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Towards a statistical mechanical theory of
active fluids

Umberto Marini Bettolo Marconi*a and Claudio Maggib

We present a stochastic description of a model of N mutually interacting active particles in the presence

of external fields and characterize its steady state behavior in the absence of currents. To reproduce the

effects of the experimentally observed persistence of the trajectories of the active particles we consider

a Gaussian force having a non-vanishing correlation time t, whose finiteness is a measure of the activity

of the system. With these ingredients we show that it is possible to develop a statistical mechanical

approach similar to the one employed in the study of equilibrium liquids and to obtain the explicit form

of the many-particle distribution function by means of the multidimensional unified colored noise

approximation. Such a distribution plays a role analogous to the Gibbs distribution in equilibrium

statistical mechanics and provides complete information about the microscopic state of the system.

From here we develop a method to determine the one- and two-particle distribution functions in the

spirit of the Born–Green–Yvon (BGY) equations of equilibrium statistical mechanics. The resulting equa-

tions which contain extra-correlations induced by the activity allow us to determine the stationary

density profiles in the presence of external fields, the pair correlations and the pressure of active fluids.

In the low density regime we obtained the effective pair potential f(r) acting between two isolated

particles separated by a distance, r, showing the existence of an effective attraction between them

induced by activity. Based on these results, in the second half of the paper we propose a mean field

theory as an approach simpler than the BGY hierarchy and use it to derive a van der Waals expression of

the equation of state.

I Introduction

The collective behavior of microscopic living organisms and
active particles capable of transforming chemical energy into
motion has recently attracted the attention of the soft-condensed
matter community as they present striking analogies, but also
intriguing differences with respect to colloidal and molecular
fluids.1–4 Can we understand their rich phenomenology by
applying experimental, theoretical and numerical techniques
which proved to be successful in condensed matter physics?
Recent investigations based on physical models akin to those
widely employed in statistical mechanics, thermodynamics and
rheology seem to support this hypothesis.

Among the most studied systems we mention swimming
bacteria, colloidal particles immersed in bacterial suspensions
and self-propelled Janus particles. Swimming bacteria can be
schematized as objects moving with speed v0 along the straight
paths of average duration t, the so-called persistence time, after

which a random reorientation (a tumble) takes place. After
many such events, i.e. on a time scale larger than t, the particle
displacement can be assimilated to a random walk and diffu-
sive behavior emerges with a diffusion constant, Da = v0

2t/2d,
where d is the space dimensionality. The resulting motion
displays two peculiar features: (a) the trajectories display
an anomalously long persistence not observed in Brownian
motion, i.e. their direction and the velocity remain constant for
a time lapse much longer than those corresponding to colloidal
particles, and the similarity with ordinary diffusion appears
only on a longer time-scale; and (b) there is a spontaneous
tendency of the particles to aggregate into clusters notwith-
standing there is no evidence of direct attractive forces, while
on the contrary short repulsive inter-particle forces are at work.
This is in a nutshell the idea of the successful run-and-tumble
(RnT) model that captures many aspects observed experimen-
tally.5–7 Experiments conducted employing swimming bacterial
suspensions have shown that their diffusivity can be hundred
times larger than the one arising from the thermal agitation.8–10

To give some numbers the diffusivity of Escherichia coli bacteria
is D E 100 mm2 s�1, whereas passive bacteria diffuse with
D E 0.3 mm2 s�1. Active Janus particles instead have D values
in a range 4–25 mm2 s�1; finally colloidal particles immersed in a
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bacterial suspension display D E 0.5–0.1 mm2 s�1. In all cases,
the contribution by diffusion due to the thermal agitation of the
molecules of the solvent is more than ten times smaller than the
one due to activity.11

The work of several groups has led to the formulation
of theoretical models and to the application of methods of
statistical mechanics,12–17 whereas Brady and Takatori18 have
put forward an approach based on thermodynamics and micro-
rheology and introduced the seminal idea of swim temperature
Ts and swim pressure Tsr, with r being the particle number
density. In addition to the swim pressure, the total pressure
contains other contributions stemming not only from the
particle excluded volume but also from the effective attraction
experienced by the active particles. Such an effective attraction
is a peculiar aspect of active matter: motile particles, characterized
by isotropic repulsive interactions due to the persistence of their
motions, become slower at high density and tend to form clusters
and/or pile-up in regions adjacent to repulsive substrates. The
attractive forces may eventually lead to a scenario where van der
Waals loops appear as soon as the off-equilibrium control para-
meter, the persistence time, is above a certain critical value.

The idea of the present paper is to use a microscopic model
capable of reproducing the basic features of the RnT model and
of the active Brownian particles. In our model the microscopic
state is specified only by the particle positions, while the effect
of the angular dynamics is encapsulated in a Gaussian colored
noise having a finite relaxation time, reflecting the persistence
of the directions. The correspondence between the models can
be established by noting that, in the free particle case, in all models
each velocity component has an exponential time-autocorrelation
function characterized by a correlation time t.19–22 Despite the
differences in the driving stochastic forces, as shown in ref. 21,
Gaussian-colored noise-driven particles behave strikingly similarly
to RnT particles in the presence of steeply repulsive interactions.
Moreover the Gaussian colored noise model is the only one for
which an approximate stationary distribution for multiple
particles is known.21 This motivates us further to study the
Gaussian colored noise model in more detail.

