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1.  INTRODUCTION

Global climate change is, along with anthro-
pogenic land-use changes, one of the major drivers of
biodiversity loss in terrestrial ecosystems (Sala et al.
2000, Thomas et al. 2004). While the long-term
change in global climate is not yet certain (IPCC
2013), it will likely have profound effects, shifting ter-
restrial ecosystems outside their historical range of
climate variability. There is therefore a need to pre-
dict how natural vegetation will respond to climate

change in order to propose adaptation measures and
draw recommendations for future land use (Thomas
et al. 2004, Suttle et al. 2007).

Associated with changing global climate, alter-
ations in (1) functioning of organisms (phenology and
physiology; Fitter & Fitter 2002, Gutschick & Bassiri-
Rad 2003, Nicotra et al. 2010), (2) distribution and
abundance of species (Hughes 2000, Root et al. 2003,
Thomas et al. 2004), (3) composition of and interac-
tions within communities (Kardol et al. 2010, Micha let
et al. 2014) and (4) ecosystem processes (Chapin 2003,
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Hsu et al. 2012) are already occurring and will con-
tinue to occur in the future (Walther et al. 2002). This is
due to changes in mean temperature and precipita-
tion, as well as in modifications of their seasonal and
yearly variability, including extreme weather events
(Walther et al. 2002, Thomas et al. 2004, Jentsch et al.
2007, IPCC 2013, Reyer et al. 2013).

Predictions of plant responses to climate change
may be derived from trend-based observational stud-
ies (mainly by means of spatial gradients, i.e. space-
for-time substitution, and temporal gradients, i.e. the
re-visitation approach), experimental manipulations,
and modelling approaches (Dunne et al. 2004); these
can, however, produce opposing outcomes (Sandel et
al. 2010, Metz & Tielbörger 2016). Observational stud-
ies often consider broader spatial and temporal scales,
but generally suffer from lack of control over covari-
ates (Sandel et al. 2010). In contrast, experimental
studies are typically limited in spatial and temporal
transferability (Rustad 2006), but they are particularly
effective in simulating differing magnitudes and fre-
quencies of extreme events (Jentsch et al. 2007). Stud-
ies based on experimental ap proaches have initially
focused on single plants or simple assemblages in
greenhouses and botanical gardens (Fox et al. 1999).
More recently, in situ ex peri ments have been carried
out in natural and complex communities for address-
ing scientific questions requiring understanding of in-
tegrated ecosystem re sponses to extreme environ-
mental changes (Yahdjian & Sala 2002).

Some regions seem to be more sensitive to climate
changes than others. For example, the Mediterran-
ean region is characterized by a climate of transition
between the temperate mid-latitude and sub-tropical
dry climate, and is, consequently, potentially very
sensitive to climate change (Cubasch et al. 1996,
Lavorel et al. 1998, Thuiller et al. 2005). Moreover,
Mediterranean ecosystems will likely experience the
greatest proportional change in biodiversity because
of the substantial influence of the major drivers of
biodiversity alterations (i.e. land-use change, Sala et
al. 2000). Similarly, high-elevation ecosystems in
mountainous regions appear to be particularly vul-
nerable mainly due to significant changes in regime
and abundance of rainfall, in snow-cover duration as
well as in glacier ex tent (Theurillat & Guisan 2001,
ISAC-CNR 2009).

In this context, Italy represents an interesting
model region that spans a broad climatic gradient
ranging from Mediterranean, across sub-Mediterran-
ean and temperate up to alpine climate, sheltering a
broad variety of ‘close-to-natural’ ecosystems, man-
aged semi-natural ecosystems and agro-ecosystems.

As part of the Mediterranean biodiversity hotspot
(Myers et al. 2000), Italy hosts >7000 vascular plant
species (Conti et al. 2005), with 18.9% of the total na-
tional vascular flora being endemic (Peruzzi et al.
2014). In several southern regions, mainly islands, en-
demic taxa represent >20% of the local flora. This
high diversity level is related to a strong biogeo-
graphical gradient, ranging from the Alps to the
Medi terranean, as well as to the long history of hu-
man exploitation and management practices (Fady-
 Welterlen 2005, Colombaroli & Tinner 2013).

In this study, we review experimental and observa-
tional studies carried out in Italy with the objective of
analysing the effects of climate change on terrestrial
plant species and vegetation. Our study aimed to (1)
present an overview of the Italian ‘state of the art’ of
studies on climate change, (2) discuss and summarize
the results across different climatic zones and (3)
identify gaps and future research perspectives.

