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In this work, we incorporate reversibility into structured communication-based program-
ming, to allow parties of a session to automatically undo, in a rollback fashion, the effect 
of previously executed interactions. This permits to take different computation paths along 
the same session, as well as to revert the whole session and start a new one. Our aim is 
to define a theoretical basis for examining the interplay in concurrent systems between 
reversible computation and session-based interaction. We thus propose ReSπ a session-
based variant of π-calculus using memory devices to keep track of the computation 
history of sessions in order to reverse it. We show how a session type discipline of 
π-calculus is extended to ReSπ , and illustrate its practical advantages for static verification 
of safe composition in communication-centric distributed software performing reversible 
computations. We also show how a fully reversible characterisation of the calculus extends 
to committable sessions, where computation can go forward and backward until the session 
is committed by means of a specific irreversible action.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the field of programming languages, reversible computing aims at providing a computational model that, besides the 
standard forward executions, also permits backward execution steps to undo the effect of previously performed forward 
computations. Despite being a subject of study for many years, reversible computing is recently experiencing a rise in 
popularity. This is mainly due to the fact that reversibility is a key ingredient in different application domains. In particular, 
for what specifically concerns our interest, many researchers have put forward exploiting this paradigm in the design of 
reliable concurrent systems. In fact, it permits us to understand existing patterns for programming reliable systems (e.g., 
compensations, checkpointing, transactions) and, possibly, to develop new ones.

A promising line of research on this topic advocates reversible variants of well-established process calculi, such as CCS [2]
and π -calculus [3], as formalisms for studying reversibility mechanisms in concurrent systems. By pursing this line of re-
search, in this work we incorporate reversibility into a variant of π -calculus equipped with session primitives supporting 
communication-based programming. A (binary) session consists in a series of reciprocal interactions between two parties, 
possibly with branching and recursion. Interactions on a session are performed via a dedicated private channel, which is 
generated when initiating the session. Session primitives come together with a session type discipline offering a simple 
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checking framework to statically guarantee the correctness of communication patterns. This prevents programs from inter-
acting according to incompatible patterns.

Practically, combining reversibility and sessions paves the way for the development of session-based communication-
centric distributed software intrinsically capable of performing reversible computations. In this way, without further coding 
effort by the application programmer, the interaction among session parties is relaxed so that, e.g., the computation can 
automatically go back, thus allowing to take different paths when the current one is not satisfactory. As an application 
example, used in this paper for illustrating our approach, we consider a simple scenario involving a client and multiple 
providers offering the same service (e.g., on-demand video streaming). The client connects to a provider to request a given 
service (specifying, e.g., title of a movie, video quality, etc.). The provider replies with a quote determined according to the 
requested quality of service and to the servers status (current load, available bandwidth, etc.). Then, the client can either 
accept, negotiate or reject the quote; in the first two cases, the interaction between the two parties shall continue. If a 
problem occurs during the interaction between the client and the provider for finalising the service agreement, the compu-
tation can be automatically reverted. This allows the client to partially undo the current session, in order to take a different 
computation path along the same session, or even start a new session with (possibly) another provider.

The proposed reversible session-based calculus, called ReSπ (Reversible Session-based π -calculus), relies on memories 
to store information about interactions and their effects on the system, which otherwise would be lost during forward 
computations. This data is used to enable backward computations that revert the effects of the corresponding forward 
ones. Each memory is devoted to record data concerning a single event, which can correspond to the taking place of a 
communication action, a choice or a thread forking. Memories are connected with one other, in order to keep track of 
the computation history, by using unique thread identifiers as links. Like all other formalisms for reversible computing in 
concurrent settings, forward computations are undone in a causal-consistent fashion [4,5]. This means that backtracking 
does not have to necessarily follow the exact order of forward computations in reverse, because independent actions can be 
undone in a different order. Thus, an action can be undone only after all the actions causally depending on it have already 
been undone.

Concerning the session type discipline, ReSπ inherits the notion of types and the typing system from π -calculus. Thus, 
the related results are mainly based on the ones stated for π -calculus. Besides the possibility of taking advantage of the 
theory already defined for π -calculus, this also allows our investigation to focus on a standard session type setting, rather 
than on an ad-hoc one specifically introduced for our calculus.

The resulting formalism offers a theoretical basis for examining the interplay between reversible computations and 
session-based structured interactions. We notice that reversibility enables session parties not only to partially undo the 
interactions performed along the current session, but also to automatically undo the whole session and restart it, possibly 
involving different parties. The advantage of the reversible approach is that this behaviour is realised without explicitly 
implementing loops, but simply relying on the reversibility mechanism available in the language semantics. On the other 
hand, the session type discipline affects reversibility as it forces concurrent interactions to follow structured communication 
patterns. If we would consider only a single session, due to linearity, a causal-consistent form of reversibility would not be 
necessary, i.e. concurrent interactions along the same session are forbidden and, hence, the rollback would follow a single 
path. Instead, in the general case, concurrent interactions along different sessions may take place, thus introducing causal 
dependences. In this case, a session execution has to be reverted in a causal-consistent fashion. Notably, interesting issues 
concerning reversibility and session types are still open questions, especially for what concerns the validity in the reversible 
setting of standard properties (e.g., progress enforcement) and possibly new properties (e.g., reversibility of ongoing session 
history, safe closure of subordinate sessions).

It is worth noticing that the proposed calculus is fully reversible, i.e. backward computations are always enabled. Full 
reversibility provides theoretical foundations for studying reversibility in session-based π -calculus, but it is not suitable 
for a practical use on structured communication-based programming. In fact, reverting a completed session might not be 
desirable. Therefore, we also propose an extension of the calculus with an irreversible action for committing the completion 
of sessions. In this way, computation would go backward and forward, allowing the parties to try different interactions, until 
the session is successfully completed and, hence, irreversibly closed.

Summary of the rest of the paper. Section 2 reviews strictly related work. Section 3 recalls syntax and semantics definitions of 
the considered session-based variants of π -calculus. Section 4 introduces ReSπ , our reversible session-based calculus. Sec-
tion 5 shows the results concerning the reversibility properties of ReSπ . Section 6 describes the associated typing discipline. 
Section 7 presents the extension of ReSπ with irreversible commit actions. Section 8 concludes the paper by touching upon 
directions for future work. Proofs of results are collected in Appendix A.

2. Related work

Our proposal combines the notion of (causal-consistent) reversibility with (typed) primitives supporting session-based 
interactions in concurrent systems. We review here some of the closely related works concerning either reversibility or 
session types.

Forms of reversible computation can be found in different formalisms in the literature. For example, backward reductions 
are considered in the λ-calculus to define equality on expressions [6]. Similar notions are used in the definitions of back and 
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forth bisimulations [7] on Labelled Transition Systems, and of reversible steps in Petri nets [8]. More in practice, reversibility 
can be used for exploring different possibilities in a computation. For example, the Prolog language uses its backtracking 
capabilities to explore the state-space of a derivation to find a solution for a given goal. However, in our paper we mainly 
focus on the use of reversible computing as a suitable paradigm for designing and developing reliable concurrent systems, 
which came to prominence in recent years. Along this line of research, the works in the reversible computing field most 
closely related to ours are those concerning the definition of reversible process calculi. We briefly discuss the most relevant 
of them below, and refer the interested reader to [9] for a comprehensive survey and a larger perspective.

Reversible CCS (RCCS) [5] is the first proposal of reversible calculus, from which all subsequent works drew inspiration. 
The host calculus (i.e., the non-reversible calculus extended with capabilities for reversibility) is CCS without recursive 
definitions and relabelling. To each currently running thread is associated an individual memory stack keeping track of past 
actions, as well as forks and synchronisations. Information pushed on the memory stacks, upon doing a forward transition, 
can be then used for a rollback. The memories also serve as a naming scheme and yield unique identifiers for threads. 
When a process divides in two sub-threads, each sub-thread inherits the father memory together with a fork number 
(either 〈1〉 or 〈2〉) indicating which of the two sons the thread is. Then, in the case of a forward synchronisation, the 
synchronised threads exchange their names (i.e., memories) in order to allows the corresponding backward synchronisation 
to take place. A drawback of this approach for memorising fork actions is that the parallel operator does not satisfy usual 
structural congruence rules as commutativity, associativity and nil process as neutral element. It is proved that RCCS is 
causally consistent, i.e. the calculus allows backtrack along any causally equivalent past, where concurrent actions can be 
swapped and successive inverse actions can be cancelled. RCCS has been used for studying a general notion of transactions 
in [10].

CCS-R [11] is another reversible variant of CCS, which however mainly aims at formalising biological systems. Like the 
previous calculus, it relies on memory stacks for storing information needed for backtracking, which now also record events 
corresponding to the unfolding of process definitions. Instead, differently from RCCS, specific identifiers are used to label 
threads; in case of unfolding, sub-threads are labelled on-the-fly. Forking now does not exploit fork numbers, but it requires 
the memory stack of a given thread be empty before enabling the execution of its sons; this forces the sub-threads to share 
the memory that their father had before the forking. As in RCCS, in case of synchronisation, the communicating threads 
exchange their identifiers. The transition system of CCS-R is proved to be reversible and it is demonstrated that CCS-R is 
sound and complete w.r.t. CCS.

CCS with communication Keys (CCSK) [12] is a reversible process calculus obtained by applying a general procedure to 
produce reversible calculi. A relevant aspect of this approach is that it does not rely on memories for supporting backtrack-
ing. The idea is to maintain the structure of processes fixed throughout computations, thus avoiding to consume guards and 
alternative choices, which is the source of irreversibility. Past behaviour and discarded alternatives are then recorded in the 
syntax of terms. This is realised by transforming the dynamic rules of the SOS semantics into static-like rules. In this way, 
backward rules are obtained simply as symmetric versions of the forward ones. To ensure that synchronisations are properly 
reverted, two communicating threads have to agree on a communication key, which will uniquely identify that communica-
tion. In this way, the synchronising actions are locked together and can only be undone together. As usual, results showing 
that the method yields well-behaved transition relations are provided. The proposed converting procedure can be applied 
to other calculi without name passing, such as ACP [13] or CSP [14], but it is not suitable for calculi with name binders, as 
π -calculus, which we are interested in this work.

ρπ [15] is a reversible variant of the higher-order π -calculus [16]. It borrows from RCCS the use of memories for keeping 
track of past actions. However, in ρπ memories are not stacks syntactically associated to threads, but they simply are terms, 
each one dedicated to a single communication, in parallel with processes. The connection between memories and threads 
is kept by resorting to identifiers in a way similar to CCSK. Fork handling relies on specific structured tags connecting the 
identifier of the father thread with the identifiers of its sub-threads. Besides proving that ρπ is causally consistent, it is also 
shown that it can be faithfully encoded into higher-order π -calculus. Notably, differently from the approaches mentioned 
before, the semantics of ρπ is given in a reduction style. A variant of this calculus, called roll-π [17], has been defined to 
control backward computations by means of a rollback primitive. The approaches proposed in [15,17] have been applied in 
[18] for reversing a variant of Klaim [19].

Another reversible variant of π -calculus is Rπ [20]. Differently from ρπ , Rπ considers a standard π -calculus (without 
choice and replication) as host calculus, and its semantics is defined in terms of a labelled transition relation. This latter 
point requires to introduce some technicalities to properly deal with scope extrusion. Similarly to RCCS, this calculus relies 
on memory stacks, now recording events (i.e., consumed prefixes and related substitutions) and forking (by means of the 
fork symbol 〈↑〉). Results about the notion of causality induced by the semantics of the calculus are provided.

