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We study the correction of errors intervening in two qubits dissipating into their own environments. This is
done by resorting to local feedback actions with the aim of preserving as much as possible the initial amount of
entanglement. Optimal control is found first by gaining insights from the subsystem purity and then by numerical
analysis on the concurrence. This is tantamount to a double optimization on the actuation and on the measurement
processes. Repeated feedback action is also investigated, thus paving the way for a continuous-time formulation
and a solution of the problem.
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I. INTRODUCTION

The feature of quantum mechanics that distinguishes it
most from classical mechanics is the coherent superposition
of distinct physical states, usually referred to as quantum
coherence. It embraces also entanglement, i.e., nonlocal quan-
tum correlations arising in composite systems [1]. Quantum
coherence results are rather fragile against environment effects
and this fact has boosted the development of a quantum control
theory [2]. Just like the classical one, quantum control theory
includes open-loop control and closed-loop control according
to the principle of controller design [3]. Feedback is a paradigm
of closed-loop control in that it involves gathering information
about the system state and then, according to that, actuates
a corrective action on its dynamics. It has been shown that
quantum feedback is superior to open-loop control in dealing
with uncertainties in initial states [4]. Moreover, it has been
proven that it works better than open-loop control when it aims
at restoring quantum coherence [5].

In the presence of feedback, suitable quantum operations
are added to the bare dynamical map (resulting from the
environment action) of a quantum system. These quantum
operations should be determined according to the desired target
state, that is, one optimizes the actuation. In addition, it is
known that there is a correspondence between measurement
on the environment and the representation of the map [6].
Therefore, it is clear that one has to optimize the measurement
over all possible representations of the map in order to extract
the maximum information with the minimum disturbance.
Altogether, it can be said that feedback implies in the
quantum realm a double optimization over the measurement
and over the actuation process [7]. This makes designing the
optimal feedback control a daunting task for quantum systems,
especially composite ones and hence entanglement control (we
refer here to local control, i.e., measurement and actuation are
both local operations). In linear bosonic systems the pursued
strategy was to steer a system towards a stationary state
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entangled as much as possible [8]. Dealing with the inherent
nonlinearity of qubits makes this strategy very challenging and
no progress has been made since the seminal work of Ref. [9].

Hence, we consider here a feedback control whose aim is
to preserve as much as possible an initial maximally entangled
state for two qubits dissipating into their own environments.
Actually, we employ maps and corrective actions much in the
spirit of [10], without analyzing continuous-time evolution.
Optimal control is found by first gaining insights from the
subsystem purity and then by numerical analysis of the
concurrence. Repeated feedback action is also investigated,
thus paving the way for a continuous-time formulation and a
solution of the problem.

The layout of the paper is as follows. We start by introducing
the model in Sec. II. Then we discuss the feedback action in
Sec. III and subsequently address its optimality in Sec. IV.
Section V is devoted to repeated applications of the dynamical
map. We summarize in Sec. VI.

II. MODEL

We consider two qubits (distinguished whenever necessary
by labels A and B) undergoing the effect of local amplitude
damping so that their initial state ρ changes according to the
quantum channel map

ρ �→ ρ ′ =
4∑

j=1

KjρK
†
j , (1)

where

K1 = E1 ⊗ E1, K2 = E1 ⊗ E2,

K3 = E2 ⊗ E1, K4 = E2 ⊗ E2
(2)

are the Kraus operators (satisfying
∑4

i=1 K
†
i Ki = I ) con-

structed from those of local (single-qubit) amplitude damping
channels

E1 = (
√

η|1〉〈1| + |0〉〈0|),
E2 = (

√
1 − η|0〉〈1|).

(3)
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Here |0〉 (|1〉) is the ground (excited) qubit state and η ∈ [0,1]
is the single-qubit damping rate.

The map (1) implies, for each qubit, the probability of
losing independently the excitation into its own environment.
Suppose that the two qubits are initially prepared in a
maximally entangled state, e.g., ρ = |�〉〈�|, with

|�〉 := |00〉 + |11〉√
2

. (4)

In the computational basis B := {|11〉,|10〉,|01〉,|00〉}, it has
the following matrix representation:

ρ = 1

2

⎛
⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎠. (5)

From here on we assume the freedom to perform local
operations (and eventually classical communication), i.e., ones
that are costless. Hence the above assumption of the initial state
is equivalent to any other maximally entangled state.

