezed reservoir and the squeezed cavity field. In detail,
processes in which the increase of a mechanical excitation
is accompanied by the annihilation or creation of a cavity
photon and subsequent emission or absorption of a photon to or
from the reservoir, can interfere destructively depending on the
squeezing phase. As a result, the value of sa(ω) at −ωm, which
determines the strength of the Stokes heating transitions A+,
can be completely suppressed. At the same time also the peak
value at ωm for the anti-Stokes cooling transitions is reduced
as compared to the standard result (thin blue line), such that
their difference sa(ωm) − sa(−ωm) (proportional to the cooling
rate �) remains unaffected by the squeezed light. We note
that perfect suppression of Stokes scattering can be observed
only when ξ = 1, that is, when no uncontrolled optical losses
are present; however, strong reduction is observed also for
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FIG. 1. (a) Power spectrum of the radiation pressure force sa(ω)
for parameters which fulfill Eqs. (6) and (8). The values of these
curves at ω = ±ωm determine the rates for Stokes and anti-Stokes
scattering. (b) Steady-state excitation number Nst as a function
of the squeezing phase, for parameters that fulfill Eqs. (8). The
lines in both plots are evaluated for a driving field squeezed by
5 dB below the vacuum noise level at the central frequency, i.e.,
S(0) = 0.3, and for (thick solid red line) ξ = 1, (thick dashed
red line) ξ = 0.8, and (thin blue line) ξ = 0 (no squeezing). In
(a) φ = 0.3π . The other parameters are �a = ωm, κa = ωm, G =
0.1ωm, γ = 0.2 × 10−6ωm, Nth = 1000.

reasonable values ξ < 1, as described by the dashed line in
Fig. 1(a), which includes 20% of uncontrolled optical losses.

IV. RESULTS

We now optimize the cooling by minimizing sa(−ωm), and
hence the back-action limit Na . As a function of the squeezing
phase relative to the phase of the pump field, such a minimum
is obtained when (for �a > 0)

φ = 1

2
arctan

(
2�aκa

�2
a − ω2

m − κ2
a

)
+ kπ (6)

and 2kπ < 2φ < 3kπ with k ∈ Z. Under this condition we
find

Na = N0

[
1 + ñξ (ωm)

(
1 + 1

ζ 2

)
− 2

m̃ξ (ωm)

ζ

]
, (7)

where we have introduced N0 =
[κ2

a + (�a − ωm)2]/(4 �a ωm), which is the steady-state
back-action limit without the squeezed light [8,9], and the

parameter ζ = [κ2
a + (�a − ωm)2]

1/2
[κ2

a + (�a + ωm)2]
−1/2

,

which is smaller than one for �a > 0. Then one has to
minimize Eq. (7) over the properties of the squeezed input
driving, i.e., over ñξ (ωm) and m̃ξ (ωm), yielding

Nopt
a = N0(1 − ξ ), for ζ = ñξ (ωm)

m̃ξ (ωm)
. (8)

In the absence of squeezing, ξ = 0, we recover the standard
result of laser sideband cooling [8,9], while, as anticipated, the
quantum back-action limit is fully suppressed when ξ = 1, i.e.,
when only pure squeezed light and no vacuum noise enters the
cavity.

Under these optimized conditions for the squeezed input,
one has a significant suppression of the phonon occupancy Nst

of Eq. (1), as shown in Fig. 1(b), where Nst is plotted versus the
squeezing phase. It displays minima with periodicity π [see
Eq. (6)] and Nst can drop well below the result achieved with
standard sideband cooling (thin blue line). The importance of
the full suppression of the back-action limit achievable with the
squeezed driving can be seen also from Eq. (1), which in this
optimal case, and in the usual conditions γ � G � r±,κ,ωm,
and red sideband driving � = ωm, can be rewritten as

Nst � Nth

C
+ N0(1 − ξ ), (9)

where C = 2G2/γ κa is the cooperativity; taking ξ = 1 and
very large C/Nth, Nst can become arbitrarily small and the
mechanical resonator can be prepared in its quantum ground
state with very high fidelity.

