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We study coherent phonon oscillations and tunneling between two coupled nonlinear nanomechanical
resonators. We show that the coupling between two nanomechanical resonators creates an effective phonon
Josephson junction, which exhibits two different dynamical behaviors: Josephson oscillation (phonon-Rabi
oscillation) and macroscopic self-trapping (phonon blockade). Self-trapping originates from mechanical
nonlinearities, meaning that when the nonlinearity exceeds its critical value, the energy exchange between the two
resonators is suppressed, and phonon Josephson oscillations between them are completely blocked. An effective
classical Hamiltonian for the phonon Josephson junction is derived and its mean-field dynamics is studied in
phase space. Finally, we study the phonon-phonon coherence quantified by the mean fringe visibility, and show
that the interaction between the two resonators may lead to the loss of coherence in the phononic junction.
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I. INTRODUCTION

Nanoelectromechanical and optomechanical resonators
[1–6] are widely used structures, which can be applied for the
sensitive detection of physical quantities such as spin [7,8],
atomic and molecular mass [9–11], biological samples [12],
thermal fluctuation [13–15], and also for testing quantum
mechanics at the macroscopic level [16–22] or frequency
conversion [23–26]. Nanomechanical resonators (NMRs) with
resonance frequencies in the GHz regime can now be fab-
ricated [16,27–29] and this makes them suitable candidates
for the study of the quantum behavior at the mesoscopic
scale [16,29,30]. These GHz NMRs are characterized by
reduced dimensions and therefore by very low masses, and
at the same time, in this regime the nonlinear behavior of
the mechanical systems becomes more relevant, consequently
offering interesting theoretical [31–36] and experimental chal-
lenges [37–39]. These high-frequency resonators operating at
nonlinear regime open up possibilities for the realization of
devices and applications of NMR and nanoelectromechanical
systems [40,41].

In this paper, we explore the link between the enforcement
of nonlinearity in two coupled nanomechanical resonators and
the emergence of Josephson-junction-like interaction in the dy-
namical behavior of mechanical systems. In particular, we ex-
plore the coherent phonon oscillations and tunneling between
two coupled nonlinear mechanical resonators and show that
the mode coupling between two nanomechanical resonators
introduces a phenomenon, an effective phonon Josephson
junction, which is a phononic analog of the superconducting
Josephson junction (SJJ) and of the bosonic Josephson
junction, which has been proposed theoretically [42–47] and
realized experimentally [48–53] with ultracold atoms trapped
within double-well potentials or optical lattices. We also
mention that a photonic analog of the Josephson effect in
two weakly linked microcavities has been investigated in
Refs. [54–56].

We show in particular that the coupling between two
nonlinear nanomechanical resonators (see Fig. 1) realizes an

effective phonon Josephson junction exhibiting two different
dynamical behaviors depending upon the strength of the me-
chanical nonlinearity: (i) Josephson oscillation (phonon-Rabi
oscillation) at small nonlinearity; (ii) self-trapping (phonon
blockade) at larger nonlinearity. When the nonlinearity ex-
ceeds a critical value, a transition from a dynamical behavior
to the other occurs and the exchange of excitations between the
two NMRs is suppressed. The effective Josephson oscillations
between the two mechanical resonators are blocked and as
a consequence, most phonons are self-trapped in one of two
mechanical resonators. The proposed scheme can be realized
with today’s technology [57], and is suited to investigate a
wide range of interesting phenomena such as the observation
of spontaneous mirror-symmetry breaking [58], nonlinear
phase dynamics and phase diffusion [45], quantum chaos [46],
and phonon number squeezing in nonlinear nanomechanical
resonators [59].

The paper is organized as follows. After introducing the
model in Sec. II, in Sec. III we find an effective Hamiltonian
describing the phonon Josephson junction. The dynamics
of the system is studied in terms of the structure of its
phase-space portrait. Then, we solve the equations for the
time evolution of the phonon population imbalance, and we
evaluate also the effects of the phonon decay. In Sec. IV, the
Hamiltonian of the system will be represented in terms of
angular momentum variables and the phonon-phonon coher-
ence will be studied. Finally, concluding remarks are given in
Sec. V.