2.  METHODS

2.1.  Climate change in Italy

Based on model projections, the Mediterranean
region can be considered a climatic change hotspot,
particularly sensitive to global warming (Giorgi
2006). An increase in mean temperature and precipi-
tation variability is predicted for Italy and the whole
of Europe (Giorgi & Lionello 2008, Elguindi et al.
2013, Simolo et al. 2014). Recent studies have pro-
vided increasing evidence of ongoing climate change
in Italy (Brunetti et al. 2002, Tomozeiu et al. 2006,
Senatore et al. 2011, Zampieri et al. 2012, Viola et al.
2014, Caloiero et al. 2015, Piccarreta et al. 2015).
Some of these papers analysed temperature and pre-
cipitation trends that occurred over the past decades.

Analyses of time series of temperature showed a
general increase in annual mean values across the
whole Italian peninsula during the last century
(Brunetti et al. 2004, Simolo et al. 2010), with the Alps
expected to experience warming trends twice as large
as the global ones (Kotlarski et al. 2012, Gobiet et al.
2014). Some studies (Brunetti et al. 2002, 2004) re-
ported a decrease in precipitation events and an in-
crease in their intensity over more than a century, but
with patterns differing between the mountainous ar-
eas (i.e. northern Italy and the mountainous re gions of
central-southern Italy including the alpine, temperate
and sub-Mediterranean climatic zone) and the coastal
regions and islands of southern Italy (i.e. the Mediter-
ranean climatic zone). In particular, a slight decrease
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in precipitation and a significant change in the timing
of precipitation, with a lower number of rainy days,
higher intensity of rainfall and increased duration of
periods without precipitation, have been reported
(ISAC-CNR 2009). In future decades, we will probably
face an increase in weather extremes both in the
sense of heavy rainfall and summer heat waves, with
a high incidence of drought (ISAC-CNR 2009). In con-
trast, low temperature extremes will be less frequent
in winter (Giorgi & Lionello 2008).

Regional climate projections in the alpine climatic
zone indicate that annual mean temperature is ex -
pected to become 0.25 and 0.36°C warmer per de -
cade during the first and the second half of the 21st
century, respectively (Gobiet et al. 2014). This will
lead to accelerated ice melting and reduced glacier-
feeding snowfall and thus to a consequent rapid
retreat of glaciers (Haeberli et al. 2007). Precipitation
is predicted to decline in summer and even more so
in winter, with winter precipitation being mostly rain
instead of snow, leading to a drastic reduction of
snow cover, especially in spring (Steger et al. 2013,
Gobiet et al. 2014). Consequently, frost events in
spring may become more frequent due to earlier
snowmelt time (Scheifinger et al. 2003).

Trend projections are similar for the temperate cli-
matic zone (i.e. the montane belt in the Alps and the
Apennines). In the sub-Mediterranean climatic zone
(i.e. Po valley, hilly regions of central-southern Italy),
increasing temperature during the whole century and
decreasing precipitation in summer and increasing
precipitation in winter are expected (Tomozeiu et al.
2006, Turco et al. 2013). Conversely, in the Mediter-
ranean climatic zone (i.e. coasts, islands, inland areas
of southern Italy), temperature is expected to increase
(Senatore et al. 2011), while precipitation presents a
reverse trend, with decreasing precipitation in winter
and increasing precipitation in summer (Giorgi & Li-
onello 2008, Caloiero et al. 2011, 2015). In coastal
 areas, the intensity and frequency of extreme weather
events, such as floods and storms, will increase, and
sea level will rise, with consequent intensification of
ongoing erosion processes (Medri et al. 2013).

2.2.  Data sources

We carried out a literature survey until July 2016 in
the ISI Web of Science and Google Scholar data-
bases, using appropriate key words (Table S1 in the
Supplement at www. int-res. com/  articles/ suppl/c071
p249 _ supp.   pdf). Only experimental and ob ser va -
tional studies performed in Italy were considered,

but experimental manipulations realized abroad on
plants collected at Italian sites were also included,
since they can provide insights on the effects of
weather manipulation on plants of different origins.
Studies based on modelling approaches, remote
sensing, palaeoclimatology, palaeoecology and post-
fire ecology were excluded, as well as experimental
studies exclusively focused on nutrient addition.
Studies on the effects of climate change on pollina-
tors, pathogens and herbivores were also excluded.