Somehow surprisingly the present work shows that the
approximate stationary configurational distribution of a system
of interacting particles undergoing over-damped motion under
the action of Gaussian colored noise bears a strong resemblance
with the equilibrium Gibbs distribution,7,12 with the due differ-
ences: a new temperature, named swim temperature, takes the
role of the ordinary temperature, the probability of configura-
tions depends on a complicated function of U, the potential
energy. Such a result is independent of the fine details of the
interactions, but certainly depends on the persistence of the
random fluctuations. The most direct consequence of the form
of this steady state distribution is the appearance of an effective
attraction between two or more active particles in the absence of
any attractive direct interaction.23 The reduction of the mobility
of the particles due to the presence of other particles in their
vicinity may eventually lead to a phase separation between a high
and a rarefied density phase, a phenomenon named as motility
induced phase separation (MIPS).7,24

This paper is organized as follows: in Section II we present
the coarse grained stochastic model describing an assembly of
active particles, consisting of a set of coupled Langevin equa-
tions for the coordinates of the particles subjected to colored
Gaussian noise. We switch from the Langevin description to the
corresponding Fokker–Planck equation for the joint probability
distribution of N particles and within the multidimensional
unified colored noise approximation (MUCNA);21,25 in the stationary
case and under the conditions of vanishing currents we obtain
its exact form. The obtained distribution implies detailed
balance and potential conditions as discussed in Appendix C.
In the case of non-vanishing currents it is straightforward to
write such a distribution for a single particle in one dimension
in the presence of colored noise,26 whereas in higher dimen-
sions and in interacting systems such a generalization cannot
be obtained by the method given in Appendix A. Using the
N-particle distribution in Section III we derive the first two
members of a hierarchy of equations for the marginalized
probability distributions of one and two particles that play
the role of the Born–Green–Yvon (BGY) equations for active
systems. We apply the first of these equations to the study of a
density profile in the presence of an external potential, and
then extend the treatment to the case of interacting active
particles. In the low density limit we are able to write the exact
form of such a pair correlation and define the effective pair
potential between two isolated particles. In Section IV we
employ a variational approach, complementary to that based
on the BGY equations, which are exact but highly unpractical,
and taking advantage of the explicit form of the MUCNA
equation we construct a ‘‘free energy’’ functional whose minimum
corresponds to the exact solution. The mean-field theory for
interacting systems follows by searching the solution among the
probability distributions which are a product of single particle
probability distributions. The functional is finally used in Section
V to lay out a method capable of interpreting the phase behavior
of the model in terms of the relevant control parameters starting
from a microscopic description. Finally, we present our conclu-
sions in Section VI. We conclude with four appendices: Appendix
A contains the calculation details leading to the MUCNA; in
Appendix B we discuss the approach to the solution and establish
an H-theorem; in Appendix C we verify the detailed balance
conditions, whereas in Appendix D we discuss a technical aspect
which allows us to evaluate a key ingredient of our approach, the
determinant of the friction matrix.

II The model and its stationary many-
particle distribution function

In order to describe the properties of a suspension of active
particles we consider a three dimensional container of volume
V where an assembly of N interacting active spherical particles
at positions ri, with i ranging from 1 to N, subjected to external
fields undergoes over-damped motion driven by random fluctu-
ating forces of different origins and natures. In fact, each particle
besides experiencing a white noise force, due to the thermal
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agitation of the solvent and characterized by diffusivity Dt, is
acted upon by a drag force proportional to its velocity, :ri, and in
addition is subjected to a colored Gaussian noise, vi, of zero
mean, characteristic time t and diffusivity Da. This second type
of noise is intended to mimic on time scales larger than t the
behavior of self-propelled particles whose propulsion force
randomizes with characteristic time t. Such a model involving
only the positional degrees of freedom of the particles has the
advantage of allowing for analytical progress and for this
reason can be used instead of more microscopic models where
the rotational dynamics is fully accounted for. We consider that
the following set of equations of motion for the positions of the
active Brownian spheres, which has been treated in the litera-
ture by some authors,2,21,22

_riðtÞ ¼
1

g
F i r1; . . . ; rNð Þ þDt

1=2ntiðtÞ þ viðtÞ (1)

are coupled to changes in the velocities v described by

_viðtÞ ¼ �
1

t
viðtÞ þ

Da
1=2

t
ZiðtÞ (2)

The force F i ¼ �riU acting on the i-th particle is conservative
and associated with the potential U r1; . . . ; rNð Þ, g is the drag
coefficient, whereas the stochastic vectors nt

i(t) and gi(t) are
Gaussian and Markovian processes distributed with zero mean
and moments hnt

i(t)n
t
j(t0)i = 2dijd(t� t0) and hgi(t)gj(t0)i = 2dijd(t� t0).

