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Feedback control of two-mode output entanglement and steering in cavity optomechanics
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We show that the closed-loop control obtained by feeding back the derivative of the signal from the homodyne
measurement of one mode of the light exiting a two-mode optical cavity interacting with a mechanical resonator
permits us to control and increase optical output entanglement. In particular, the proposed feedback-enhanced
setup allows us to achieve a fidelity of coherent-state teleportation greater than the threshold value of 2/3 for
secure teleportation and two-way steering between the two cavities’ output modes down the line in the presence
of loss, which otherwise would not be possible without feedback.
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I. INTRODUCTION

Generally, to control a system in both classical and quantum
mechanics one uses either closed-loop or open-loop control.
Here we will focus on quantum-mechanical closed-loop
control with classical feedback. Indeed, as well specified in
Ref. [1], one has to distinguish between quantum control
with classical feedback and fully quantum control, where the
quantum feedback controller acquires and processes quantum
information. The first is also called measurement-based feed-
back because to control the system one first has to measure an
observable and then, by means of an actuator, has to feed the
system the result of the measurement, eventually manipulated
in some way, i.e., using classical information. References [2,3]
first described how to use feedback in all-optical cases. After
these pioneering works in the optical domain several other
proposals were introduced to show how with feedback one
could simulate the presence of a squeezed environment [4],
slow down the destruction of macroscopic coherence [5],
and control the environment’s thermal fluctuations to cool
a mechanical oscillator [6–10]. This last proposal has been
implemented in many optomechanical systems [11–20] and
on a trapped ion [21]. Moreover, parametric feedback schemes
have been proposed and implemented for cooling and trapping
single atoms [22] and trapped nanospheres [23,24]. In the
case of superconducting qubits, feedback schemes based on
parity measurements have recently been demonstrated [25],
achieving deterministic generation of entanglement.

In this paper we will show that one can use feedback to
control and improve continuous-variable (CV) entanglement:
by adjusting the feedback gain one can enhance the value of CV
entanglement, measured through the logarithmic negativity
[26–29]. As an example of the utility of our result we show that
the fidelity of CV teleportation can be enhanced and surpass
the threshold value for quantum teleportation Fthr = 2/3 [30]
even at the end of a lossy channel just by implementing the
appropriate feedback control. We also show how to realize
a two-way steerable Gaussian bipartite state, so that the sent
information is really secure [31], even though a cheating sender
has cloned with an optimal cloning machine [32] the state to be
teleported and has given the cloned state to an eavesdropper.

This paper is organized as follows: In Sec. II we describe
the model by introducing the quantum Heisenberg-Langevin
equations. In Sec. III we add the feedback and discuss the
basic dynamics of the system in the presence of feedback. In

Sec. III we derive the explicit expression for the covariance
matrix of the filtered output cavity modes in the presence of
feedback force. In Sec. IV we report the numerical results of
steady-state entanglement between two filtered output optical
modes and two-way steerability in the presence of feedback. In
Sec. V we consider a different way of adding the feedback by
introducing a third optical mode and use it for feedback in order
to control the entanglement between the other two filtered
output optical modes. Finally, in Sec. VI we compare the two
different feedback schemes and draw some conclusions.

II. MODEL AND DISCUSSION

We consider the multipartite optomechanical setup shown
in Fig. 1. A bichromatic field at two different frequencies
ωLj/2π (j = a,b) with powers Pj drives two cavity modes
of frequencies ωj/2π , both interacting with a mechanical
resonator oscillating at frequency ωm/2π . One of these optical
modes is homodyned and used for feedback; then the two
output modes are filtered and form the two fields of interest for
quantum communication, and the mechanical mode mediates
the necessary interaction between the optical modes. The
entangled output fields can be used down a lossy channel for
teleportation, and we show that feedback helps in obtaining
a fidelity higher than the security threshold, which would not
have been achievable without feedback with the same system’s
parameter values. The full Hamiltonian of the optomechanical
system composed of two optical modes, mode A and mode
B, and one mechanical oscillator with effective mass m,
considered in the frame rotating for each optical mode at the
corresponding driving laser frequency ωLj/2π , is given by
[10,33]

Ĥ = �ωm

2
(p̂2 + q̂2) + ��j [(δj − gj q̂)Â†

j Âj

+ i(EjÂ
†
j − H.c.)], (1)

where δj = ωj − ωLj is the detuning of the laser frequency
from the cavity frequency ωj/2π , the dimensionless me-
chanical resonator position q̂ and momentum p̂ have the
commutation relation [q̂,p̂] = i, Âj (Â†

j ) is the annihilation
(creation) operator of the cavity mode j with the com-
mutation relation [Âj ,Â

†
k] = δjk , and gj = xzpf

√
2(dωj/dx)

is the bare single-photon optomechanical coupling, where
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FIG. 1. Description of the homodyne-based feedback scheme.

xzpf = √
�/2mωm represents the zero-point position fluctua-

tions of the mechanical oscillator. Ej is the amplitude of the j th
driving field, and we will deal with only a single mechanical
mode [34].

