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Quantum Channel Capacities With Passive
Environment Assistance

Siddharth Karumanchi, Stefano Mancini, Andreas Winter, and Dong Yang

Abstract— We initiate the study of passive environment-
assisted communication via a quantum channel, modeled as a
unitary interaction between the information carrying system and
an environment. In this model, the environment is controlled
by a benevolent helper, who can set its initial state such
as to assist sender and receiver of the communication link
(the case of a malicious environment, also known as jammer,
or arbitrarily varying channel, is essentially well-understood
and comprehensively reviewed). Here, after setting out precise
definitions, focusing on the problem of quantum communication,
we show that entanglement plays a crucial role in this problem:
indeed, the environment-assisted capacity where the helper is
restricted to product states between the channel uses is different
from the one with unrestricted helper. Furthermore, prior shared
entanglement between the helper and the receiver makes a
difference, too.

Index Terms— Quantum channels, quantum capacity,
super-activation, entanglement.

I. INTRODUCTION

IN quantum Shannon theory it is customary to model
communication channels as completely positive and trace

preserving (CPTP) maps on states; this notion contains as
a special case classical channels [42]. It is a well-known
fact that each CPTP map can be decomposed into a unitary
interaction with a suitable environment system and the dis-
carding of that environment. This means that the noise of the
channel can be entirely attributed to losing information into
the environment, which raises the question of how much better
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Fig. 1. Diagrammatic view of the three parties involved in the communication
setting with an active helper. In this model the helper measures the output state
with a POVM (Mx ),

∑
x Mx = 1, and sends the classical message x to Bob,

who applies a corresponding unitary Ux to recover the initial message
of Alice.

one could communicate over the channel if one had access
to the environment. Note that “access to the environment” is
ambiguous at this point, but that one can distinguish at least
two broad directions, one concerned with the exploitation of
the information in the environment after the interaction and the
other with the control of the state of the environment before
the interaction – and of course both.

The first direction has been addressed starting from
Gregoratti and Werner’s “quantum lost and found” [18], [19]
and focusing on the error correction ability of this scheme
for random unitary channels [8] as well as for other channel
types [31], [32]. The problem was set in an information
theoretic vein in [21] and culminated in the determination of
the “environment-assisted” quantum capacity of an interac-
tion with fixed initial state of the environment, but arbitrary
measurements on the environment output fed forward to
the receiver [41] (see Fig. 1). These findings were partially
extended to the classical capacity [44], which revealed an
interesting connection to data hiding and highlighted the
impact of the precise restriction on the measurements being
performed on the combined channel-output and environment-
output system. Note that, whereas the usual capacity theory for
quantum channels treats the environment as completely inac-
cessible, these results assume full access to the environment
and classical communication to the receiver. Thus, whoever
controls the environment can be considered as an active helper.

In the present paper we are concerned with the second
avenue, to be precise, a model where the communicating par-
ties have no access to the environment-output but instead there
is a third party controlling the initial state of the environment.
The choice of initial environment state effectively is a way
of preparing a channel between Alice and Bob. Depending
on the aim of that party, we call the model “communication
with a passive helper” if she is benevolent (because she only
chooses the initial state and does not intervene otherwise),
or “communication in the presence of a jammer” if she is
malicious (see Fig. 2).
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Fig. 2. Diagrammatic view of the three parties involved in the communication
with a party controlling the environment input system. Depending on the goal
of the party controlling the environment-input, either to assist or to obstruct
the communication between the sender Alice and the receiver Bob, we call it
passive helper (Helen) or jammer (Jenny), respectively.

In the next Section II we shall define the model rigorously,
as well as the different notions of assisted and adversarial
codes and associated (quantum) capacities, and make initial
general observations. In Section III we then go on to study
two-qubit unitaries, which allow for the computation or esti-
mation of capacities. They also show a range of general
phenomena, including super-activation of capacities that are
discussed in Section IV. These findings put into the focus a
variation of the passive helper, where she can use pre-shared
entanglement with the receiver, a model which we explore
in Section V. We conclude in Section VI with a number
of open problems and suggestions for future investigations.
Two appendices contain the technical details of the random
coding capacity formula of the jammer model (Appendix A),
and the analysis of the (anti-)degradability properties of
two-qubit unitaries (Appendix B).

II. ASSISTED AND ADVERSARIAL CAPACITIES

As mentioned in the introduction we are concerned with
the model of communication where there is a third party,
other than the sender and receiver, who has access to the
environment input system. The party’s role is either to assist
or hamper the quantum communication from Alice to Bob,
which is distinguished in our nomenclature as Helen (helper)
and Jenny (jammer), respectively.

Let A, E , B , F , etc. be finite dimensional Hilbert spaces,
L(X) denote the space of linear operators on the Hilbert
space X , and |X | denote the dimension of the Hilbert space.

We denote the identity operator in L(X) as 1X and the ideal
map, id : L(X) → L(X) is denoted by idX . For a density
operator αX the von Neumann entropy is defined as

S(X)α = S(α) := − Tr(α logα). (1)

Furthermore, the binary entropy is denoted by

H2(p) = −p log(p) − (1 − p) log(1 − p). (2)

Consider an isometry V : A ⊗ E ↪→ B ⊗ F , which defines
the channel (CPTP map) N : L(A ⊗ E) → L(B), whose
action on the input state is

N AE→B (ρ) = TrF VρV †.

The complementary channel, Ñ : L(A ⊗ E) → L(F),
is given by

Ñ AE→F (ρ) = TrB VρV †.

Fig. 3. Schematic of a general protocol to transmit quantum information
with passive assistance from the environment; E and D are the encoding and
decoding maps respectively, the initial state of the environment is η.

By inputting an environment state η on E , an effective
channel Nη : L(A) → L(B) is defined, via

N A→B
η (ρ) = N AE→B (ρ ⊗ η).

Clearly, for channels Ni : L(Ai Ei ) → L(Bi ) and states ηi ,

(N1 ⊗ N2)η1⊗η2 = (N1)η1 ⊗ (N2)η2 .

Note that if η is pure, then the complementary channel is
given by

Ñη = (Ñ )η,

but this is not true in general for mixed states η. In other words
taking the effective channel and then the complementary is
equivalent to take the complementary channel and then the
effective channel provided that the state of the environment
is pure.

Referring to Fig. 3, to send information down this channel
from Alice to Bob, we furthermore need an encoding
CPTP map E : L(A0) → L(An) and a decoding CPTP map
D : L(Bn) → L(B0), where the dimension of A0 is equal
to the dimension of B0. The output after the overall dynam-
ics, when we input a maximally entangled test state %R A0 ,
with R being an inaccessible reference system, is σ R B0 =
D

(
N⊗n

(
E(%R A0 ) ⊗ ηEn ))

.
Definition 1: A passive environment-assisted quantum code

of block length n is a triple (E A0→An
, ηEn

,DBn→B0).
Its fidelity is given by F = Tr%R A0σ R B0 , and its rate
1
n log |A0|.

A rate R is called achievable if there are codes for all block
lengths n with fidelity converging to 1 and rate converging
to R. The passive environment-assisted quantum capacity
of V , denoted QH (V ), or equivalently QH (N ), is the supre-
mum of all achievable rates.

If the helper is restricted to fully separable states ηEn
,

i.e. convex combinations of tensor products ηEn = ηE1
1 ⊗

· · · ⊗ ηEn
n , the supremum of all achievable rates is denoted

QH⊗(V ) = QH⊗(N ).
A very similar model, however with the aim of maximizing

the “transfer fidelity” (averaged over all pure states of A),
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was considered recently by Liu et al. [27]. Although the figure
of merit is different, the objective of that paper is, like ours,
a quantitative index for the transmission power of a bipartite
unitary, assisted by a benevolent helper.

As the fidelity is linear in the environment state η, without
loss of generality η may be assumed to be pure, both for
the unrestricted and separable helper. We shall assume this
from now on always in the helper scenario, without necessarily
specifying it each time.

Remark 2: Our model, since it allows for an isometry V ,
includes the plain Stinespring dilation V : A ↪→ B ⊗ F of a
quantum channel (CPTP map) N : L(A) → L(B), for trivial
(1-dimensional) E = C so that the helper doesn’t really have
any choice of initial state. In this case the quantum capacity
is well-understood thanks to the works of Schumacher, Lloyd,
Shor and Devetak. The fundamental quantity is the coherent
information [2], [35], [36], see also [42]

I (A′〉B)σ := S(σ B) − S(σ A′ B) = −S(A′|B)σ ,

which needs to be evaluated for states σ A′ B =
(id ⊗N A→B )φA′ A , where φA′ A is a purification of a
generic density matrix ρA:

Ic(ρ;N ) := I (A′〉B)(id ⊗N )φ = S(N (ρ)) − S(Ñ (ρ)).