While Dt represents a translational diffusion coefficient, coefficient
Da due to the activity is related to the correlation of the Ornstein–
Uhlenbeck process vi(t) via

viðtÞvjðt 0Þ
� �

¼ 2
Da

t
dij expð�jt� t 0j=tÞ:

In spite of the fact that the magnitude of the velocity does not have
the fixed value v0 as in the RnT, but fluctuates, a correspondence
can be established between the present model and the RnT with
the mean value hvi

2i = v0
2, so that Da = v0

2t/2d.
In the following we shall adopt a shorthand notation in which

the set of vectors ri is represented by an array {xi} of dimension
M = dN and the remaining terms are replaced by non-bold
letters. We assume that force Fi may be due to the action of
external agents and mutual interactions between the particles.
In order to proceed we consider the multidimensional version
of the unified colored noise approximation (UCNA)25 which
consists of eliminating adiabatically the fast degrees of free-
dom of the problem and, as shown in Appendix A, arrive at the
following equation for the particle coordinates:

_xi ’
X
k

Gik
�1 1

g
Fk þDa

1=2ZkðtÞ þDt
1=2xtk

� �
(3)

where we introduced the non-dimensional friction matrix Gik,

Gik ¼ dik þ
t
g
@2U
@xi@xk

: (4)

Such a formula shows that the effective dynamics of each
particle depends on its distance relative to the other particles
and on its absolute position if an external field is present, not

only through the direct coupling Fk, but also through the

motility matrix,
1

g
Gik
�1 which is the sum of a constant contribu-

tion due to the background fluid plus a space dependent term
due to the interparticle forces mediated by the colored bath.

Note that such a structure of the friction matrix introduces
velocity correlations among different velocity components of a
given particle or between the velocities of different particles
(this aspect will be discussed in detail in a forthcoming publica-
tion). For this reason, the present approach is not a mapping onto
a passive equilibrium system, but rather represents a mapping
onto a system with a self-generated inhomogeneous friction. This
leads to strong deviations from equilibrium such as the explicit
dependence of the stationary state on the transport coefficient.

In order to obtain meaningful results one must ensure that
all eigenvalues of G are non-negative. We cannot prove such a
condition in general; however, it seems a reasonable assump-
tion for repulsive pair potentials. On the contrary, it is easy to
find examples where appropriately chosen external potentials
determine negative eigenvalues and limit the validity of our
formula. Eqn (3) together with (4) is interesting because it
shows that the damping experienced by a particle is due to a
standard drag force �g :x plus a contribution stemming from
interactions. Thus the effective friction increases with density
leading to lower mobility and to a tendency to cluster. This
mechanism can eventually lead to the MIPS7,24 and is an
intrinsically non-equilibrium effect.

Let us write the Fokker–Planck equation (FPE) for the
N-particle distribution function fN associated with the stochastic
differential equation (eqn (3)) under the Stratonovich convention27

@fNðx1; . . . ; xN ; tÞ
@t

¼ �
X
l

@

@xl
Jl x1; . . . ; xN ; tð Þ (5)

where the l-th component of the probability current is

Jl �
X
k

Glk
�1 1

g
Fk fN � Da þDtð Þ

X
j

@

@xj
Gjk
�1fN

� � !
(6)

Using the method illustrated in Appendix A and requiring the
vanishing of all components of the probability current vector Jl,
without further approximations we obtain the following set of
conditions for the existence of the steady state N-particle distribu-
tion function PN:

� Da þDtð Þg @PN

@xn
� PN

@

@xn
ln detG

� 	

� PN

X
k

dnk þ
t
g
@2U

@xn@xk

� 	
@U x1; . . . ; xNð Þ

@xk
¼ 0: (7)

We now define the effective configurational energy of the system
H x1; . . . ; xNð Þ related to the bare potential energy U x1; . . . ; xNð Þ by

H x1; . . . ; xNð Þ ¼ U x1; . . . ; xNð Þ þ t
2g

XN
k

@U x1; . . . ; xNð Þ
@xk

� 	2

� Da þDtð Þg ln detGikj j
(8)
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It is easy to verify that the following N-particle configura-
tional probability distribution, obtained for the first time in
ref. 21, is

PN x1; . . . ; xNð Þ ¼ 1

ZN
exp �H x1; . . . ; xNð Þ

Da þDtð Þg

� 	
(9)

which is a solution of eqn (7), where ZN is a normalization
constant analogous to the canonical partition function upon
enforcing the condition

Ð
. . .
Ð
PN x1; . . . ; xNð Þdx1 . . . dxN ¼ 1.