In order to study the full dynamics of the system we use
the Heisenberg-Langevin equations of motion [35], adding
the effect of damping and noise to the evolution driven by the
Hamiltonian of Eq. (1), obtaining

˙̂q = ωmp̂, (2a)

˙̂p = −ωmq̂ − γmp̂ +
∑

i

giÂ
†
i Âi + ζ (t), (2b)

˙̂Aa = −(κa + iδa)Âa + igaÂaq̂ + Ea +
√

2κaÂ
in
a , (2c)

˙̂Ab = −(κb + iδb)Âb + igbÂbq̂ + Eb +
√

2κbÂ
in
b , (2d)

where γm is the damping rate of the mechanical oscillator
and ζ (t) is the thermal fluctuating force associated with
the mechanical damping and is characterized by the cor-
relation function [〈ζ (t)ζ (t ′)〉 + 〈ζ (t ′)ζ (t)〉]/2 = γm(2nth +
1)δ(t − t ′), where nth = (e(�ωm/KbT ) − 1)−1 is the equilibrium
thermal occupation number of the mechanical resonator. We
also introduce the optical input noises of modes A and B, given
by Âin

a and Âin
b , respectively, with the following correlation

functions: 〈
Âin

a (t)Âin†
a (t ′)

〉 = [N (ωa) + 1]δ(t − t ′), (3a)〈
Âin†

a (t)Âin
a (t ′)

〉 = [N (ωa)]δ(t − t ′), (3b)〈
Âin

b (t)Âin†
b (t ′)

〉 = [N (ωb) + 1]δ(t − t ′), (3c)〈
Âin†

b (t)Âin
b (t ′)

〉 = [N (ωb)]δ(t − t ′), (3d)

where N (ωj ) = [e(�ωj /kbT ) − 1]−1 with j = a,b is the mean
thermal photon number. At optical frequencies (�ωj/kbT �
1), therefore, one can safely assume N (ωj ) ≈ 0. We consider
the regime where both mode A and mode B are strongly driven
and the field inside the cavity is very intense. In this case
the dynamics of the system can be described by quantum
fluctuations around the steady state, which is stable with the
right choice of the various system parameters. Therefore,
one can make the semiclassical approximation to linearize

the system of nonlinear Langevin equations by writing each
operator of the system as the sum of its steady-state value
and a small fluctuation, Âj = Ajs + δÂj , q̂ = qs + δq̂, p̂ =
ps + δp̂. The parameters Ajs , ps , and qs are the solutions
of the nonlinear algebraic equations obtained by factorizing
Eqs. (2) and setting the time derivatives equal to zero: ps = 0,

qs =
∑

j=a,b

gj |Ajs |2
ωm

, Ajs = Ej

κj + i	j

, (4)

where 	j = δj − ∑
gjqs is the effective detuning. Then by

defining the quadrature fluctuations of the cavity field δX̂j =
(δÂj + δÂ

†
j )/2 and δŶi = (δÂj − δÂ

†
j )/i

√
2 and the corre-

sponding input noise quadratures X̂in
j = (Âin

j + Â
† in

j )/
√

2 and

Ŷ in
j = (Âin

j − Â
† in

j )/i
√

2, the linearized quantum Heisenberg-
Langevin equations in compact form are given by

˙̂R(t) = AdrR̂(t) + n̂(t), (5)

where R̂(t) = [δq̂,δp̂,δX̂a,δŶa,δX̂b,δŶb]T (where T de-
notes transposition) is the vector of the system’s
fluctuation quadratures, n̂(t) = [0,ζ (t),

√
2κaX̂

in
a ,

√
2κaŶ

in
a ,√

2κbX̂
in
b ,

√
2κbŶ

in
b ]T is the corresponding vector of noises,

and Adr is the drift matrix, which is given by

Adr =

⎛
⎜⎜⎜⎜⎜⎝

0 ωm 0 0 0 0
−ωm −γm Ga 0 Gb 0

0 0 −κa 	a 0 0
Ga 0 −	a −κa 0 0
0 0 0 0 −κb 	b

Gb 0 0 0 −	b −κb

⎞
⎟⎟⎟⎟⎟⎠, (6)

where Gj = gj |Ajs |
√

2 is the dressed optomechanical cou-
pling for the j th mode.

In the case of a tripartite optomechanical system, various
proposals have already showed that the two output modes
can be strongly entangled, e.g., two orthogonal modes with
the same frequency [33], two optical modes at different
frequencies [10,36–39], or an optical and microwave mode
[40,41]; in Refs. [39–41] entanglement was sufficiently good
that it could be exploited to perform CV teleportation. We now
show that the value of CV entanglement can be controlled and
enhanced via feedback, and to this end we use a fraction of
one of the optical modes and homodyne it.

III. ADDING FEEDBACK

We consider cold-damping feedback [6–8,10–20] in which
the position of the oscillator is measured by means of a
phase-sensitive detection of the output of cavity mode B. For
this purpose a beam splitter is used which splits the output of
mode B into transmitted and reflected fields. The transmitted
part may be used by a generic quantum communication
protocol, while the reflected part is used to measure the position
of the oscillator by means of a phase-sensitive detection
and is then fed back to the oscillator by applying a force
whose intensity is proportional to the time derivative of the
output signal, that is, to the oscillator velocity (the cold-
damping technique [6–8,10–20]). Real-time monitoring of the
resonator position is provided by the homodyne measurement
of the phase quadrature δŶ

(r)
b (t) = rδŶ out

b (t) + t Ŷ in
s (t), where
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δŶ out
b is the phase quadrature of the output field fluctuation,

which is obtained by using the input-output relation δŶ out
b =√

2κbδŶb − Ŷ in
b [35], and Ŷ in

s (t) = [ŝin(t) − ŝ
†
in(t)]/

√
2i, with

ŝin(t) being the vacuum noise entering the unused input port
of the beam splitter [with the usual commutation relation
[ŝin(t),ŝ†in(t ′)] = δ(t − t ′)]. Moreover, r and t are the reflection
and transmission coefficients of the beam splitter, respectively,
with r2 + t2 = 1. The feedback loop is described by an
additional force term on the equation of motion of the
mechanical momentum {δ ˙̂p(t)}f b given by