In the computational basis B, the state ρ ′ resulting from
Eq. (1) reads

ρ ′ = 1

2

⎛
⎜⎝

η2 0 0 η

0 η(1 − η) 0 0
0 0 η(1 − η) 0
η 0 0 2 + η(η − 2)

⎞
⎟⎠.

(6)

Now consider the subsystem purity

P(ρ) := Tr
(
ρ2

A

)
, ρA := TrBρ, (7)

as a measure of entanglement. Although it is only valid for
pure states ρ, it can give us some insights also into mixed-state
entanglement. Due to (6) it is straightforward to show that

P(ρ ′) = 1
2 (2 − 2η + η2). (8)

A minimum of 1/2 is achieved for η = 1, i.e., when the channel
(1) reduces to the identity map.

A faithful measure of entanglement is the concurrence
defined as [11]

C(ρ) := max{0,λ1 − λ2 − λ3 − λ4}, (9)

where λis are, in decreasing order, the non-negative square
roots of the moduli of the eigenvalues of ρ(σy

A ⊗ σ
y

B)ρ∗(σy

A ⊗
σ

y

B), with ρ∗ denoting the complex conjugate of ρ. Using (6)
we can show that

C(ρ ′) = η2
√

2 + η2 − 2η − 1
2η2(1 − η2). (10)

Figure 1 illustrates the subsystem purity as well as the
concurrence resulting from the state (1) as a function of η.
We can see that they have opposite behavior. Hence we can
argue that parameters minimizing the subsystem purity would
also maximize the concurrence.
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FIG. 1. Concurrence (solid blue line) and subsystem purity
(dotted red line) versus η for the state ρ ′.

III. FEEDBACK ACTION

The map in Eq. (1) can be regarded as the effect of a
measurement process described by a probability operator val-
ued measure whose elements are {Kj }j and whose outcomes
are labeled by the values of j [6]. Notice that the elements
{Kj }j are local, hence we consider local feedback actions
Uj ∈ SU(2) × SU(2) to be applied in correspondence with the
outcomes j . That is, in the presence of feedback the dynamical
map (1) changes into

ρ �→ ρ ′′ =
4∑

j=1

(UjKj )ρ(UjKj )†. (11)

Due to the symmetry of the initial state ρ = |�〉〈�| and of the
action of the dissipative map, the unitary operators Uj can be
taken as

U1 = u ⊗ u, U2 = u ⊗ v,

U3 = v ⊗ u, U4 = v ⊗ v,
(12)

where

u =
(

e−i(φu+ψu)/2 cos(θu/2) −e−i(φu−ψu)/2 sin(θu/2)

ei(φu−ψu)/2 sin(θu/2) ei(φu+ψu)/2 cos(θu/2)

)
,

v =
(

e−i(φv+ψv )/2 cos(θv/2) −e−i(φv−ψv )/2 sin(θv/2)

ei(φv−ψv )/2 sin(θv/2) ei(φv+ψv )/2 cos(θv/2)

)

(13)

are generic elements of SU(2) with φ•, ψ•, and θ• the Euler
angles.

This model makes complete sense because once we are
given an entangled state the feedback operations are com-
pletely local and the aim is to restore as much as possible
entanglement (degraded by the local dissipation). So the goal
is to find the Euler angles that maximize the amount of
entanglement of ρ ′′.
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Applying (11), with (12) and (13), to ρ = |�〉〈�| gives ρ ′′,
whose matrix elements in the basis B are

[ρ ′′]11 = 1
8 {(1 − η2)(1 + cos θv)2 + (1 + cos θu)2

+ 8η(1 − η) cos2(θv/2) sin2(θu/2) + 4η2 sin4(θu/2)

+ 4η(1 + cos θu) cos(2ψu) sin2(θu/2)}, (14)

[ρ ′′]12 = 1
8 (e−iφv (1 − η) sin θv[(1 − η) cos θv + 1 − η cos θu]

+ e−iφu sin θu{(1 − η)(1 − η cos θv) + 2iη sin(2ψu)

+ cos θu[1 + η2 − 2η cos(2ψu)]}), (15)

[ρ ′′]13 = [ρ ′′]12, (16)

[ρ ′′]14 = 1
8e−2i(φu+ψu){η(1 + cos θu)2 + 4ηe4iψu sin2(θu/2)

+ 2e2iψu (1 + η2)(1 + cos θu) sin2(θu/2)