A total of 90 papers published in peer-reviewed
journals were found, with the highest number of pa-
pers produced during the last decade (Fig. 1a). For an
overview of the main climatic factors and re sponse
variables, see Fig. 1b,c. These papers were derived
from 61 research projects (each one including papers
with the same study sites, treatment or gradient, and
sampling design), comprising 26 ex perimental (Table
S2 in the Supplement) and 35 observational ones
(Table S3 in the Supplement). There were 238 study
sites in these experimental and observational activi-
ties, distributed in the 4 climatic zones of Italy (Fig. 2).
Among the experiments, 17 were performed ex situ
(laboratory or mesocosm), and 8 in the field. One ex-
periment combined field and laboratory activities
(Bernareggi et al. 2016). In contrast, observational
studies were mainly based on re-visitation of study
sites (12 projects) and on the study of contrasting
habitats (7) and plant growth markers (7). Seven ob-
servational projects used space-for-time substitution,
while 2 studied the heat wave of 2003.

The largest number of projects was addressed at
the species level (39, of which 20 experimental and
19 observational), 13 projects were carried out at the
community level (only observational), 2 projects at
the ecosystem level (1 observational and 1 experi-
mental), and 7 projects at the cross-level (5 experi-
mental and 2 observational). Details on the partition
of the projects at the different levels (species, com-
munity, ecosystem, cross-level) are given in Fig. 3.

In the following sections, we discuss the main find-
ings of these papers on vegetation responses to cli-
mate change in Italy. We did critically analyse spe-
cific methods used in individual papers.

3.  RESULTS AND DISCUSSION

3.1.  Alpine climatic zone

Eight experimental projects (resulting in 11 papers)
and 17 observational projects (25 papers) were found
for the alpine climatic zone. Three experiments dealt
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with cross-level (ecosystem and community level)
responses to simulated climate scenarios (Brancale-
oni et al. 2007, Gerdol et al. 2013, Carbognani et al.
2014a). Four experiments addressed the effect of
warming on flowering and seed phenology under
controlled environmental conditions (Mondoni et al.
2012, 2015, Petraglia et al. 2014, Bernareggi et al.
2015, 2016, Orsenigo et al. 2015, Carbognani et al.
2016). The observational projects mainly focused on
community- and species-level responses to climate
warming (Abeli et al. 2012a,b, Evangelista et al.
2016, Stanisci et al. 2016). Three observational pro-
jects dealt with vegetation dynamics following gla-
cial retreat (Caccianiga et al. 2006, Cannone et al.
2008, Ciccazzo et al. 2014). In line with expectations

for future climate scenarios, warming
(simulated or recorded along natural
gradients), sometimes associated with
advanced snowmelt, was revealed as
the main driver of environmental
changes in the alpine climatic zone
(Fig. 1b), while only a few studies dealt
with drought. Three main effects of
increased temperature emerged from
the literature analysis: changes in (1)
flowering and seed phenology, (2) spe-
cies distribution and community struc-
ture/composition, and (3) key ecosys-
tem processes.

3.1.1.  Changes in flowering and seed
phenology

Experiments focused on flowering
time of snowbed communities re vealed
a noticeable plastic response to chang-
ing micro-climatic conditions, both for
snowbed-specialized and alpine gen-
eralist species (Petra glia et al. 2014,
Carbognani et al. 2016). Petra glia et al.
(2014) showed that for many species,
flowering time was tuned with temper-
ature. However, Carbognani et al.
(2016) highlighted the importance of
timescale of the observations: at the
annual scale, the timing of snowmelt
seemed to play a major role, while at
the growing-season timescale, temper-
ature was the most common trigger of
the blooming period.

Seed phenology experiments have
been performed exposing parental

plants or dispersed seeds to warming. Seeds pro-
duced by parental plants exposed to +1.5°C showed
more resistance to heat, i.e. more viability and less
deterioration (Bernareggi et al. 2015), and experi-
enced limited germination/dormancy changes with
respect to controls, but the extent of these changes
across species could be driven by seed dormancy
traits, with deeper dormant species showing major
changes in response to incubation temperatures and
less dormant species in response to cold stratification
periods (Bernareggi et al. 2016). Furthermore, seeds
directly exposed to warming after dispersal showed a
general increase in germination rate (Mondoni et al.
2015). In detail, the expected increase in spring ger-
mination was combined with a relevant increase in
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autumn germination. Surprisingly, 60−70% of seed -
lings could survive across the winter, revealing an
interesting adaptation (Mondoni et al. 2015). Such
results have been obtained exposing seeds to moder-
ate and constant warming (+2.7°C; Mondoni et al.
2015), at the projected 100 yr scenario (+4°C, Mon-
doni et al. 2012), and to seasonal heat waves (+6°C;
Orsenigo et al. 2015).