II. SYSTEM

We consider a system of two coupled nonlinear NMRs,
such as two doubly clamped nanomechanical beams or
nanotubes, and we restrict our study to the dynamics of their
fundamental flexural mode with frequency ω0i , see Fig. 1.
The coupling between two NMRs can be realized by either
mechanical or electrostatic or piezoelectric [60–63] coupling.
The Hamiltonian describing the coupled nonlinear resonators
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FIG. 1. Schematic of two coupled nonlinear nanomechanical
resonators, here in the form of doubly clamped beams of length
L, vibrating in their fundamental flexural mode ω0i . The mechanical-
mechanical coupling rate is G0.

is (see Appendix)
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with Ki being the ratio between the bending and compressional
rigidities. The last term of the Hamiltonian describes the
coupling between two NMRs, with G0 the intermode coupling
rate.
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Ĥ = �

2∑
i=1

[
ω0i b̂

†
i b̂i + λ̃i

2
(b̂†i + b̂i)

4

]

− �G̃(b̂†1 + b̂1)(b̂†2 + b̂2), (2)

where λ̃i = λ0i

2
x4

0i

�
,G̃ = G0x01x02

�
, with x0i =

√
�

2miω0i
(i = 1,2)

being the mechanical zero-point motion amplitudes.
We move to the frame rotating at the resonance frequency of
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where �0 = ω02 − ω01. We then make the rotating wave
approximation (RWA) and neglect the terms rotating at ±4ω01

and ±2ω01, which is justified when G0,λi,�0 � ω0i , so that
the above Hamiltonian reduces to

ĤR = ��0b̂
†
2b̂2 + �
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†
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†
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− �G(b̂†1b̂2 + b̂
†
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where λi = 3λ0i x
4
0i

�
= 6λ̃i are the effective nonlinearity strength

for NMRs, and G = 2G0x01x02
�

= 2G̃ is the coupling rate
between two NMRs.

III. PHONON JOSEPHSON JUNCTION

A. Effective Hamiltonian

We first neglect the effect of mechanical damping so that
the dynamical behavior of the two interacting nonlinear NMRs
is described by the Heisenberg equations of motion associated
with the Hamiltonian (3), namely

˙̂b1 = iGb̂2 − iλ1(1 + b̂
†
1b̂1)b̂1, (4a)

˙̂b2 = iGb̂1 − i[�0 + λ2(1 + b̂
†
2b̂2)]b̂2. (4b)

It is easy to verify that in this case the total phonon
number NT ≡ n̂1 + n̂2 is a constant of motion. Typically
one distinguishes between three different regimes according
to the value of the dimensionless nonlinearity parameter
g ≡ NT (λ1 + λ2)/4G [44,64]: (i) the quasilinear Rabi regime
g < 1; (ii) the intermediate Josephson regime 1 < g < N2

T ;
and (iii) the quantum Fock regime g > N2

T . The linear Rabi
regime corresponds to the strong-coupling regime where
the mechanical nonlinearities are negligible compared to
the coupling rate. This regime is well suited for coherent
phonon manipulation [65–67], and for coherent transfer of
the phonon populations between the resonators, namely Rabi
oscillations [68,69]. In the Josephson regime, the fluctuations
of the phonon numbers are reduced but the coherence between
mechanical resonators is strong (see Appendix). Therefore,
in this regime a relative phase φ can be defined, which has
only a small quantum mechanical uncertainty (�φ � 1). In
this regime, for large phonon numbers (i.e., NT � 1), the
operators can be treated as classical quantities, b̂i ∼ √

nie
iθi

where ni is the phonon population in the ith mechanical
resonators whereas θi is its phase. Finally, in the quantum
Fock regime, the mechanical Josephson junction is dominated
by the strong mechanical nonlinearities, thus the eigenstates
have a well-defined phonon number in each resonators and as
the coherence vanishes, the phase is completely undefined.

Here, we will not be interested in the quantum Fock regime
and focus on the dynamics of the system in the first two, Rabi
and Josephson, regimes. By introducing the fractional pop-
ulation imbalance, z(t) = [n1(t) − n2(t)]/NT ∈ [−1,1], and
relative phase φ(t) = θ2(t) − θ1(t) ∈ [0,2π ], Eqs. (4) reduce to

ż(t) = −
√

1 − z2(t) sin[φ(t)], (5a)

φ̇(t) = � + gz(t) + z(t)√
1 − z2(t)

cos[φ(t)], (5b)
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where � = [−�0 + (NT /2 + 1)(λ1 − λ2)]/2G and time
has been rescaled so that 2Gt → t . We notice that these
equations are invariant under the transformation φ → −φ +
π,� → −� and g → −g. We can now establish interesting
analogies and differences with SJJ physics. In fact, we can
view z and φ as two classical conjugated variables, and the
above equations as Hamilton equations derived from a classical
effective Hamiltonian describing a phonon Josephson junction,
ż = −∂HJ /∂φ and φ̇ = ∂HJ /∂z, with