+ 2e2i(φu−φv+ψu)(1 − η)2(1 + cos θv) sin2(θv/2)

− 2ei(φu−φv+2ψu)η(1 − η) sin θu sin θv}, (17)

[ρ ′′]22 = 1
8 {4(1 − η)η cos2(θu/2) cos2(θv/2)

+ (1 + η2 − 2η cos(2ψu)) sin2 θu

+ 2(1−η)[1 − η cos θu+(1 − η) cos θv] sin2(θv/2)},
(18)

[ρ ′′]23 = 1
8 {[1 + η2 − 2η cos(2ψu)] sin2 θu

− (1 − η) sin θv[2η cos(φu − φv) sin θu

− (1 − η) sin θv]}, (19)

[ρ ′′]24 = 1
8 (e−iφu sin θu{(1 − η)(1 + η cos θv)

− cos θu[1 + η2 − 2η cos(2ψu)] − 2iη sin(2ψu)}
+ e−iφv (1 − η)[1+η cos θu−(1−η) cos θv] sin θv),

(20)

[ρ ′′]33 = [ρ ′′]22, (21)

[ρ ′′]34 = [ρ ′′]24, (22)

[ρ ′′]44 = 1
8 {η2(1 + cos θu)2 + 4(1 − η)2 sin4(θv/2)

+ 4 sin4(θu/2) + 8(1 − η)η cos2(θu/2) sin2(θv/2)

+ 4η(1 + cos θu) cos(2ψu) sin2(θu/2)}. (23)

The subsystem purity for the state ρ ′′ reads

P(ρ ′′) = 1
4 {3 − η(2 − η) + 1

2 (1 − η)2

× [(1 − cos φ−) cos θ+ + (1 + cos φ−) cos θ−]},
(24)

where

φ± := φu ± φv, θ± := θu ± θv. (25)
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FIG. 2. Subsystem purity versus η without feedback action
(dotted red line) and in the presence of feedback action with
θ+ = −θ− = π (solid blue line).

Taking the partial derivatives of (24) with respect to θ+, θ−, and
φ− and setting them equal to zero, we arrive at the following
equations:

(cos φ− − 1) sin θ+ = 0,

(cos θ+ − cos θ−) sin φ− = 0,

(cos φ− + 1) sin θ− = 0,

(26)

which have a set of solutions

{θ+ = 0,φ− = −π}, {θ+ = 0,φ− = π},
{θ+ = 0,θ− = 0}, {θ− = 0,φ− = 0}, (27)

which leads to the same amount of P without feedback. The
other set of solutions of (26),

{θ+ = −π,θ− = −π}, {θ+ = −π,θ− = π},
{θ+ = π,θ− = −π}, {θ+ = π,θ− = π}, (28)

leads to constant subsystem purity equal to 1/2 (minimum
obtainable value) for any value of η (and arbitrary value of
φ−). All the values in (28) give the density operator

ρ ′′ = 1

2

⎛
⎜⎜⎜⎝

1 0 0 ηe−2i(φu+ψu)

0 0 0 0

0 0 0 0

ηe2i(φu+ψu) 0 0 1

⎞
⎟⎟⎟⎠, (29)

whose concurrence results

C(ρ ′′) = η. (30)

The results for the subsystem purity and concurrence are
displayed in Figs. 2 and 3, respectively, which show that the
behavior of purity and concurrence versus η is consistent.
This is also confirmed by numerical analysis of concurrence
C(η,φ−,θu,θv) (whose results do not depend on φ+, ψu, and
ψv) and maximized by taking 11 values for η (varying it from
0 to 1 in steps of 0.1) and 61 values for φ−, θu, and θv (varying
them from 0 to 2π in steps of π/30).
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FIG. 3. Concurrence versus η without feedback action (dotted
red line) and in the presence of feedback action with θ+ = −θ− = π

(solid blue line).