Reversible structures [21] is a simple computational calculus, based on DSD [22], for modelling chemical systems. Since 
such systems are naturally reversible but have no backtracking memory, differently from most of the above proposals, 
reversible structures does not exploit memories. Instead, reversible structures maintain the structure of terms and use a 
special symbol ˆ to indicate the next operations (one forward and one backward) that a term can perform. Terms of the 
calculus are parallel compositions of signals and gates (i.e., terms that accept input signals and emit output signals), which 
interact according to a CCS-style model. When a forward synchronisation takes place, the executed gate input is labelled 
by the identifier of the consumed signal, and the pointer symbol inside the gate is moved forward. The backwards compu-
tation is realised by executing these operations in a reverse way, thus releasing the output signal. As usual, the interplay 
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between causal dependency and reversible structures is studied, with the novelty that in this setting signal identifiers are 
not necessary unique.

In our work we mainly take inspiration from the ρπ approach. Indeed, all other approaches based on CCS and DSD 
cannot be directly applied to a calculus with name-passing. Moreover, the ρπ approach is preferable to the Rπ one because 
the former proposes a reduction semantics, which we are interested in, while the latter proposes a labelled semantics, 
which would complicate our theoretical framework (in order to properly deal with scope extension of names). Specifically, 
we use unique (non-structured) tags for identifying threads and memories for recording taking place of actions, choices and 
forking. Each memory is devoted to storing the information needed to revert a single event, and memories are connected 
each other, in order to keep track of computation history, by using tags as links.

For what concerns the related works on session-based calculi, it is worth noticing that we consider a setting as stan-
dard and simple as possible, which is the one with synchronous binary sessions. In particular, our host calculus is the 
well-established variant of π -calculus introduced in [23], whose notation has been revised according to [24]. We leave 
for future investigation the application of our approach to formalisms relying on the other forms of sessions introduced 
in the literature, among which we would like to mention asynchronous binary sessions [25], multiparty asynchronous 
sessions [26], multiparty synchronous sessions [27], sessions with higher-order communication [24], sessions specifically 
devised for service-oriented computing [28–30].

Finally, the paper with the aim closest to ours is [31], where a formalism combining the notions of reversibility and 
session is proposed. This calculus is simpler than ReSπ , because it is an extension of the formalism of session behaviours
[32] without delegation (i.e., it is a sub-language of CCS) with a checkpoint-based backtracking mechanism. In fact, neither 
message nor channel passing are considered in the host calculus. Concerning reversibility, only the behaviour prefixed 
by the lastly traversed checkpoint is recorded by a given party, that is each behaviour is simply paired with a one-size 
memory. Moreover, causal-consistency is not considered, because in this formalism parties just reduce in sequential way. 
Also committable sessions are not taken into account. On the other hand, this formalism enabled the study of an extension 
of the compliance notion to the reversible setting.

3. Session-based π -calculus

In this section we present the syntax and semantics definitions of the host language considered for our reversible calcu-
lus. This is a variant of π -calculus enriched with primitives for managing structured binary sessions.

3.1. Syntax

We use the following base sets: shared channels, used to initiate sessions; session channels, consisting on pairs of endpoints
used by the two parties to exchange values within an established session; variables, used to store values; labels, used to select 
and offer branching choices; and process variables, used for recursion. The corresponding notation and terminology are as 
follows:

Variables: x, y, . . .

Shared channels: a,b, . . .

}
Shared identifiers: u, u′, . . .

Channels: c, c′, . . .
{

Session channels s, s′ . . .
Variables: x, y, . . .

Session endpoints: s, s̄, . . .

}
Session identifiers: k,k′, . . .

Labels: l, l′, . . .
Process variables: X, Y , . . .

Values: v, v ′, . . .

⎧⎪⎪⎨
⎪⎪⎩

Booleans: true,false
Integers: 0,1, . . .

Shared channels: a,b, . . .

Session endpoints: s, s̄, . . .

Notably, each session channel s has two (dual) endpoints, denoted by s and s̄, each one assigned to one session party to 
exchange values with the other. We define duality to be idempotent, i.e. ¯̄s = s. The use of two separated endpoints is similar 
to that of polarities in [33,23]. Notation ·̃ stands for tuples, e.g. c̃ means c1, . . . , cn .

Processes, ranged over by P , Q , . . . , and expressions, ranged over by e, e′ , . . . are given by the grammar in Fig. 1. We use 
op(·, . . . , ·) to denote a generic expression operator; we assume that expressions are equipped with standard operators on 
boolean and integer values (e.g., ∧, +, . . .).

The initiation of a session is triggered by the synchronisation on a shared channel a of two processes of the form ā(x).P
and a(y).Q . This causes the generation of a fresh session channel s, whose endpoints replace variables x and y, by means 
of a substitution application, in order to be used by P and Q , respectively, for later communications. Primitives k!〈e〉.P and 
k′?(x).Q denote output and input via session endpoints identified by k and k′ , respectively. These communication primitives 
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Processes P ::= ū(x).P connect
| u(x).P connect dual
| k!〈e〉.P output
| k?(x).P input
| k � l.P selection
| k 	 {l1 : P1, . . . , ln : Pn} branching
| if e then P else Q conditional choice
| P | Q parallel composition
| (νc) P restriction
| X process variable
| μX .P recursion
| 0 inaction

Expressions e ::= v value
| x variable
| op(e1, . . . , en) composed expression

Fig. 1. Session-based π -calculus: syntax.

realise the standard synchronous message passing, where messages result from the evaluation of expressions. Notably, an 
exchanged value can be an endpoint that is being used in a session (this channel-passing modality is called delegation), thus 
allowing complex nested structured communications. Constructs k � l.P and k′ 	 {l1 : P1, . . . , ln : Pn} denote label selection 
and label branching (where l1, . . . , ln are assumed to be pairwise distinct) via endpoints identified by k and k′ , respectively. 
They mime method invocation in object-based programming.

The above interaction primitives are then combined by standard process calculi constructs: conditional choice, parallel 
composition, restriction, recursion and the empty process (denoting inaction). It is worth noticing that restriction can have 
both shared and session channels as argument: (νa)P states that a is a private shared channel of P ; similarly, (νs)P states 
that the two endpoints of the session channel, namely s and s̄, are invisible from processes different from P (see the 
seventh law in Fig. 2), i.e. no external process can perform a session action on either of these endpoints (this ensures 
non-interference within a session). As a matter of notation, we will write (νc1, . . . , cn)P in place of (νc1) . . . (νcn)P .

We adopt the following conventions about the operators precedence: prefixing, restriction, and recursion bind more 
tightly than parallel composition.

Bindings are defined as follows: ū(x).P , u(x).P and k?(x).P bind variable x in P ; (νa) P binds shared channel a in P ; 
(νs) P binds session channel s in P ; finally, μX .P binds process variable X in P . The derived notions of bound and free 
names, alpha-equivalence ≡α , and substitution are standard. For P a process, fv(P ) denotes the set of free variables, fc(P )

denotes the set of free shared channels, and fse(P ) the set of free session endpoints. For the sake of simplicity, we assume that 
free and bound variables are always chosen to be different, and that bound variables are pairwise distinct; the same applies 
to names. Of course, these conditions are not restrictive and can always be fulfilled by possibly using alpha-conversion.

3.2. Semantics

The operational semantics is given in terms of a structural congruence and of a reduction relation. Notably, the semantics 
is only defined for closed terms, i.e. terms without free variables. Indeed, we consider the binding of a variable as its 
declaration (and initialisation), therefore free occurrences of variables at the outset in a term must be prevented since they 
are similar to uses of variables before their declaration in programs (which are considered as programming errors).

The structural congruence, written ≡, is defined as the smallest congruence relation on processes that includes the equa-
tional laws shown in Fig. 2. These are the standard laws of π -calculus. Reading the laws in Fig. 2 by row from left to right, 
and from top to bottom row, the first three are the monoid laws for | (i.e., it is associative and commutative, and has 0
as identity element). The second four laws deal with restriction and enable garbage-collection of channels, scope extension 
and scope swap, respectively. The eighth law permits a recursion to be unfolded (notation P [Q /X] denotes replacement of 
free occurrences of X in P by process Q ). The last law equates alpha-equivalent processes, i.e. processes only differing in 
the identity of bound variables/channels.

To define the reduction relation, we use an auxiliary function · ↓ for evaluating closed expressions: e ↓ v says that 
expression e evaluates to value v (where v ↓ v , and x ↓ is undefined).

The reduction relation, written →, is the smallest relation on closed processes generated by the rules in Fig. 3. We 
comment on salient points. A new session is established when two parallel processes synchronise via a shared channel a; 
this results in the generation of a fresh (private) session channel whose endpoints are assigned to the two session parties 
(rule [Con]). During a session, the two parties can exchange values (for data- and channel-passing, rule [Com]) and labels 
(for branching selection, rule [Lab]). The other rules are standard and state that: conditional choice evolves according to the 
evaluation of the expression argument (rules [If1] and [If2]); if a part of a larger process evolves, the whole process evolves 
accordingly (rules [Par] and [Res]); and structural congruent processes have the same reductions (rule [Str]).
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(P | Q ) | R ≡ P | (Q | R) P | Q ≡ Q | P

P | 0 ≡ P (νc)0 ≡ 0

(νa)P | Q ≡ (νa)(P | Q ) if a /∈ fc(Q ) (νc1)(νc2)P ≡ (νc2)(νc1)P

(νs)P | Q ≡ (νs)(P | Q ) if s, s̄ /∈ fse(Q ) μX .P ≡ P [μX .P/X]
P ≡ Q if P ≡α Q

Fig. 2. Session-based π -calculus: structural congruence.

ā(x).P1 | a(y).P2 → (νs)(P1[s̄/x] | P2[s/y]) s, s̄ /∈ fse(P1, P2) [Con]

k̄!〈e〉.P1 | k?(x).P2 → P1 | P2[v/x] (k = s or k = s̄), e ↓ v [Com]

k̄ � li .P | k 	 {l1 : P1, . . . , ln : Pn} → P | Pi (k = s or k = s̄), 1 ≤ i ≤ n [Lab]

if e then P1 else P2 → P1 e ↓ true [If1]

if e then P1 else P2 → P2 e ↓ false [If2]

P → P ′

P | Q → P ′ | Q
[Par] P → P ′

(νc)P → (νc)P ′ [Res] P ≡ P ′ → Q ′ ≡ Q

P → Q
[Str]

Fig. 3. Session-based π -calculus: reduction relation.

3.3. The multiple providers scenario in the session-based π -calculus

The scenario involving a client and multiple providers introduced in Section 1 can be rendered in π -calculus as follows 
(for the sake of simplicity, here we consider just two providers):

Pclient | Pprovider1 | Pprovider2

where the client process Pclient is defined as

alogin(x). x!〈srv_req〉. x?(yquote).

if accept(yquote) then x � lacc. Pacc

else (if negotiate(yquote) then x � lneg. Pneg else x � lrej.0)

while a provider process Pprovider i is as follows

alogin(y). y?(zreq). y!〈quotei(zreq)〉. y 	 {lacc : Q acc , lneg : Q neg , lrej : 0}
We show below a possible evolution of the system, where the client contacts provider1 and accepts the proposed quote:

Pclient | Pprovider1 | Pprovider2

→
(νs)( s̄!〈srv_req〉. s̄?(yquote).if accept(yquote) then s̄ � lacc. Pacc[s̄/x]else (. . .)

| s?(zreq). s!〈quotei(zreq)〉. s 	 {lacc : Q acc[s/y] , lneg : Q neg[s/y] , lrej : 0} )

| Pprovider2

→
(νs)( s̄?(yquote).if accept(yquote) then s̄ � lacc. Pacc[s̄/x]else (. . .)

| s!〈quotei(srv_req)〉. s 	 {lacc : Q acc[s/y][srv_req/zreq] , . . .} )

| Pprovider2

→
(νs)(if accept(quote) then s̄ � lacc. Pacc[s̄/x][quote/yquote]else (. . .)

| s 	 {lacc : Q acc[s/y][srv_req/zreq] , . . .} )

| Pprovider2

→
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(νs)( s̄ � lacc. Pacc[s̄/x][quote/yquote] | s 	 {lacc : Q acc[s/y][srv_req/zreq] , . . .} )

| Pprovider2

→
(νs)( Pacc[s̄/x][quote/yquote] | Q acc[s/y][srv_req/zreq] )
| Pprovider2

4. Reversible session-based π -calculus

In this section, we introduce ReSπ , a reversible extension of the calculus described in Section 3.
A reversible calculus is typically obtained from the corresponding host calculus by adding memory devices (see Sec-

tion 2). They aim at storing information about interactions and their effects on the system, which otherwise would be lost 
during forward computations, as e.g. the discarded branch in a conditional choice. In doing this, we follow the approach 
of [15], which in its turn is inspired by [5] (for the use of memories) and by [12] (for the use of thread identifiers). Of 
course, since here we consider as host calculus a session-based variant of standard π -calculus, rather than an asynchronous 
higher-order variant, the technical development is different.