3.1.2.  Changes in species pattern and
community  structure/composition

Observational projects revealed an
increase in species richness and vege-
tation cover over time in the alpine and
subalpine belt in the Alps and the
Apennines as a consequence of warm-
ing, with increased contribution of
thermophilous species and upward
migration of shrubs and trees (Pauli et
al. 1996, Stanisci et al. 2005, 2016, Can-
none et al. 2007, Parolo & Rossi 2008,
Erschbamer et al. 2009, 2011, Evange-
lista et al. 2016). Such results emerged
after a moderate annual warming of
<1.5°C in the Alps (Cannone et al.
2007, Parolo & Rossi 2008) and 1.7°C in
the Apennines (Evangelista et al. 2016).
However, Cannone & Pignatti (2014),
when re-surveying an alpine area after
50 yr, surprisingly observed that more
than half of the most widespread per-
sisting species exhibited downward
shifts instead of upward shifts. Here,
climate change probably interacted
with land-use change, which can exac-
erbate the effects of climate warming
on the vegetation of mountainous
regions (Theurillat & Guisan 2001). The
capability of plant species to migrate
can be enhanced by plant functional
traits such as small seed mass (Parolo &
Rossi 2008), and can be in turn affected
by local morphology and geography
(Pauli et al. 1996). Even permafrost
decline can play a role (Cannone et al.
2007, Parolo & Rossi 2008).

The impressive retreat of some Al -
pine glaciers (Cannone et al. 2008)
seemed to promote quick colonization
by ruderal and fast-growing species at
the expense of stress-tolerators and
typical snowbed species (Caccianiga et
al. 2006, Cannone et al. 2008). A case

study (Ciccazzo et al. 2014), followed by a review (Cic-
cazzo et al. 2016), suggested that species-specific
selection of microbial communities in the rhizo sphere
can en hance plant growth in nutrient-poor soils.

Structure and species composition of alpine vege-
tation was altered by the 2003 heat wave (+2°C, and
−30 mm of precipitation during the growing season,
with respect to the average; Bragazza 2008), which
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triggered a rapid expansion of vascular plant species
at the expense of mosses in peatlands (Gerdol et al.
2007, 2008a, Brancaleoni & Gerdol 2014). The same
re sults have been found in snowbed communities
through space-for-time substitution and re-survey
approaches (Carbognani et al. 2012, 2014b).

3.1.3.  Changes in key ecosystem processes

Three important ecosystem processes have been
studied in the alpine climatic zone: litter decomposi-

tion, above-ground net primary productivity (ANPP)
and net photosynthesis. Climate warming has been
found to accelerate litter decomposition rates in
alpine ecosystems (Carbognani et al. 2014a) due to
climate-induced changes in the relative abundance
of plant functional types, rather than to direct effects
of higher temperature on the activity of decomposing
microbes (Bragazza et al. 2013).

ANPP in alpine ecosystems was generally en -
hanced by warming thanks to longer snow-free peri-
ods (Carbognani et al. 2012), but was only marginally
affected by experimental irrigation, except in the dri-
est habitats (Brancaleoni et al. 2007). However, a
heat wave negatively affected the carbon budget of
an alpine peatland, because the unprecedented high
temperatures in summer 2003 strongly increased
potential evapotranspiration, which lowered the
water table even under normal precipitation. The
consequent de siccation of the surface peat layers
strongly stimulated heterotrophic respiration. This
eventually implied negative net photosynthesis rates,
i.e. carbon loss, throughout the growing season (Ger-
dol et al. 2008a).

3.2.  Temperate climatic zone

Four experimental projects (resulting in 4 papers)
and 8 observational projects (10 papers) were found
for the temperate climatic zone. All of the experimen-
tal and observational projects aimed at assessing the
performance of tree species (mainly Fagus sylvatica,
Pinus nigra, Larix decidua, Picea abies, Pinus cem-
bra, Pinus sylvestris and Abies alba) under drier and
warmer conditions. Only 1 experiment (Beierkuhn-
lein et al. 2011) examined responses of grass species
(Arrhenatherum elatius, Festuca pratensis and Hol-
cus lanatus) to precipitation and temperature manip-
ulation. Two main effects emerged from the litera-
ture analysis: changes in (1) growth performance and
(2) net photosynthesis and leaf transpiration.