IV. OPTIMALITY OF FEEDBACK ACTION

It is known that the same quantum channel can have many
(actually infinite many) Kraus decompositions and each one
can be interpreted as a given measurement performed on the
environment to gain information about the system [6]. Hence,
in this section we will check the optimality of feedback action
on the unitarily equivalent Kraus representation of the map (1).
To this end, first notice that the Kraus representation provided
in (2) is canonical, i.e., Tr(K†

i Kj ) ∝ δij . Then, restricting the
discussion to canonical Kraus operators, we should consider
new Kraus operators

K̃i =
4∑

j=1

VijKj , (31)

obtainable by linear combination of the old ones through a
unitary matrix V = VA ⊗ VB , in which VA,VB ∈ SU(2) and
similarly to (13) can be parametrized as

VA =
(

α β

−β∗ α∗

)
,

VB =
(

α′ β ′

−β ′∗ α′∗

)
,

(32)

with |α|2 + |β|2 = |α′|2 + |β ′|2 = 1. Explicitly we have

K̃1 = αα′K1 + αβ ′K2 + α′βK3 + ββ ′K4,

K̃2 = −αβ ′∗K1 + αα′∗K2 − ββ ′∗K3 + βα′∗K4,

K̃3 = −α′β∗K1 − β ′β∗K2 + α′α∗K3 + β ′α∗K4,

K̃4 = β∗β ′∗K1 − β∗α′∗K2 − α∗β ′∗K3 + α∗α′∗K4.

(33)

This means that we can now describe the dynamics of the
density matrix in the presence of feedback as

ρ �→ ρ̃ ′′ =
4∑

j=1

(UjK̃j )ρ(UjK̃j )†. (34)

The expression of ρ̃ ′′ is too cumbersome to be reported here.
However, by computing its subsystem purity, the surprising
aspect is that it becomes a function of only {α,β}. Actually it
reads

P(ρ̃ ′′) = 1
8

(
4 + P 2

1 + |P2|2
)
, (35)

in which

P1 : = (1 − η)(cos θu + cos θv)

+ 2
√

(1 − η)η sin θu[sin ψu�(αβ∗) − cos ψu(αβ∗)]

− 2
√

(1 − η)η sin θv[sin ψv�(αβ∗) − cos ψv(αβ∗)],

(36)

P2 := (1 − η) sin θv + (1 − η)e−i(φu−φv ) sin θu

− αβ∗√(1 − η)η(1 − cos θu)e−i(φu−φv−ψu)

+ α∗β
√

(1 − η)η(1 + cos θu)e−i(φu−φv+ψu)

+ αβ∗√(1 − η)η(1 − cos θv)eiψv

− α∗β
√

(1 − η)η(1 + cos θv)e−iψv . (37)

It is obvious that the minimum 1/2 of (35) is achieved when

P1 = 0, P2 = 0. (38)

The quantity (36) vanishes when θu = 0 and θv = π , which
leads to θ− = π and θ+ = −π . With these values, the quantity
(37) vanishes with

φu + ψu = π + φv − ψv − 2ξαβ, (39)

where

ξαβ := ξα − ξβ, (40)

with

α = rαeiξα , (41a)

β = rβeiξβ , (41b)

satisfying rβ = √
1 − r2

α . Therefore, in this case, having fixed
θ− = π and θ+ = −π , the concurrence C(ρ̃ ′′) remains a
function of four parameters, i.e., C(η,rα,ξαβ,φv − ψv).

In order to find the maximum of concurrence over these
four parameters and give a comparison with the concurrence
of canonical Kraus operators (30), we perform a numerical
maximization over η, rα , ξαβ , and φv − ψv . This is done by
choosing 11 values for η and for rα (varying them from 0
to 1 in steps of 0.1) and 61 values for ξαβ and for φv − ψv

(varying them from 0 to 2π in steps of π/30). For any values
of η, we obtain the maximum of concurrence over another
612 × 11 points. The numerical results show that the optimal
concurrence is exactly the same as the one obtained in the
canonical scenario, i.e., for rα = 1. Examples of numerical
results are reported in Fig. 4. Taking into account the results of
this and the previous section (i.e., optimal feedback achieved
for {θ− = π,θ+ = −π}) we end up with the following optimal
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FIG. 4. Numerical results for concurrence under conditions (38),
i.e., θu = 0 and θv = π (or θ− = π and θ+ = −π ), for (a) ξαβ = π

2
and φv − ψv = π

3 and (b) ξαβ = 0 and φv − ψv = π .

local unitaries characterizing the feedback action in (12):

u =
(

e−i(φu+ψu)/2 0

0 ei(φu+ψu)/2

)
,

v =
(

0 −e−i(φv−ψv )/2

ei(φv−ψv)/2 0

)
,

(42)

with arbitrary φu + ψu and φv − ψv .

V. REPEATED FEEDBACK ACTION

Returning to Eq. (29), we may observe that the matrix
representation of ρ ′′ has nonzero entries where also ρ of
Eq. (5) has. Hence we may argue that the devised feedback
action is optimal also starting from (29).