Then [2], [12], [30], [35], [36], [38],

Q(N ) = sup
n

max
ρ(n)

1
n

Ic
(
ρ(n);N⊗n)

,

where the maximum is over all states ρ(n) on An . It is
known that the supremum over n (the “regularization”) is
necessary [10], [14], [15], [37], except for some special
channels – see below.

On the other hand, the helper has the largest range of
options to assist if V is a unitary. This will be the case that
shall occupy us most in the sequel. However, in any case,
we assume that the input to V is a product state between
Alice and Helen, since they have to act independently, albeit in
coordination.

Before we continue with our development of the theory
of passive environment-assisted capacities, we pause for a
moment to reflect on the role of the environment. While
our above definitions model a benevolent agent controlling
the environment input, one may ask what results if instead
she is malevolent, i.e. trying to jam the communication
between Alice and Bob. This is captured by the following
definition:

Definition 3: A quantum code of block length n for the
jammer channel N AE→B is a pair (E A0→An

,DBn→B0), with
two spaces A0 and B0 of the same dimension. Its rate is,
as before, 1

n log |A0|, while the fidelity is given by

F := min
ηEn

Tr%R A0σ R B0,

where ηEn
ranges over all states on En , and σ R B0 = D(

N⊗n(
E(%R A0 ) ⊗ ηEn ))

, with a maximally entangled
state %R A0.

A random quantum code is given by an ensemble of codes
(E A0→An

λ ,DBn→B0
λ ) with a random variable λ. The rate is as

before, and the fidelity

F := min
ηEn

Eλ Tr%R A0σ R B0
λ ,

where now σ R B0
λ = Dλ

(
N⊗n

(
Eλ(%R A0) ⊗ ηEn ))

.
The corresponding adversarial quantum capacities,

to emphasize the presence of the jammer, are denoted
Q J (N ) and Q J,r (N ), respectively.

Remark 4: The special case where the jammer controls a
classical input E , i.e. there is an orthonormal basis {|s〉} of E
such that

N (ρ ⊗ |s〉〈t|) = δst Ns(ρ),

has been introduced and studied in-depth by
Ahlswede et al. [1] under the name of arbitrarily varying
quantum channel (AVQC). In other words, there the
communicating parties are controlling genuine quantum
systems (naturally, as they are supposed to transmit quantum
information), whereas the jammer effectively only has a
classical choice s.

Our model here lifts this restriction and generalizes the
AVQC to a fully quantum jammer channel. This has the
very important consequence that the jammer now can choose
to prepare channels for Alice and Bob that are not tensor
products of n single-system channels, or convex combinations
thereof, but have other, more subtle noise correlations between
the n systems.

It turns out that the worst behaviour of the jammer, at least
in the random code case where the shared randomness is secret
from the jammer, is to choose one, pessimal, environment
input to N and use it in all n instances. The following theorem
is proved in Appendix A.

Theorem 5: For any jammer channel N AE→B,

Q J,r(N ) = sup
n

max
ρ(n)

min
η

1
n

Ic
(
ρ(n); (Nη)

⊗n)
,

where the maximization is over states ρ(n) on An ,
and the minimization is over arbitrary (mixed) states η
on E .

See [1], [5] for a detailed discussion of the role of shared
randomness in the theory of the AVQC model; these authors
suggest that Q J = Q J,r for all jammer channels, at least for all
AVQCs, which however should be contrasted with the findings
of [6] that there are AVQCs for which the classical capacity
assisted by shared randomness is positive while without that
resource it is zero.

Let us now resume our discussion of environment-assisted
quantum capacity, deriving capacity theorems analogous to
the one above for the jammer model. For the latter we saw
that (mixed) product states are asymptotically optimal for the
jammer. It will turn out that restricting the helper to product
(separable) states can be to severe disadvantage; while from
the definitions, for any isometry V we have QH⊗(V ) ≤
QH (V ), the inequality can be strict.
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Theorem 6: For an isometry V : AE −→ B F , the passive
environment-assisted quantum capacity is given by

QH (V ) = sup
n

max
η(n)

1
n

Q(N⊗n
η(n) )

= sup
n

max
ρ(n),η(n)

1
n

Ic
(
ρ(n);N⊗n

η(n)

)
, (3)

where the maximization is over states ρ(n) on An and pure
environment input states η(n) on En .

Similarly, the capacity with separable helper is given by the
same formula,

QH⊗(V ) = sup
n

max
η(n)=η1⊗···⊗ηn

1
n

Q(Nη1 ⊗ · · · ⊗ Nηn )

= sup
n

max
ρ(n),η(n)=η1⊗···⊗ηn

1
n

Ic
(
ρ(n);N⊗n

η(n)

)
, (4)

but now varying only over (pure) product states, i.e. η(n) =
η1 ⊗ · · · ⊗ ηn .

As a consequence, QH (V ) = limn→∞ 1
n QH⊗(V ⊗n).

Proof: The direct parts, i.e. the “≥” inequality,
follows directly from the Lloyd-Shor-Devetak (LSD)
theorem [12], [30], [38], applied to the channel (N⊗n)η(n) ,
to be precise asymptotically many copies of this block-
channel, so that the i.i.d. theorems apply (cf. [42]).

For the converse (i.e. “≤”), we apply directly the
argument of Barnum et al. [2], Schumacher [35], and
Schumacher and Nielsen [36]: Consider a code of block
length n and fidelity F , where the helper uses an environment
state η(n); otherwise we use notation as in Fig. 3. Then, first
of all, 1

2‖σ − %‖1 ≤ √
1 − F =: ε, cf. [17]. Now, Fannes’

inequality [16] can be applied, at least once 2ε ≤ 1
e (i.e. when

F is large enough), yielding

I (R〉B0)σ = S(σ B0) − S(σ R B0)

≥ S(σ B0)

≥ S(%A0 ) − 2ε log |B0| − H2(2ε)

≥ (1 − 2ε) log |A0| − 1.

On the other hand, with ω = (id ⊗E)%,

I (R〉B0)σ ≤ I (R〉Bn)(id ⊗N⊗n
η(n) )ω

≤ max
|φ〉R An

I (R〉Bn)(id ⊗N⊗n
η(n) )φ

= max
ρ(n)

Ic
(
ρ(n); (N⊗n)η(n)

)
,

using first data processing of the coherent information and then
its convexity in the state [36]. As n → ∞ and F → 1, the
upper bound on the rate follows – depending on QH or QH⊗,
without or with restrictions on η(n).

Remark 7: The channels N : L(A ⊗ E) −→ L(B) can
equivalently be seen as (two-sender-one-receiver) quantum
multi-access channels. These channels were introduced and
studied in [43] and [46] under the aspect of characterizing
their capacity region of all pairs or rates (RA, RE ) at which
the users, Alice and Helen, controlling the two input registers
can communicate with Bob. In fact, while in [43] only

special channels and classical communication were consid-
ered, Ref. [46] extended this to general CPTP maps and the
consideration of quantum communication.

Clearly, knowing the capacity region for some N AE→B

implies the environment-assisted capacity:

QH (N ) = max{R : (R, 0) ∈ capacity region}.
Unfortunately, however, in general only a regularized capacity
formula is available, much like our Theorem 6. Thus, the gen-
eral multi-access viewpoint does not seem to help particularly
with the computation of QH or QH⊗. Furthermore, our aim is
to study the impact of the helper, its entanglement, etc. which
is a different question to MAC.

Proposition 8: The capacities QH , QH⊗ and Q J,r are
continuous in the channel, with respect to the diamond
(or completely bounded) norm. Concretely, if
‖N − M‖- ≤ ε, then

∣∣QH⊗(N ) − QH⊗(M)
∣∣ ≤ 8ε log |B| + 4H2(ε),∣∣QH (N ) − QH (M)
∣∣ ≤ 8ε log |B| + 4H2(ε),∣∣Q J,r (N ) − Q J,r (M)
∣∣ ≤ 8ε log |B| + 4H2(ε).

Proof: This is essentially the argument of
Leung and Smith [29, Th. 6, Lemma 1, Corollary 2].
We can apply this because we have the formulas for these
capacities in terms of coherent informations 1

n Ic
(
ρ(n);N⊗n

η(n)

)
,

according to Theorem 6. The only new ingredient is that
now the parameter is the joint input state ρ(n) ⊗ η(n), but
fixing that the proof via the “hybrid argument” in [29] goes
through.