3.2.1.  Changes in growth performance

The principal parameter used to estimate growth
performance of tree species was basal area incre-
ment (BAI). Most papers found a positive effect of
warming (Motta & Nola 2001, Gazol et al. 2015) and
a negative effect of drought (Piovesan et al. 2008,
Levesque et al. 2013, 2014, Gazol et al. 2015) on
tree growth (Table 1). However, an interesting pat-
tern emerged when combining the effects of
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increased temperature and decreased water avail-
ability. Trees growing under mesic conditions,
namely P. cembra, L. decidua and A. alba, in north-
ern Italy increased their growth performance (Motta
& Nola 2001, Gazol et al. 2015). Here, a role could
also be played by changes in nutrient fluxes due to
air pollution and/or the fertilization effect of increas-
ing CO2 (Motta & Nola 2001). In contrast, trees
growing under xeric conditions experienced a
marked decrease in growth rates, demonstrating
that drought stress could override the potential pos-
itive effect of higher temperatures (Levesque et al.
2013, 2014). For instance, Piovesan et al. (2008)
found that drought stress of the last decades
induced a decrease in the growth rates of F. sylvat-
ica, especially at low-altitude sites, with a conse-
quent reduction in productivity of beech forests in
the central Apennines. Gazol et al. (2015) demon-
strated that A. alba populations at xeric sites in cen-
tral and southern Italy displayed a marked decline
in growth associated with increasing aridity. Leves -
que et al. (2013, 2014) found that conifers (L.
decidua and P. abies) occurring at their dry distribu-
tion limit were vulnerable to soil water deficit, and if
summer becomes drier, tree growth may collapse,
inducing dieback. In this case, tree species diversity
can act as a buffer that can reduce the risk of losses
in ecosystem functionality, as pointed out by a study
outside Italy (Mette et al. 2013) for the productivity
in central European temperate mixed forests. Rita et
al. (2014) pointed out that changes in rainfall pat-
terns could have a significant impact on tree growth
(as confirmed also by Piovesan et al. 2008) and spe-
cies composition in Italian forests, favouring more
drought-tolerant species (e.g. a shifting from F. syl-
vatica to Quercus spp.).

3.2.2.  Changes in net photosynthesis and leaf
transpiration

Experimental studies highlighted the effect of
drought on photosynthetic performance, mainly in F.
sylvatica seedlings (Tognetti et al. 1994, 1995; our
Table 2). In particular, water stress caused a signifi-
cant decline in net photosynthesis, with faster reac-
tion in seedlings from mesic sites. In contrast,
seedling populations from xeric sites showed delayed
effects of imposed drought (Tognetti et al. 1995). An
observational study on adult trees of L. decidua, P.
cembra and P. abies revealed a differential response
of leaf transpiration rates to high temperature (Anfo -
dillo et al. 1998). L. decidua maintained relatively
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Climate     Species                             Drought     Warming

A                Pinus mugo                            −                  +
A                Dwarf-shrub heath              na                na
A                Alopecurus alpinus              na                nr
A                Vicia cusnae                         na                nr
A                Sphagnum capillifolium      na                 +
T                Pinus cembra                        na                 +
T                Larix decidua                        −                  +
T                Picea abies                             −                 na
T                Abies alba                              −                  +
T                Fagus sylvatica                      −                 na
T                Pinus sylvestris                      −                 na
T                Festuca pratensis                  −                  +
S                 Holcus lanatus                       −                 nr
S                 Arrhenatherum elatius         −                 nr
S                 Sesleria nitida                        −                 na
S                 Abies alba                              −                 na
S                 Pinus laricio                           −                 na
S                 Quercus pubescens               −                  +
S                 Pinus nigra                            nr                nr
M               Pinus halepensis                   −                 na
M               Mixed woodland                   −                 na
M               Pinus pinea                            −                  −
M               Cistus monspeliensis            −                 nr
M               Helichrysum italicum           nr                nr

Table 1. Response (−, negative; +, positive; na, not available;
nr, no response) of plant species’ growth performance
to drought and warming in the 4 climatic zones (A: alpine; 

T: temperate; S: sub-Mediterranean; M: Mediterranean)

Climate               Species                                       Drought

T                          Fagus sylvatica                               −
T                          Larix decidua                                  nr
T                          Pinus cembra                                   −
T                          Picea abies                                       −
S                           Fagus sylvatica                               −
S                           Alnus cordata                                  −
S                           Pinus laricio                                     −
S                           Pinus halepensis                             −
S                           Quercus petraea                             nr
S                           Quercus cerris                                 −
S                           Sesleria nitida                                 −
S                           Lotus corniculatus                           −
S                           Thymus longicaulis                         −
S                           Astragalus sempervirens                −
M                         Pinus halepensis                             −
M                         Mixed woodland                             −
M                         Cistus monspeliensis                      −
M                         Quercus ilex                                   nr