Then we repeat the analysis of Secs. III and IV starting
from a state

ρq = 1

2

⎛
⎜⎜⎝

1 0 0 q

0 0 0 0

0 0 0 0

q∗ 0 0 1

⎞
⎟⎟⎠, (43)

where q is a generic complex number such that |q| � 1. In the
computational basis B and in the absence of feedback action,
the state ρ ′

q resulting from Eq. (1) reads

ρ ′
q = 1

2

⎛
⎜⎜⎜⎝

η2 0 0 qη

0 η(1 − η) 0 0

0 0 η(1 − η) 0

q∗η 0 0 2 + η(η − 2)

⎞
⎟⎟⎟⎠.

(44)

Its subsystem purity is the same as Eq. (8) but its concurrence
now depends on |q|. On the other hand, the matrix elements
of ρ ′′

q in the basis B after applying (11), with (12) and (13), on
the initial state (43) result:

[ρ ′′
q ]11 = 1

2 {(1 − η2) cos2(θv/2) + η2 sin4(θu/2)

+ 2η(1 − η) cos2(θv/2) sin2(θu/2) + cos2(θu/2)

+ η(1 + cos θu)(qe−2iψu ) sin2(θu/2)}, (45)

[ρ ′′
q ]12 = 1

8

{
e−iφv (1 − η)2 sin θv

[
cos θv + 1 − η cos θu

1 − η

]

+ e−iφu sin θu[(1−η)(1−η cos θv)+(1 + η2) cos θu

− 2η cos θu(qe−2iψu ) − 2iη�(qe−2iψu )]

}
, (46)

[ρ ′′
q ]13 = [ρ ′′

q ]12, (47)

[ρ ′′
q ]14 = 1

8e−2i(φu+ψu){ηq(1 + cos θu)2

+ 4e2iψu [q∗ηe2iψu + (1 + η2) cos2(θu/2)] sin2(θu/2)

+ 2e2i(φu−φv+ψu)(1 − η)2(1 + cos θv) sin2(θv/2)

− 2ei(φu−φv+2ψu)η(1 − η) sin θu sin θv}, (48)

[ρ ′′
q ]22 = 1

8 {4(1 − η)η cos2(θu/2) cos2(θv/2)

+ [1 + η2 − 2η(qe−2iψu )] sin2 θu

+ 2(1−η)[1−η cos θu+(1 − η) cos θv] sin2(θv/2)},
(49)

[ρ ′′
q ]23 = 1

8 {[1 + η2 − 2η(qe−2iψu )] sin2 θu

− (1 − η) sin θv[2η cos(φu − φv) sin θu

− (1 − η) sin θv]}, (50)

[ρ ′′
q ]24 = 1

8 (e−iφu sin θu{(1 − η)(1 + η cos θv)

− [1+η2−2η(qe−2iψu )] cos θu + 2iη�(qe−2iψu )}
+ e−iφv (1−η)[1+η cos θu − (1 − η) cos θv] sin θv),

(51)

[ρ ′′
q ]33 = [ρ ′′

q ]22, (52)

[ρ ′′
q ]34 = [ρ ′′

q ]24, (53)
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[ρ ′′
q ]44 = 1

8 {η2(1 + cos θu)2 + 4(1 − η)2 sin4(θv/2)

+ 4 sin4(θu/2) + 8(1 − η)η cos2(θu/2) sin2(θv/2)

+ 4η(1 − cos2 θu)(qe−2iψu )}. (54)

For the state ρ ′′
q , the subsystem purity turns out to be the same

as (24), i.e., not dependent on q. This leads us to conclude that
also for |q| < 1 the optimal feedback is achieved by {θ− =
π,θ+ = −π} and hence (42). With this, the state after feedback
action reads, in the basis B,

ρ ′′
q = 1

2

⎛
⎜⎜⎝

1 0 0 qηe−2i(φu+ψu)

0 0 0 0
0 0 0 0

q∗ηe2i(φu+ψu) 0 0 1

⎞
⎟⎟⎠. (55)

Its concurrence results:

C(ρ ′′
q ) = |q|η. (56)

The optimality of this result is confirmed by numerical
investigations over noncanonical Kraus decompositions (31).
Similarly to Sec. IV, we have maximized the concurrence
C(ρ ′′

q ) over the parameters rα , ξαβ , and φv − ψv , this time for
each pair of values of η and q. This has been done by choosing
11 values for η, for |q|, and for rα (varying them between 0
and 1 in steps of 0.1) and 61 values for ξαβ and for φv − ψv

(varying them from 0 to 2π in steps of π/30). For any pair of
η and |q| the maximum concurrence has been obtained over
another 612 × 11 points. The numerical results show that the
optimal concurrence is exactly (56), i.e., the one obtained in
the canonical scenario (rα = 1).