We remark here that it is not known at the time of writing,
whether Q J is continuous in the channel, a problem that is in
fact closely tied to the question whether Q J = Q J,r for all
channels.

Given that in our formulation of the environment-assisted
quantum capacity, the ordinary quantum channel capacity is
contained as a special case, it is clear that we cannot make
many general statements about either QH or QH⊗. However,
focusing henceforth on unitaries V : AE −→ B F , we will
in the sequel explore the environment-assisted capacities by
looking at specific classes of interactions which exhibit inter-
esting or even unexpected behaviour.

To start, what are the unitaries V : AE −→ B F , say with
equal dimensions of A and B , with maximal capacity log |B|?
For QH (V ) this seems a non-trivial question, but for QH⊗(V ),
invoking the result of [7], we find that QH⊗(V ) = log |B| if
and only if there exist states |η〉 ∈ E , |φ〉 ∈ F , and a unitary
U : A −→ B such that

V (|ψ〉A|η〉E ) = (U |ψ〉)B |φ〉F ,

which in principle can be checked algebraically. In other
words, in this case, one of the channels Nη induced by
choosing an environment input state is the conjugation by
a unitary. In the search for non-trivial channels, we find the
following result.

Theorem 9: Let |A| = |B| = 2, |E | = |F | = d ≤ 4 and
consider d linearly independent unitaries U A→B

k ∈ U(2). If the
unitary V : AE −→ B F is such that it induces a mixture
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of conjugation by Uk’s for any state |η〉 ∈ E , then V is a
controlled-unitary gate:

V AE→B F =
∑

k

U A→B
k ⊗ | fk〉F 〈ek |E ,

with suitable orthonormal bases {|ek〉}k and {| fk〉}k
of E and F , respectively.

Proof: Let us start from the requirement that V gives rise
to a mixture of conjugation by Uk’s in the states {| j〉} j of a
basis of the environment E . W.l.o.g. we can write the action
of V as follows

V |ψ〉A| j〉E =
∑

k

Uk |ψ〉|v j k〉, (5)

where |v j k〉 are non-normalized states of E . Then, let us
consider a standard maximally entangled state |-〉R A between
a reference system R and the input system A. We have

(I ⊗ V )|-〉R A| j〉E =
∑

k

(I ⊗ Uk)|-〉|v j k〉 =:
∑

k

|-k〉|v j k〉,

with all the |-k〉R A maximally entangled states. The trace
over E gives the Choi-Jamiolkowski state of the channel which
in turn must represent a mixture of conjugations by Uk’s, hence
the following equality must hold true:

∑

kk′
〈v j k′ |v j k〉|-k〉〈-k′ | =

∑

k

pk|-k〉〈-k |,

for some probability distribution {pk}k . Since the |-k〉 are
linearly independent (as a consequence of the linear indepen-
dence of the unitaries Uk), we necessarily must have vanishing
scalar products 〈v j k |v j k′ 〉 = 0 for all j and all k .= k ′.

For a generic environment state |η〉 = ∑
j η j | j〉 it is

V |ψ〉
∑

j

η j | j〉 =
∑

k

Uk |ψ〉
∑

j

η j |v j k〉, (6)

and using the same argument as above we end up with
the requirement that the states {∑ j η j |v j k〉}k have to be
orthogonal (for different values of k). Actually this must be
true for any value of the η j s, hence the only possibility is
that the vectors |v j k〉 result as |v j k〉 = c jk| fk〉 with {| fk〉}k
orthonormal.

This can be proved by considering the scalar product
between

∑

j

η j |v j r 〉 and
∑

j

η j |v j s〉,

(for arbitrary values r .= s) with all η j = 0 except ηm and ηn
(for any values m .= n), which yield the following conditions:

(
ηm〈vmr | + ηn〈vnr |

)
(ηm |vms〉 + ηn |vns〉) = 0.

Then, we may notice that

ηm = ηn = 1 ⇒ 〈vmr |vns〉 = −〈vnr |vms〉,
ηm = ηn = i ⇒ 〈vmr |vns〉 = 〈vnr |vms〉.

To simultaneously satisfy these conditions it must hold that
〈vmr |vns〉 = 〈vnr |vms〉 = 0. Due to the arbitrariness of
r, s, m, n we can conclude that 〈v j k |v j ′k′ 〉 = 0 for k .= k ′ and
for any j, j ′, i.e. |v j k〉 = c jk| fk〉 with {| fk〉}k orthonormal.

Thus, the action (6) of V in the environment basis states
{| j〉} j will result as

V |ψ〉| j〉 =
∑

k

Uk |ψ〉c jk | fk〉.

Therefore, in the basis {| j〉} j the unitary V can be
written as

V =
∑

j,k

Uk ⊗ c jk| fk〉〈 j | =
∑

k

Uk ⊗ | fk〉〈ek |,

where we have defined the vectors

|ek〉 :=
∑

j

ckj | j〉.

Finally using the condition
∑

k

〈v j k|v j ′k〉 = δ j j ′

coming from the unitarity of V , we have
∑

j

c jkck′ j = δkk′ ,

expressing the orthonormality of {|ek〉}k .
We conjecture furthermore that for |A| = |B| = 2

and |E | = |F | = d arbitrary, if V : AE −→ B F is
such that it induces random-unitary (equivalently: unital [25])
channels Nη for all states |η〉 ∈ E , then V is essentially a
controlled-unitary gate:

V AE→B F =
∑

j

U A→B
j ⊗ | f j 〉F 〈e j |E ,

with qubit unitaries U j and with suitable orthonormal bases
{|e j 〉} and {| f j 〉} of E and F , respectively.

To turn the other way, what are the useless unitary interac-
tions, i.e. those with QH (V ) = 0, or at least QH⊗(V ) = 0?
In the next section we will encounter some families of
two-qubit V with the latter property. On the other hand,
unitaries with QH (V ) = 0 do not seem to be so obvious,
except for the example of SWAP, which swaps two isomorphic
systems A and E , i.e. SWAP(|ψ〉A|ϕ〉E ) = |ϕ〉B |ψ〉F, because
it results in channels with constant output.

III. TWO-QUBIT UNITARIES

In this section we will look at two-qubit unitary interactions,
hence in principle study all qubit channels which can be
described by a single qubit environment. This is motivated
by quantum channels derived from such unitaries having nice
properties, which allow us to characterize their environment-
assisted capacities.

A general two-qubit unitary interaction can be described
by 15 real parameters. For the analysis of quantum capacity
under consideration we follow the arguments used in [26] to
reduce the parameters to 3 by the action of local unitaries.
According to the definition of the capacities, the local unitaries
on A, B , E and F do not affect the environment-assisted
quantum capacity, as they could be incorporated into the
encoding and decoding maps, respectively, or can be reflected
in a different choice of environment state.
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Lemma 10 (Kraus/Cirac [26]): Any two-qubit unitary
interaction V AE is equivalent, up to local unitaries before
and after the V AE , to one of the form

U AE =
∑

k

e−iλk |%k〉〈%k |

= exp − i
2

(
αxσx ⊗ σx + αyσy ⊗ σy + αzσz ⊗ σz

)
,

=: U(αx ,αy ,αz),

where σx , σy and σz are the Pauli operators and π
2 ≥ αx ≥

αy ≥ |αz | ≥ 0. Furthermore the λks are

λ1 = αx − αy + αz

2
,

λ2 = −αx + αy + αz

2
,

λ3 = −αx − αy − αz

2
,

λ4 = αx + αy − αz

2
,

and |%k〉 the so-called “magic basis” [22],

|%1〉 = |00〉 + |11〉√
2

,

|%2〉 = −i(|00〉 − |11〉)√
2

,

|%3〉 = |01〉 − |10〉√
2

,

|%4〉 = −i(|01〉 + |10〉)√
2

.

This is of course the familiar Bell basis, but note the peculiar
phases.

Hence the parameter space given by

Ttotal =
{
(αx ,αy,αz) : π

2
≥ αx ≥ αy ≥ |αz | ≥ 0

}
, (7)

describes all two-qubit unitaries up to local basis choice.
This forms a tetrahedron with vertices (0, 0, 0), (π2 , 0, 0),
(π2 , π2 ,−π

2 ) and (π2 , π2 , π2 ).
As we are interested in evaluating the capacities of unitaries,

we use,

U
(
αx ,αy,

π

2
+αz

)
= −i(σz ⊗ 1)U∗

(
αx ,αy,

π

2
−αz

)
(1 ⊗ σz),

(8)

where U∗ is the complex conjugate of U . Note that the
latter has the same environment-assisted classical capacities;
indeed, any code for U is transformed into one for U∗

by taking complex conjugates. The reduced parameter space
given by

T =
{
(αx ,αy,αz) : π

2
≥ αx ≥ αy ≥ αz ≥ 0

}
, (9)

describes all two-qubit unitaries up to local basis choice and
complex conjugation.