Roughly, our approach to keep track of computation history is as follows: we tag processes with unique identifiers and 
use memories to store the information needed to reverse each single forward reduction. Thus, the history of a reduction 
sequence is stored in a number of small memories connected each other by using tags as links. In this way, ReSπ terms 
can perform, besides forward reductions (denoted by �), also backward reductions (denoted by �) that undo the effect of 
the former ones. As in the reversible calculi discussed in Section 2, forward computations are reverted in a causal-consistent
fashion. That is, independent (more precisely, concurrent) actions can be undone in an order possibly different from the exact 
order of forward reductions in reverse. Specifically, an action can be undone only after all the actions causally depending 
on it have already been undone. We will come back on causal-consistency in Section 5.

Before introducing the technicalities of ReSπ , we informally provide a basic intuition about its main features. Let us come 
back to the scenario introduced in Section 1 and specified in π -calculus in Section 3.3. We can obtain a ReSπ specification 
of the scenario by simply annotating the π -calculus term with the (unique) tags t1, t2 and t3 as follows:

t1 : Pclient | t2 : Pprovider1 | t3 : Pprovider2

Now, the computation described in Section 3.3 corresponds to a sequence of five forward reductions leading to the ReSπ
process M having the following form:

(νs, t̃) ( t′
1 : Pacc[s̄/x][quote/yquote] | t′

2 : Q acc[s/y][srv_req/zreq]
| 〈t1 −alogin(x)(y)(νs)P ′

client P ′
provider1→ t2, t′′

1, t′′
2〉

| 〈. . .〉 | 〈. . .〉 | 〈. . .〉 | 〈. . .〉 )

| Pprovider2

The forward computation has created a tuple t̃ of fresh tags, which includes the tags t′
1 and t′

2 attached to the resulting 
processes of client and provider1, respectively. Moreover, each reduction has created a memory 〈. . .〉, which is spawn in 
parallel with the two processes of the involved parties and devoted to store the information for reverting the corresponding 
forward reduction. Here, for the sake of presentation, we have omitted the content of such memories, except for the one 
generated by the first reduction: it records that the process tagged by t1 (i.e., the client) initiates a session s along channel 
alogin with the process tagged by t2 (i.e., the first provider); it also records the variables replaced by the session endpoints 
and the continuation processes together with their tags. Notably, process M cannot immediately use this memory to revert 
the interaction corresponding to the session initiation. Indeed, a memory can trigger a backward reduction only if two pro-
cesses properly tagged with the continuation tags are available, which is not the case of the first memory in the process M . 
Therefore, as expected, all the other forward reductions must be previously reverted in order to revert the session initiation 
one.

4.1. Syntax

The syntax of ReSπ is given in Fig. 4. In addition to the base sets used for π -calculus processes in Section 3, here 
we use tags, ranged over by t , t′ , . . . , to uniquely identify threads. Letters h, h′ , . . . denote names, i.e. (shared and session) 
channels and tags together. Uniqueness of tags is ensured by using the restriction operator and by only considering reachable
processes (see Definition 3).

ReSπ processes are built upon standard (session-based) π -calculus processes by labelling them with tags. Thus, the 
syntax of π -calculus processes P , as well as of expressions e, is the same of that shown in Fig. 1 and, hence, it is omitted 
here. It is worth noticing that only ReSπ processes can execute (i.e., π -calculus ones cannot).
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ReSπ Processes M ::= t : P thread
| (νh) M channel/tag restriction
| M | N parallel composition
| m memory
| nil empty process

Memories m ::= 〈t1 −A→ t2, t′
1, t′

2〉 action memory
| 〈t, e? P :Q , t′〉 choice memory
| 〈t ⇒ (t1, t2)〉 fork memory

A ::= a(x)(y)(νs)P Q | k〈e〉(x)P Q action events
| k � li P {l1 : P1, . . . , ln : Pn}

Fig. 4. ReSπ syntax (π -calculus Processes P and Expressions e are in Fig. 1).

ReSπ also extends π -calculus with memory processes m. In particular, there are three kind of memories:

• Action memory 〈t1 −A → t2, t′
1, t

′
2〉, storing an action event A together with the tag t1 of the active party of the action, the 

tag t2 of the corresponding passive party, and the tags t′
1 and t′

2 of the two new threads activated by the corresponding 
reduction. An action event A, as we shall clarify later, records all information necessary to revert the corresponding 
interaction, which can be either a session initiation a(x)(y)(νs)P Q , a communication along an established session 
k〈e〉(x)P Q , or a branch selection k � li P {l1 : P1, . . . , ln : Pn}. Notably, in the latter two events, k can only be either s
or s̄ (i.e., it cannot be a variable).

• Choice memory 〈t, e? P :Q , t′〉, storing a choice event e? P :Q together with the tag t of the conditional choice and the 
tag t′ of the new activated thread. The choice event e? P :Q records the evaluated expression e, and the processes P
and Q of the then-branch and else-branch, respectively.

• Fork memory 〈t ⇒ (t1, t2)〉, storing the tag t of a splitting thread, i.e. a thread of the form t : (P | Q ), together with the 
tags t1 and t2 of the two new activated threads, i.e. t1 : P and t2 : Q . The use of fork memories is analogous to that of 
connectors in [18].

Threads and memories are composed by parallel composition and restriction operators. The latter, as well as the notion 
of bound and free identifiers, extend to names. In particular, for M a ReSπ process, ft(M) denotes the set of free tags; fv(·), 
fc(·) and fse(·) extend naturally to ReSπ processes. Of course, we still rely on the same assumptions on free and bound 
variables/channels mentioned in Section 3.1.

Not all processes allowed by the syntax in Fig. 4 are semantically meaningful. Indeed, in a general term of the calculus, 
the history stored in the memories may not be consistent, due to the use of non-unique tags or broken connections between 
continuation tags within memories and corresponding threads. For example, given the choice memory 〈t, e? P :Q , t′〉, we 
have a broken connection when no thread tagged by t′ exists in the ReSπ process and no memory of the form 〈t′ −A →
t2, t′

1, t
′
2〉, 〈t1 −A → t′, t′

1, t
′
2〉, 〈t′, e? P1:P2, t1〉, and 〈t′ ⇒ (t1, t2)〉 exist.

The class of meaningful ReSπ processes we are interested in consists of programs and runtime processes. The former 
are the terms that can be written by programmers, i.e. they are ReSπ processes with no memory. In fact, memories are 
not expected to occur in the source code written by programmers. We assume that the threads within a program have 
unique tags. The latter terms of the class are the ReSπ processes that can be obtained by means of forward reductions from 
programs; in this way, history consistency is ensured. Using the terminology from [20], the processes of the considered class 
are called reachable. We formalise their definition below.

Definition 1 (Programs). The set of ReSπ programs is the set of terms generated by the following grammar

M ::= t : P | (νc) M | M | N | nil

and whose threads have distinct tags, where P is a π -calculus process as in Fig. 1.

Definition 2 (Runtime processes). The set of ReSπ runtime processes is the set of terms obtained by the transitive closure 
under � (see Section 4.2) of the set of ReSπ programs.

Definition 3 (Reachable processes). The set of ReSπ reachable processes is the union of the sets of programs and runtime 
processes.

Notice that in Definition 1 the restriction operator is defined on channels c rather than on names h. This because there 
is no need to restrict tags in a program. In fact, it is sufficient to use distinct tags, as required by the definition. In practice, 
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(M | N) | L ≡ M | (N | L) M | N ≡ N | M

M | nil ≡ M (νh)nil ≡ nil

(νt)M | N ≡ (νt)(M | N) if t /∈ ft(N) (νh1)(νh2)M ≡ (νh2)(νh1)M

(νa)M | N ≡ (νa)(M | N) if a /∈ fc(N) t : (νc)P ≡ (νc) t : P

t : P ≡ t : Q if P ≡ Q (νs)M | N ≡ (νs)(M | N) if s, s̄ /∈ fse(N)

M ≡ N if M ≡α N t : (P | Q ) ≡ (νt1, t2)(t1 : P | t2 : Q | 〈t ⇒ (t1, t2)〉)

Fig. 5. ReSπ structural congruence (additional laws).

the programmer would have to write just a π -calculus term that can be then automatically annotated with unique tags to 
obtain a ReSπ program. At runtime, as shown in the next subsection, it is the operational semantics in charge of generating 
fresh tags for the new threads by means of the restriction operator.

4.2. Semantics

The operational semantics of ReSπ is given in terms of a structural congruence and of a reduction relation.
The structural congruence ≡ extends that of π -calculus (Fig. 2) with the additional laws in Fig. 5. Most of the new laws 

simply deal with the parallel and restriction operators on ReSπ processes. Thus, we only focus on relevant laws (below, the 
laws are read by row from left to right, and from top to bottom row). The eighth law permits a restriction on a π -calculus 
process to be moved to the level of ReSπ processes. The ninth law lifts the congruence at π -calculus process level to 
the threads level. The last law is crucial for fork handling: it is used to split a single thread composed of two parallel 
processes into two threads with fresh tags; the tag of the original thread and the new tags are properly recorded in a fork 
memory.

The reduction relation of ReSπ , written �, is given as the union of the forward and backward reduction relations defined 
by the rules in Fig. 6: � = � ∪ �. Relations � and � are the smallest relations on closed ReSπ reachable processes 
generated by the corresponding rules in the figure.

We comment on salient points. When two parallel threads synchronise to establish a new session (rule [fwCon]), two 
fresh tags are created to uniquely identify the two continuations of the synchronising threads. Moreover, all relevant infor-
mation is stored in the action memory 〈t1 −a(x)(y)(νs)P1 P2→ t2, t′

1, t
′
2〉: the tag t1 of the initiator (i.e., the thread executing 

a prefix of the form ā(·)), the tag t2 of the thread executing the dual action, the tags t′
1 and t′

2 of their continuations, the 
shared channel a used for the synchronisation, the replaced variables x and y, the generated session channel s, and the 
processes P1 and P2 to which substitutions are applied. All such information is exploited to revert this reduction (rule 
[bwCon]). In particular, the corresponding backward reduction is triggered by the coexistence of the memory described 
above with two threads tagged t′

1 and t′
2, all of them within the scope of the session channel s and tags t′

1 and t′
2 generated 

by the forward reduction (which, in fact, are removed by the backward one). Notice that, when considering reachable pro-
cesses, due to tag uniqueness, the two processes P and Q must coincide with P1[s̄/x] and P2[s/y]; indeed, as registered 
in the memory, these latter processes have been tagged with t′

1 and t′
2 by the forward reduction. The fact that two threads 

tagged with t′
1 and t′

2 are available in parallel to the memory ensures that all actions possibly executed by the two contin-
uations activated by the forward computation have been undone and, hence, we can safely proceed to undone the forward 
computation itself.