Due to the above results, we can consider repeated applica-
tions of the map without feedback, giving

ρ ′(n) = ηn

2

⎛
⎜⎜⎜⎝

ηn 0 0 1

0 1 − ηn 0 0

0 0 1 − ηn 0

1 0 0 2
ηn − (2 − ηn)

⎞
⎟⎟⎟⎠, (57)

FIG. 5. Concurrence versus η for different number n of applica-
tions of the amplitude damping map, without feedback action (dashed
line) and with feedback action (solid line).
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FIG. 6. Concurrence vs n without feedback action (dashed red
line) and with feedback action (solid blue line) for η = 0.99.

where n is the number of map applications, as well as repeated
applications of the map with feedback giving

ρ ′′(n) = 1

2

⎛
⎜⎜⎜⎝

1 0 0 ηne−2ni(φu+ψu)

0 0 0 0

0 0 0 0

ηne2ni(φu+ψu) 0 0 1

⎞
⎟⎟⎟⎠.

(58)

The corresponding concurrences

C(ρ ′(n)) = ηn

2

[√
(ηn − 2)ηn + 3 + 2

√
(ηn − 2)ηn + 2

−
√

(ηn − 2)ηn + 3 − 2
√

(ηn − 2)ηn + 2

− 2(1 − ηn)
]

(59)

and

C(ρ ′′(n)) = ηn (60)

are reported in Fig. 5. There we can see that the advantage of
feedback tends to persist only at sufficiently high values of η,
by increasing n.

Finally, to have an idea of what would happen in the
continuous-time limit, we could consider t = n�t with �t

quite small and n positive integers. Since in the continuous-
time description of the amplitude damping process the damp-
ing rate always appears multiplied by the time (see, e.g., [12]),
we can argue that the role of �t in our context is played by
1 − η. The closer η is to 1, the smaller �t is. Thus having fixed
the value of η, we have plotted the concurrence vs n in Fig. 6,
which shows an exponential (smooth half-life-type) decay. It
also shows that feedback can slow down such a decay, but not
prevent it from occurring.

VI. CONCLUSION

We have addressed the problem of correcting errors inter-
vening in two qubits dissipating into their own environments by
resorting to local feedback actions with the aim of preserving
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as much as possible the initial amount of entanglement.
Optimal control is found by first gaining insights from the
subsystem purity and then by numerical analysis of the
concurrence. This is tantamount to a double optimization on
the actuation and on the measurement processes. The results
are obtained for a single shot. The results, although obtained
with the help of numerics, are analytically clear and can be
summarized by Eqs. (11) and (12) with (42).

Our results could be helpful in designing experiments
of entanglement control, particularly in settings such as
cavity QED or solid-state base qubits. As an example we
could conceive of each qubit as a two-level atom placed at
the focus of a parabolic mirror so that the spontaneously
emitted light emerges as a beam and let the beam impinge
upon a beam splitter with the transmitted beam subjected to
homodyne detection [13]. Then our η becomes the product
of the spontaneous emission rate with the beam-splitter
transmissivity. The feedback can be implemented through local
electromagnetic fields acting on the atoms. Another example
could be provided by two superconducting qubits, each one
placed in its own three-dimensional cavity and dispersively
coupled to it (see, e.g., [14]). States of the qubit shift the
energy of the superconducting cavity and vice versa via their
coupling. The product of qubit decay rate with cavity damping

rate plays the role of our η. Furthermore, the outputs of cavities
are monitored and the cavity driving fields implement the
feedback.1 Yet other realizations could be inspired by the
review article in [16].

Finally, it is worth remarking that the feedback strategy
employed here is in the same spirit as direct feedback
[17] in that it does not involve processing the information
obtained from the system in order to estimate its state. On the
other hand, in the context of repeated map applications and
particularly in the continuous-time analysis of the problem,
optimization of feedback action should also involve Bayesian
(state-estimation-based) strategies and an extension to two
qubits of the analysis for single-qubit control performed in
Ref. [18] would be welcome.
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