This forms a tetrahedron with vertices (0, 0, 0), (π2 , 0, 0),
(π2 , π2 , 0) and (π2 , π2 , π2 ), see Fig. 4. Familiar two-qubit gates
can easily be identified within this parameter space: for
instance, (0, 0, 0) represents the identity 1, (π2 , 0, 0) the

CNOT, (π2 , π2 , 0) the DCNOT (double controlled not), and
(π2 , π2 , π2 ) the SWAP gate, respectively.

Remark 11: T is closely related to the Weyl-chamber as
discussed in [47] which has the parametric region given
by tetrahedron with vertices (0, 0, 0), (π, 0, 0), (π2 , π2 , 0)
and (π2 , π2 , π2 ). It has been shown that each non-local
two-qubit unitary can be identified with a unique point in the
Weyl-chamber except on the base, where the triangles formed
by the vertices (0, 0, 0), (π2 , 0, 0) and (π2 , π2 , 0) is equivalent
to the triangle formed with the vertices (π, 0, 0), (π2 , 0, 0)
and (π2 , π2 , 0).

Example 12: To illustrate this parametrization, let us look
at a controlled-unitary V (cf. Theorem 9) of the form
V = |0〉〈0| ⊗ U0 + |1〉〈1| ⊗ U1, where Ui ∈ SU(2).
One can work out that this has parametric representation
(t, 0, 0), i.e. in the parameter tetrahedron Ttotal, these unitaries
are on the edge joining the identity 1 and CNOT.

To see this, we use the argument described in
Appendix A of [20]: Observe that the spectrum of
V T V is (e−2iλ1, e−2iλ2 , e−2iλ3 , e−2iλ4), where the
transpose operator is with respect to the magic
basis. In this way, (|0〉〈0| ⊗ 1)T = |1〉〈1| ⊗ 1 and
(1⊗ U)T = (1⊗ U†), thus V T = |1〉〈1| ⊗ U†

0 + |0〉〈0| ⊗ U†
1

and V T V = |1〉〈1|⊗ U†
0 U1 + |0〉〈0| ⊗ U†

1 U0. The eigenvalues
of U = U†

0 U1 are eid and e−id , where 2 cos d = Tr U .
The spectrum of V T V is thus

(
eid , eid , e−id , e−id )

. Using
the order property 3π

4 ≥ λ4 ≥ λ1 ≥ λ2 ≥ λ3 ≥ − 3π
4

(condition (9) written in terms of λk) and solving the linear
equations in αx , αy and αz , we get the parametric point
as (t, 0, 0) where t = d when d ≤ π

2 and t = π − d
when d ≥ π

2 .
Now we come to the main reason why we investigate

this class of unitaries, apart from obviously furnishing the
smallest possible examples: Recall that a quantum channel
N : L(A) → L(B) is called degradable [13] if there exists
a degrading CPTP map M : L(B) → L(F) such that
for any input ρA , Ñ (ρ) = M(N (ρ)). That is, Bob can
simulate the environment output by applying a CPTP map
on his system. It means that the complementary channel is
noisier than the channel itself, in an operationally precise
sense.

A quantum channel is anti-degradable if its complemen-
tary channel is degradable, i.e. if there exists a CPTP map
M : L(F) → L(B) such that for any input ρA, N (ρAE ) =
M(Ñ (ρA)).

It is well-known that the quantum capacity of anti-
degradable channels is zero, by the familiar cloning argument:
Namely, if an anti-degradable channel were to have positive
quantum capacity, F can apply the degrading map followed by
the same decoder as B and thus A would be transmitting the
same quantum information to B and F . This is in contradiction
to the no-cloning theorem as observed in [3]. Furthermore,
for each anti-degradable channel N we can identify a zero-
capacity degradable extension T i.e. there exists a channel R
such that N = R ◦ T and T is degradable [39]. On the
other hand, if a channel is degradable, Devetak and Shor [13]
showed that the quantum capacity can be characterized
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very concisely. Namely, they proved that for degradable
Ni : L(Ai ) −→ L(Bi ),

max
ρ(n)

Ic
(
ρ(n);N1 ⊗ · · · ⊗ Nn

)

= max
ρ1⊗···⊗ρn

Ic
(
ρ1 ⊗ · · · ⊗ ρn;N1 ⊗ · · · ⊗ Nn

)

=
n∑

i=1

max
ρi

Ic(ρi ;Ni ),

which implies for degradable channel N that

Q(N ) = max
ρ

Ic(ρ;N ).

Furthermore, the coherent information in this case is a concave
function of ρ, so the maximum can be found efficiently.

Notice that by interchanging the registers in B and F we
go from degradable channels to anti-degradable ones, and
vice versa. But many channels are neither degradable nor
anti-degradable. However, in [45] it was shown that qubit
channels with one-qubit environment are either degradable
or anti-degradable or both. Hence, for any initial state of
the environment, all the two-qubit unitary interactions give
rise to qubit channels that are either degradable or anti-
degradable or both. Ref. [45] also provided an analytical
criterion for determining whether a channel is degradable or
anti-degradable (or both, becoming symmetric in such a case).
The criterion is revisited here for our purposes.

Lemma 13 (Wolf/Perez-García [45]): Given an isometry
V : A ⊗ E → B ⊗ F and an initial input to environ-
ment |η〉 ∈ E , let {Ki } be the Kraus operators in normal
form (i.e. Tr K †

i K j = 0 for i .= j ) of the qubit channel

Nη(ρ) = TrF V (ρA ⊗ ηE )V †.
Then, the condition for degradability is given

by the sign of det(2K †
0 K0 − 1). The channel is

degradable when det(2K †
0 K0 − 1) ≥ 0, anti-degradable

when det(2K †
0 K0 − 1) ≤ 0, and symmetric when

det(2K †
0 K0 − 1) = 0.

This characterization has the consequence that the separable
environment-assisted quantum capacity of two-qubit unitaries
can be calculated fairly easily:

Theorem 14: For a two-qubit unitary V : AE −→ B F ,

QH⊗(V ) = max
ηE

max
ρA

Ic(ρ
A;Nη).

In addition, the maximization over helper states η may be
restricted to pure states such that Nη is degradable, and for
each such fixed η, the inner maximization over ρ is a convex
optimization problem (concave function on a convex domain).

Proof: The capacity in general is given by Theorem 6,
Eq. (4):

QH⊗(V ) = sup
n

max
η1⊗···⊗ηn

max
ρ(n)

1
n

Ic
(
ρ(n);Nη1 ⊗ · · · ⊗ Nηn

)
.

By Wolf and Perez-Garcia’s Lemma 13, each of the Nηi is
degradable or anti-degradable, so by Devetak and Shor [13],
Smith and Smolin [39], the coherent information is additive:

max
ρ(n)

Ic
(
ρ(n);Nη1 ⊗ · · ·Nηn

)
=

n∑

i=1

max
ρi

Ic(ρi ;Nηi ),

hence QH⊗(V ) = maxη maxρ Ic(ρ;Nη) as advertised.

Fig. 4. Universally anti-degradable and degradable regions inside the
parameter space T. The upper (red) tetrahedron corresponds to A, the lower
(blue) one corresponds to D. The universally degradable (anti-degradable)
region in Ttotal is obtained by union of D (A) and its reflection about the
αx and αy plane.

Clearly, for those η such that Nη is anti-degradable,
we know that the r.h.s. is 0, so we may discount them in
the optimization.

Definition 15: We say that a unitary operator U is univer-
sally degradable (resp. anti-degradable), if for every |η〉 ∈ E ,
the qubit channel Nη : L(A) → L(B) is degradable (resp.
anti-degradable). The set of universally degradable (anti-
degradable) unitaries in the parameter space T is denoted
D (A) and in the parameter space Ttotal is denoted by
Dtotal (Atotal).

Clearly, SWAP ∈ A and id ∈ D, hence both A and D are
non-empty. Furthermore, U ∈ D if and only if SWAP ·U ∈ A.
Indeed, the set {(αx ,αy,αz) ∈ T : U(αx ,αy ,αz) ∈ A} is
a tetrahedron with vertices (π4 , π4 , π4 ), (π2 , π4 , π

4 ), (π2 , π2 , 0)
and (π2 , π2 , π2 ), shown in Fig. 4. Similarly, the set D corre-
sponds to the tetrahedron with vertices (0, 0, 0), (π2 , 0, 0),
(π4 , π4 , 0) and (π4 , π4 , π4 ). For a detailed analysis of the
sets A and D and their parameter regions we refer
to Appendix B.