Rules [fwCom], [bwCom], [fwLab], [bwLab], [fwIf1], [fwIf2] and [bwIf] are similar. Notably, in the first two rules men-
tioned above, besides tags and continuation processes, the action memory stores the session endpoint k of the receiving 
party (the other endpoint k̄ is obtained by duality), the expression e generating the sent value, and the replaced variable x. 
It is also worth noticing that, since all information about a choice event is stored in the corresponding memory, we need 
just one backward rule ([bwIf]) to revert the effect of the forward rules [fwIf1] and [fwIf2]. The meaning of the remaining 
rules, dealing with parallel composition, restriction and structural congruent terms, is straightforward.

4.3. The multiple providers scenario in ReSπ

Let us consider again the multiple providers scenario. We have shown at the beginning of this section that a ReSπ
specification can be obtained by simply annotating the π -calculus term with unique tags as follows:

t1 : Pclient | t2 : Pprovider1 | t3 : Pprovider2
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t1 : ā(x).P1 | t2 : a(y).P2 s, s̄ /∈ fse(P1, P2) [fwCon]

� (νs, t′
1, t′

2)(t
′
1 : P1[s̄/x] | t′

2 : P2[s/y]
| 〈t1 −a(x)(y)(νs)P1 P2→ t2, t′

1, t′
2〉)

(νs, t′
1, t′

2)(t
′
1 : P | t′

2 : Q | 〈t1 −a(x)(y)(νs)P1 P2→ t2, t′
1, t′

2〉) [bwCon]

� t1 : ā(x).P1 | t2 : a(y).P2

t1 : k̄!〈e〉.P1 | t2 : k?(x).P2 (k = s or k = s̄) [fwCom]

� (νt′
1, t′

2)(t
′
1 : P1 | t′

2 : P2[v/x] e ↓ v
| 〈t1 −k〈e〉(x)P1 P2→ t2, t′

1, t′
2〉)

(νt′
1, t′

2)(t
′
1 : P | t′

2 : Q | 〈t1 −k〈e〉(x)P1 P2→ t2, t′
1, t′

2〉) [bwCom]

� t1 : k̄!〈e〉.P1 | t2 : k?(x).P2

t1 : k̄ � li .P | t2 : k 	 {l1 : P1, . . . , ln : Pn} (k = s or k = s̄) [fwLab]

� (νt′
1, t′

2)(t
′
1 : P | t′

2 : Pi 1 ≤ i ≤ n
| 〈t1 −k � li P {l1 : P1, . . . , ln : Pn}→ t2, t′

1, t′
2〉)

(νt′
1, t′

2)(t
′
1 : Q | t′

2 : Q ′
| 〈t1 −k � li P {l1 : P1, . . . , ln : Pn}→ t2, t′

1, t′
2〉) [bwLab]

� t1 : k̄ � li .P | t2 : k 	 {l1 : P1, . . . , ln : Pn}

t : if e then P1 else P2 � (νt′)(t′ : P1 | 〈t, e? P1:P2, t′〉) e ↓ true [fwIf1]

t : if e then P1 else P2 � (νt′)(t′ : P2 | 〈t, e? P1:P2, t′〉) e ↓ false [fwIf2]

(νt′)(t′ : P | 〈t, e? P1:P2, t′〉) � t : if e then P1 else P2 [bwIf]

M � M ′

M | N � M ′ | N
[fwPar] M � M ′

M | N � M ′ | N
[bwPar]

M � M ′

(νh)M � (νh)M ′ [fwRes] M � M ′

(νh)M � (νh)M ′ [bwRes]

M ≡ M ′ � N ′ ≡ N

M � N
[fwStr] M ≡ M ′ � N ′ ≡ N

M � N
[bwStr]

Fig. 6. ReSπ reduction relation.

Now, the computation described in Section 3.3 corresponds to the following sequence of forward reductions:

t1 : Pclient | t2 : Pprovider1 | t3 : Pprovider2

�����
M = (νs, t1

1, t1
2, t2

1, t2
2, t3

1, t3
2, t4

1, t5
1, t4

2)

( t5
1 : Pacc[s̄/x][quote/yquote] | t4

2 : Q acc[s/y][srv_req/zreq]
| 〈t1 −alogin(x)(y)(νs)P ′

client P ′
provider1→ t2, t1

1, t1
2〉

| 〈t1
1 −s〈srv_req〉(zreq)P ′′

client P ′′
provider1→ t1

2, t2
1, t2

2〉
| 〈t2

2 −s̄〈quote〉(yquote)P ′′′
provider1 P ′′′

client→ t2
1, t3

2, t3
1〉

| 〈t3
1,accept(quote)? Pclient_t :Pclient_e, t4

1〉
| 〈t4

1 −s � lacc Pacc[s̄/x][quote/yquote]
{lacc : Q acc[s/y][srv_req/zreq], . . .}→ t3

2, t5
1, t4

2〉 )

| Pprovider2

Basically, five memories have been generated, each one dedicated to revert the effects of the corresponding forward reduc-
tion.

If a problem occurs during the subsequent interactions between the client and the provider for finalising the service 
agreement, the computation can be reverted to the initial state. In particular, the backward rules [bwCon], [bwCom], [bwLab] 
and [bwIf] can be applied only if the ReSπ term contains a memory in parallel with thread(s) appropriately tagged by the 
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continuation tag(s) stored in the memory. For example, to apply the rule [bwCon] in the process M , two threads tagged by 
t1

1 and t1
2 must be in parallel with the first memory, which actually is not the case. In fact, in M , only the last memory can 

trigger a backward step, by means of the application of rule [bwLab]:

M � M ′ = (νs, t1
1, t1

2, t2
1, t2

2, t3
1, t3

2, t4
1)

( t4
1 : s̄ � lacc. Pacc[s̄/x][quote/yquote]

| t3
2 : s 	 {lacc : Q acc[s/y][srv_req/zreq] , . . .}

| 〈t1 −alogin(x)(y)(νs)P ′
client P ′

provider1→ t2, t1
1, t1

2〉
| 〈t1

1 −s〈srv_req〉(zreq)P ′′
client P ′′

provider1→ t1
2, t2

1, t2
2〉

| 〈t2
2 −s̄〈quote〉(yquote)P ′′′

provider1 P ′′′
client→ t2

1, t3
2, t3

1〉
| 〈t3

1,accept(quote)? Pclient_t :Pclient_e, t4
1〉 )

| Pprovider2

In this way, the threads labelled by t5
1 and t4

2 are removed, while the threads performing the selection and offering the 
branching choice, labelled by t4

1 and t3
2 respectively, are restored.

Then, in the process M ′ , only the last memory can trigger a backward reduction, which undoes the conditional choice 
performed by the client thread. Similarly, other backward reductions can be subsequently triggered by the other memories, 
consuming them from the bottom to the top of the term. In this way, the forward computation can be completely reverted:

M ′ ���� t1 : Pclient | t2 : Pprovider1 | t3 : Pprovider2

Now, the client can start a new session, possibly with provider2.
Notice that in ReSπ there is no need of explicitly implementing loops for enabling the client to undo and restart sessions. 

Notice also that here we do not consider specific primitives and techniques that avoid interacting again with the same 
provider. This would break the Loop Lemma (see Lemma 5) and complicate our theoretical framework; we refer to [34] for 
a definition of some of such controlled forms of reversibility.

5. Properties of the reversible calculus

We present in this section some properties of ReSπ , which are typically enjoyed by reversible calculi. We exploit ter-
minology, arguments and proof techniques of previous works on reversible calculi (in particular, [15,5,20]). As a matter of 
notation, we will use P and R to denote the set of π -calculus processes and of ReSπ processes, respectively.

5.1. Correspondence with π -calculus

We first show that ReSπ is a conservative extension of the (session-based) π -calculus. In fact, as most reversible calculi, 
ReSπ is only a decoration of its host calculus. Such decoration can be erased by means of the forgetful map φ, which maps 
ReSπ terms into π -calculus ones by simply removing memories, tag annotations and tag restrictions.

Definition 4 (Forgetful map). The forgetful map φ : R → P , mapping a ReSπ process M into a π -calculus process P , is 
inductively defined on the structure of M as follows:

φ(t : P ) = P φ((νc)N) = (νc)φ(N)

φ((νt)N) = φ(N) φ(N1 | N2) = φ(N1) | φ(N2)

φ(m) = 0 φ(nil) = 0

To prove the correspondence between ReSπ and π -calculus, we need the following auxiliary lemma relating structural 
congruence of ReSπ to that of π -calculus.

Lemma 1. Let M and N be two ReSπ processes. If M ≡ N then φ(M) ≡ φ(N).

Proof. We proceed by induction on the derivation of M ≡ N (see Appendix A.1.1). �
Now, we can show that each forward reduction of a ReSπ process corresponds to a reduction of the corresponding 

π -calculus process.

Lemma 2. Let M and N be two ReSπ processes. If M � N then φ(M) → φ(N).
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Proof. We proceed by induction on the derivation of M � N (see Appendix A.1.1). �
The correspondence between ReSπ and π -calculus reductions is completed by the following lemmas, which intuitively 

are the inverse of Lemma 1 and Lemma 2.

Lemma 3. Let P and Q be two π -calculus processes. If P ≡ Q then for any ReSπ process M such that φ(M) = P there exists a ReSπ
process N such that φ(N) = Q and M ≡ N.

Proof. The proof is straightforward (see Appendix A.1.1). �
Lemma 4. Let P and Q be two π -calculus processes. If P → Q then for any ReSπ process M such that φ(M) = P there exists a ReSπ
process N such that φ(N) = Q and M � N.

Proof. We proceed by induction on the derivation of P → Q (see Appendix A.1.1). �
5.2. Loop lemma

The following lemma shows that, in ReSπ , backward reductions are the inverse of the forward ones and vice versa.

Lemma 5 (Loop lemma). Let M and N be two reachable ReSπ processes. M � N if and only if N � M.

Proof. The proof for the if part is by induction on the derivation of M � N , while the proof for the only if part is by 
induction on the derivation of N � M (see Appendix A.1.2). �
5.3. Causal consistency

We show here that reversibility in ReSπ is causally consistent. Informally, this means that an action can be reverted 
only after all the actions causally depending on it have already been reverted. In this way, in the presence of independent 
actions, backward computations are not required to necessarily follow the exact execution order of forward computations 
in reverse. We formalise below the notions of independent (i.e., concurrent) actions and of causal consistency.

As in [15] and [5], we rely on the notion of transition. In ReSπ , a transition is a triplet of the form M
m,M,�−−−−−−→ N (resp. 

M
m,M,�−−−−−−→ N), where M and N are closed reachable ReSπ processes such that M � N (resp. M � N), m is the action or 

choice memory involved in the reduction, and M is the set of fork memories possibly involved in the reduction. A memory 
is involved in a reduction if it is created or removed by the reduction. We use η to denote transition labels (m, M, �) and 
(m, M, �). If η is (m, M, �), then its inverse is η• = (m, M, �) and vice versa. In a transition M

η−→ N , we call M the 
source of the transition and N its target. We use τ to range over transitions; τ• denotes the inverse of transition τ .

Two transitions are coinitial if they have the same source, cofinal if they have the same target, composable if the target of 
one is the source of the other. A sequence of transitions, where each pair of sequential transitions is composable, is called a 
trace; we use σ to range over traces. Notions of target, source and composability extend naturally to traces. We use εM to 
denote the empty trace with source M and σ1; σ2 the composition of two composable traces σ1 and σ2.

We consider only transitions M
η−→ N where M and N do not contain threads of the form t : (P | Q ). This condition can 

be always satisfied by splitting all threads of this kind into sub-threads, until their disappearance in the considered terms, 
using the structural law t : (P | Q ) ≡ (νt1, t2)(t1 : P | t2 : Q | 〈t ⇒ (t1, t2)〉). Moreover, since conflicts between transitions are 
identified by means of tag identifiers (see Definition 5 below), we only consider transitions that do not use α-conversion 
on tags, and that generates fork memories in a deterministic way, e.g. given a memory 〈t ⇒ (t1, t2)〉 tags t1 and t2 are 
generated by applying an injective function to t .