Note that mobility Gik
�1 enters the stationary distribution, at

variance with equilibrium systems where the kinetic coeffi-
cients never influence the form of the probability distribution
function. In the limit t - 0, ZN reduces to the equilibrium
configurational partition function for a system characterized
by energy U. Formula (9) is a generalization to spaces of
arbitrary dimensions of a stationary distribution obtained by
Hanggi and Jung for a single degree of freedom in one
dimension.25 It displays an exponential dependence on a
function constructed with potential U and its derivatives.
These derivatives must be non-singular and also satisfy the
condition that the determinant is non-negative. In the case of
a single particle the result can also be derived using a
multiple-time scale method often employed to reduce the
phase-space Kramers equation to the configurational space
Smoluchowski equation.28 Note that the explicit form of the
distribution allows us to identify an effective temperature of
the system with the quantity

Ts = (Dt + Da)g, (10)

which shows the typical Einstein fluctuation–dissipation rela-
tion (with kB = 1) between temperature, diffusivity and drag
coefficient. Let us remark that the validity of formula (9) is
limited to the regime Da 4 Dt, which also corresponds to the
actual experiments with bacterial baths, whereas the limit
Da - 0 with t and Dt being finite, does not correspond to the
real situation but leads to meaningless theoretical predictions
since it violates the hypothesis under which the MUCNA is
obtained. To conclude this section, we identify the temperature
with Ts as swim temperature29 and introduce a measure of the
distance from thermodynamic equilibrium the Péclet number,
Pe ¼

ffiffiffiffiffiffiffiffi
Dat
p �

s, which is the ratio between the mean square
diffusive displacement due to the active bath at time interval
t and the typical size of the active particles, say s.

III BGY hierarchy and fluid structure

As can be seen that formula (9) is exact, but contains too many
details to be really useful; however, by borrowing methods of
equilibrium statistical mechanics we can trace out degrees of
freedom and arrive at formulas involving the distribution
functions of only few particles. For this purpose we shall use
the stationary condition (7) to derive a set of equations equi-
valent to the BGY hierarchy for equilibrium correlations. The
hierarchy becomes of practical utility if utilized in conjunction
with a suitable truncation scheme in order to eliminate the

dependence from the higher order correlations. Let us turn to
standard vector notation where indices a and b running from 1
to d identify the Cartesian components and latin subscripts
denote the particles. The total potential is assumed to be the
sum of the mutual pairwise interactions w(r � r0) between the
particles and of the potential extorted by the external field u(r):

U r1; . . . ; rNð Þ ¼
PN
i4 j

w ri; rj
� 

þ
PN
i

uðriÞ: The hierarchy follows by

writing eqn (7) in the equivalent form:

� Ts

X
b

X
n

@

@rbn
Gal;bn

�1 r1; . . . ; rNð ÞPN r1; . . . ; rNð Þ
� �

¼ PN r1; . . . ; rNð Þ @u ralð Þ
@ral

�
þ
X
kal

@w rl � rkð Þ
@ral

! (11)

We proceed to marginalize the N dimensional distribution func-
tion PN introducing the reduced probability distribution functions

of order n as P
ðnÞ
N r1; x2; . . . ; rnð Þ �

Ð
drnþ1 . . . drNPN r1; r2; . . . ; rNð Þ.

By integrating eqn (7) over (N � 2) coordinates we obtain an
equation for P(2)

N (r1,r2) in terms of higher order marginal distribu-
tions and choosing l = 1 we find

� Ts

ðð
dr3 . . . drN

X
b

X
n

@

@rbn
Ga1;bn

�1 r1; . . . ; rNð ÞPN r1; . . . ; rNð Þ
� �

¼ P
ð2Þ
N r1; r2ð Þ @u ra1ð Þ

@ra1
þ @w r1 � r2ð Þ

@ra1

� 	

þ
X
k4 2

ð
drkP

ð3Þ
N r1; r2; rkð Þ@w r1 � rkð Þ

@ra1

(12)

Now, we note that in the case of a large number of particles and in
the limit of small t/g the matrix Gal,bn

�1 is nearly diagonal and can
be approximated by

Gal;bn
�1 � dab �

t
g
uab rlð Þ �

t
g

X
kal

wab rl � rkð Þ
 !

dln;

where uab �
@2uðrÞ
@ra@rb

and wab �
@2wðrÞ
@ra@rb

. Substituting this approxi-

mation in eqn (12) we find

Ts

X
b

@

@rb1
P
ð2Þ
N r1; r2ð Þdab �

t
g

 
P
ð2Þ
N r1; r2ð Þuab r1ð Þ:

"

þ P
ð2Þ
N r1; r2ð Þwab r1 � r2ð Þ

þ
ðX

k

drkP
ð3Þ
N r1; r2; rkð Þwab r1 � rkð Þ

!#

¼ �Pð2ÞN r1; r2ð Þ @u ra1ð Þ
@ra1

þ @w r1; r2ð Þ
@ra1

� 	

�
X
k4 2

ð
drkP

ð3Þ
N r1; r2; rkð Þ@w r1 � rkð Þ

@ra1
;

(13)
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which represents the BGY equation for the pair probability dis-
tribution P2. By integrating also over coordinate 2 and switching to

the n-th order density distributions: rðnÞ r1; r2; . . . ; rnð Þ ¼

N!