Let us first consider the unique edge of the tetrahedron T
which contains points either belonging to A or D. This
is the line segment joining the identity 1 (0, 0, 0) with
SWAP (π2 , π2 , π2 ). Each unitary on that line is a γ -th root
of SWAP with a parameter γ ∈ (0, 1), i.e.

SWAPγ = 1 + eiπγ

2
1 + 1 − eiπγ

2
SWAP

≡ U
(γπ

2
,
γπ

2
,
γπ

2

)
. (10)

It is actually elementary to evaluate the universally
anti-degradable region of this line segment. Due to the invari-
ance of SWAP under conjugation with unitaries of the form
u ⊗ u, it is enough to examine the anti-degradability of the
channel that arise when the initial state of the environment
is |0〉: either all Nη are anti-degradable or none. The Kraus
operators are

[
1 0
0 1+eiπγ

2

]
,

[
0 1−eiπγ

2
0 0

]
,
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Fig. 5. The inputs controlled by Alice are A′ and A, R is the purification
of A. Helen controls E ′ and E , Bob’s systems are labelled as B ′ and B .
The inaccessible output-environment systems are labelled as F ′ and F . Alice
inputs |0〉 in A′ and |%〉 in AR. Helen inputs a Bell state |%〉 in E ′ E .

making it a generalized amplitude damping channel with
damping parameter 1+eiπγ

2 .
Hence we can invoke the criterion of Lemma 13, as these

Kraus operators are in normal form. It results that N|0〉〈0| is
anti-degradable for γ ∈ [ 1

2 , 1], i.e. U
( γπ

2 , γπ2 , γπ2
)

∈ A.
From the above arguments it follows that

QH⊗
(
U

( γπ
2 , γπ2 , γπ2

))
= 0 for γ ∈ [ 1

2 , 1]. We do not
know whether it is even true that QH (SWAPγ ) = 0
for these values of γ , which would require to show that
QH⊗

(
(SWAPγ )⊗n

)
= 0 for all integers n.

IV. SUPER-ACTIVATION

The significance of U ∈ A is that a Helen restricted to
n-separable environment states cannot help Alice to com-
municate quantum information to Bob, QH⊗(U) = 0,
in accordance with Theorem 14. The natural question now
arising is whether an unrestricted Helen can perform any
better. In this section we show that this can indeed be
the case.

A. Two Different Unitaries

The edges of the universally anti-degradable tetrahedron
(Fig. 4) provide examples of super-activation (QH⊗(W ) =
QH⊗(V ) = 0 and QH⊗(W ⊗ V ) > 0). These are discussed
below by referring to the setting and notation of Fig. 5. The
input state we will consider below in all the further analysis,
unless mentioned otherwise, shall be |-〉 = |0〉A′ ⊗ |%〉E ′ E ⊗
|%〉AR , where |%〉 is the two-qubit maximally entangled
state.

The global unitary G is given by W ⊗ V ⊗ 1R , so that the
coherent information is given by S(ρB ′ B) − S(ρF ′ F ), where
ρB ′ B = TrF ′F R G|-〉〈-|G† and ρF ′F = TrB ′ B R G|-〉〈-|G†

are the output states of Bob and Eve, respectively.
A-1 Let W be a unitary on the edge joining SWAP and

DCNOT, i.e. W = U(π2 , π2 , tπ
2 ) with a parameter

t ∈ [0, 1]; V = SWAPγ with γ ∈ [0.5, 1]. Then W has
λ1 = tπ

4 , λ2 = tπ
4 , λ3 = −π

4 (t +2) and λ4 = −π
4 (t −2).

Fig. 6. Example A-1: Plot of the coherent information Ic = S(B ′B)−S(F ′F)
when W = U( π2 , π2 , tπ

2 ) and V = SWAPγ , over γ ∈ [0.5, 1].

Fig. 7. Example A-2: Plot of the coherent information Ic = S(B ′B)−S(F ′F)
when W = SWAP and V = ( π4 + tπ

4 , π4 , π4 ), over t ∈ [0, 1].

Hence, W = e
itπ
4 Ũ where

Ũ =





e− itπ
2 0 0 0

0 0 −i 0
0 −i 0 0
0 0 0 e− itπ

2




,

written in the computational basis. Bob’s output state is
then given by

ρB ′ B = 1
4

[
3 − cosπγ

2
(|00〉〈00| + |11〉〈11|)

+ ie− itπ
2 (1 − cosπγ )|00〉〈11|

− ie
itπ
2 (1 − cosπγ )|11〉〈00|

+ 1 + cosπγ
2

(
|01〉〈01| + |10〉〈10|

)]
,

whose eigenvalues are 5−3 cosπγ
8 (single) and 1+cosπγ

8
(triple), while ρF ′ F = |0〉〈0|F ′ ⊗ 1

21
F . The coherent

information vanishes at γ ∗ ≈ 0.6649, see Fig. 6. Hence
each unitary U(π2 , π2 , tπ

2 ) with t ∈ [0, 1] super-activates
SWAPγ for γ ∈ [0.5, γ ∗).

A-2 Let W = SWAP and V = (π4 + tπ
4 , π4 , π4 ) with t ∈ [0, 1].

Here, V sits on the edge joining
√

SWAP to U(π2 , π4 , π4 ).
The coherent information is positive for t ∈ [0, 1] as
depicted in Fig. 7.

A-3
√

SWAP activates U(π2 , π2 , tπ
2 ) for t ∈ [0, 1] as shown

in example A-1. The coherent information is given by
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Fig. 8. Plots of the coherent information when V =
√

SWAP and W is on
one of the edges of the tetrahedron A, examples A-3a through A-3e.

the curve s in Fig. 8. Here let us evaluate the coherent
information for the setting described in Fig. 5, when
we have V =

√
SWAP and W is a unitary on the

edges of the tetrahedron corresponding to A. By varying
the parameter t from [0, 1] we move along one of the
edges of A.

a) The edge joining
√

SW AP to DCNOT: W = U
(π4 + tπ

4 , π4 + tπ
4 , π4 − tπ

4 ). The coherent information
is given by the curve p in Fig. 8, which is positive for
t ∈ (0, 1].

b) The edge joining
√

SWAP to SWAP (SWAPγ ): W =
U(π4 + tπ

4 , π4 + tπ
4 , π4 + tπ

4 ). The coherent information
is given by the curve p in Fig. 8, which is positive
for t ∈ (0, 1]. Here t = 2γ − 1, and the coherent
information is positive for γ ∈ ( 1

2 , 1].
c) The edge joining U(π2 , π4 , π4 ) to SWAP: W =

U(π2 , π4 + tπ
4 , π4 + tπ

4 ). The coherent information is
given by the curve q in Fig. 8, which is positive for
t ∈ [0, 1].

d) The edge joining U(π2 , π4 , π4 ) to DCNOT: W =
U(π2 , π4 + tπ

4 , π4 − tπ
4 ). The coherent information is

given by the curve q in Fig. 8, which is positive for
t ∈ [0, 1].

e) The edge joining
√

SWAP to U(π2 , π4 , π4 ): W = U
(π4 + tπ

4 , π4 , π4 ). The coherent information is given by
the curve r in Fig. 8, which is positive for t ∈ (0, 1].

It results that each unitary corresponding to a point
on the edge of the tetrahedron A is super-activated
by some another V ∈ A. Actually a single unitary,
V =

√
SWAP, super-activates every other unitary on the

edges of the universally anti-degradable tetrahedron A
(except itself). Furthermore, from the numerical analysis
we have that V =

√
SWAP super-activates every W ∈ A

(except itself).
Thus, in all the above cases,

QH⊗(W ⊗ V ) > QH⊗(W ) + QH⊗(V ) = 0.

In other words, two seemingly useless unitaries can transfer a
positive rate of quantum information when used in conjunction
and the input environments are entangled. All the above
W and V show super-activation of QH⊗. In addition, in the
examples A-1 and A-2, we have W = SWAP, hence in fact
even QH (W ) = 0. In particular the roots SWAPγ of the

SWAP gate are interesting. When
√

SWAP is used in con-
junction with a different W ∈ A and the input environments
are entangled, then they could transfer positive quantum infor-
mation i.e. QH⊗(

√
SWAP ⊗ W ) > 0.