The stamp λ(η) of a transition label η identifies the threads involved in the corresponding transition, and is defined as 
follows (we use T to denote a set of tags {ti}i∈I ):

λ(m,M,�) = λ(m,M,�) = λ(m) ∪ λλ(m)(M)

λ(〈t1 −A→ t2, t′
1, t′

2〉) = {t1, t2, t′
1, t′

2}
λ(〈t, e? P :Q , t′〉) = {t, t′}
λT ({mi}i∈I ) = ⋃

i∈I λT (mi)

λT (〈t ⇒ (t1, t2)〉) =
{

{t1, t2} if t ∈ T

∅ otherwise
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The stamp of fork memories permits us to take into account the relationships between a thread and its sub-threads. This 
is similar to the closure over tags used in [18]. Notably, as in [15], the tags of continuation processes are inserted into a 
stamp, in order to take into account possible conflicts between a forward transition and a backward one. Notice also that it 
is instead not necessary to include in the stamp the fresh session channel created or used by a reduction. In fact, this would 
allow to detect conflicts between the transitions involving the memory corresponding to the creation of the channel and 
the transitions where such channel is used. Such conflicts, however, are already implicitly considered, since after its creation 
the channel is only known by the threads corresponding to the continuation processes, which are already considered in the 
stamp as discussed above.

We can now define when two transitions are concurrent.

Definition 5 (Concurrent transitions). Two coinitial transitions M
η1−−→ M1 and M

η2−−→ M2 are in conflict if λ(η1) ∩ λ(η2) �= ∅. 
Two coinitial transitions are concurrent if they are not in conflict.

Intuitively, two transitions are concurrent when they do not involve a common thread.
The following lemma characterises the causally independence among concurrent transitions.

Lemma 6 (Square lemma). If τ1 = M
η1−→ M1 and τ2 = M

η2−→ M2 are two coinitial concurrent transitions, then there exist two cofinal 
transitions τ2/τ1 = M1

η2−→ N and τ1/τ2 = M2
η1−→ N.

Proof. By case analysis on the form of transitions τ1 and τ2 (see Appendix A.1.3). �
In order to study the causality of ReSπ reversibility, we introduce the notion of causal equivalence [4,5] between traces, 

denoted �. This is defined as the least equivalence relation between traces closed under composition that obeys the follow-
ing rules:

τ1 ; τ2/τ1 � τ2 ; τ1/τ2 τ ; τ• � εsource(τ ) τ• ; τ � εtarget(τ )

Intuitively, the first rule states that the execution order of two concurrent transitions can be swapped, while the other rules 
state that the composition of a trace with its inverse is equivalent to the empty transition.

Now, we conclude with the result stating that two coinitial causally equivalent traces lead to the same final state. Thus, 
in such case, we can rollback to the initial state by reversing any of the two traces.

Theorem 1 (Causal consistency). Let σ1 and σ2 be coinitial traces. Then, σ1 � σ2 if and only if σ1 and σ2 are cofinal.

Proof. By construction of � and by applying Lemma 6 and other two auxiliary lemmas (see Appendix A.1.3). �
6. Type discipline

In this section, first we recall the session type discipline of session-based π -calculus then we discuss how we could 
exploit it to type ReSπ processes.

6.1. Typing session-based π -calculus

The type discipline presented here is basically the one proposed in [23], except for the notation of the calculus that has 
been revised according to [24].

6.1.1. Types
The syntax of sorts, ranged over by S , S ′ , . . . , and types, ranged over by α, β , . . . , is defined in Fig. 7. The type ![S].α

represents the behaviour of first outputting a value of sort S , then performing the actions prescribed by type α. Type ![β].α
represents a similar behaviour, which starts with session output (throw) instead. Types ?[S].α and ?[β].α are the dual ones, 
receiving values instead of sending. Type &[l1 : α1, . . . , ln : αn] describes a branching behaviour: it waits with n options, 
and behave as type αi if the i-th action is selected (external choice). Type ⊕[l1 : α1, . . . , ln : αn] represents the behaviour 
which would select one of li and then behaves as αi , according to the selected li (internal choice). Type end represents 
inaction, acting as the unit of sequential composition. Type μt.α denotes a recursive behaviour, representing the behaviour 
that starts by doing α and, when variable t is encountered, recurs to α again. As in [23], we take an equi-recursive view of 
types, not distinguishing between a type μt.α and its unfolding α[μt.α/t], and we are interested on contractive types only, 
i.e. for each of sub-expressions μt.μt1 . . .μtn.α the body α is not t . The result is that, in a typing derivation, types μt.α
and α[μt.α/t] can be used interchangeably.

For each type α, we define α, the dual type of α, by exchanging ! and ?, and & and ⊕. The inductive definition is in 
Fig. 8.
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Sorts S ::= bool boolean
| int integer
| 〈α〉 shared channel

Types α,β ::= ![S].α output
| ?[S].α input
| ![β].α throw
| ?[β].α catch
| ⊕[l1 : α1, . . . , ln : αn] selection
| &[l1 : α1, . . . , ln : αn] branching
| end end
| t type variable
| μt.α recursion

Fig. 7. Syntax of sorts and types.

![S].α = ?[S].α ![β].α = ?[β].α ⊕[li : αi]i∈I = &[li : αi]i∈I

?[S].α = ![S].α ?[β].α = ![β].α &[li : αi]i∈I = ⊕[li : αi]i∈I

end = end μt.α = μt.α t = t

Fig. 8. Dual types.

6.1.2. Typing system
A sorting (resp. a typing, resp. a basis) is a finite partial map from shared identifiers to sorts (resp. from session identifiers 

to types, resp. from process variables to typings). We let 
, 
′ , . . . (resp. �, �′ , . . . , resp. �, �′ , . . . ) range over sortings (resp. 
typings, resp. bases). We write � · k : α when k /∈ dom(�); this notation is then extended to � · �′ .

Typing judgements are of the form �;
 � P 	 � which stands for “under the environment �; 
, process P has 
typing �”. The typing system is defined by the axioms and rules in Fig. 9. We call a typing completed when it contains only 
end types. A typing � is called balanced if whenever s : α, ̄s : β ∈ �, then α = β . We refer the interested reader to [23] for 
detailed comments on the rules.

6.1.3. Results
We report here the main results concerning the type discipline, namely Subject Reduction and Type Safety, borrowed 

from [23]. The former result states that well-typedness is preserved along computations, while the latter states that no 
interaction errors occur on well-typed processes.

Theorem 2 (Subject reduction). If �;
 � P 	 � with � balanced and P →∗ Q , then �;
 � Q 	 �′ and �′ balanced.

Proof. See proof of Theorem 3.3 in [23]. �
The notion of error, necessary to formalise Type Safety, is also taken from [23]. A k-process is a process prefixed by 

subject k, while a k-redex is the parallel composition of two k-processes either of the form (k̄!〈e〉.P1 | k?(x).P2), or (k̄�li .P |
k 	 {l1 : P1, . . . , ln : Pn}). Then, P is an error if P ≡ (νc)(Q | R) where Q is, for some k, the parallel composition of either 
two k-processes that do not form a k-redex, or of three or more k-processes.

Theorem 3 (Type Safety). A program typable under a balanced channel environment never reduces to an error.

Proof. See proof of Theorem 3.4 in [23]. �
6.2. Typing ReSπ

We show here how the notion of types, the typing system and the related results given for the π -calculus (Section 6.1) 
can be reused for typing ReSπ . The key point is that we only consider reachable ReSπ processes originated from ReSπ
programs that are well-typed (according to the typing discipline of π -calculus). In fact, by statically type checking ReSπ
programs, we already check all possible interactions that they will perform. More specifically, Subject Reduction and Type 
Safety ensure that all runtime processes obtained from a program by means of (forward) reductions are interaction safe. 
Thus, since backward computations cannot lead to new runtime processes, but just go back to terms reachable from the 
program via forward reductions, there is no need of type checking the content of the memories in runtime processes.
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 � true 	 bool [Booltt] 
 � false 	 bool [Boolff ] 
 � 1 	 int [Int] . . .


 � e1 	 int 
 � e2 	 int


 � +(e1, e2) 	 int
[Sum] 
 � e1 	 bool 
 � e2 	 bool


 � ∧(e1, e2) 	 bool
[And] . . .


 · u : S � u 	 S [Id]
� completed

�;
 � 0 	 �
[Inact]


 � u 	 〈α〉 �;
 � P 	 � · x : α
�;
 � ū(x).P 	 �

[Req] 
 � u 	 〈α〉 �;
 � P 	 � · x : α
�;
 � u(x).P 	 �

[Acc]


 � e 	 S �;
 � P 	 � · k : α
�;
 � k!〈e〉.P 	 � · k :![S].α [Send] �;
 � P 	 � · k : β

�;
 � k!〈k′〉.P 	 � · k :![α].β · k′ : α [Thr]

�;
 · x : S � P 	 � · k : α
�;
 � k?(x).P 	 � · k :?[S].α [Rcv] �;
 � P 	 � · k : β · x : α

�;
 � k?(x).P 	 � · k :?[α].β [cat]

�;
 � P 	 � · k : α j

�;
 � k � l j .P 	 � · k : ⊕[l1 : α1, . . . , ln : αn] (1 ≤ j ≤ n) [Sel]

�;
 � P1 	 � · k : α1 . . . �;
 � Pn 	 � · k : αn

�;
 � k 	 {l1 : P1, . . . , ln : Pn} 	 � · k : &[l1 : α1, . . . , ln : αn] [Br]


 � e 	 bool �;
 � P 	 � �;
 � Q 	 �

�;
 � if e then P else Q 	 �
[If]

�;
 � P 	 � �;
 � Q 	 �′

�;
 � P | Q 	 � · �′ [Conc] �;
 · a : S � P 	 �

�;
 � (νa)P 	 �
[Res1]

�;
 � P 	 � · s : α · s̄ : α
�;
 � (νs)P 	 �

[Res2] �;
 � P 	 � s not in �

�;
 � (νs)P 	 �
[Res3]

� · X : �;
 � X 	 � [Var]
� · X : �;
 � P 	 �

�;
 � μX .P 	 �
[Rec]

Fig. 9. Typing system for π -calculus.

Now, before formally showing how the typing discipline of π -calculus extends to ReSπ , we introduce a few auxiliary 
definitions and results.

Definition 6 (Reachable processes for typed ReSπ ). The set of reachable processes for the typed ReSπ only contains: (i) programs 
M such that �;
 � φ(M) 	 � with � balanced, and (ii) runtime processes M obtained by forward reductions from the 
above programs.

Property 1. Let M be a reachable process. If M � M ′ then M ′ is a reachable process.

Proof. The proof follows from Definition 6 and Lemma 5 (see Appendix A.2). �
The notion of well-typedness for ReSπ , expressed by the judgement �;
 �r M 	 �, is defined in terms of the well-

typedness notion introduced for the π -calculus.

Definition 7 (Well-typedness). �;
 �r M 	 � if and only if �; 
 � φ(M) 	 �, with � balanced.

Thus, Subject Reduction extends to ReSπ terms as follows.

Theorem 4 (Subject Reduction). Let M be a reachable process. If �;
 �r M 	 � with � balanced and M � M ′ , then 
�;
 �r M ′ 	 �′ and �′ balanced.

Proof. The proof relies on Theorem 2 (see Appendix A.2). �
We conclude by showing how the notion of error and Type Safety of π -calculus extends to ReSπ . A ReSπ process M is 

an error if and only if φ(M) is an error.

Theorem 5 (Type Safety). A ReSπ program typable under a balanced channel environment never reduces to an error.

Proof. By the notion of ReSπ error and by Theorem 3, we have that typable programs are not errors. Then, by Theorem 4
we have the thesis. �
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6.3. Typing the multiple providers scenario

Coming back to the scenario introduced in Section 3.3 and specified in ReSπ in Section 4.3, we can easily verify that the 
process

t1 : Pclient | t2 : Pprovider1 | t3 : Pprovider2

is well-typed (assuming that the unspecified processes Pacc , Pneg , Q acc and Q neg are properly typable). In particular, the 
channel alogin can be typed by the shared channel type

〈?[Request]. ![Quote].&[lacc : αacc , lneg : αneg , lrej : end] 〉
where we use sorts Request and Quote to type requests and quotes, respectively.