HJ = �z + g

2
z2 −

√
1 − z2 cos φ. (6)

The above Hamiltonian is similar to the Hamiltonian of a SJJ
but it differs in its nonlinearity in z as in SJJ (considering
two equal-volume superconducting grains) the charge leakage
through the external circuit strongly suppresses population
imbalances, i.e., n1 
 n2 
 NT /2 and z 
 0 [70,71]. In this
case, in the resistively and capacitively shunted junction
model, the SJJ is analogous to a rigid pendulum, while
Hamiltonian (6) becomes analogous to a nonrigid, momentum-
shortened pendulum of length

√
1 − z2 and tilt angle φ [42,43].

Nonetheless, we can maintain a close connection with the SJJ
physics and, in analogy with the Cooper-pair tunneling current
in SJJ, we can define an effective phonon tunneling current
I = NT

2 ż = Ic

√
1 − z2 sinφ, where Ic = GNT .

B. Fixed-energy trajectories

The Hamiltonian of Eq. (6) describes a system with one
degree-of-freedom and therefore an integrable dynamics with
no chaos. As a consequence, the phase-space trajectories of the
system follow the lines of constant (conserved) energy. The
basic structure of phase-space trajectories can be determined
by finding the stationary points of the dynamics, given by
setting ∂HJ /∂φ = 0 and ∂HJ /∂z = 0. The first equation
provides two possible set of stationary values for the relative
phase: zero phase, φs = 2nπ , and π phase, φs = (2n + 1)π ,
(with integer n). Substituting these values of φs into the
second equation yields two equations for the stationary value
zs , i.e. zs(g + 1√

1−z2
s

) + � = 0 and zs(g − 1√
1−z2

s

) + � = 0,

respectively. Restricting to the case � = 0, the minimum
energy stable steady state of the system is given by the
zero phase solution [φs = 2nπ,zs = 0], with energy E = −1,
while the unstable steady state depends upon the value of
the nonlinearity parameter g: it is given by [φs = (2n +
1)π,zs = 0] with energy E = 1 with [φs = (2n + 1)π,zs = 0]
when g < 1, but one has two degenerate energy maxima
at [φs = (2n + 1)π, zs = ±

√
1 − g−2] with E = g

2 (1 + g−2)
when g > 1.

Figure 2 shows the energy contours of a phonon Josephson
junction for different values of parameter g. It is evident
that the location of the energy minima, maxima, and saddle
points crucially depends upon the dimensionless parameter
g. For g � 1 (strong coupling), the minima are at [z,φ] =
[0,2nπ ] and the maxima settle in [z,φ] = [0,(2n + 1)π ],
whereas for g > 1 (strong nonlinearities), the minima are
still at [z,φ] = [0,2nπ ], while [z,φ] = [0,(2n + 1)π ] become
saddle points, and maxima move to the two new locations
[z,φ] = [ ±

√
1 − g−2,(2n + 1)π ]. This transition of the point

[z,φ] = [0,(2n + 1)π ] from a local maximum to a saddle

FIG. 2. Energy contours of the phonon Josephson junction versus
z and φ at � = 0, for: g = 0.9,g = 1.8, and g = 2.5.

point, and the appearance of two new maxima for g > 1, are
a manifestation of the existence of a running-phase and of
π -phase self-trapping states.

C. System dynamics

The dynamics of the system is obtained by solving Eqs. (5).
We restrict again to the case � = 0, which is the more
interesting one, corresponding to the limit of identical MRs.
Figure 3 describes the time evolution of population imbalance
z(t) versus rescaled time 2Gt , for different values of parameter
g, showing the transition from the Rabi oscillation to the
Josephson and self-trapping regime, for the specific choice
of initial conditions [z(0),φ(0)] = [0.3,π ].

In the limit of very small nonlinearity, g � 1, Eqs. (5)
become ż(t) 
 −φ(t) and φ̇(t) 
 (g − 1)z(t), which describe
the small-amplitude oscillations of a pendulum in the π -
phase mode with a frequency ωπ = 2G