Table 2. Response (−, negative; nr, no response) of species’
photosynthetic performance to drought in 3 climatic zones 

(T: temperate; S: sub-Mediterranean; M: Mediterranean)
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high transpiration rates even during moderate water-
deficit periods (10 d with <0.4 mm d−1) due to its
water uptake capacity and deep root system, while P.
abies and P. cembra showed a water-saving behav-
iour. The authors suggested that climate warming
may result in a competitive advantage of L. decidua
over the other 2 species in temperate forests of the
Alps.

3.3.  Sub-Mediterranean climatic zone

Ten experimental projects (resulting in 15 papers)
and 7 observational projects (8 papers) were found
for the sub-Mediterreanean climatic zone. All of
these studies aimed at evaluating (1) growth and (2)
photosynthetic performance of tree species (mostly
oaks and conifers) under drought and warming. Only
2 observational studies focused on grasslands, one
evaluating the intraspecific trait variation in 4 species
(Wellstein et al. 2013), and one studying the trait-
based response of plant communities along a temper-
ature and precipitation gradient (Tardella et al.
2016). Only 1 experiment (Chelli et al. 2016) ana-
lysed the ANPP response to rainfall manipulation in 2
sub-Mediterranean grasslands.

Some experimental studies demonstrated that
seedlings and juvenile trees of different origin had
several different responses (in terms of growth and
photosynthetic performance) to drought, warming
and frost treatments. However, only in some cases
did plants from drier and warmer provenances seem
to be more tolerant to drought and warming treat-
ments (Borghetti et al. 1989, Hu et al. 2013). In con-
trast, other studies suggested that the response pat-
terns do not reflect local adaptation to local climatic
conditions (see Arend et al. 2011, Wellstein &
Cianfaglione 2014). Moreover, plants from colder
provenances showed a higher resistance to winter
frost treatments (Višnjić & Dohrenbusch 2004). Leaf
palatability was not influenced by drought and
warming but differed with respect to origin of the
host plants (Backhaus et al. 2014).

3.3.1.  Changes in growth performance

Similar to the temperate climatic zone, warming
improved plant growth performance in the sub-
Mediterranean climatic zone as well (Table 1). Arend
et al. (2011) and Hu et al. (2013) showed that growth
of Quercus pubescens juveniles was significantly
stimulated by moderate warming (<2°C). For the

same species, Wellstein & Cianfaglione (2014) ob -
served an increase of the apical bud-bank in a more
intense warming treatment (+2.7°C). In contrast,
drought induced a significant decrease in growth
performance (shoot and stem growth, BAI) of Q.
pubescens and A. alba (Battipaglia et al. 2009, Arend
et al. 2011, Hu et al. 2013; our Table 1). An ob -
servational study dealing with functional traits of
grassland species in mesic versus xeric habitats
showed strong phenotypic adaptations in traits re -
lated to above- and below-ground growth for the
dominant grass Sesleria nitida, with distinct strate-
gies related to soil water content, soil nutrient avail-
ability and soil temperature (Wellstein et al. 2013).

A key role in affecting plant growth could be
played by changes in early season precipitation, as
demonstrated both at the species- (Battipaglia et al.
2009) and the ecosystem-level (Chelli et al. 2016).
However, some papers did not find any growth re -
sponse either to drought (−13% precipitation) or
warming (+1.6°C) in P. nigra juveniles (Kreyling et al.
2012, Thiel et al. 2012).

3.3.2.  Changes in net photosynthesis

Several papers demonstrated a generalized reduc-
tion in photosynthetic activity of tree seedlings ex -
posed to drought treatment. In particular, the species
negatively affected by drought were F. sylvatica,
Alnus cordata, Pinus halepensis and Quercus spp.
(Table 2). They showed a reduction in net photosyn-
thesis (Borghetti et al. 1989, Tognetti et al. 1995,
Michelozzi et al. 2011), leaf relative water content
(Tognetti et al. 1995) and stomatal conductance (Bor -
ghetti et al. 1989, Michelozzi et al. 2011) as an effect
of experimental moderate drought of <30 d. The
reduction in photosynthetic performance was con-
firmed by an observational study of 4 grassland spe-
cies (Wellstein et al. 2013), where all grass species
showed significantly lower specific leaf area (SLA)
under xeric conditions.