{δ ˙̂p(t)}f b = i√
2κb

d

dt

[
δŶ

(hom)
b (t)

]
[gcdδq̂,δp̂]

= − gcd√
2κb

d

dt
δŶ

(hom)
b (t), (7)

where gcd > 0 is the feedback gain and δŶ
(hom)
b (t) is the

detected field quadrature. If the detector efficiency is σ , then
the detected field quadrature can be represented by the operator

δŶ
(hom)
b (t) = √

σδŶ
(r)
b (t) + √

1 − σ Ŷ in
v (t), (8)

where Ŷ in
v (t) = [v̂in(t) − v̂

†
in(t)]/

√
2i is the Gaussian noise

operator associated with the nonunit homodyne detection
efficiency, with the correlation 〈Ŷ in

v (t)Ŷ in
v (t ′)〉 = δ(t − t ′). In-

serting Eq. (8) into Eq. (7) and then adding the resulting
feedback force into the linearized quantum Langevin equations
of Eqs. (5), the dynamics of the three-mode optomechanical
system modified by the feedback force can be written in the
frequency domain in the following compact matrix form:

R̂f b(ω) = −M(ω)N̂f b(ω), (9)

where R̂f b(ω) = [δq̂f b,δp̂f b,δX̂
f b
a ,δŶ

f b
a ,δX̂

f b

b ,δŶ
f b

b ]T

is the Fourier transform of the vector with CV internal
quadrature fluctuations in the presence of feedback,
N̂f b(ω) = n̂(ω) + n̂f b(ω) is the corresponding vector of
input noises in the presence of feedback with n̂f b(ω) =
[0, −√

σrgcd

√
2κb Ŷ in

b (ω) (1 + iω
2κb

) + iω
√

σ tgcd√
2κb

Ŷ in
s (ω) +

iω
√

1−σgcd√
2κb

Ŷ in
v (ω),0,0,0,0]T, and M(ω) = (iωI + Af b)−1,

with I being the 6 × 6 identity matrix and Af b being
the drift matrix of the linearized dynamical system
modified by feedback. This latter matrix can be written as
Af b = Adr + Fdr , where Fdr is a 6 × 6 matrix whose nonzero
elements are {Fdr}(2,2) = −GcdGb, {Fdr}(2,5) = Gcd	b, and
{Fdr}(2,6) = Gcdκb, with Gcd = √

σrgcd .
The tripartite optomechanical system is stable and reaches

its steady state only if all the eigenvalues of the drift matrix Af b

have a negative real part. The stability conditions, which now
depend on the feedback gain, can be obtained by applying
the Routh-Hurwitz criterion [42], which, however, is too

cumbersome to be explicitly reported here. In particular, one
has to verify that the effective mechanical-damping constant
remains positive due to the combined and opposite actions
of the feedback force and of the backaction of mode B. We
always consider steady-state entanglement, and therefore, we
always consider a parameter regime where the system is stable.

Covariance matrix of the filtered output quadratures
in the presence of feedback

We want to study the entanglement of the traveling optical
mode A fluctuations and the transmitted fluctuations of mode
B at the output of the optomechanical cavity. By using the
input-output relation, the spectral components of the output
field’s quadratures in the presence of the feedback force are
given by

R̂out(ω) = Tt [PR̂f b(ω) − N̂(ω)] − TrN̂s(ω)

= Tt [−PM(ω)N̂f b(ω) − N̂(ω)] − TrN̂s(ω), (10)

where R̂out(ω) = [δq̂f b,δp̂f b,δX̂out
a ,δŶ out

a ,δX̂
(out)
b ,δŶ

(out)
b ]T,

P = diag[1,1,
√

2κa,
√

2κa,
√

2κb,
√

2κb], N̂(ω) = [0,0,X̂in
a

(ω),Ŷ in
a (ω),X̂in

b (ω),Ŷ in
b (ω)]T, Tt = diag[1,1,1,1,t,t]T, Tr =

diag[1,1,1,1,r,r]T, and N̂s(ω) = [0,0,0,0,X̂in
s (ω),Ŷ in

s (ω)]T.
As shown in Ref. [10], the correlation between the output

optical modes can be optimized with filters. The field’s filtered
mode can be defined as

δÂ
f lt

j (t) =
∫ t

−∞
hj (t − t ′)δÂout

j (t ′)dt ′ (j = a,b), (11)

where δÂ
f lt

j (t) is the corresponding bosonic annihilation
operator at the output of the j th causal filter hj (t). The explicit
form of hj (t) in the time and frequency domains can be written
as [10]

hj (t) = e−(1/τj +i�j )t√
2/τj

θj (t), hj (ω) =
√

τj /π

1 + iτj (�j − ω)
,

(12)

where τj and �j are the inverse bandwidth and central
frequency of the j th filter. θj (t) is the Heaviside step function.
Since the steady state of the system is a zero-mean Gaussian
state, it is fully described by its second-order correlations. The
covariance matrix of the filtered output fluctuation quadratures
can be written as

2Vf lt (ω,ω′) = 〈R̂f lt (ω) · R̂f ltT(ω′) + R̂f lt (ω′) · R̂f ltT(ω)〉,
(13)

where R̂f lt (ω) = T(ω)R̂out(ω), with T(ω) being the Fourier
transform of the T(t) matrix containing the filter functions,
given by