√
1 − g 
 2G. This
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FIG. 3. Phonon population imbalance z(t) as a function of the
rescaled time 2Gt when � = 0 and for the specific choice of initial
condition [z(0),φ(0)] = [0.3,π ]. We consider different values of the
parameter g: (a)g = 0.9, (b) g = 1, (c) g = gcr 
 1.02357, (d) g =
1.04 where gcr < g < gs , (e) g = gs 
 1.04828, and (f) gcr,gs < g =
1.056.
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corresponds to harmonic Rabi-like oscillations in the phonon
population of each mechanical resonator with the same
frequency [65,66] [see Fig. 3(a)]. As the parameter g increases,
the oscillations become anharmonic and the system moves into
the Josephson regime [see Fig. 3(b)]. The dynamics change
significantly above a critical value of the effective nonlinearity
g � gcr, as shown in Figs. 3(c)–3(f): the phonon number
in each mechanical resonator oscillates around a nonzero
time-averaged population imbalance, 〈z(t)〉 
= 0, meaning that
the phonon populations become macroscopically self-trapped
(MST). The critical value gcr depends upon the explicit value of
the initial conditions [z(0),φ(0)] and is related to the condition
that the corresponding initial classical energy is larger than that
of the saddle point [z,φ] = [0,(2n + 1)π ],HJ [z(0),φ(0)] =
g

2 z(0)2 − √
1 − z2 cos[φ(0)] > 1, yielding the critical param-

eter for MST

gcr = 1 +
√

1 − z2(0) cos[φ(0)]

z2(0)/2
.

In Figs 3(d)–3(f) the time-averaged value of the phase is
〈φ〉 = π : these modes, known as π -phase modes, describe
the effective tunneling of the phononic excitation from one
MR to the other. The numerical solution in Figs. 3(d)–3(f)
shows also that in the MST regime g > gcr (gcr ∼ 1.02357
when [z(0),φ(0)] = [0.3,π ] as in Fig. 3), one can observe two
different types of π -phase modes: (i) when the time-averaged
population imbalance is smaller than the unstable stationary
value |zs | =

√
1 − g−2,〈z(t)〉 < |zs |; (ii) when 〈z(t)〉 > |zs |.

Which kind of self-trapping occurs depends again upon the
value of g: the first MST mode with 〈z(t)〉 < |zs | occurs
when gcr < g < gs with gs = 1/

√
1 − z2(0) [gs ∼ 1.04828

when [z(0),φ(0)] = [0.3,π ] as in Fig. 3(e)]. Instead the
second MST mode with 〈z(t)〉 > |zs | occurs when g > gs [see
Fig. 3(f)]. When g = gs [see Fig. 3(e)], the system settles in
an intermediate regime where there is no oscillation of the
population imbalance.

D. Effects of phonon decay

We now include the effect of mechanical damping, which
can be described by adding phonon loss terms to the Heisen-
berg equations of Eq. (4). The resulting equations for both
MRs become

˙̂b1 = i[Gb̂2 − λ1(1 + b̂
†
1b̂1)b̂1] − κ1

2
b̂1, (7a)

˙̂b2 = i[Gb̂1 − �0b̂2 + λ2(1 + b̂
†
2b̂2)b̂2] − κ2

2
b̂2, (7b)

where κi are the MRs damping rates. For simplicity, we
assume that the two NMRs have the same loss rates, i.e.,
κ0 = κ1 = κ2. We can again adopt the semiclassical approach
of the previous subsection and define bi = 〈b̂i〉 = |bi |eiθi with
ni = |bi |2 being the phonon number in ith MR, and define
again the quantities z(t) and φ(t). In this case the total phonon
number is no longer conserved and we have to add a new
dynamical variable associated with phonon loss, N = 〈N̂〉
with N̂ = b̂

†
1b̂1+b̂

†
2b̂2

NT
, where NT is the total phonon number

at time t = 0. The evolution equations for these parameters
can be calculated from Eqs. (7), getting
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FIG. 4. Phonon population imbalance z(t) as a function of
rescaled time 2Gt , when � = 0, for the specific choice of ini-
tial condition [z(0),φ(0)] = [0.3,π ], and in presence of phonon
loss, κ = 0.001. We consider different values of the parameter g:
(a) g = 0.9, (b) g = gcr 
 1.023, and (c) g = gs = 1.04828. In all
cases z(t) → 0 at long times due to the effect of mechanical damping.

ż(t) = −
√

N2(t) − z2(t) sin[φ(t)] − κz(t), (8a)

φ̇(t) = �κ + g z(t) + z(t)√
N2(t) − z2(t)

cos[φ(t)], (8b)

Ṅ (t) = −κN (t), (8c)

where �κ = [−�0 + (NT e−κt /2 + 1)(λ1 − λ2)]/2G,κ =
κ0/(2G) and we have again rescaled the time so that 2Gt → t .
As expected, when phonon losses are negligible, κ0 � G ⇔
κ ∼ 0,N 
 1, and the above equations reduce to the simple
forms presented in Eq. (5).