The observational study of Grossiord et al. (2014)
pointed out the importance of competition for water
resources among plant species in determining the
response to drought. This study examined pure and
mixed forest stands of Quercus cerris and Q. petraea,
showing different responses of the 2 species in terms
of leaf transpiration and water-use efficiency, with Q.
petraea exerting a negative effect on Q. cerris in
mixed forests. Interspecific competition was also im -
 portant in grassland ecosystems (Wellstein et al.
2014).
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3.4.  Mediterranean climatic zone

Seven experimental (resulting in 17 papers) and 5
observational (5 papers) projects were found for the
Mediterranean climatic zone. Two experiments dealt
with ecosystem response to simulated drier and
warmer conditions in Mediterranean shrublands (De
Dato et al. 2006, Cotrufo et al. 2011), while the others
addressed the effects of experimental or ambient
conditions on the physiology of Mediterreanean
conifers, as well as Quercus ilex and Tamarix afri -
cana. Only 2 papers examined the effects of climate
change on species composition of coastal dunes
(Guidotti et al. 2010, Del Vecchio et al. 2015). In line
with the expectations for future climate scenarios,
drought (simulated or studied along natural gradi-
ents) was revealed as the most important climatic
factor in the Mediterranean climatic zone, but few
studies dealt with additional precipitation (Fig. 1b).
Two main effects emerge from the literature analysis:
(1) reduced growth performance and (2) reduced leaf
transpiration.

3.4.1.  Changes in growth performance

Drought caused a reduction in plant growth (i.e. a
reducion in shoot and needle elongation, as well as
radial growth) both in shrubs (De Dato et al. 2006,
Peñuelas et al. 2007, Ripullone et al. 2009) and trees
(Borghetti et al. 1998, 2005; our Table 1). An experi-
mental study focused on ecosystem responses to
drought revealed lower ANPP and decreased cover
of the dominant shrub Cistus monspeliensis after 3 yr
of progressive precipitation decline of 6, 18 and 46%
in a Mediterranean shrubland (De Dato et al. 2006,
Peñuelas et al. 2007). Cover reduction was not ob -
served for other species such as Helichrysum itali -
cum, suggesting a possible change in species compo-
sition under drier conditions (De Dato et al. 2006).
Another experimental study addressing ecosystem
response to drought in Mediterranean woodlands did
not find any ANPP reduction, but the amount of pre-
cipitation reduction was limited to 10% (Cotrufo et
al. 2011). In contrast, a slight water addition during
the summer season enhanced ANPP (Cotrufo et al.
2011). So far, the literature findings indicate that in
the Mediterranean climatic zone, ANPP stimulation
in wet years is greater than ANPP reduction in dry
years.

Studies carried out on Mediterranean shrubs also
revealed decreased plant-growth performance in
response to reduced water availability, further high-

lighting that summer drought plays a central role in
limiting plant productivity in Mediterranean ecosys-
tems (Llorens et al. 2003, Ogaya & Peñuelas 2003).
No significant effects of warming were reported,
which supports the results of studies suggesting that
Mediterranean vegetation is rather insensitive to
warming (Peñuelas et al. 2004, 2007).

3.4.2.  Changes in leaf transpiration

Reduced leaf transpiration through down- regu la -
tion of stomatal conductance in Mediterranean plant
species resulted in higher water-use efficiency and
lower photosynthetic rate. Evidence in this sense was
provided for mature shrubs and trees (Borghetti et al.
1998, 2005, Ripullone et al. 2009, De Dato et al. 2013)
as well as tree seedlings of Mediterranean conifers
and oaks (Tognetti et al. 1997, Gratani et al. 2003,
Pesoli et al. 2003, Klein et al. 2013; our Table 2). Inter-
estingly, reduction in leaf transpiration in P. halepen-
sis seedlings was less pronounced at xeric sites com-
pared with mesic sites (Tognetti et al. 1997). This
suggests that mechanisms of resistance/tolerance to
recurrent drought are more important at xeric sites,
while strong adaptation capacity is crucial at mesic
sites. Leaf sclerophylly and leaf thickness in Q. ilex
were higher at xeric sites, and both influenced the
capacity to regulate leaf water content (Bussotti et al.
2002, Gratani et al. 2003).