Remark 16: We should note that in general U ⊗ V
and U ⊗ V ∗ have different environment-assisted capaci-
ties and in such cases we should consider Ttotal, say for
example to provide a complete characterization of super-
activation. So, U(π4 , π4 , −π

4 ) activates every other unitary
on the edges of the bottom half of universally anti-
degradable region Atotal (the tetrahedron with the vertices
(π4 , π4 , −π

4 ), (π2 , π4 , −π
4 ), (π2 , π2 , −π

2 ) and (π2 , π2 , 0)).

B. Self-Super-Activation
So far we have considered two different unitaries. The

question is if two copies of the same unitary R (R ∈ A) can
yield positive capacity when the initial states environments are
entangled? In other words, can QH⊗ be self-super-activated?
The answer to this question is affirmative as we shall
show now.

Remark 17: From the super-activation of a unitary W with
another unitary V , such that both W and V are universally
anti-degradable, we can get a self-super-activating unitary by
doubling the size of the environment. More precisely, we can
construct the new unitary R : A ⊗ E ⊗ E ′ → B ⊗ F ⊗ F ′,
with E ′ = F ′ = C2: R = W AE ⊗ |0〉〈0|E ′ + V AE ⊗ |1〉〈1|E ′

.
To see that this works, clearly if Helen inputs |0〉 into E ′,

she determines that the unitary on AE is W , if she inputs |1〉
into E ′, the unitary is V ; hence from two uses, R⊗ R, she can
get W ⊗ V , which has positive environment-assisted capacity
by assumption. On the other hand QH⊗(R) = 0, because in
fact R is itself universally anti-degradable. Namely, observe
that if the channels induced by W and V for environment
input states ψ and ϕ are denoted by Nψ and Mϕ , respectively,
then a generic input state

√
p|ψ〉|0〉 + √

1 − p|ϕ〉|1〉 to the
E E ′ registers of W results in the channel pNψ + (1− p)Mϕ.
As both components are anti-degradable, so is their convex
combination.

However, by looking at our two-qubit classification more
carefully, we can also find self-super-activation in this simplest
possible setting.
B-1 Let us consider the unitaries

U
(
π
4 + t π4 , π4 + t π4 , π4 − t π4

)
with t ∈ [0, 1]. We have

seen in example A-3a that these unitaries are activated
by

√
SWAP in t ∈ (0, 1]. Now we shall explore the

case when W = V = U
(
π
4 + t π4 , π4 + t π4 , π4 − t π4

)
. The

coherent information S(B B ′) − S(F F ′) is positive for
t ∈ (0, 1) as shown by curve m in Fig. 9.
When Helen can create quantum correlation between the
environment inputs we see that a seemingly “useless”
unitary can transmit quantum information. That is, the
unrestricted Helen can super-activate the interaction
U

(
π
4 + t π4 , π4 + t π4 , π4 − t π4

)
, with t ∈ (0, 1) which

translates to

QH

(
U

(π
4

+ t
π

4
,
π

4
+ t

π

4
,
π

4
− t

π

4

))

> QH⊗
(

U
(π

4
+ t

π

4
,
π

4
+ t

π

4
,
π

4
− t

π

4

))
= 0.

(11)
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Fig. 9. Example B-1: Plot of the coherent information for the family
W = V = U

( π
4 + tπ

4 , π4 + tπ
4 , π4 − tπ

4
)
; it is positive for t ∈ (0, 1).

Fig. 10. Example B-2: Plots of the coherent information for the family
W = V = U

( π
2 , π4 + t π4 , π4 − t π4

)
. Curves m, n, o correspond to input

states |-〉θ with θ = 1
2 , 2−6, 2−10, respectively.

B-2 We can provide another family of unitaries which
exhibit self-super-activation by the unitaries W = V =
U

(
π
2 , π4 + t π4 , π4 − t π4

)
. The environment input state is

|-〉θ = |1〉A′ ⊗ |%〉E ′ E ⊗
(√
θ |00〉 + √

1 − θ |11〉
)AR

.
By optimizing over θ , we numerically find positive
coherent information for t ∈ (0.0004, 0.9999). The plots
in Fig. 10 show θ = 1

2 (curve m), θ = 2−6 (curve n) and
θ = 2−10 (curve o). The coherent information achievable
seems to get smaller and smaller as t approaches 0.

For all the above U , QH⊗(U) = 0 but QH (U) > 0,
showing that to unlock the full potential of an interaction U ,
the helper may need to entangle the environments of different
instances of U .

Remark 18: The phenomenon of self-super-activation
taking place thanks to entanglement across environments
resembles the super-additivity of the capacity in quantum
channels with memory [11], [28].

V. ENTANGLEMENT-ENVIRONMENT-ASSISTED HELPER

Entanglement played a pivotal role in the instances of
super-activation exhibited above; when Helen could create
correlation between the environment input registers, she could
enhance quantum communications from Alice to Bob. In this
section we consider the model when there is pre-shared
entanglement between Helen and Bob. This model is motivated
by the equivalence of the two schemes presented in Fig. 11.

Fig. 11. When inputting an entangled state across E ′ E and an arbitrary
state in A′ (top), the SWAP acts like a “dummy” channel but helps to
establish entanglement between the receiver B B ′ and the environment E . This
is equivalent to sharing an entangled state between Helen and Bob (bottom).

SWAP merely exchanges the input and environment
registers, which could be used to correlate the environ-
ment on the input side with the receiver when the initial
environment states are entangled. Indeed, this was behind
several of the examples of super-activation in the previous
section (A-1 and A-2).

Extending the notation of Nη = N (· ⊗ η) introduced in
Section II, we let, for a state κ on E H ,

N A→B H
κ (ρ) := (N AE→B ⊗ idH )(ρA ⊗ κE H ).

Referring to Fig. 12, we can further define the following
CPTP maps. An encoding map E : L(A0) → L(An), and the
decoding map D : L(Bn ⊗ H ) → L(B0). The output after
the overall dynamics when we input a maximally entangled
state %R A0 , with the inaccessible reference system R, is given
by σ R B0 = D

(
N⊗n ⊗ idH

(
E(%R A0) ⊗ κEn ))

.
Definition 19: An entanglement-environment-assisted

quantum code of block length n is a triple (E A0→An
, κEn H ,

DBn H→B0). Its fidelity is given by F = Tr%R A0σ R B0 , and
its rate defined as 1

n log |A0|.
A rate R is called achievable if there are codes of all

block lengths n with fidelity converging to 1 and rate con-
verging to R. The entanglement-environment-assisted quantum
capacity of V , denoted QE H (V ), or equivalently QE H (N ),
is the supremum of all achievable rates.

Theorem 20: The entanglement-environment-assisted quan-
tum capacity of an interaction V : AE −→ B F is character-
ized by following regularization.

QE H (V ) = sup
n

max
|κ(n)〉∈En H

1
n

Q
(
(N⊗n)κ(n)

)

= sup
n

max
|κ〉∈En H

max
ρ(n)

1
n

Ic
(
ρ(n); (N⊗n)κ(n)

)
. (12)
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Fig. 12. The general form of a protocol to transmit quantum information
when the helper and the receiver pre-share entanglement; E and D are
the encoding and decoding maps respectively, κ is the initial state of the
environments and system H .

The maximization is over (w.l.o.g. pure) states κ (n) on En H
and input states ρ(n) on An .

Proof: The direct part, i.e. the “≥” inequality, follows
directly from the LSD theorem [12], [30], [38], applied to the
channel (N⊗n)κ(n) , to be precise asymptotically many copies
of this block-channel, so that the i.i.d. theorems apply [42].

The converse (“≤”), works as before in Theorem 6,
following Barnum et al. [2], Schumacher [35], and
Schumacher and Nielsen [36]: Consider a code of block
length n and fidelity F , where the helper uses an environment
state κ (n); otherwise we use notation as in Fig. 12. We have
1
2‖σ −%‖1 ≤ √

1 − F =: ε, cf. [17]. Now, Fannes’ inequal-
ity [16] can be applied, at least once 2ε ≤ 1

e (i.e. when F is
large enough), yielding

I (R〉B0)σ = S(σ B0) − S(σ R B0)

≥ S(σ B0)

≥ S(%A0 ) − 2ε log |B0| − H2(2ε)

≥ (1 − 2ε) log |A0| − 1.

On the other hand, with ω = (id ⊗E)%,

I (R〉B0)σ ≤ I (R〉Bn)(id ⊗N⊗n
κ(n) )ω

≤ max
|φ〉R An

I (R〉Bn)(id ⊗N⊗n
κ(n) )φ

= max
ρ(n)

Ic
(
ρ(n); (N⊗n)κ(n)

)
,

using first data processing of the coherent information and
then its convexity in the state [36]. As n → ∞ and F → 1,
the upper bound on the rate follows.