Figure 4 shows the time evolution of the phonon population
imbalance z(t) as a function of rescaled time 2Gt in the pres-
ence of small but nonzero phonon loss. This figure shows that
the transient dynamics is similar to the one without damping
shown in the previous subsection, i.e., phonons shuttle between
the two MRs. However, phonon losses significantly change the
dynamics at long time scales because the population imbalance
always tends to zero at long times, even at large nonlinearities
g, leading to the suppression of phonon self-trapping.

IV. PHONON-PHONON COHERENCE

In the previous sections we have analyzed the phonon pop-
ulation dynamics in a semiclassical regime for the two NMRs.
We now come back to the quantum nonlinear Hamiltonian of
Eq. (3) obtained after taking the RWA, in order to understand if
and when the coupling allows to establish quantum coherence
between the two NMRs. For this purpose it is convenient to
use the representation of two bosonic systems in terms of
angular momentum operators [72–74], and define the phonon
tunneling operator Ĵx = (b̂†1b̂2 + b̂

†
2b̂1)/2, the current operator

Ĵy = −i(b̂†1b̂2 − b̂
†
2b̂1)/2, and the number imbalance operator

Ĵz ≡ n̂ = (b̂†1b̂1 − b̂
†
2b̂2)/2. The Casimir invariant Ĵ 2 = Ĵ 2

x +
Ĵ 2

y + Ĵ 2
z is a function of the total phonon number operator

N̂T = b̂
†
1b̂1 + b̂

†
2b̂2, i.e., Ĵ 2 = (N̂T /2)(N̂T /2 + 1), and it is

therefore a constant of motion in the absence of phonon losses,
which we will assume again in this section. Therefore, within
the subspace at fixed total phonon number N̂T = NT , the state
of the coupled NMRs system can be described in terms of the
angular momentum vector �J = (Ĵx,Ĵy,Ĵz) with fixed modulus
J = NT /2, and the dynamics is driven by the Hamiltonian of
Eq. (3), which can be rewritten, modulo an irrelevant constant
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depending upon NT , as

Ĥint = �

(
λ1 + λ2

2

)
(Ĵz − n0)2 − 2�GĴx. (9)

Here, n0 is similar to the parameter � of the semiclassical
equation, and it is related to the eventual asymmetry between
the two NMRs,

n0 = (λ2 − λ1)(NT + 1)/2 + �0

λ1 + λ2
. (10)

We restrict again to the Rabi and Josephson regime of not
too large nonlinearities, (λ1 + λ2) � NT G; the Hamiltonian
of Eq. (9) suggests that in this limit the ground state of the
system is very close to the eigenstate with maximum Ĵx , i.e.,
Ĵx = NT /2, with an energy eigenvalue close to −�GNT . Such
a state however is just an example of spin coherent state [75],
which can be seen as semiclassical states of a spin, which
can be represented on the Bloch sphere as a disk of diameter√

NT /2, centered around the expectation value of the angular
momentum operator with orientation (θ,φ),〈θ,φ|�J|θ,φ〉 =
NT (sin θ cos φ,sin θsin φ, − cos θ )/2. A spin coherent state
is defined as

|θ,φ〉 =
NT /2∑

m=−NT /2

(
NT

m + NT /2

)1/2
αm+NT /2

(1 + |α|2)NT /2
|m〉, (11)

with α ≡ tan(θ/2)exp(−iφ) and |m〉 denotes the eigenstates of
Ĵz,Ĵz|m〉 = m|m〉. Therefore, in the limit (λ1 + λ2) � NT G

the ground state of the system of coupled NMRs is the
spin coherent state |π/2,0〉 and we expect that in its time
evolution the quantum state of the system can be satisfactorily
approximated by a time-dependent spin coherent state.

These spin coherent states at the same time represent states
with large coherence between the two NMRs. In fact, it is easy
to verify that one can rewrite Ĵx = (b̂†+b̂+ − b̂

†
−b̂−)/2, with

b̂± = (b̂1 ± b̂2)/
√

2, and therefore the approximate ground
state |π/2,0〉 is a state with NT phonons in mode b̂+ and
no phonon in the orthogonal mode b̂−. More generally, it is
easy to show that a spin coherent state can be rewritten as

|θ,φ〉 ∝ [exp(−iφ) sin (θ/2)b̂†1 + cos (θ/2)b̂†2]NT |0〉, (12)

where |0〉 is the vacuum state with no phonons in the two
NMRs. This means that in a spin coherent state, the two NMRs
have perfectly locked phases and they share NT phonons,
which all occupy the same effective one-phonon mode.