It is convenient to re-express the optimal condition for the
squeezed input field of Eq. (8) in terms of easily measur-
able quantities. We introduce the input squeezing spectrum
S(ω) = ∫ ∞

−∞ dt eiωt 〈Yin(t) Yin(0)〉, namely the power spectrum
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FIG. 2. Steady-state mechanical excitation number Nst as a function of the value of squeezing at the central frequency S(0) and of the
squeezing bandwidth r+, for a value of the squeezing phase that fulfill Eq. (6), φ = 0.3 π . In (a) ξ = 1 and the dashed curve corresponds to
the parameters that fulfill Eq. (10). The curves in (b) are evaluated for the values of r+ that fulfill Eq. (10), i.e. it is evaluated along the dashed
curve in (a). The other parameters and the line styles are as in Fig. 1.

of the maximally squeezed quadrature of the output of the
parametric amplifier (and cavity input as well), that in this case
is Yin = ain ei(π/2+φ) + ain

† e−i(π/2+φ). The field is squeezed
below the vacuum noise level when the condition S(ω) < 1 is
satisfied. In the present case it is S(ω) = 1 + 2ñξ (ω) − 2m̃ξ (ω)
and maximum squeezing [i.e., the minimum of S(ω)] is
observed at the central frequency ω = 0 and it extends over
a bandwidth r+. It is possible to rewrite the parameters
ñξ (ωm) and m̃ξ (ωm) in terms of the value of the corresponding
squeezing spectrum at the central frequency, S(0), and of the
squeezing bandwidth r+, which can be both easily measured.
In particular we find that the optimal cooling condition in
Eq. (8) can be rewritten as

ω2
m

r2+
= [1 − S(0)]

1 + ζ

2ξ ζ
− 1, (10)

which relates the amount of squeezing to the bandwidth, and
can be exactly fulfilled only if S(0) � 1 − 2ξ

ζ

1+ζ
. In particular

the smaller the amount of squeezing the larger the bandwidth
needed to obtain perfect Stokes scattering suppression. Instead,
in the case in which the field is not sufficiently squeezed

(S(0) > 1 − 2ξ
ζ

1+ζ
), the best condition is obtained only in

the limit of an infinite bandwidth r+ → ∞, where however
the Stokes heating transitions are not completely suppressed,
and Na = N0{1 + 1−S(0)

S(0)−1+ξ
[ 1−S(0)

4 (1 + 1
ζ

)
2 − ξ

ζ
]}.

The behavior of the steady-state number of excitations Nst

as a function of the squeezing parameters S(0) and r+, and
for a squeezing phase fixed at the optimal value of Eq. (6),
is reported in Fig. 2. Figure 2(a) clearly shows a strong
reduction of Nst in the parameter region around the dashed
line corresponding to the optimal condition of Eq. (10). The
minimum value of Nst as a function of S(0), when r+ is
varied in order to fulfill Eq. (10) [namely the value of Nst

along the dashed curve in Fig. 2(a)], is instead reported in
Fig. 2(b), where the solid and dashed thick lines correspond to
ξ = 1 and ξ < 1, respectively. We note that the fast increase
of Nst for small squeezing corresponds to values for which
Eq. (10) cannot be exactly satisfied. In any case, one has an
improvement with respect to the corresponding value of Nst

achieved without the squeezed field (thin blue line); moreover,
when the condition of Eq. (10) is satisfied (at larger squeezing),
the reduction of the steady-state mechanical population is
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FIG. 3. Steady-state mechanical excitation number Nst as a function of the cavity decay rate κa and detuning �a , for values of φ and r+
that fulfill Eqs. (6) and (10). In (a) ξ = 1 and the dashed curve corresponds to the values of �a which minimize Nst at each value of κa . The
lines (b) are evaluated for the values of �a which minimize Nst at each value of κa , The specific values of �a for each line are reported in the
inset [the thick solid red line in the inset is equal to the dashed line in (a)]. The other parameters and the line styles are as in Fig. 1.
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independent of the actual value of the squeezing as a result
of the suppression of Stokes scattering. What is relevant is
that perfect Stokes scattering suppression is always achieved
at finite squeezing; for smaller squeezing, full suppression
requires only a larger bandwidth. This is not possible in the
trapped ion case studied in Ref. [48], where this is achievable
only in the limit of infinite squeezing.