T(t) =

⎛
⎜⎜⎜⎜⎜⎝

δ(t) 0 0 0 0 0
0 δ(t) 0 0 0 0
0 0 Re[ha(t)] −Im[ha(t)] 0 0
0 0 Im[ha(t)] Re[ha(t)] 0 0
0 0 0 0 Re[hb(t)] −Im[hb(t)]
0 0 0 0 Im[hb(t)] Re[hb(t)]

⎞
⎟⎟⎟⎟⎟⎠. (14)
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By substituting R̂f lt (ω) in Eq. (13) we get

2Vf lt (ω,ω′) = T(ω)〈R̂out(ω)R̂outT(ω′)〉TT(ω′)

+T(ω′)〈R̂out(ω′)R̂outT(ω)〉TT(ω), (15)

and the explicit form of the two-frequency autocorrelation
〈R̂out(ω)R̂outT(ω′)〉 is given by

〈R̂out(ω)R̂outT(ω′)〉
= {Tt [PM(ω)Df b(ω,ω′)MT(ω′)P + D1

+ PM(ω)D2 + D2MT(ω′)P]TT
t + TrD3TT

r

− T(ω)F(ω)TT(ω′)}δ(ω + ω′), (16)

where F(ω,ω′) = TtPM(ω)D4(ω)Tr
T. Moreover, in the above

equation we have defined

〈N̂f d (ω)N̂f dT(ω′)〉 = Df b(ω,ω′)δ(ω + ω′),

〈N̂(ω)N̂T(ω′)〉 = D1δ(ω + ω′),

〈N̂f d (ω)N̂T(ω′)〉 = 〈N̂T(ω)N̂f dT(ω′)〉 = D2δ(ω + ω′),〈
N̂s(ω)N̂T

s (ω′)
〉 = D3δ(ω + ω′),〈

N̂f d (ω)N̂T
s (ω′)

〉 = D4(ω,ω′)δ(ω + ω′), (17)

where Df b(ω,ω′) = d + df b(ω,ω′) is the diffusion matrix in
the presence of feedback, with

d = diag[0,γm(2nth + 1),κa,κa,κb,κb]

and df b(ω,ω′) being a 6 × 6 matrix with only three nonzero
elements, given by

{df b(ω,ω′)}22 = g2
cdσ r2κb

(
1 + iω

2κb

)(
1 + iω′

2κb

)

− ωω′g2
cd

4κb

(1 − r2σ ),

{df b(ω,ω′)}26 = −gcdκb

(
1 + iω

2κb

)
,

{df b(ω,ω′)}62 = −gcdκb

(
1 + iω′

2κb

)
. (18)

Finally, D1 = 1/2 diag[0,0,1,1,1,1], D2 = 1/
√

2 diag
[0,0,

√
κa,

√
κa,

√
κb,

√
κb], D3 = 1/2 diag[0,0,0,0,1,1], and

D4 is a 6 × 6 matrix with only one nonzero element, given by

{D4}(2,6) = −iω

√
σgcd t√
2κb

. (19)

By inserting Eq. (16) into Eq. (15) and integrating Vf l(ω,ω′)
using the delta function δ(ω + ω′), the final expression of the
covariance matrix of the filtered cavity output modes is given
by

Vf lt (�a,τa; �b,τb) =
∫ ∞

−∞
dωVf lt (ω,−ω), (20)

where we explicitly show the dependence on the central
frequencies �j and inverse linewidths τj of the output field
filter functions.

IV. STEADY-STATE ENTANGLEMENT, FIDELITY
OF TELEPORTATION, AND TWO-WAY STEERABILITY

In order to study the entanglement of a traveling CV
bipartite Gaussian system, composed of the filtered output
optical modes A (Alice) and B (Bob), the covariance matrix
Vab of the reduced Gaussian state ρ̂ab can be obtained by
eliminating the mechanical mode, i.e., by removing the rows
and columns of the covariance matrix Vf lt corresponding to
the latter mode. The resulting covariance matrix can be written
in terms of 2 × 2 block matrices as

Vab =
(

A C
CT B

)
, (21)

where A and B are the covariance matrices corresponding
to Alice’s and Bob’s subsystems, respectively, whereas C
describes the correlation between Alice and Bob. The bi-
partite entanglement is measured by the negativity [26] and
can be quantified using the logarithmic negativity [27–29]
EN = max[0,−ln(2ν−)], where ν− is the smallest symplectic
eigenvalue of partial transpose Vab matrix.

When the two traveling optical output fields are entangled,
they can be exploited for long-distance transfer of quantum
information, e.g., for quantum teleportation of an unknown
coherent state [43]. For long-distance applications, it is
important to consider the robustness of the resulting quantum
communication channel with respect to optical losses, which
are unavoidable when the two fields travel a long distance
in free space or down an optical fiber. Losses can be
described using a beam-splitter model [44], with an effective
transmissivity η = η0e

−αl/10, where α is the attenuation (in
dB/km), l is the distance traveled by each field (assumed
to be at the same distance from the generating device for
simplicity), and η0 takes into account all possible inefficiencies
[39,44,45]. Due to these losses, the filtered output covariance
matrix becomes Vloss

ab = ηVab + 1
2 (1 − η)I, with I being the

4 × 4 identity matrix.
The fidelity of the teleportation of a Gaussian state is

connected to the bipartite covariance matrix by the ex-
pression F = 1/Det(�) [40,41], with the 2 × 2 matrix � =
2Vin + Bloss + ZAlossZ + ZCloss + CTlossZ, where Vin is the
covariance matrix of the Gaussian state to be teleported, Z is
the diagonal Pauli matrix, and Aloss, Bloss, and Closs are the
matrices in Eq. (21) in the presence of optical loss, while in its
absence they would be the same as in Eq. (21). We shall always
consider an input coherent state where Vin = I2/2, where I2 is
the 2 × 2 identity matrix. Moreover, the fidelity with respect
to the optimal upper bound defined in Ref. [46], obtained by
optimizing over all possible local operations, is given by