As mentioned above, in the Josephson regime (λ1 + λ2) �
NT G we expect a semiclassical dynamics where the effective
spin �J = (Ĵx,Ĵy,Ĵz) behaves like a classical quantity. Under
this condition we replace the spin operator �J by c numbers,
and exploit the factorization of expectation values of products
of operators, e.g., 〈{Ĵx,Ĵy}〉 by 2〈Ĵx〉〈Ĵy〉. Starting from
the Heisenberg equations for �J, one obtains by using a
semiclassical limit that the angular coordinates (θ,φ) satisfy

θ̇ = −sin(φ), (13a)

φ̇ = −g cos(θ ) − cot(θ ) cos(φ), (13b)

where the time has been rescaled 2Gt → t . However, we
expect that the small but nonzero nonlinearity will affect such
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FIG. 5. Fringe visibility G
(1)
coh = 2|〈Ĵx 〉|

NT
versus rescaled time 2Gt .

The nonlinearity parameter is (a), (d) g = 0.3; (b); (e) 1; and (c), (f)
6. The system is starting from the spin coherent states (a)–(c) |π/2,π〉
and (d)–(f) |π/2,0〉.

evolution and perturb the spin coherent states. This would
manifest in a loss of coherence between the two NMRs, due
to the interplay between the mechanical coupling (phonon
tunneling) and the nonlinearity. In fact, due to tunneling,
different Jz eigenstates oscillate with different frequencies,
and the evolution under the Hamiltonian (9) leads to a loss
of phonon-phonon coherence, which can be quantified by the
mean fringe visibility [76],

G
(1)
coh = 2|〈Ĵx〉|

NT

. (14)

By solving the coupled equations (13) we can evaluate the the
mean fringe visibility G

(1)
coh = sin θ cos φ. Here, we study the

g dependence of the fringe-visibility evolution: in Figs. 5(a)–
5(b) we plot the numerically calculated G

(1)
coh for three values

of parameter g when the initial state is the excited coherent
state |π/2,π〉. For the g = 0.3, see Fig. 5(a), phase locking
is not attained and the phonon coherence decays quickly.
However, by increasing the parameter g, see Figs. 5(b)–5(c),
the expected phase locking is obtained even by a very weak
coupling, leading to appearance of collapse and revival of
coherence in the fringe visibility. Moreover, Figs. 5(d)–5(f)
show a similar situation with a different initial state |π/2,0〉
(ground state). It is evident that for small values of parameter
g the system shows collapse and revival in the fringe visibility,
whereas for increasing parameter g, one gets a nonvanishing
value of the fringe visibility, and therefore a nonvanishing
phonon coherence is maintained in time.

V. SUMMARY AND CONCLUSIONS

In summary, we have shown that the coupling between two
nonlinear nanomechanical resonators realizes an interesting
analog of a Josephson junction. The dynamical behavior of the
system has been studied in two different regimes: Josephson
oscillation (phonon-Rabi oscillation) and macroscopic self-
trapping (phonon blockade). We have shown that when the
mechanical nonlinearities are larger than a critical value, the
phonon Josephson oscillation between the two mechanical
resonators is completely blocked and phonons are self-trapped.
Moreover, an effective classical Hamiltonian for the phonon
Josephson junction has been derived and its mean-field dynam-
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ics has been studied in phase space. Finally, we has studied
the phonon-phonon coherence quantified by the mean fringe
visibility, and we have shown that the mechanical coupling
leads to a loss of coherence between the two mechanical
resonators.

The dynamics of the phonon population, and therefore
Josephson oscillations and self-trapping phenomena, could
be experimentally verified in a resolved sideband optome-
chanical setup, using the phonon counting techniques recently
demonstrated in Ref. [30]. The detection of mechanical fringe
visibility and phonon coherence instead requires measuring the
correlations between the two phonon fields. This correlation
measurement could, in principle, be realized by first transfer-
ring the phonon states onto optical fields using an additional
optomechanical coupling, as first suggested in Ref. [77]
and then realized, e.g., in Ref. [69], and then measuring
the corresponding optical correlations with an heterodyne
technique.