In Fig. 3 we study the performance of this cooling protocol
against the optomechanical parameters, the cavity decay rate
κa , and the detuning �a , with the squeezed light chosen in
order to minimize the Stokes scattering. Specifically, these
results are evaluated at fixed S(0) and for values of r+ which
fulfill Eq. (10) when κa is sufficiently small, and for r+ → ∞
when κa is so large that Eq. (10) cannot be fulfilled. The
dashed line in Fig. 3(a) indicates the values of �a for which
Nst is minimum for each value of κa . The kink visible in this
line divides the range of parameters for which the condition
in Eq. (10) can be fulfilled exactly (small κa) from that at
which it cannot. The specific minimum values of Nst along
this line are instead reported in Fig. 3(b) (thick solid red
line) where it is compared with the results evaluated at finite
uncontrolled optical losses (thick dashed red line) and with
the standard laser cooling without squeezing (thin solid blue
line). Although the minimum is achieved as expected at
�a = ωm and small κa , a wide range of very low temperature is
observed for parameters, which extend far beyond the regime
of resolved sideband cooling κa � ωm. We find, for example,
that a realistic mechanical resonator with quality factor Q =
5 × 106, resonant frequency ωm = 2MHz and interacting with
the field of an optical cavity with linewidth κa = ωm, can
be cooled from a temperature of T = 0.1K (Nth ∼ 1000) to
the final temperature of Tfinal = 0.02 mK corresponding to
Nst = 0.01 mechanical excitations, when it is driven by a
field squeezed by 5dB below the vacuum noise level over a
bandwidth of r+ = 3 ωm. Under the same condition, standard
sideband cooling would give Nst = 0.26. We note that, in
this specific example corresponding to already demonstrated
technologies, the 99% ground state fidelity, achievable with
the squeezed field, could be of fundamental importance for

the implementations of quantum information protocols or
for fundamental tests of quantum theories, which requires
ground-state cooling and which could not tolerate the 26% of
error in the steady state preparation corresponding to standard
laser cooling.

V. CONCLUSIONS

In conclusion we have studied the cooling dynamics of
a mechanical resonator coupled by radiation pressure to a
resonant mode of an optical cavity driven by a squeezed
field in a configuration similar to that investigated in recent
experiments [32–34]. The interplay between squeezed field
and mechanical vibrations can lead to the complete suppres-
sion of Stokes scattering by quantum destructive interference,
when the squeezing phase and the amount of squeezing at the
mechanical sideband frequency are appropriately selected.

Injecting squeezed vacuum light in the cavity allows
to beat, by using only a finite amount of squeezing, the
typical constraints of optomechanical ground state cooling.
In particular, the requirement of being deep in the resolved
sideband regime is no more necessary, and the quantum
backaction limit, which defines the ultimate efficiency for
standard sideband cooling, can be brought to zero, in the case of
pure squeezed driving. This makes the presented protocol very
relevant and attractive for approaching the, yet elusive, ground-
state cooling of low-frequency resonators, which is necessary
for the investigation of macroscopic quantum phenomena.

We note that similar results and the experimental obser-
vation of the enhanced optomecahnical cooling, as predicted
here, have been recently reported in Ref. [34].
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Fiurášek, and R. Schnabel, Strongly squeezed states at 532 nm
based on frequency up-conversion, Optics Express 23, 16035
(2015).
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