Under Mediterranean climatic conditions, a prompt
response of plants to drought is crucial in order to
prevent severe tissue dehydration and foliage die -
back (Pereira & Chaves 1993). Regulation of stomatal
conductance seems to be one of the most important
strategies used by Mediterranean plants to cope with
summer drought. In Italy, this mechanism has been
demonstrated for shrubs such as Arbutus unedo (Rip-
ullone et al. 2009) and C. monspeliensis (De Dato et
al. 2006) and trees such as P. halepensis (Tognetti et
al. 1997, Borghetti et al. 1998, Klein et al. 2013) and
Q. ilex (Bussotti et al. 2002, Gratani et al. 2003). It is
likely that down-regulation of stomatal conductance
is one of the driving mechanisms re sponsible for
growth reduction of Mediterranean plant species
(Ripullone et al. 2009).

4.  CONCLUSIONS AND FUTURE RESEARCH
PERSPECTIVES

Our review has shed light on the responses of ter-
restrial plants to climate change in Italy, at both the
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species level and the ecosystem level. Even moderate
warming (+1.5 or +2.0°C) is expected to influence
plant physiological processes either directly or indi-
rectly. Direct effects of warming imply enhanced
growth rates, anticipated flowering time and pre-
sumably enhanced viability of seeds. Indirect effects
of warming are mostly related to snow-cover dura-
tion (Kreyling 2010), soil water content (Liu et al.
2016) and soil nutrient availability (Xu et al. 2016)
across a broad range of climatic conditions. On the
other hand, warming is expected to interact with
drought in affecting plant responses to climatic
change (Emmett et al. 2004). Indeed, drought can
override the positive effects of higher temperatures on
plant physiological processes, especially net photo -
synthesis and growth (see Levesque et al. 2013, 2014).
An important finding of this review is that drought may
limit plant growth across a broad climatic range, from
the Mediterranean zone to the temperate zone. Such
projection is far beyond the well-documented evi-
dence of drought-induced growth limitation in sum-
mer-dry Mediterranean ecosystems (Peñuelas et al.
2004). Melillo et al. (1993) also found that in regions
experiencing only weak drought, plant growth can be
already limited by water availability. Increased
atmospheric CO2 concentration could in crease water-
use efficiency of vegetation in those areas (Melillo et
al. 1993), with positive effects on photo synthesis and
plant growth. Another important finding of our review
is that  species-level responses to the combined effects
of warming and drought can vary considerably in
relation to ecotype across species. Our review also
showed that ecosystem-level responses to climate
change are likely to override species-level responses
to climate change. Important processes such as e.g.
upward shift of the treeline, thermophilization of
mountain plant communities and shrub encroach-
ment in Mediterranean ecosystems result in alter-
ations in the competitive equilibria among plant spe-
cies and plant functional types. This can eventually
bring about profound changes in the functioning of
entire ecosystems.

Our review has highlighted major gaps in our
knowledge of the response of vegetation to changing
climate in Italy, which suggests some future research
topics. There is a general scarcity of community-level
or ecosystem-level studies in the warm-temperate
climatic zones, where most of the extant data arose
from species-level research (Fig. 3), generally focus-
ing on dominant trees. Hence, there is poor knowl-
edge of how species composition will change in
response to changing climate in Mediterranean to
temperate ecosystems. There is even less knowledge

of possible changes in ecosystem functioning, as
many ecological processes are strongly affected by
species composition. Furthermore, the majority of the
studies in these climatic zones were largely focused
on woodland and scrubland ecosystems, while too lit-
tle attention has been devoted to the (semi-)natural
ecosystems of meadows and pastures. These ecosys-
tems are likely to undergo dynamic processes deriv-
ing from land-use changes which can in turn interact
with climate warming to a greater extent compared
with close-to-nature habitats. Comparatively more
attention has been paid to analyse community
responses, as well as to explore consequent effects
on ecosystem functioning, in the alpine climatic zone
of Italy. However, many of these studies were con-
ducted in northern Italy, i.e. in the Alps and the
northern Apennines. Here, climate has no trace of
drought during the growing season (Gerdol et al.
2008b). Conversely, few data are so far available for
high-altitude habitats on mountains at lower lati-
tudes in Italy, i.e. the central and southern Apen-
nines. These areas experience regular summer
drought, as a general climatic feature in all moun-
tainous regions in southern Europe. It is therefore
possible that the vegetation of the alpine belt in
southern mountain ranges will be increasingly af -
fected by water limitation under a changing climate
(Pauli et al. 2012).

Finally, we recommend future research using
manipulation/gradient effects on the relevant cli-
matic factors (i.e. temperature, precipitation) in order
to facilitate comparisons among studies and climatic
zones.
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