ðN � nÞ!P
ðnÞ
N r1; r2; . . . ; rnð Þ we obtain the first BGY-like equation

Ts

X
b

@

@rb1
dabrð1Þ r1ð Þ �

t
g
rð1Þ r1ð Þua r1ð Þ

�

� t
g

ð
dr2rð2Þ r1; r2ð Þwab r1 � r2ð Þ

¼ �rð1Þ r1ð Þ
@u ra1ð Þ
@ra1

�
ð
dr2rð2Þ r1; r2ð Þ@w r1 � r2ð Þ

@ra1
;

(14)

which in the limit of t - 0 is just the BGY equation for the
single-particle distribution function. By performing an analo-
gous substitution in (13) we obtain the BGY equation for the
pair correlation function including the corrections of order t/g
stemming from the activity.

The r.h.s. of eqn (14) contains the coupling to the external field
and the so-called direct interaction among the particles, whereas the
l.h.s. besides the ideal gas term contains a term proportional to the
activity parameter that we name an indirect interaction term,
following the nomenclature introduced by Solon et al.,30,31 although
our expression does not coincide with theirs because the present
model does not depend on angular degrees of freedom. Note that
here the indirect interaction term stems from the expansion of the
determinant to first order in parameter t/g. On the other hand, if
one employs a higher order expansion in this parameter, terms
involving terms up to N-body correlations would appear.

A. Non-interacting active particles under in-homogeneous
conditions

In the case of vanishing ‘‘inter-molecular’’ forces, eqn (14) gives
access to the single particle distribution of Brownian active particles
near a wall. Let us assume w(r) = 0 and u(r) = u(x) to represent a
generic (flat) wall confining potential, twice differentiable and with
the properties that lim

x!�1
uðxÞ ¼ 1 and lim

x!1
uðxÞ ¼ 0. Since the

particles are non-interacting it is not necessary to expand the
friction matrix in powers of the activity parameter as in eqn (14)
and one can use its exact expression:

Gxl;xn
�1 ¼ 1

1þ t
g
uxxðxÞ

dln:

Alternatively, one can regard such a formula as a resummation
of the generalized binomial series (1 � y + y2. . .), whose first

term, y ¼ t
g
uxxðxÞ appears in the l.h.s. of (14). We write

Ts
d

dx

rð1ÞðxÞ
1þ t

g
uxxðxÞ

0
B@

1
CA ¼ �uxðxÞrð1ÞðxÞ (15)

and find the profile

rð1ÞðxÞ ¼ r0 exp �
uðxÞ þ t

2g
uxðxÞð Þ2

Ts

0
B@

1
CA 1þ t

g
uxxðxÞ

� �
: (16)

Using the mechanical definition of pressure,30,32 this simple
example provides an exact expression for the pressure exerted
by non-interacting active particles: in fact, by integrating both
sides of (15) with respect to x from �N to N and recalling that
the right-hand side is just the force per unit area exerted by the
wall, located at x E 0, on the fluid we obtain the pressure as

ps = Tsr(x - N) (17)

having assumed that the negative region is not accessible to the
particles. Note that ps = rTs does not depend on the particular
form of the wall potential.30 Such a pressure is the so-called
swim pressure, which is the sum of the active and passive ideal
pressures. As remarked by Brady ps may depend on the size
of the particles only through the hydrodynamic drag factor g
and in the present case contains a thermal contribution asso-
ciated with Dt and an athermal part associated with the active
dynamics.29

Repulsive barriers with a positive curvature (uxx 4 0) induce
a local accumulation of particles and lower their mobility with
respect to their bulk value. One can speculate that a similar
phenomenon occurs spontaneously in an interacting system
where denser and less motile clusters of active particles ‘‘attract’’
fast moving particles from rarefied regions: the flux would be
sustained by the difference between the pressures of the two
regions. We shall consider the role of interactions among the
particles in the section below.

Interestingly, we can rewrite (15) as the local balance equa-
tion between a local pressure term p̃s(x) = T̃s(x)r(1)(x) and a force
term with the local swim temperature T̃s(x) defined as

~TsðxÞ ¼
Ts

1þ t
g
uxxðxÞ

: (18)

In Fig. 1 we display both the density and temperature profiles
next to a repulsive wall for three different values of the persis-
tence time. Formula (15) applies to rather general potentials
under the condition that uxx(x) 4 �g/t.

It is of interest to apply (15) to the special case of sedimenta-
tion of active colloidal suspensions, where u(x) = mgx. One
immediately finds the barometric law r(x) = r0 exp(�mgx/Ts),
predicted by Tailleur and Cates in the small sedimentation rate
limit33 and confirmed experimentally by Palacci et al.,34 who
performed the so-called Perrin sedimentation experiment using
active particles. This scenario was also confirmed for swimming
bacteria under centrifugation.35 Note that in this case the linear
potential only appears in the exponent as if the system were at
equilibrium, but with an effective temperature Ts higher than the
ambient temperature T0 = Dtg according to the formula Ts/T0 =
1 + Da/Dt. Formula (15) is more general and encapsulates the
idea that repulsive interactions render the diffusion of the less
efficient particles.
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B. Interacting active particles and non-ideal pressure via the
BGY equation