Proposition 21: The entanglement-environment-assisted
quantum capacity is continuous. The statement and proof are
analogous to the ones in Proposition 8, following [29].

The super-activation of U ∈ A with SWAP depicted
in Fig. 5 translates to positive capacity with an entan-
gled helper. We discuss two concrete examples of two-qubit
unitaries:
E-1 QE H (SWAPγ ) > 0 for γ ∈ [0.5, 0.6649), cf. Section IV,

example A-1.

E-2 Consider U corresponding to a point on the line segment
joining (π4 , π4 , π4 ) and (π2 , π4 , π4 ). These points are
vertices of A (see Fig. 4), and hence the line segment
is an edge of the universally anti-degradable tetrahedron.
As we saw in Section IV, example A-2, this is
super-activated by SWAP.

We now show how to evaluate the single-copy coherent
information in the entanglement-environment-assisted capacity
of SWAPγ , with γ ∈ [0, 1], as per Theorem 20, Eq. (12); the
setting is as in the lower part of Fig. 11. To proceed, we need
the following lemma.

Lemma 22: If an isometry U : AE −→ B F is universally
degradable, then for every |κ〉 ∈ E H , the channel Nκ :
L(A) −→ L(B H ) is degradable.

Proof: Recall Nκ(ρ) = TrF (N ⊗ idH )(ρA ⊗ κE H ), with
Stinespring dilation V |ϕ〉 = (U ⊗ 1)(|ϕ〉|κ〉), mapping A to
B H ⊗ F . Hence, the complementary channel is given by

Ñκ (ρ) = TrB N (ρA ⊗ κE ),

with the reduced state κE = TrH κ .
Let |κ〉 = ∑

i
√

pi |ηi 〉E |i〉H be the Schmidt decomposition.
Then, on the one hand,

Ñκ =
∑

i

piÑηi =
∑

i

piDi ◦ Nηi ,

with degrading CPTP maps DB→F
i by assumption.

As i is accessible in the output of Nκ by measuring H in
the computational basis, we obtain the degrading map DB H→F

such that Ñκ = D ◦ Nκ , via D(σ ⊗ |i〉〈 j |) = δi jDi (σ ).
Returning to SWAPγ , the combined channel and environ-

ment input is ρA ⊗ κE H . Because of the u ⊗ u-symmetry of
the gate, we may without loss of generality choose the bases
of E and H such that |κ〉E H =

√
λ|00〉 + √

1 − λ|11〉.
Now, κ is invariant under the action of Z E ⊗ Z† H , hence

we obtain a covariance property of the channel:

Nκ(ZρZ†) = (Z ⊗ Z†)Nκ(ρ)(Z† ⊗ Z).

By Lemma 22, Nκ is degradable, hence the coherent infor-
mation is concave in ρA [13] and so the coherent information
is maximized on an input density ρA that commutes with Z .
I.e. we may assume that ρA = µ|0〉〈0| + (1 − µ)|1〉〈1|.

We then find for the output states of Bob (B ′B = H B) and
the environment (F) that

ρB ′ B = λ

(

µ + (1 − µ)

∣∣∣∣
1 − eiπγ

2

∣∣∣∣
2)

|00〉〈00|

+ (1 − λ)

(

(1 − µ) + µ

∣∣∣∣
1 − eiπγ

2

∣∣∣∣
2)

|11〉〈11|

+
√
λ(1 − λ)

(
1
2

− µ

2
e−iπγ − 1 − µ

2
eiπγ

)
|00〉〈11|

+
√
λ(1 − λ)

(
1
2

− µ

2
eiπγ − 1 − µ

2
e−iπγ

)
|11〉〈00|

+ λ(1 − µ)

∣∣∣∣
1 + eiπγ

2

∣∣∣∣
2(|01〉〈01| + |10〉〈10|),
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Fig. 13. The unbroken curve in the plot is QE H⊗, the single-copy coherent
information in the formula for the entanglement-environment-assisted quan-
tum capacity of SWAPγ , Eq. (12), i.e. the maximum of Ic(ρ;Nκ ) over states
ρA and κE H . The dashed line is the restricted environment-assisted quantum
capacity QH⊗(SWAPγ ).

and ρF is diagonal in the computational basis:

ρF =
(

λµ+λ(1−µ)

∣∣∣∣
1 + eiπγ

2

∣∣∣∣
2

+µ(1−λ)
∣∣∣∣
1 − eiπγ

2

∣∣∣∣
2)

|0〉〈0|

+
(

(1 − λ)(1 − µ) + λ(1 − µ)

∣∣∣∣
1 − eiπγ

2

∣∣∣∣
2

+ µ(1 − λ)

∣∣∣∣
1 + eiπγ

2

∣∣∣∣
2)

|1〉〈1|.

In Fig. 13 we plot the single-copy coherent infor-
mation assisted by an entangled environment, maximized
over λ and µ, and compare it with the same quantity without
pre-shared entanglement. This is actually the quantum capacity
assisted by entangled states of the form κEn Hn = κE1 H1 ⊗· · ·⊗
κEn Hn in Definition 19, which we might denote QE H⊗(U) in
analogy with QH⊗(U). As shown in the plot, the entanglement
between Helen and Bob increases the quantum capacity of
SWAPγ to a positive quantity for a large interval of γ values,
up to γ ∗∗ ≈ 0.7662.

Remark 23: It follows that we could achieve super-
activations of SWAPγ with SWAP for larger interval of
γ ∈ [0.5, 0.7662), when optimizing over the input of SWAPγ

and the initial environment state, in Section IV, example A-1.
Remark 24: We could even contemplate a fully

entanglement-assisted model, where both Alice and Helen
share prior entanglement with Bob. This is a special case of
Hsieh et al.’s entanglement-assisted multi-access channel [23]:
Indeed, if the achievable rate region of pairs of rates (RA, RE )
for quantum communication via N AE→B assisted by arbitrary
pre-shared entanglement is known, then the entanglement-
and helper-assisted quantum capacity is given by the
largest R such that the pair (R, 0) is achievable.

VI. CONCLUSION

We have laid the foundations of a theory of quantum
communication with passive environment-assistance, where a
helper is able to select the initial environment state of the
channel, modelled as a unitary interaction. The general, multi-
letter, capacity formulas we gave for the quantum capacity

assisted by an unrestricted, and by a separable helper resemble
the analogous formula for the unassisted capacity. Like the
latter, which is contained as a special case, the environment-
assisted capacities are continuous in the channel, but in general
seem to be hard to characterize in simple ways. As noted
in Remarks 7 and 24, the passive environment-assisted mod-
els (resp. passive entanglement-environment-assisted models)
come out as a special case of the quantum MAC (resp.
entanglement-assisted MAC). However it is only the model
that is a special case, but not the results per se as evident
in the case of universally degradable unitaries, where the
separable helper capacity is characterized by a single-letter,
but we can not say it has a capacity region characterized
by single-letter in the multi-access viewpoint. Furthermore,
the assisted model viewpoint the transmission capabilities are
charactrized by a single rate as opposed to the rates-region
which characterizes MAC.

In our development we have then focused on two-qubit
unitaries, giving rise to very simple-looking qubit channels
for which the environment-assisted quantum capacity with
separable helper can be evaluated. Interestingly, there are
unitaries giving rise to anti-degradable channels for every input
state, hence the capacity with separable helper vanishes; yet,
some of these “universally anti-degradable” unitaries could
be super-activated by unitaries from the same class, in some
cases by themselves. In fact, there is a single unitary

√
SWAP

that activates all universally anti-degradable unitaries U ∈ A
(except itself, according to numerics). In particular, the quan-
tum capacity QH with unrestricted helper can be strictly larger
than the one with separable helper, QH⊗, and the computation
of the former remains a major open problem.

Some other interesting open questions include the following:
• How to characterize the set of unitaries U such that

QH (U) = 0? Note that in the two-qubit case we only
the example U = SWAP, but it seems that

√
SWAP

is another one, but we lack a proof. In [24] we have
identified a class of unitaries with vanishing QH of which
SWAP is a special case. These unitaries Uc : A ⊗ E −→
B ⊗ F with |A| = |B| = |E | = |F | = d are of the form

Uc :=
∑

i

|i〉F 〈i |A ⊗ U E→F
i

Furthermore, for two unitaries Uc1 and Uc2 which are of
the above form, QH (Uc1 ⊗ Uc2) = 0.