Let us consider now a scenario where the client wishes to concurrently submit two different requests to the same 
provider, which would be able to concurrently serve them. Consider in particular the following specification of the client 
(the provider one is dual):

alogin(x). ( x!〈srv_req_1〉. P1 | x!〈srv_req_2〉. P2 )

The new specification of the scenario is clearly not well-typed, due to the use of parallel threads within the same session. 
This forbids us from mixing up messages related to different requests and wrongly delivering them. In order to properly 
concurrently submit separate requests, the client must instantiate separate sessions with the provider, one for each request.

The session type discipline, indeed, forces concurrent interactions to follow structured patterns that guarantee the 
correctness of communication. For what concerns reversibility, linear use of session channels limits the effect of causal 
consistency, since concurrent interactions along the same session are prevented and, hence, the backtracking of a given ses-
sion follows a single path. Of course, interactions along different sessions are still concurrent and, therefore, it is important 
to use a causal-consistent rollback to revert them.

7. Committable sessions

The calculus ReSπ discussed so far is fully reversible, i.e. backward computations are always enabled. Full reversibility 
provides theoretical foundations for studying reversibility in session-based π -calculus, but it is not suitable for a practical 
use on structured communication-based programming. Therefore, in this section, we enrich the framework to allow com-
putation to go backward and forward along a session, allowing the involved parties to try different interactions, until the 
session is successfully completed. This is achieved by adding a specific action to the calculus for irreversibly committing the 
closure of sessions.

It is worth noticing that the fully reversible characterisation of the calculus permits us to prove that its machinery for 
reversibility (i.e., memories and their usage) soundly works with respect to the expected properties of a reversible calculus. 
This remains valid also for the extension proposed here. In fact, as clarified below, the extended calculus basically prunes 
some computations allowed in ReSπ , which corresponds to backward and forward actions that are undesired after a session 
closure.

7.1. ReSπ with commit

The syntax of ReSπC (Reversible Session-based π -calculus with Commit) is obtained from that of ReSπ (given in Fig. 4) 
by extending the syntactic category of processes P with process commit(k).P , and by extending the syntactic category of 
memories m with the commit memory 〈t1 −√

(s) → t2〉. This new memory simply registers the closing event of the session 
identified by s due to an agreement of threads tagged by t1 and t2.

The irreversible closure of a session is achieved by the synchronisation on its session channel s of two threads of 
the form t1 : commit(s̄).P1 and t2 : commit(s).P2. This synchronisation acts similarly to the ‘cut’ operator in Prolog, as 
both mechanisms are used to prevent unwanted backtracking. After the synchronisation, since the session s is closed, the 
continuations P1 and P2 can no longer use the session channel s; this check is statically enforced by the type system for 
ReSπC (presented later on).

Formally, the semantics of ReSπC is obtained by adding the following rule to those defining the reduction relation of 
ReSπ (Fig. 6):

t1 : commit(k̄).P1 | t2 : commit(k).P2 (k = s or k = s̄) [commit]
� (νt′

1, t′
2)(t

′
1 : P1 | t′

2 : P2 | 〈t1 −√
(s)→ t2〉)

Since commit is an irreversible action that will never be backtracked, there is no need to remember information about the 
continuation processes in the generated memory. For the same reason, there is no backward rule inverse to [commit].

For what concerns the type discipline, types α (defined in Fig. 7) are extended with type 
√

, while the typing system is 
extended with the following rule:
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�;
 � P 	 � · k : end

�;
 � commit(k).P 	 � · k : √ [Commit]

which ensures that after the commit the session is closed.

7.2. Irreversibility propagation

When a commit action is executed, all actions that caused it became unbacktrackable, although they were themselves 
reversible. In other words, a commit action creates a domino effect that disables the possibility of reversing the session 
actions previously performed.

To formalise the domino effect caused by the commit irreversible action, we have to introduce the following notions of 
head and tail of memories:

head(〈t1 −A→ t2, t′
1, t′

2〉) = {t1, t2} tail(〈t1 −A→ t2, t′
1, t′

2〉) = {t′
1, t′

2}
head(〈t, e? P :Q , t′〉) = {t} tail(〈t, e? P :Q , t′〉) = {t′}
head(〈t ⇒ (t1, t2)〉) = {t} tail(〈t ⇒ (t1, t2)〉) = {t1, t2}
head(〈t1 −√

(s)→ t2〉) = {t1, t2} tail(〈t1 −√
(s)→ t2〉) = ∅

Using the terminology of [5], we say that a memory is locked when the event stored inside can never be reverted, 
because the conditions triggering the corresponding backward reduction will never be satisfied. Specifically, to perform a 
backward reduction is required the coexistence of a memory with threads properly tagged, and the latter will never be 
available due to an irreversible action. Let us now formalise, given a process M , its set LM of locked memories.

Definition 8 (Locked memories). Let M be a ReSπC process and MM stand for the set of memories occurring in M . The set 
LM of locked memories of M is defined as follows:

• 〈t1 −√
(s) → t2〉 ∈MM ⇒ 〈t1 −√

(s) → t2〉 ∈LM

• m ∈LM , m′ ∈MM , t ∈ head(m), t ∈ tail(m′) ⇒ m′ ∈LM

The first point says that a commit memory is locked, while the second point describes the propagation of the locking 
effect, i.e. the event within m depends on the event within m′ (because the latter generates a thread involved in the former) 
and hence also m′ is locked. Of course, LM ⊆MM .

Now, we can demonstrate the main result about ReSπC, stating that committed sessions cannot be reverted (Theorem 6). 
This result is based on the notion of reversible memory (Definition 9) and on Lemma 7, ensuring that locked memories 
cannot be reverted. We use �+ to denote the transitive closure of �.

Definition 9. Let M be a ReSπC process. A memory m ∈ MM is reversible if there exists a process M ′ such that M �+ M ′
and m /∈MM′ .

Intuitively, a memory can be reverted if there exists a backward computation that consumes it to restore the threads it 
memorises.

Lemma 7. Let M be a ReSπC process. If m ∈LM then m is not reversible.

Proof. The proof proceeds by contradiction (see Appendix A.3). �
Theorem 6. Let M be a ReSπC process and s a session committed in M. Then, all interactions performed along s cannot be reverted.

Proof. The proof relies on Lemma 7 (see Appendix A.3). �
7.3. The multiple providers scenario in ReSπC

Let us consider again the multiple providers scenario specified in ReSπ in Section 4.3.
Suppose now that, for the sake of simplicity, the client and the first provider commit the session immediately after the 

acceptance of the quote. That is, Pacc and Q acc stand for commit(x) and commit(y), respectively. Thus, the computation 
described in Section 3.3 in ReSπC corresponds to:
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t1 : Pclient | t2 : Pprovider1 | t3 : Pprovider2

�����
M = (νs, t1

1, t1
2, . . . , t5

1, t4
2)

( t5
1 : commit(s̄) | t4

2 : commit(s)
| 〈t1 −alogin . . .→ t2, t1

1, t1
2〉 | . . . | 〈t4

1 −s � lacc . . .→ t3
2, t5

1, t4
2〉 )

| Pprovider2

M can now evolve as follows:

M � M ′ = (νs, t1
1, t1

2, . . . , t5
1, t4

2, t6
1, t5

2)

( t6
1 : 0 | t5

2 : 0 | 〈t5
1 −√

(s)→ t4
2〉

| 〈t1 −alogin . . .→ t2, t1
1, t1

2〉 | . . . | 〈t4
1 −s � lacc . . .→ t3

2, t5
1, t4

2〉 )

| Pprovider2

The memory 〈t5
1 −√

(s) → t4
2〉 generated by this last forward reduction is locked (first point of Definition 8). Thus, also 

memory 〈t4
1 −s � lacc . . .→ t3

2, t5
1, t4

2〉 is locked, since its tail contains tags belonging to the head of the commit memory 
(second point of Definition 8). Repeatedly applying the second point of Definition 8, we obtain that LM′ = MM′ , i.e. all 
memory of M ′ are locked. This means that M ′ �� and hence, as desired, the computation along session s cannot be reverted.

8. Concluding remarks

To bring the benefits of reversible computing to structured communication-based programming, we have defined a 
theoretical framework based on π -calculus that can be used as formal basis for studying the interplay between (causal-
consistent) reversibility and session-based structured interaction. We conclude the paper by discussing the main directions 
of ongoing and future work.

Concerning the reversible calculus, we plan to investigate the definition of a syntactic characterisation of consistent 
terms, which statically enforces history consistency in memories (as in [15]), rather than using the current definition of 
reachable process (as in [20,18]). In line with [17], we also plan to enrich the language with primitives and mechanisms to 
control reversibility.

For what concerns the typing discipline of ReSπ , we intend to investigate the definition of a typing system capable of 
type checking contents of memories, in order to identify interaction errors that could be caused by terms restored from 
memories. This permits us to extend the class of ReSπ programs to include also processes with memories, thus allowing 
programmers to write also this kind of reversible code. We think that the required checks would resemble the semantics of 
the roll primitive in [17], which can be then used as a source of inspiration.

Coming to the extension with committable sessions, it is worth noticing that action commit must be carefully used 
in case of subordinate sessions. For example, let us consider the typical three-party scenario where a Customer sends an 
order to a Seller that, in his own turn, contacts a Shipper for the delivery. We have that the session between the Seller and 
the Shipper is subordinated to the session between the Customer and the Seller. Now, when the main session is committed, 
also the subordinate session is involved in the commit. This is usually desirable, because the commit acts on the whole 
transaction and, hence, after the commit the interaction with the Shipper cannot be reverted. However, if the subordinate 
session is previously committed, the main session is affected, because interaction performed before the commit cannot 
be reverted. This latter situation is typically undesirable; therefore, as a best practice, commit should be not used by 
subordinate sessions. We plan to devise a static analysis technique supporting this disciplined use of commit in presence 
of subordinate sessions.

As longer-term goal, we intend to apply the proposed approach to other session-based formalisms, which consider, e.g., 
asynchronous sessions and multiparty sessions. We also plan to investigate implementation issues that may arise when 
incorporating the approach into standard programming languages, in particular in case of a distributed setting. The rollback 
mechanism incorporated in the semantics of the language would require low-level synchronisations between the involved 
parties.

Appendix A. Proofs

A.1. Proofs of Section 5

A.1.1. Correspondence with π -calculus

Lemma 1. Let M and N be two ReSπ processes. If M ≡ N then φ(M) ≡ φ(N).

Proof. We proceed by induction on the derivation of M ≡ N . For most of the laws in Fig. 5 the conclusion is trivial because 
φ(M) ≡ φ(N) directly corresponds to a law for π -calculus in Fig. 2. Instead, for the eighth and twelve laws, we easily 
conclude because by applying φ we obtain the identity. �



702 F. Tiezzi, N. Yoshida / Journal of Logical and Algebraic Methods in Programming 84 (2015) 684–707
Lemma 2. Let M and N be two ReSπ processes. If M � N then φ(M) → φ(N).

Proof. We proceed by induction on the derivation of M � N . Base cases:

• [fwCon]: We have that M = t1 : ā(x).P1 | t2 : a(y).P2 and N = (νs, t′
1, t

′
2)(t

′
1 : P1[s̄/x] | t′

2 : P2[s/y] | 〈t1 −
a(x)(y)(νs)P1 P2→ t2, t′

1, t
′
2〉) with s, ̄s /∈ fse(P1, P2). By definition of φ, we obtain φ(M) = ā(x).P1 | a(y).P2. Now, by 

applying rules [Con] and [Str], we have φ(M) → (νs)(P1[s̄/x] | P2[s/y] | 0) = P . By definition of φ, we have φ(N) = P
that permits us to conclude.