F = 1

1 + e−EN
, (22)

where EN is the logarithmic negativity of the quantum channel.
Let us now discuss under which conditions cold-damping

feedback improves the generation of CV output optical
entanglement for quantum communication applications. Cold-
damping feedback is typically used in the unresolved sideband
regime κb > ωm and at cavity resonance, 	b = 0, in order
to optimally overdamp and cool the mechanical resonator.
Here we show that, instead, the best enhancement and control
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FIG. 2. (a) Logarithmic negativity EN and (b) fidelity of teleportation of a coherent state as a function of the reflection coefficient of
the beam splitter r (t = √

1 − r2) and feedback gain gcd . The optimal values for r and gcd are essentially the same for entanglement and
fidelity. The dashed curve corresponds just to the condition gcdr = Gb/(

√
σωm), when cold damping feedback cancels the heating effect of

the blue-detuned mode B. The system parameters are ωm = 2π × 10 MHz, γm = 1.5 × 10−5 ωm, κa = 0.01 ωm,κb = 0.01 ωm, temperature
T = 400 mK, ωmτb = ωmτa = 2000, Ga = 0.065 ωm, Gb = 0.04 ωm, 	a = ωm, 	b = −ωm, �a = −�b = ωm, and σ = 0.92.

of output optical entanglement is achieved in a completely
different regime of cold damping, in the resolved sideband
regime κb < ωm, and where the backaction of cavity mode B

and that of feedback act against each other. In fact, the best CV
entanglement increase is obtained when 	b < 0 and gcd > 0,
when mode B backaction heats and drives the mechanical
resonator to instability while feedback cools and stabilizes it.

As shown in various papers [10,36,37,39–41], optimal
stationary entanglement between the two output modes is
achieved in the regime where one mode (here mode A) is
coupled to the mechanical resonator via the beam-splitter
interaction and the other mode (mode B) is coupled via the
parametric interaction, achieved when 	a = −	b = ωm and
in the resolved sideband regime κa,κb < ωm, with the first
interaction slightly dominant for stability conditions. If the
parameters depart too much from the instability threshold,
i.e., the cooling process via the beam-splitter interaction
dominates too much, the entanglement degrades. We can see
that stationary output mode entanglement is improved by cold
damping when the latter improves the stability and cooling
without modifying the coupling and detunings of modes A and
B, Gj and 	j . An intuitive idea of this fact can be obtained
from the expression of the effective mechanical damping in
the presence of the cavity modes’ backaction and feedback,
which can be derived from the mechanical susceptibility [10],

γ
f b

m,eff(ω) = γm

[
1 +

∑
i=a,b

2G2
i 	iQmκi[

κ2
i + (ω − 	i)2

][
κ2

i + (ω + 	i)2
]

+
(
	2

b + ω2 + κ2
b

)
κbGb

√
σrgcdQm[

κ2
b + (ω − 	b)2

][
κ2

b + (ω + 	b)2
]
]
, (23)

where Qm = ωm/γm is the mechanical quality factor.
When ω = ωm, 	a = −	b = ωm, and in the resolved side-

band regime (κa,κb < ωm), the effective mechanical damping

becomes

γ
f b

m,eff(ωm) = γm

[
1 + G2

a

2κaγm

− G2
b

2κbγm

(
1 − ωm

√
σrgcd

Gb

)]
,

(24)

which shows that when gcd = Gb/
√

σrωm, the heating term is
canceled, implying a more stable system and better mechanical
cooling. We expect that the largest entanglement is achieved
when this condition between the output beam-splitter reflec-
tivity r and the feedback gain gcd is at least approximately
satisfied.

This is confirmed in Fig. 2, where we analyze the effect
of the beam-splitter reflectivity at the output of mode B on
the feedback performance and we show the contour plot of
the logarithmic negativity EN [Fig. 2(a)] and the teleportation
fidelity for a coherent state [Fig. 2(b)] as a function of the
beam-splitter reflectivity r and the feedback gain gcd . Here
we restrict ourselves to the case with no losses down the
channel. The dashed curve corresponds just to the condition
gcdr = Gb/(

√
σωm), when cold-damping feedback cancels

the heating effect of the blue-detuned mode B. We see
that the optimal value of entanglement, as well as for the
teleportation fidelity [practically coinciding with the upper
bound of Eq. (22)], is obtained at gcd = 0.047 and r = 0.56.
This value is quite close to one point of the dashed line gcdr =
Gb/(

√
σωm), and this suggests that cold-damping feedback

improves output stationary entanglement approximately when
it cancels the heating effect of the blue-detuned optical mode
and stabilizes the system and that this is optimal when a beam
splitter close to a 50:50 one is used to take part of the output
signal for the homodyne feedback loop, while the rest is used
for the teleportation protocol.