• Can QH be super-activated, i.e. are there U , V with
QH (U) = QH (V ) = 0 but QH (U ⊗ V ) > 0? From
the above analysis, U = SWAP and V =

√
SWAP seem

good candidates.
Finally, we only just started the issue of entanglement-

environment-assistance, motivated by the distinguished role
of the SWAP gate in many of our examples. But for the
moment we do not even have an understanding of super-
activations of the entanglement-environment-assisted capaci-
ties QE H and QE H⊗.

Our model and approach can evidently be adapted to
other communication capacities, say for instance the pri-
vate capacity P and classical capacity C of a channel.
Regarding the former, our examples of super-activation and
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self-super-activation apply directly because private and quan-
tum capacity coincide for degradable and anti-degradable
channels. On the classical capacity we have preliminary results
which will be reported on in forthcoming work [24].

Looking further afield, one can conceive a very powerful
helper having access to both the input and the output of
the environment, thus providing a unifying picture between
present study and those originated from Refs. [18], [19], [41].
In such a scenario it would be particularly interesting to deter-
mine channels that do not trivialize, i.e. that, notwithstanding
the power of the helper, lead to non optimal capacities. For
example, we can identify SWAP as the unitary which has
zero quantum communication capabilities even with the all
powerful helper.

APPENDIX A
COMMUNICATION IN THE PRESENCE

OF A JAMMER (QAVC)

The purpose of this appendix is to prove the adversarial
channel capacity theorem, which we restate here:

Theorem 5: For any jammer channel N : AE → B ,

Q J,r (N ) = sup
n

max
ρ(n)

min
η

1
n

Ic
(
ρ(n); (Nη)

⊗n)
,

where the maximization is over states ρ(n) on An , and the
minimization is over arbitrary states η on E .

Proof: The converse part, i.e. the “≤” inequality, follows
from [1, Th. 27], because in the proof it is enough to
consider tensor product strategies η(n) = η1 ⊗ · · · ⊗ ηn of the
jammer, hence Nη(n) = Nη1 ⊗ · · · ⊗ Nηn is a tensor product
map as in the AVQC model. Thus the proof of [1] applies
unchanged.

For the direct part (“≥”), consider input states ρ(n) on An

and a rate

R ≤ min
η

Ic
(
ρ(n); (Nη)

⊗n)
− δ,

for δ > 0 and all integers n. We invoke a result of
Bjelaković et al. [4] on the so-called compound channel(
(Nη)⊗n

)
η∈S(E), to the effect that there exist codes (Dn, En)

for all block lengths n and with rate R that perform universally
well for all the i.i.d. channels (Nη)⊗n :

Fn := min
η

F
(
%R B0, (Dn ◦ N⊗n

η ◦ En)%R A0
)

≥ 1 − cn,

with some c < 1. For later use, let us rephrase this condition
as a property of η(n) = η⊗n :

cn ≥ 1 − F

= Tr(1 −%)
(
Dn ◦ N⊗n(En(%) ⊗ η(n))

)

= Tr
(
(N †⊗n ◦ D†

n)(1 −%)
)(
En(%) ⊗ η(n)

)

= Tr Xnη
(n), (13)

where 0 ≤ Xn ≤ 1 is a constant operator depending only on
the code.

We claim that, using a shared uniformly random permuta-
tion π ∈ Sn to permute the n input/output systems, the same
code is good against the jammer. Concretely, let Uπ be the

conjugation by the permutation unitary on an n-party system,
and define, for a given n,

Eπ := Uπ ◦ En,

Dπ := Dn ◦ Uπ−1
.

Then, for any jammer strategy η(n) ∈ S(En),

1 − F
(
η(n)

)

= 1
n!

∑

π∈Sn

1 − F
(
%R B0,

(
Dπ ◦ (N⊗n)η(n) ◦ Eπ

)
%R A0

)

= Tr



Xn
1
n!

∑

π∈Sn

Uπ (η(n))





= Tr Xnη
(n), (14)

using Eq. (13), and where η(n) = 1
n!

∑
π∈Sn

Uπ (η(n)) is
permutation symmetric.

At this point, we can apply the postselection technique
of [9], which relies on the matrix inequality

η(n) ≤ (n + 1)|E |2
∫

σ
dσ σ⊗n ,

with a certain universal probability measure dσ over states
on E . Thus, according to the assumption and the above
Eq. (14), we find that for the permutation-symmetrized com-
pound channel code,

1 − F(η(n)) ≤ (n + 1)|E |2cn

for all jammer strategies η(n), and the right hand side of course
still goes to zero exponentially fast, concluding the proof.

APPENDIX B
PARAMETRIZATION OF TWO-QUBIT UNITARIES

AND DEGRADABILITY REGIONS

For the further analysis we require another analytical
criterion for anti-degradability:

Lemma 25 (Myhr/Lütkenhaus [33]): A qubit channel with
qubit environment is anti-degradable if and only if
λmax(ρR B) ≤ λmax(ρB), where λmax(X) is the maximum
eigenvalue of a Hermitian matrix X . Here ρR B is the Choi
matrix of the given qubit channel and ρB is the reduced state
after tracing out the reference system R.

Following the analysis in Section III, we restrict our
attention to the parameter space T of (αx ,αy,αz) satisfying
π
2 ≥ αx ≥ αy ≥ αz ≥ 0, which forms a tetrahedron with
vertices (0, 0, 0), (π2 , 0, 0), (π2 , π2 , 0) and (π2 , π2 , π2 ).

Given a unitary U(αx ,αy,αz) and an initial state of
the environment, |ξ〉 = cos( θ2 )|0〉 + eiϕ sin( θ2 )|1〉, where
θ ∈ [0,π], ϕ ∈ [0, 2π), we evaluate the Choi matrix by
inputting a maximally entangled state |%〉 = 1√

2

(
|00〉+ |11〉

)
.

Thus the output state is |-〉R B F = (1R⊗U AE )
(
|%〉R A⊗|ξ〉E )

.
From the Schmidt decomposition, the maximum eigenvalue
of ρR B is equal to the maximum eigenvalue of ρF =
TrR B |-〉〈-|, which can be written in matrix form as

1
2

[
1 + aF bF − icF

bF + icF 1 − aF

]
, (15)
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with the Bloch vector components given by

aF = cos(θ) cos(αx ) cos(αy),

bF = sin(θ) cos(ϕ) cos(αz) cos(αy),

cF = sin(θ) sin(ϕ) cos(αz) cos(αx ).

Similarly, ρB = TrRF |-〉〈-| has Bloch vector components
given by

aB = cos(θ) sin(αx ) sin(αy),

bB = sin(θ) cos(ϕ) sin(αz) sin(αy),

cB = sin(θ) sin(ϕ) sin(αz) sin(αx ).

The largest eigenvalue of a qubit density matrix ρ with

Bloch vector components a, b, c is 1+
√

a2+b2+c2

2 . When we
impose the condition for anti-degradability from Lemma 25
we get the following inequality:

0 ≥ cos2(θ) cos(αx + αy) cos(αx − αy)

+ sin2(θ) cos2(ϕ) cos(αz + αy) cos(αz − αy)

+ sin2(θ) sin2(ϕ) cos(αz + αx ) cos(αz − αx ).

This must be true for all input states of environment, hence
for all θ ∈ [0,π], ϕ ∈ [0, 2π). Thus we arrive at

αx + αy, αy + αz, αz + αx ≥ π

2
, (16)

for the universally anti-degradable region. This forms another
tetrahedron with vertices (π4 , π4 , π4 ), (π2 , π4 , π4 ), (π2 , π2 , 0) and
(π2 , π2 , π2 ), which is depicted in Fig. 4.

By swapping the outputs of unitary U ∈ A we get another
unitary V = SWAP ·U ∈ D. By applying this transformation
to the vertices of the parameter region of A, we get the vertices
of the parameter region D given by (π4 , π4 , π4 ), (π4 , π4 , 0),

(π2 , 0, 0) and (0, 0, 0). The unitary
√

SWAP, with the para-
meters (π4 , π4 , π4 ), is the unitary which lies in the intersection
of A and D. This gives rise to symmetric qubit channels for
every initial state of the environment.

The universally anti-degradable region in Ttotal is obtained
by union of A and its reflection about the αx and αy
plane which is denoted by Atotal. Thus Atotal is the union
of A and the tetrahedron with the vertices (π4 , π4 , −π

4 ),
(π2 , π4 , −π

4 ), (π2 , π2 , −π
2 ) and (π2 , π2 , 0).
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