Our scheme could potentially be used for the observation of
spontaneous mirror-symmetry breaking [58], or for studying
nonlinear phase dynamics, phase diffusion [45], quantum
chaos [46], and phonon number squeezing [59] in coupled
nonlinear mechanical resonators.
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APPENDIX A: ELASTICITY THEORY OF A NONLINEAR
MECHANICAL RESONATOR

We consider a doubly clamped mechanical resonator (MR)
with a constant linear mass density μ and length L in which
the cross section of the beam is much smaller than its length
(see Fig. 6). We also assume that the planar deflection in the
transverse direction of the beam is described by y(x) for 0 �
x � L. The Lagrangian of the MR can be written on the basis
of the theory of elasticity of a beam [36,78,79]

L[y(x)] = μ

2

∫
dx

dy(x)

dt
− VB(x), (A1)

FIG. 6. Schematic description of a doubly clamped nanomechan-
ical resonator with length L.

where

VB(x) = I

2

∫
dx

[
K

d2y(x)

dx2

]2

(A2)

describes the MR bending energy, I = EA is the linear
modulus of a MR rod with cross-sectional area A and Young
modulus E. The parameter K is the ratio between the bending
and compressional rigidities, whose value depends upon the
cross-sectional geometry of the doubly clamped MR: (i) for
a rectangular cross section of thickness d,K = d/

√
12; (ii)

for a circular cross section with radius R,K = R/2; (iii)
for a cylindrical shell (such as a nanotube) K = R/

√
2. We

consider a two-sided clamped MR where the end points at
x = 0 and x = L are fixed, which means that y(0) = y(L) = 0
and y ′(0) = y ′(L) = 0. In the absence of dissipation and other
external forces, the dynamical behavior of the flexural mode
is given by the Lagrangian of Eq. (A1), leading to following
equation of motion

μ
∂2y

∂t2
+ K2I

∂4y

∂x4
= 0. (A3)

The eigenmodes of this equation are

ψn(x) = 1

Mn

[
sin(ζnx/L) − sinh(ζnx/L)

sin(ζn) − sinh(ζn)

− cos(ζnx/L) − cosh(ζnx/L)

cos(ζn) − cosh(ζn)

]
, (A4)

where the eigenvalues ζn satisfies the transcendental equation
cos(ζn)cosh(ζn) = 1, with solutions ζn = 4.73,7.85, . . .. The
parameters Mn represents the normalization constants chosen
such that max{ψn(x)} = 1. Using the standard Legendre trans-
formation for deriving the Hamiltonian from the Lagrangian,
and expanding the beam’s deflection in term of its eigenmodes,

y(x,t) =
∑

n

ψn(x)Xn(t), (A5)

we finally get the beam’s Hamiltonian

H0 =
∑

n

(
P 2

n

2mn

+ 1

2
mn�

2
nX

2
n

)
, (A6)

where mn = μ
∫ L

0 ψ2
n (x)dx and �n =

√
IK2

μ
( ζn

L
)2 are respec-

tively the effective mode mass and the vibrational frequency
of the nth mode with the deflection Xn and momentum
Pn = mn

∂Xn

∂t
.

The harmonic Hamiltonian (A6) does not fully describe the
whole energy of the clamped beam. We need to add a correction
term originating from a stretching effect that occurs due to the
deflection if the end points of the MR are fixed [36,80]. The
stretching energy of the beam is described by

VE = I

2L
(Lt − L)2 
 I

8L

[∫
dx

(
dy

dx

)2
]2

, (A7)

where the total stretched length is Lt = ∫
dx

√
1 + ( dy

dx
)2 


L + 1
2

∫
dx( dy

dx
)2, with L being the zero deflection length.

Including the the elastic potential VE into the Hamiltonian
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of Eq. (A6), we obtain a nonlinear Hamiltonian for the MR,

Hr =
∑

n

(
P 2

n

2mn

+ mn�
2
n

2
X2

n

)

+ I

8L

∑
i,j,k,l

(NijNkl)XiXjXkXl, (A8)

where Nij = ∫ L

0 ψ ′
i (x)ψ ′

j (x)dx.
The Hamiltonian in Eq. (A8) describes the multimode

and nonlinear Hamiltonian for a doubly clamped MR. For
the sake of simplicity, we can restrict our analysis to
the fundamental mode n = 1 only, because the terms in-
volving higher-order modes induce smaller frequency shifts
and smaller nonlinearity. Therefore, the Hamiltonian in
Eq. (A8) reduces to the standard Hamiltonian of the Duffing
oscillator

Hr = P 2

2m
+ 1

2
mω2

0X
2 + λ0X

4, (A9)

where ω0 ≡ �1 is the fundamental frequency, m ≡ m1 

0.3965 μL is the effective mass of the fundamental mode,
and

λ0 = N2
11L

3μω2
0

2ζ 4
1 K2

≈ 0.060m
ω2

0

K2
. (A10)

represents the mechanical anharmonicity.