We have also verified that when cold damping is used in
a different regime, one does not have the same significant
enhancement of entanglement. In particular, when cold-
damping feedback exploits the homodyne detection of the
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FIG. 3. (a) Logarithmic negativity EN and (b) fidelity of teleportation of a coherent state as a function of feedback gain gcd for a fixed value
of beam-splitter reflectivity r = 0.56, both showing a maximum very close to the heating-term cancellation value gcd = Gb/

√
σrωm. Blue

solid curves refer to the situation without optical loss, while red dashed curves refer to that with loss, with an attenuation α = 0.005 dB/km
[52] in free space, distance l = 20 km, and η0 = 0.9. The horizontal dotted blue curve and the dot-dashed red curve refer to the model without
feedback gcd = 0, without and with optical loss, respectively. In (b), the horizontal green (light gray) line is for the secure teleportation threshold
Fthr = 2/3, while the upper thick dotted black curve and thin dot-dashed black curve represent the upper bound defined in Eq. (22) for the
cases without and with optical loss, respectively. The other parameters are the same as in Fig. 2.

red-detuned cooling mode A, feedback enforces cooling and
stability as well, but one gets a smaller enhancement of
entanglement. This occurs also when feedback with negative
gain (i.e., antidamping) is used, where, again, the achieved
stationary entanglement is smaller. We also noticed that
different feedback actions, for example, the proportional
feedback used for increasing the resonance frequency in [47]
or for improving ponderomotive squeezing in [48], are not able
to provide the same entanglement enhancement.

From now on we choose the optimal operational point r =
0.56, and we also take the usual condition for maximizing
the output entanglement in this case [10,36,37,39–41]; that is,
we take for the detunings 	a = −	b = ωm and the filters’
frequencies centered around the corresponding cavity mode
resonance, �a = −�b = ωm.

Figure 3 shows the effect of the feedback gain gcd on the log-
arithmic negativity EN [Fig. 3(a)] and on the fidelity F for the
teleportation of a coherent state [Fig. 3(b)]. We see that cold-
damping feedback permits us to increase the entanglement and
the corresponding teleportation fidelity within an appropriate
interval of values of the feedback gain, with respect to the case
without feedback (dashed horizontal lines), both with (red
curves) and without (blue curves) losses. Both quantities show
a maximum very close to the heating-term cancellation value
gcd = Gb/

√
σrωm, consistent with the results of Fig. 2. We no-

tice that the achieved maximum of EN in the presence of losses
is still smaller than the largest valued achieved experimentally
using parametric downconversion, i.e., by mixing two indi-
vidual squeezed beams at a balanced beam splitter (EN 	 2.3
[49]), or at the output of a single optical parametric amplifier
(EN 	 1.94 [50]). However, as shown in [39–41,51], one could
get larger entanglement by choosing a narrower bandwidth
1/τj (j = a,b) and adjusting the corresponding couplings Gj ,
even though narrow filtered output modes are extremely diffi-
cult to prepare and to keep stable. In the figures we consider the
loss associated with free-space laser communication on a clean
day without turbulence, α = 0.005 dB/km [52], at a distance
of l = 20 km and with η0 = 0.9, which is equivalent to about

7 km in a low-noise optical fiber with attenuation 0.16 dB/km
[53]. As the gain grows, we pass from a regime with fidelity be-
low the threshold for secure teleportation Fthr to the one above,
showing the advantage of a closed loop controlling the system.

In Fig. 4(a) we study the teleportation fidelity F as a
function of one filter’s central frequency, while the other one
is fixed at the value �a = ωm. We choose the feedback gain
value maximizing the fidelity in Fig. 3(b), and we keep all
the other parameter values as in Fig. 3. We see, again, in
Fig. 4(a) that feedback allows us to surpass the threshold
for quantum teleportation with losses (red solid curve) with
respect to the case without cold-damping feedback where the
teleportation fidelity is below such a threshold (red dashed
curve).

In Fig. 4(b), instead, we exploit the recent results of
Ref. [31] and analyze the steering capabilities of the proposed
optomechanical device. Quantum steerability [54,55] is
stronger than entanglement and occurs when an observer (Al-
ice) can regulate or adjust the state of another distant observer
(Bob) by only local measurements performed on her side
when they share an Einstein-Podolsky-Rosen (EPR) entangled
state [56]. The first insight into such an EPR nonlocality was
provided by the seminal paper [57], which characterized it
in terms of violations of the inferred Heisenberg uncertainty
principle (see also Ref. [33]). The steerability of a two-mode
CV Gaussian state ρ̂ab A → B (Gaussian measurements at
Alice’s site) can be quantified by EB|A = max(0,−ln

√
Detϒ),

where [58,59] ϒ = B − CT A−1C is the Schur complement
of A in the covariance matrix Vab [54,55,60]. Reference
[31] showed that in order for the sent information to be
really secure the symmetric Gaussian bipartite state should be
two-way steerable, and this is certified when ν < 1/3, where ν

is the smaller symplectic eigenvalue of the partially transposed
matrix Vab. The symplectic eigenvalue ν of Ref. [31] coincides
with our 2ν− due to the different definitions for the covariance
matrix. In Fig. 4(b) we see that in a narrow interval of values
of the feedback gain, two-way steerability is possible even in
the presence of realistic optical losses.
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FIG. 4. (a) Fidelity of teleportation of a coherent state vs the central frequency of one filtered output mode, with the central frequency
of the other output mode fixed at �a = ωm and with (gcd ,r) = (0.047,0.56); (b) the smallest symplectic eigenvalue ν (certifying two-way
steerability when ν < 1/3) vs gcd . Blue solid curves refer to the situation without optical loss, while red dashed curves refer to that with loss in
the presence of feedback. The dotted blue and the red dot-dashed curves refer to the case without feedback gcd = 0, without and with optical
loss, respectively. The green (light gray) horizontal line is for the secure teleportation threshold Fthr = 2/3 in (a) and for ν = 1/3 in (b). In (a),
the upper thick dotted black line and the thin dot-dashed black line refer to the upper bound given in Eq. (22), without and with optical loss,
respectively. It is evident from (b) that ν < 1/3 is satisfied only in a small region both with loss (red dashed curve) and without loss (blue solid
curve). All the other parameters are the same as in Fig. 2.