• [fwCom], [fwLab], [fwIf1], [fwIf2]: These cases are similar to the previous one.

Inductive cases:

• [fwPar]: We have that M = M1 | M2 and N = M ′
1 | M2. By the premise of rule [fwPar], we also have M1 � M ′

1
from which, by induction, we obtain φ(M1) → φ(M ′

1). By definition of φ, we get φ(M) = φ(M1) | φ(M2). By applying 
rule [Par], we have φ(M) → φ(M ′

1) | φ(M2) = P . Thus, by definition of φ, we have φ(N) = P that directly permits 
us to conclude.

• [fwRes]: This case is similar to the previous one. In particular, when the restricted name is a tag, it is not even necessary 
to apply rule [Res], because the forgetful map erases the restriction.

• [fwStr]: By the premise of rule [fwStr], we have M ≡ M ′ , M ′ � N ′ and N ′ ≡ N . By induction, we obtain φ(M ′) →
φ(N ′). By applying Lemma 1, we have φ(M) ≡ φ(M ′) and φ(N ′) ≡ φ(N) that allow us to conclude. �

Lemma 3. Let P and Q be two π -calculus processes. If P ≡ Q then for any ReSπ process M such that φ(M) = P there exists a ReSπ
process N such that φ(N) = Q and M ≡ N.

Proof. The proof is straightforward. Indeed, given a ReSπ process M such that φ(M) = P , it must have the form (νt̃)(t : P |∏
i∈I mi) up to ≡. Thus, the process N , such that φ(N) = Q , can be defined accordingly: N ≡ (νt̃)(t : Q | ∏

i∈I mi). Now, we 
can conclude by exploiting the ninth law in Fig. 5, i.e. t : P ≡ t : Q if P ≡ Q , and the fact that relation ≡ on ReSπ processes 
is a congruence. �
Lemma 4. Let P and Q be two π -calculus processes. If P → Q then for any ReSπ process M such that φ(M) = P there exists a ReSπ
process N such that φ(N) = Q and M � N.

Proof. We proceed by induction on the derivation of P → Q . Base cases:

• [Con]: We have that P = ā(x).P1 | a(y).P2 and Q = (νs)(P1[s̄/x] | P2[s/y]) with s, ̄s /∈ fse(P1, P2). Let M be a ReSπ
process such that φ(M) = P , it must have the form (νt̃)(t1 : ā(x).P1 | t2 : a(y).P2 | ∏

i∈I mi) up to ≡. Thus, by applying 
rules [fwCon], [fwPar], [fwRes] and [fwStr], we get M � (νt̃, s, t′

1, t
′
2)(t

′
1 : P1[s̄/x] | t′

2 : P2[s/y] | 〈t1 −a(x)(y)(νs)P1 P2→
t2, t′

1, t
′
2〉 |

∏
i∈I mi) = N . We conclude by applying φ to N , since we obtain φ(N) = Q .

• [Com], [Lab], [If1], [If2]: These cases are similar to the previous one.

Inductive cases:

• [Par]: We have that P = P1 | P2 and Q = P ′
1 | P2. Let M be a ReSπ process such that φ(M) = P1 | P2. We 

have M ≡ (νt̃)(t1 : P1 | t2 : P2 | ∏
i∈I mi) ≡ (νt̃′)(M1 | t2 : P2 | ∏

j∈ J m j) with M1 ≡ (νt̃′′)(t1 : P1 | ∏
k∈K mk), t̃ = t̃′, t̃′′

and J ∪ K = I . By the premise of rule [Par], we also have P1 → P ′
1 from which, by induction, since φ(M1) = P1, 

there exists M ′
1 such that φ(M ′

1) = P ′
1 and M1 � M ′

1. Thus, by applying rules [fwPar], [fwRes] and [fwStr], we get 
M � (νt̃′)(M ′

1 | t2 : P2 | ∏ j∈ J m j) = N . We conclude by applying φ to N , because φ(N) = φ(M ′
1) | P2 = P ′

1 | P2 = Q .
• [Res]: This case is similar to the previous one.
• [Str]: We have that P ≡ P ′ , Q ≡ Q ′ and P ′ → Q ′ . Let M be a process such that φ(M) = P . By applying Lemma 3, there 

exists M ′ such that φ(M ′) = P ′ and M ≡ M ′ . By induction, there is N ′ such that φ(N ′) = Q ′ and M ′ � N ′ . By applying 
Lemma 3 again, there exists N such that φ(N) = Q and N ≡ N ′ . By applying rule [fwStr], we conclude M � N . �

A.1.2. Loop lemma

Lemma 5. Let M and N be two reachable ReSπ processes. M � N if and only if N � M.

Proof. The proof for the if part is by induction on the derivation of M � N . Base cases:

• [fwCon]: We have that M = t1 : ā(x).P1 | t2 : a(y).P2 and N = (νs, t′
1, t

′
2)(t

′
1 : P1[s̄/x] | t′

2 : P2[s/y] | 〈t1 −
a(x)(y)(νs)P1 P2→ t2, t′ , t′ 〉) with s, ̄s /∈ fse(P1, P2). By applying rule [bwCon], we can directly conclude N � M .
1 2
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• [fwCom], [fwLab], [fwIf1], [fwIf2]: These cases are similar to the previous one.

Inductive cases:

• [fwPar]: We have that M = N1 | N2, N = N ′
1 | N2 and N1 � N ′

1. By induction N ′
1 � N1. Thus, we conclude by applying 

rule [bwPar], since we get N = N ′
1 | N2 � N1 | N2 = M .

• [fwRes]: We have that M = (νh)M1, N = (νh)M ′
1 and M1 � M ′

1. By induction M ′
1 � M1. Thus, we conclude by applying 

rule [bwRes], since we get N = (νh)M ′
1 � (νh)M1 = M .

• [fwStr]: We have that M ≡ M ′ , N ≡ N ′ and M ′ � N ′ . By induction N ′ � M ′ . Thus, we conclude by applying rule 
[bwStr], since we directly get N � M .

The proof for the only if part is by induction on the derivation of N � M . Base cases:

• [bwCon]: We have that N = (νs, t′
1, t

′
2)(t

′
1 : P | t′

2 : Q | 〈t1 −a(x)(y)(νs)P1 P2→ t2, t′
1, t

′
2〉) and M = t1 : ā(x).P1 | t2 :

a(y).P2. Since N is a reachable process, memory 〈t1 −a(x)(y)(νs)P1 P2→ t2, t′
1, t

′
2〉 has been generated by a synchronisa-

tion between threads t1 : ā(x).P1 and t2 : a(y).P2, producing a session channel s and two continuation processes P1[s̄/x]
and P2[s/y] tagged by t′

1 and t′
2, respectively. Now, by tag uniqueness implied by reachability and use of restriction in 

tag generation, P and Q must coincide with P1[s̄/x] and P2[s/y], respectively. Therefore, by applying rule [fwCon], we 
can directly conclude M � N .

• [bwCom], [bwLab], [bwIf]: These cases are similar to the previous one.

Inductive cases:

• [bwPar]: We have that N = N1 | N2, M = N ′
1 | N2 and N1 � N ′

1. By induction N ′
1 � N1. Thus, we conclude by applying 

rule [fwPar], since we get M = N ′
1 | N2 � N1 | N2 = N .

• [bwRes]: We have that N = (νh)N1, M = (νh)N ′
1 and N1 � N ′

1. By induction N ′
1 � N1. Thus, we conclude by applying 

rule [fwRes], since we get M = (νh)N ′
1 � (νh)N1 = N .

• [bwStr]: We have that N ≡ N ′ , M ≡ M ′ and N ′ � M ′ . By induction M ′ � N ′ . Thus, we conclude by applying rule 
[fwStr], since we directly get M � N . �

A.1.3. Causal consistency

Lemma 6. If τ1 = M
η1−→ M1 and τ2 = M

η2−→ M2 are two coinitial concurrent transitions, then there exist two cofinal transitions 
τ2/τ1 = M1

η2−→ N and τ1/τ2 = M2
η1−→ N.

Proof. By case analysis on the form of transitions τ1 and τ2.

• M
m1,M1,�−−−−−−−→ M1 and M

m2,M2,�−−−−−−−→ M2. The two transitions can be any combination of forward reductions. Let us con-
sider the case of two communication (the other cases are similar). Since the two transitions are concurrent, the involved 
threads are four distinct threads (two sending threads and two receiving ones). In particular, we consider below two 
communications along different sessions; in fact, the type discipline in Section 6 forbids concurrent communications 
along the same session (although, in this proof, this kind of concurrent communications would not cause any problem). 
Thus, in the considered case, the source of the two transitions is as follows:

M ≡ (νs1, s2, t̃)( t1 : s̄1!〈e1〉.P1 | t2 : s1?(x1).P2
| t3 : s̄2!〈e2〉.P3 | t4 : s2?(x2).P4 | M ′ )

where t1, t2, t3, t4 are in t̃ . Then, M � M1 with

M1 ≡ (νs1, s2, t̃, t′
1, t′

2)( t′
1 : P1 | t′

2 : P2[v1/x1] | m1
| t3 : s̄2!〈e2〉.P3 | t4 : s2?(x2).P4 | M ′ )

where e1 ↓ v1 and m1 = 〈t1 −s̄1〈e1〉(x1)P1 P2→ t2, t′
1, t

′
2〉. Similarly, M � M2 with

M2 ≡ (νs1, s2, t̃, t′
3, t′

4)( t1 : s̄1!〈e1〉.P1 | t2 : s1?(x1).P2
| t′

3 : P3 | t′
4 : P4[v2/x2] | m2 | M ′ )

where e2 ↓ v2 and m2 = 〈t3 −s̄2〈e2〉(x2)P3 P4→ t4, t′
3, t

′
4〉. Now, we have that M1 � N with

N ≡ (νs1, s2, t̃, t′
1, t′

2, t′
3, t′

4)( t′
1 : P1 | t′

2 : P2[v1/x1] | m1
| t′

3 : P3 | t′
4 : P4[v2/x2] | m2 | M ′ )

As desired, we also have that M2 � N .
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• M
m1,M1,�−−−−−−−→ M1 and M

m2,M2,�−−−−−−−→ M2. The two transitions can be any combination of a forward rule and a backward 
one, respectively. Let us consider the case of a forward communication and the undo of a choice (again, the other cases 
are similar). Thus, in the considered case, the source of the two transitions is as follows:

M ≡ (νs, t̃, t′
3)( t1 : s̄!〈e1〉.P1 | t2 : s?(x1).P2

| t′
3 : P3 | m2 | M ′ )

where m2 = 〈t3, e2? P3:P4, t′
3〉, e ↓ true, and t1, t2, t3 are in t̃ . Notably, since the two transitions are concurrent, the 

continuation tag in m2 can be neither t1 nor t2 (indeed, in the above process M this tag is t′
3). Then, M � M1 with

M1 ≡ (νs, t̃, t′
3, t′

1, t′
2)( t′

1 : P1 | t′
2 : P2[v1/x1] | m1

| t′
3 : P3 | m2 | M ′ )

where e1 ↓ v1 and m1 = 〈t1 −s̄〈e1〉(x1)P1 P2→ t2, t′
1, t

′
2〉. Now, we also have that M � M2 with

M2 ≡ (νs, t̃)( t1 : s̄!〈e1〉.P1 | t2 : s?(x1).P2
| t3 : if e2 then P3 else P4 | M ′ )

As desired, both M1 and M2 can then evolve with a backward and forward reduction, respectively, to N:

N ≡ (νs, t̃, t′
1, t′

2)( t′
1 : P1 | t′

2 : P2[v1/x1] | m1
| t3 : if e2 then P3 else P4 | M ′ )

• M
m1,M1,�−−−−−−−→ M1 and M

m2,M2,�−−−−−−−→ M2. Similar to the first case.
• M

m1,M1,�−−−−−−−→ M1 and M
m2,M2,�−−−−−−−→ M2. Similar to the second case. �

The proof of the Causal Consistency theorem follows the (standard) pattern used in [15,5]. In particular, the proof relies 
on two auxiliary lemmas. The first lemma permits us to rearrange a trace as a composition of a backward trace and a 
forward one. The second lemma permits a forward trace to be shortened.