To extend eqn (15) to the case of interacting active particles we
apply an external potential varying only in direction x and
factorize the multiparticle distributions as r(n)(r1,. . .,rn) E
r(1)(r1). . .r(1)(rn) invoking a mean field-like approximation and
recast (14) as

� Ts
d

dx1

rð1Þ x1ð Þ
1þ t

g
ux1;x1 x1ð Þ þ

t
g

Ð
dr2rð1Þ r2ð Þwx1;x1 r1; r2ð Þ

0
B@

1
CA

� rð1Þ x1ð Þ
d

dx1
u x1ð Þ þ rð1Þ x1ð Þ

ð
dr2rð1Þ x2ð Þ

@

@x1
w r1; r2ð Þ

(19)

where we have dropped off-diagonal terms wab in the denomi-
nator by the symmetry of the planar problem.

Formula (19) is valid up to linear order in t/g and the l.h.s.
shows the gradient of the density multiplied by a space
dependent mobility, represented by the denominator. It
generalizes to the interacting case of the denominator featur-
ing in formula (15) by the presence of inter-particle contribu-
tions. When wxx(r) is positive it gives rise to a slowing down
of particle motion due to the surrounding particles in inter-
acting active systems and determines a density dependence of
the mobility. On the r.h.s. the first two terms represent the
external force term and the contribution to the pressure
gradient due to direct ‘‘molecular’’ interactions, respectively.
Note again that the denominator represents the combined
action of the ‘‘molecular’’ forces and the dynamics, and can be
identified with the indirect interaction of Solon et al. Eqn (19)
in the limit t- 0 reproduces the expression of the hydrostatic
equilibrium of a standard molecular fluid in a local density
approximation. There is an interesting analogy with granular
gases subjected to homogeneous shaking where the kinetic
temperature can be a function of position and regions of higher

density correspond to lower temperatures because the higher rate
of inelastic collisions causes a higher energy dissipation rate.36,37

C. Effective pair potential

Eqn (13) determines the pair correlation function of the model
r(2)(r1,r2) = �r2g(|r1 � r2|), but it suffers from the usual problem
of statistical mechanics of liquids since it requires the knowl-
edge of higher order correlations even at the linear order in the
expansion in the activity parameter. One could proceed further
by assigning a prescription to determine the three particle
correlation function g3 in terms of g(r) as in the literature, but
we shall not follow this approach and only consider the low
density limit where it is possible to use it to derive a simple
expression for g(r) and define an effective interaction. In fact,
the pair distribution function for a two particle system obtained
from (9) reads

gðrÞ

¼exp �
wðrÞþt

g
½ðw0ðrÞ�2�Ts ln 1þ2t

g
w00ðrÞ

� 	
1þ2t

g
w0ðrÞ
r

� 	2
" #

Ts

0
BBBB@

1
CCCCA

(20)

where the apostrophes mean derivatives with respect to separa-
tion r. The effective pair potential is defined as f(r) = �Ts ln g(r).
Let us remark that this method for introducing the effective
potential does not account for the three body terms which
instead would emerge from the solution of the BGY-like equa-
tion. The lack of such contributions affects the calculation of
the virial terms beyond the second in the pressure equation of
state discussed in Section V.

IV Mean field pseudo-Helmholtz
functional

As we have seen above, the BGY hierarchy is instructive,
but impractical because it requires a truncation scheme (for
instance, the Kirkwood superposition approximation at the
level of two-particle distribution function to eliminate the
three body distribution) and any progress can be obtained
only numerically. The approximations involved are often
difficult to assess, and for the sake of simplicity in the present
paper we limit ourselves to a simpler mean field approach. A
method often employed in equilibrium statistical mechanics
to construct a mean field theory is the so-called variational
method based on the Gibbs–Bogoliubov inequality.38 At equi-
librium one can prove that there exists a Helmholtz free
energy functional, F eq½ f � of the probability density distribu-
tion, f, in configuration space such that it attains its minimum
value, when the generic distribution f, selected among those
which are normalized and non-negative, corresponds to the
equilibrium distribution function f eq. Such a method can
be generalized to the present non-equilibrium case to develop
a mean field theory. We start from the probability distribution

Fig. 1 Three density profiles in the presence of a repulsive soft wall of the

form uðxÞ ¼ u0
s
x

� �12
corresponding to three different values of persistence

time t as indicated in the box. In the inset we report the effective mobility
profiles for the same values of t.
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(9) and introduce the ‘‘effective Helmholtz free energy’’
functional as

F Ptrial
N

� �
� TrPtrial

N Hþ Ts lnP
trial
N

� 
(21)

where Tr �
Ð Ð

dr1; . . . ; drN and Ptrial
N is an arbitrary N-particle

normalized probability distribution, thus integrable and non-
negative. Define

ZN ¼ Tr exp �H r1; . . . ; rNð Þ
Ts

� �
: (22)

The stationary probability distribution which minimizes F is

f 0
N ¼ exp �H x1; . . . ; xNð Þ

Ts

� �
ZN
�1 (23)

and is the analogue of the equilibrium density distribution. In
fact, the effective free energy

F 0 f 0
N

� �
� �Ts lnZN f 0

N

� �
(24)

is a lower bound for all distributions such that F Ptrial
N

� �
4

F 0 f 0
N

� �
for Ptrial

N a f 0
N (see ref. 38).