APPENDIX B: COUPLING BETWEEN TWO
NANOMECHANICAL RESONATORS

Different physical mechanisms may be responsible for an
effective coupling between two nanomechanical resonators.
The most important ones are those of mechanical and
electrostatic origin. A mechanical coupling occurs when
resonators are fabricated on the same chip and are connected
to one another via an elastic mechanical structure. In this
case, the nature of the coupling and its strength strongly
depends on the architecture of the nanomechanical resonator
system.

However, the coupling between two MRs can be realized
also via the electrostatic coupling, which is caused by the
interaction of electric charges in the layers of the NMR devices.
When the adjacent beams are polarized by an externally
applied voltage, their top and bottom layers are charged and as
a result dipole moments are formed. In the case of a common
top electrode (see Fig. 7) the dipole moments are identical, and
thus experience a repulsive electrostatic force, which is given
by

Fint = −G0(X1 − X2), (B1)

where the coupling constant G0 depends upon the distance
between beams, the beams area, and the applied voltages.
The electrostatic potential energy associated with the repulsive
force (B1) is given by

Vint = G0

2
(X1 − X2)2. (B2)

Adding the electrostatic potential energy of Eq. (B2) to the
nonlinear Hamiltonian of the beams Eq. (A9) gives the total

FIG. 7. Schematic of an electrostatic coupling between two
mechanical resonators.

Hamiltonian of the two coupled nonlinear resonators presented
in the main text of the paper,

H =
∑
i=1,2

[
P 2

i

2mi

+ miω
2
0iX

2
i

2

]
+

∑
i=1,2

λ0,i

4
X4

i − G0X1X2,

(B3)

where we have also redefined the effective frequency of the
fundamental mode of each beam, ω01,ω02, by including also
the (typically small) frequency shift associated with the dipole-
dipole coupling constant G0.

APPENDIX C: NUMBER FLUCTUATIONS IN THE RABI
AND JOSEPHSON REGIMES

In this section, we compare the phonon number fluctuations
in the Rabi and Josephson regimes and we show that they are
reduced in the Josephson regime. Note that complementary
information can be found in Refs. [44,64].

We first introduce the relative number operator

n̂ = 1
2 (b̂†1b̂1 − b̂

†
2b̂2), (C1)

and recall that the total number of phonons NT ≡ n̂1 + n̂2 is a
constant of motion when damping is negligible. We can rewrite
the annihilation operators b1 and b2 adopting the following
polar decomposition

b̂1 =
√

NT

2
+ n e−iφ/2,

b̂2 =
√

NT

2
− n eiφ/2. (C2)

Substituting Eqs. (C2) into the Hamiltonian of Eq. (3), we
get the phase representation for the Josephson Hamiltonian
(� = 1)

H = δn + Ec

2
n2 − Ej

√
1 − 4n2

NT

cos φ, (C3)

where δ = [−�0 + (NT /2 + 1)(λ1 − λ2)],Ec = λ1 + λ2 is
the charging energy, and Ej = GNT is the Josephson coupling
energy. In the limit of small phase oscillations and for δ = 0,
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this effective Hamiltonian becomes

H 
 E′
c

2
n2 + Ej

2
φ2, (C4)

where E′
c = Ec + 4Ej

N2
T

is the effective charging energy.
Eq. (C4) describes a harmonic oscillator with resonance
frequency ω = √

E′
cEj for which the root mean square of

the number and phase fluctuations in its ground state can be
expressed as

�n = 1√
2

(
Ej

E′
c

)1/4

, (C5)

�φ = 1√
2

(
E′

c

Ej

)1/4

, (C6)

and satisfy the minimum uncertainty relation �n�φ = 1/2.
Let us now focus onto the phonon number fluctuations in

the Rabi and Josephson regimes. In the Rabi regime Ec � 4Ej

N2
T

or equivalently g ≡ NT (λ1 + λ2)/4G � 1, and therefore the
phonon number fluctuations in Eq. (C5) can be written as

�nR 

√

NT /2. (C7)

In the Josephson regime instead, we have 1 < g < N2
T so

that E′
c 
 Ec = λ1 + λ2, which gives the following phonon

number fluctuation

�nJ 
 1√
2

(
GNT

λ1 + λ2

)1/4

. (C8)

Since in the Josephson regime 1 � GNT /λ1 + λ2 � N2
T /4,

we can conclude that the phonon number fluctuations in the
Josephson regime are smaller than those in the Rabi regime,
i.e., �nJ < �nR .
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