V. ADDING FEEDBACK BY USING A THIRD MODE

We are now interested in controlling the value of entangle-
ment, i.e., controlling the value of the logarithmic negativity
[26–29], by introducing a further optical mode frequency
(mode C) interacting with the mechanical resonator, which is
used just for the homodyne measurement and feedback. This
means that in this second scheme, different from the previous
case, mode B is used only for quantum communication and
not also for the homodyne measurement of its reflected part.
Therefore, we should add the equation

˙̂Ac = −(κc + iδc)Âc + igcÂcq̂ + Ec +
√

2κcÂ
in
c (25)

to the above system of equations (5). Then, we linearize with
respect to the new steady-state values, which will be formally
equal to those shown above, with the only difference that the
index now runs as j = (a,b,c). Adding the third mode and
considering, of course, the new stability conditions, one can
show that for particular values of the renormalized coupling
constant Gc = gc|Acs |

√
2 one could have an enhancement of

the logarithmic negativity and hence of the entanglement.

We now consider the feedback loop obtained by extracting
a fraction of the cavity output of mode C, which is then
processed in order to drive an appropriate actuator acting on
the mechanical oscillator. We reconsider the results in Sec. III
and show that when δŶ out

c (t) = (δÂout
c − δÂ

out†
c )/(i

√
2), the

output quadrature of optical mode C, is detected by a balanced
homodyne detector with efficiency σ (we choose here σ = 1
for simplicity) and fed back to the mechanical oscillator with
some gain gcd , we are able to control the entanglement between
the other two optical output modes. In this case, the feedback
force applied to the mechanical oscillator can be written in the
time and frequency domains, respectively, as [10]

ff b(t) = gcd√
2κc

d

dt

[√
2κcδŶc(t) − Ŷ in

c (t)
]
,

ff b(ω) = − iωgcd√
2κc

[√
2κcδŶc(ω) − Ŷ in

c (ω)
]
, (26)

where gcd > 0 is the feedback gain. The modified dynamics
of the four-mode optomechanical system can be written in
compact form in the frequency domain as

R̂f b
(ω) = −M(ω)N̂f b

(ω), (27)

where R̂f b
(ω) = [δq̂f b,δp̂f b,δX̂

f b
a ,δŶ

f b
a ,δX̂

f b

b ,δŶ
f b

b ,δX̂
f b
c ,δŶ

f b
c ]T is the vector of the quadrature fluctuations and N̂f b

(ω) =
[0,−gcd

√
2κbŶ

in
c (ω)(1 + iω

2κc
),
√

2κaX̂
in
a ,

√
2κaŶ

in
a ,

√
2κbX̂

in
b ,

√
2κbŶ

in
b ,

√
2κcX̂

in
c ,

√
2κcŶ

in
c ]T is the corresponding vector of input

noises in the presence of the optical mode C with feedback. Moreover,M(ω) = (iωI +Adr)−1, whereAdr is drift matrix in the
presence of mode C with feedback and is given by

Adr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −ωm 0 0 0 0 0 0
−ωm − gcdGc −γm Ga 0 Gb 0 Gc + gcd	c gcdκc

0 0 −κa 	a 0 0 0 0
Ga 0 −	a −κa 0 0 0 0
0 0 0 0 −κb 	b 0 0

Gb 0 0 0 −	b −κb 0 0
0 0 0 0 0 0 −κc 	c

Gc 0 0 0 0 0 −	c −κc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)
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FIG. 5. (a) Logarithmic negativity EN vs feedback gain gcd in the three-mode case. The blue solid curve refers to the case without loss, and
the red dashed curve refers to that with loss (with α = 0.005 dB/km [52], l = 20 km, η0 = 0.9, as in Fig. 2); the dotted blue and dot-dashed
red horizontal lines refer to the case without feedback, without and with loss, respectively. (b) Fidelity F for coherent-state teleportation vs
gcd , with the same color code, and with the green (light gray) line denoting the secure teleportation threshold Fthr = 2/3, while the upper
thick dotted and thin dot-dashed black lines refer to the upper bound given in Eq. (22), without and with optical loss, respectively. Like in
the two-optical-mode case, entanglement and fidelity are maximum with very good approximation when gcd = (κcG

2
b + κbG

2
c)/(κcωmGc),

where the feedback cancels the heating and antidamping effects of modes B and C. (c) Smallest symplectic eigenvalue ν (certifying two-way
steerability when ν < 1/3) vs gcd . It is evident that ν < 1/3 is satisfied only in a small region both with loss (red dashed curve) and without
loss (blue solid curve). The green (light gray) line is now for ν = 1/3, while again the dotted blue and dot-dashed red horizontal lines
refer to the case without feedback, without and with loss, respectively. The system parameters are ωm = 2π × 10 MHz, γm = 1.5 × 10−5 ωm,
κa = 0.01 ωm, κb = 0.01 ωm, κc = 0.01 ωm, temperature T = 400 mK, ωmτb = ωmτa = 2000, Ga = 0.065 ωm, Gb = 0.04 ωm, Gc = 0.05 ωm,
	a = ωm, 	b = 	c = −ωm, and �a = −�b = ωm.