Lemma 8. Let σ be a trace. There exist σ ′ and σ ′′ both forward traces such that σ � σ ′•; σ ′′ .

Proof. We prove this by lexicographic induction on the length of σ , and the distance to the beginning of σ of the earliest 
pair of transitions in σ contradicting the property. If there is no such contradicting pair, then we are done. If there is one, 
say a pair of the form τ ; τ ′• with τ and τ ′ forward transitions, we have two possibilities: either τ and τ ′ are concurrent, or 
they are in conflict. In the first case, τ and τ ′• can be swapped by using Lemma 6, resulting in a later earliest contradicting 
pair. Then, the result follows by induction, since swapping transitions keeps the total length constant. In the second case, 
there is a conflict on a tag, because it belongs to the stamps of both transitions. Again, we have two sub-cases: either 
the memory involved in the two transitions is the same or not. In the first sub-case we have τ = τ ′ , and then we can 
apply Lemma 5 to remove τ ; τ• . Hence, the total length of σ decreases and, again, by induction we obtain the thesis. 
Instead, the second sub-case never happens. Indeed, let τ generate a memory m1 = 〈t, e? P :Q , t′〉 (the case with the action 
memory is similar). A conflict with τ ′ would be caused by the presence of t or t′ in the memory m2 removed by τ ′• (and, 
by hypothesis, different from m1). However, t cannot occur in m2, because the transition τ consumed the thread uniquely 
tagged by t , which then cannot be involved in the other transition. Also t′ cannot occur in m2, because the thread uniquely 
tagged by t′ has been generated by τ ; thus, another forward transition must take place before τ ′• to involve this thread so 
that t′ could occur in m2. �
Lemma 9. Let σ1 and σ2 be coinitial and cofinal traces, with σ2 forward. Then, there exists a forward trace σ ′

1 of length at most that 
of σ1 such that σ ′

1 � σ1 .

Proof. The proof is by induction on the length of σ1. If σ1 is a forward trace we are already done. Otherwise, by Lemma 8
we can write σ1 as σ•; σ ′ (with σ and σ ′ forward). Due to its form, σ1 contains only one sequence of transitions with 
opposite direction, say τ•; τ ′ . Let m1 be the memory removed by τ• . Then, in σ ′ there is a forward transition generating 
m1; otherwise there would be a difference with respect to σ2, since the latter is a forward trace. Let τ1 be the earliest such 
transition in σ1. Since τ1 is able to put back m1, it has to be the opposite of τ• , i.e. τ1 = τ . Now, we can swap τ1 with all 
the transitions between τ1 and τ• , in order to obtain a trace in which τ1 and τ• are adjacent. To do so, we use Lemma 6, 
since all the transitions in between are concurrent. Assume in fact that there is a transition involving memory m2 which 
is not concurrent to τ1. A possible conflict could be caused by the presence of a continuation tag, say t , of m1 in m2. But 
this case can never happen, since t is freshly generated by the forward rule used to produce τ1 and thus, thanks to tag 
uniqueness, t cannot coincide with any tag of a previously executed transition. The other possible conflict could be caused 
by the presence of a continuation tag of m2 in m1. Since τ• removes m1, this memory cannot contain a fresh tag generated 
by a subsequent transition when m2 is created. Thus, also this case can never happen. Now, when τ• and τ are adjacent, 
we can remove both of them using �. The resulting trace is shorter, thus the thesis follows by inductive hypothesis. �
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Theorem 1. Let σ1 and σ2 be coinitial traces. Then, σ1 � σ2 if and only if σ1 and σ2 are cofinal.

Proof. By construction of �, if σ1 � σ2 then σ1 and σ2 must be coinitial and cofinal, so this direction of the theorem is 
verified. Thus, it just remains to prove that σ1 and σ2 being coinitial and cofinal implies that σ1 � σ2. By Lemma 8, we know 
that the two traces can be written as composition of a backward trace and a forward one. The proof is by lexicographic 
induction on the sum of the lengths of σ1 and σ2 and on the distance between the end of σ1 and the earliest pair of 
transitions τ1 in σ1 and τ2 in σ2 which are not equal. If all the transitions are equal then we are done. Otherwise, we have 
to consider four cases, depending on whether the two transitions are forward or backward.

• τ1 forward and τ2 backward. One has σ1 = σ•; τ1; σ ′ and σ2 = σ•; τ2; σ ′′ for some σ , σ ′ , and σ ′′ . Lemma 9 applies to 
τ1; σ ′ , since it is a forward trace, and to τ2; σ ′′; indeed, σ1 and σ2 are coinitial and cofinal by hypothesis, thus also 
τ1; σ ′ and τ2; σ ′′ are coinitial and cofinal. We then have that τ2; σ ′′ has a shorter equivalent forward trace, and so σ2
has a shorter equivalent forward trace. We can conclude by induction.

• τ1 backward and τ2 forward. This case is similar to the previous one.
• τ1 and τ2 forward. We have two possibilities: they are concurrent or are not. In the latter case, they should conflict on a 

thread, say t : P , that they both consume and store in different memories. Since the two traces are cofinal, there should 
be a transition τ ′

2 in σ2 creating the same memory as τ1. However no other thread t : P is ever created in σ2; hence, 
this is not possible. Therefore, we can assume that τ1 and τ2 are concurrent. Let τ ′

2 be the transition in σ2 creating the 
same memory of τ1. We have to prove that τ ′

2 is concurrent to all the previous transitions. This holds since no previous 
transition can remove one of the processes needed for triggering τ ′

2 and since forward transitions can never conflict 
on t . Thus we can repetitively apply Lemma 6 to derive a trace equivalent to σ2 where τ2 and τ ′

2 are consecutive. We 
can apply a similar transformation to σ1. Now, we can apply Lemma 6 to τ1 and τ2 to have two traces of the same 
length as before but where the first pair of different transitions is closer to the end. We then conclude by inductive 
hypothesis.

• τ1 and τ2 backward. Let m1 be the memory removed by τ1, which is surely different from the memory removed by τ2
(indeed, the two backward transitions cannot remove the same memory). Since the two traces are cofinal, either there 
is another transition in σ1 putting back the memory or there is a transition τ ′

1 in σ2 removing the same memory. In the 
first case, τ1 is concurrent to all the backward transitions following it, but the ones that consume processes generated by 
it. Thus, all such transitions have to be undone by corresponding forward transitions (since they are not possible in σ2). 
Consider the last such transition: we can use Lemma 6 to make it the last backward transition. The forward transition 
undoing it should be concurrent to all the previous forward transitions (the reason is the same as in the previous case). 
We can then use Lemma 6 to make it the first forward transition. Finally, we can apply τ• ; τ � εtarget(τ ) to remove 
the two transitions, thus shortening the trace. In this way, we obtain the thesis by inductive hypothesis. �

A.2. Proofs of Section 6

Property 1. Let M be a reachable process. If M � M ′ then M ′ is a reachable process.

Proof. The proof follows from Definition 6. Indeed, since M is a reachable process, there exists a typed program N such 
that N �∗ M , where �∗ denotes the reflexive and transitive closure of �. Now, we distinguish two cases:

• M � M ′ . In this case, we have N �∗ M � M ′ , that is N �∗ M ′ .
• M � M ′ . Here we have to sub-cases:

– M ′ is a process encountered in the computation N �∗ M . Thus, N �∗ M ′ �∗ M . In particular, since from M � M ′ by 
Lemma 5 we have M ′ � M , we obtain N �∗ M ′ � M .

– M ′ is not encountered in N �∗ M . Since M ′ is obtained from M by a backward reduction, the memories of M ′ are 
the same of M except for the one consumed by the backward reduction (which, of course, is missing in M ′). Being M
a reachable process, the content of such memories is consistent. Thus, consuming all memories in M ′ inevitably leads 
to the program N , i.e. M ′ �∗ N . By applying Lemma 5 to all reductions in this backward computation, we obtain 
N �∗ M ′ .

In all cases, M ′ is originated from the same program of M , hence it is a reachable process too. �
Theorem 4. Let M be a reachable process. If �;
 �r M 	 � with � balanced and M � M ′ , then �;
 �r M ′ 	 �′ and �′ bal-
anced.

Proof. We distinguish two cases:

1. (�=�). By Definition 7, from �;
 �r M 	 � we obtain �;
 � φ(M) 	 �. By applying Lemma 2 to the hypoth-
esis M � M ′ , we have φ(M) → φ(M ′). Thus, by Theorem 2, we get �;
 � φ(M ′) 	 �′ with �′ balanced. Finally, by 
Definition 7, we have the thesis �;
 �r M ′ 	 �′ .
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2. (�=�). By Property 1, we get that process M ′ is reachable. Thus, by Definition 6, there exists a program N such that 
�;
 � φ(N) 	 �′′ with �′′ balanced, and N �∗ M ′ . Now, we can proceed as in case 1, by applying Lemma 2 and 
Theorem 2 to obtain �;
 � φ(M ′) 	 �′ with �′ balanced. Again, by Definition 7, we get the thesis. �

A.3. Proofs of Section 7

Lemma 7. Let M be a ReSπC process. If m ∈LM then m is not reversible.

Proof. The proof proceeds by contradiction. Suppose that there exists a memory m such that m ∈ LM and m is reversible. 
By Definition 9, there exists M ′ such that M �+ M ′ and m /∈MM′ . We have two cases:

1. m = 〈t1 −√
(s) → t2〉: this case is trivial because no rule is able to revert this kind of memory (in fact, the forward rule 

[Commit] is not paired with a corresponding backward rule). Thus, no process M ′ such that m /∈ MM′ can be derived 
from M , which contradicts the hypothesis.

2. m �= 〈t1 −√
(s) → t2〉: since m ∈LM , by Definition 8, there exists a memory m′ ∈LM and tag t such that t ∈ tail(m) and 

t ∈ head(m′). To revert m, according to rules [bwcon], [bwcom], [bwlab], and [bwif], for each tag t′ ∈ tail(m) a thread 
tagged by t′ must be in parallel with the memory. However, the tag t in tail(m) also belongs to head(m′), meaning that 
the thread tagged by t (which, we recall, is unique) has been already executed (in fact, data concerning such execution 
is stored in m′). Thus, no backward rule can be applied to revert m in one step. The only possibility is to revert m′
before. Now, if m′ is a commit memory, then we proceed as in case 1, i.e. m′ cannot be reverted and, hence, m is not 
reversible, which is a contradiction. Otherwise, we repeat the same reasoning of case 2 for m′ and proceed in this way 
until a commit memory is found. Indeed, this commit memory must exist by construction of LM (Definition 8, first 
point). As in case 1, this memory cannot be reverted and, hence, all involved memories, included m, are not reversible, 
which is a contradiction. �

Theorem 6. Let M be a ReSπC process and s a session committed in M. Then, all interactions performed along s cannot be reverted.

Proof. Since s is committed in M , then there exists a memory m of the form 〈t1 −√
(s) → t2〉 such that m ∈ MM . By 

Definition 8, m ∈LM . Now, we have to prove that all other interactions performed along s corresponds to memories in LM . 
By linearity of sessions (ensured by the type discipline in Section 6), each interaction in s causally depends on one of the 
threads produced by the previous interaction along s. Since m corresponds to the last interaction along s (as ensured by 
rule [Commit] of the type system), m causally depends on all memories corresponding to the interactions along s. Since 
m ∈ LM , by Definition 8 (second point), all such memories are included in LM . Thus, by applying Lemma 7, we obtain the 
thesis. �
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