In the presence of the third mode C and of feedback, the effective damping rate of the mechanical resonator can be written as
[compare also with Eq. (23)]

�
f b

m,eff(ω) = γm

[
1 +

∑
i=a,b,c

2G2
i 	iQmκi[

κ2
i + (ω − 	i)2

][
κ2

i + (ω + 	i)2
] +

(
	2

c + ω2 + κ2
c

)
κcGcgcdQm[

κ2
c + (ω − 	c)2

][
κ2

c + (ω + 	c)2
]
]
, (29)

which, in the resolved sideband regime (κa,κb,κc < ωm) and taking the usual conditions for the detunings for maximizing the
output entanglement between modes A and B [36], 	a = −	b = −	c = ωm, becomes

�
f b

m,eff(ωm) = γm

(
1 + G2

a

2κaγm

− G2
b

κbγm

− G2
c

2κcγm

+ Gcωmgcd

2κcγm

)
. (30)

It is evident that when gcd = (κcG
2
b + κbG

2
c)/κbωmGc, the heating term corresponding to decreasing damping vanishes, and

feedback improves the stability of the system. We will see that, similar to the two-optical-mode case, entanglement and fidelity
are maximum with a very good approximation close to this condition.

As in the previous section we introduce the filters hj (t) with j = a,b. The output of the causal filter hj (t) can be defined by
the corresponding bosonic annihilation operators as before in Eq. (12). The correlation matrix of the filtered quadrature modes
in the presence of mode C and feedback can be written as

Vf lt (�a,τa,�b,τb,) =
∫ ∞

−∞
dω {T(ω)[PM(ω)Df b(ω, − ω)MT(−ω)P+D1 − PM(ω)D2 −D2MT(−ω)P]TT(−ω)

+T(−ω)[PM(−ω)Df b(−ω,ω)MT(ω)P+D1 − PM(−ω)D2 −D2MT(ω)P]TT(ω)}, (31)

where T(ω) is the Fourier transform of the transformation
matrix T(t) containing the filter functions

T(t) =
(

T(t) 06×2

02×6 δ(t)I2×2

)
, (32)

with 0 being a 6 × 2 null matrix and I being 2 × 2 identity
matrix; P = diag[1,1,

√
2κa,

√
2κa,

√
2κb,

√
2κb,1,1]; D1 =

(1/2) diag[0,0,1,1,1,1,0,0]; D2 = (1/
√

2) diag[0,0,
√

κa,√
κa,

√
κb,

√
κb,0,0]; andDf b(ω,ω′) = Z+Zf b(ω,ω′) is the

diffusion matrix, with

Z =
(

d 06×2

02×6 κcI2×2

)
(33)

and Zf b being an 8 × 8 matrix whose nonzero el-
ements are {Zf b}22 = g2

cdκc(1 + iω
2κc

)(1 + iω′
2κc

), {Zf b}26 =
−gcdκc(1 + iω

2κc
), and {Zf b}62 = −gcdκc(1 + iω′

2κc
).

In Fig. 5(a) we plot the logarithmic negativity EN as a
function of feedback gain gcd by fixing the values of the
detuning 	a = −	b = −	c = ωm and central frequencies
�a = −�b = ωm of the two filters to get the maximum value
of entanglement between modes A and B at the output of the
cavity in the presence of mode C. It is evident that EN increases
with respect to the case without feedback (blue and red dotted
curves) both in the absence (blue solid curve) and in the
presence (red curve) of losses. Like in the two-optical-mode
case, entanglement is maximum with very good approximation
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when gcd = (κcG
2
b + κbG

2
c)/(κcωmGc), when cold damping

cancels the heating due to the blue-detuned modes B and
C. In Fig. 5(b) we show the fidelity of the teleported initial
coherent state as a function of feedback gain gcd . The fidelity
with feedback (blue and red solid curves) is higher than the
one without feedback (blue and red dotted horizontal lines)
as expected and reaches the upper bound (black thin solid
curves) defined in Ref. [46]. In Fig. 5(a) we plot the smallest
symplectic eigenvalue as a function of gcd , like we did for the
case with only two optical modes, in order to determine the
interval of values of gcd in which the optomechanical scheme
in the presence of feedback can be used for CV two-way
steerability.

VI. CONCLUSION

Following Ref. [31], we see that in the case of the first
feedback scheme employing only two optical modes, one can
achieve two-way steerability even in the presence of loss,
and consequently, teleportation is secure with respect to a
cheating sender and an infinitely able eavesdropper when the
feedback gain is chosen in the right interval. In contrast, as
shown in Fig. 4(b), if we consider the same system without
feedback, whether in the presence or absence of the same
loss, we cannot guarantee that the sent information is secure,

although without loss the fidelity could be greater than 2/3.
Of course, as shown in [39–41,51], choosing a narrower
bandwidth 1/τj (j = a,b) for the filters, one could obtain
larger entanglement, a fidelity larger than the threshold for
secure teleportation, and two-way steerability also without
feedback, but we remark that very narrow filtered output modes
are extremely difficult to prepare and to keep stable; in our
plots we considered τa = τb = 2000 ω−1

m , which are close to
the limits for practical experimental implementation. Another
possibility could be using the noiseless linear amplification as
in Ref. [61]; however, that is not easy to implement.

When we consider instead the second feedback scheme,
which employs a third optical mode and therefore requires
a more involved setup, using the same values of parameters
as in the above case, two-way steerability is achieved in the
absence of losses also without feedback, but it is achieved in the
presence of losses down the line only by employing feedback.
Therefore, the security of teleportation is satisfied in a lossy
channel only in this latter case, showing the relevance of using
the proposed feedback scheme.
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