In other words, the functional evaluated with any approx-
imate distribution has a ‘‘free energy’’ higher than the one
corresponding to the exact distribution. Since F is minimal in
the steady state it is then reasonable to assume that it can play
the role of a Helmholtz free energy in an equilibrium system.
Using such an analogy we shall construct an explicit (but
approximate) mean field expression of F in terms of the one
body distribution function P1 or equivalently r(1). Let us remark
that our present results do not allow us to establish the central
achievement of density functional theory (DFT), namely the fact
that the N-particle distribution function f 0

N is a unique func-
tional of the one body density distribution.39 This in turn
means that for any fluid exposed to an arbitrary external
potential u(r), the intrinsic free energy is a unique functional
of equilibrium single-particle density.

Nevertheless, it is possible to prove another remarkable
property of F , an H-theorem, stating that the time derivative
of F evaluated on a time dependent solution of the FPE is non-
positive, meaning that the functional always decreases during
the dynamics and tends to a unique solution. The proof of this
property is a simple application of a general result concerning
the Fokker–Planck equation and can be found in the book by
Risken40 and in Appendix B we provide the necessary elements
to obtain it.

In order to construct the mean field approximation one
assumes the following factorization of the N-particle probability

distribution, Ptrial
N r1; . . . ; rNð Þ ¼

QN
k¼1

P1 rkð Þ, and minimizes the

functional

F Ptrial
N

� �
� TrPtrial

N Hþ Ts lnP
trial
N

� 
(25)

since the minimum of such a functional gives the closest value
to the true functional F fN½ � within those having the product

form as above:

F Ptrial
N

� �
� NTs

ð
drP1ðrÞ lnP1ðrÞ þ TrPtrial

N H (26)

having used the fact that all P1 are normalized to 1. Switching to
the r(1) distribution we find

F rð1Þ
h i

¼ Ts

ð
drrð1ÞðrÞ ln rð1ÞðrÞ � 1

� �
þ
XN
1

Hnh i (27)

where we considered the following decomposition of

H ¼
PN
1

Hn into one body, two body, three body up to N-body

interactions and their averages Hanh i¼
Ð

. . .
Ð
dr1 . . .drnrð1Þ r1ð Þ . . .

rð1Þ rnð ÞHn r; . . . ;rnð Þ: The minimum of functional F is obtained
by differentiating w.r.t. to r(1)(r).

A. Application of non-interacting systems to planar and
spherical interfaces

As an example we consider the ‘‘Helmholtz functional’’ for non-
interacting particles near a flat wall, for which only H1 con-
tributes:

F rð1Þ
h i

/
ð
dxrð1ÞðxÞ Ts ln

rð1ÞðxÞ
r0

� 1

� 	
� Ts ln 1þ t

g
uxxðxÞ

� ��

þ uðxÞ þ t
2g

uxðxÞð Þ2
	

(28)

By minimizing w.r.t. r(1) we obtain the same result as (16) which
is exact. Similarly, the extension to three dimensional spherical
walls is

F rð1Þ
h i

¼
ð
drrð1ÞðrÞ

 
Ts ln

rð1ÞðrÞ
r0
�1

� 	
:

�Ts ln 1þt
g
u00ðrÞ

� 	
1þt

g
u0ðrÞ
r

� 	2
" #

þuðrÞþ t
2g
ðu0ðrÞÞ2

!

(29)

Note the difference of order t/g, namely factor 2, between
the g(r) found by considering two active particles and the
single-particle density profile when a spherical wall particle is
pinned at the origin. Such non-equivalence is the finger-
print of the off-equilibrium nature of the system and dis-
appears as t - 0.

1. Mobility and pressure tensor in spherical symmetry.
One can derive an interesting formula starting from (29).
We first extremize the functional with respect to r(1)(r) (i.e.

dF
�
drð1ÞðrÞ ¼ 0) to obtain the profile, hence differentiate the

result with respect to r and multiply it by r(1) and arrive at the
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following formula:

Ts
d

dr

rð1ÞðrÞ
1þ t

g
uext

00 ðrÞ

0
B@

1
CA

þ 2
Ts

r

rð1ÞðrÞ
1þ t

g
uext

00 ðrÞ
� rð1ÞðrÞ

1þ t
g
uext

0 ðrÞ
�

r

0
BB@

1
CCA

¼ �rð1ÞðrÞuext
0 ðrÞ: (30)

On the other hand in a system of spherical symmetry the
pressure tensor, pab(r), at point r must be of the form: pab(r) =
r̂ar̂bpN(r) + (dab � r̂ar̂b)pT(r), where we have separated the normal
(N) and tangential (T) components and r̂ denotes the unit vector
in the radial direction. In the absence of currents the mechan-
ical balance condition dictates

d

dr
pNðrÞ þ

2

r
pNðrÞ � pT ðrÞð Þ ¼ �rð1ÞðrÞuext

0 ðrÞ:

By comparing with eqn (30) we may identify the two compo-

nents pNðrÞ ¼ TsrðrÞ
�

1þ t
g
uext

0 0 ðrÞ
� 	

and pT ðrÞ ¼ Tsrð1ÞðrÞ
�

1þ t
g
uext

0 ðrÞ
�

r

� 	
: 1þ t

g
uext

0 ðrÞ
�

r

� 	
.41 It would be interesting

to extend the above analysis to the case of interacting particles
along the lines sketched in Section III, but this task is left for a
future paper. Eqn (30) provides an interesting generalization
of the planar formula (15) to a spherical interface and shows
that unlike equilibrium fluids the normal and tangential
components of the pressure tensor of a gas of non-
interacting active particles are not equal in the proximity of
a spherical wall, but they tend to the common value Tsr

(1)

when t - 0. Note that pT(r) exceeds pN(r) for a repulsive
wall-potential since uext

0(r) o 0. By pursuing the analogy
with equilibrium statistical mechanics one could identify the
integral of the second term in eqn (30) with a mechanical
surface tension, which by our argument would turn out to be
negative in agreement with Bialké et al.13 A question arises: what
is the nature of pN and pT? The two quantities are two components
of the swim pressure tensor and are different from their common
bulk value p, because near a spherical obstacle the motilities of
the particles along the normal and in the tangential plane to the
surface are also different. As far as the mobility tensor is con-
cerned in a spherical geometry we can decompose it as

1

g
Gab

�1ðrÞ ¼ 1

g
1

GNðrÞ
r̂ar̂b þ

1

GT ðrÞ
dab � r̂ar̂b
� � �

(31)

with GNðrÞ ¼ 1þ t
g
uext

0 0 ðrÞ
� 	

and GT ðrÞ ¼ 1þ t
g
uext

0 ðrÞ
�

r

� 	
,

which shows why the tangential motion is characterised by a
higher mobility than the normal motion near a curved surface as
reported by many authors on the basis of simulation results and
phenomenological arguments.42 Particles are free to slide along the
directions tangential to the surface and this explains why PT 4 PN.

Recently, Smallenburg and Lowen14 have numerically studied
non-interacting active spheres with a spherical geometry and

found that for finite curvature radii active particles in contact
with the inside of the boundary tend to spend larger time than
those at the outside and differentiate between the inner and the
outer density profile as a function of the normal distance to the
wall. To see how the density profile around a spherical repulsive
wall reduces to the profile near a planar wall we use the explicit
form of solutions and introduce the normal distance, z = r � R0,
to the spherical wall defined by the potential u0s

n/(r � R0)n and
write for z 4 R0:

rð1ÞðzÞ ¼ r0 exp �
1

Ts
u0

s
z

� �n
þ t
2g

u0
2

s2
n2

s
z

� �2nþ2� 	� �

� 1þ t
g
u0

s2
nðnþ 1Þ s

z

� �nþ2� 	
1� t

g
u0

s
1

R0þ z
n

s
z

� �nþ1� 	2

:

(32)

In the limit of z/R0 - 0 the spherical profile must reduce to the
planar profile, and indeed this is the situation as one can see by
expanding the formula above in powers of z/R0. For particles
contained in a spherical cavity (z o R0) the potential reads
u0s

n/(R0 � r)n and one must replace the last factor by

1þ t
g
u0

s
1

R0 � z
n

s
z

� �nþ1� 	2

. The average local density on the

concave side of a sphere is larger than the corresponding density
on the convex side as found numerically by Mallory et al.43 This
is illustrated in Fig. 2 and 3.

B. Can we write a density functional for interacting active
particles?

As discussed above, since in the case of non-interacting systems
it is straightforward to construct an appropriate ‘‘Helmholtz’’
free energy functional such that it yields the same equation as
the BGY method, one would like to determine the corresponding
functional also in the case of interacting particles even within
the simplest mean-field approximation. To this purpose we
should construct a mean field functional F whose functional

Fig. 2 Comparison between the outer and the inner local density profiles
for three choices of t/g in the presence of a repulsive spherical soft wall at
R0 = 10. Particles are non-interacting.
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derivative with respect to r(1) gives a non-equilibrium chemical
potential m(r(1)) whose gradient must vanish in the steady state
giving a condition identical to the BGY eqn (14). We have found
that such a program can be carried out in the one dimensional
case, in fact the following construction has the required properties

F rð1Þ
h i

¼ Ts

ð
dxrð1ÞðxÞ ln

rð1ÞðxÞ
r0

� 1

� 	
� Ts

t
g

ð
dxuxxðxÞrð1ÞðxÞ

� 1

2
Ts
t
g

ðð
dxdx0wxxðx; x0Þrð1ÞðxÞrð1Þðx0Þ

þ
ð
dxuðxÞrð1ÞðxÞ þ 1

2

ðð
dxdx0wðx; x0Þrð1ÞðxÞrð1Þðx0Þ:

(33)

Unfortunately, we are not able to write the corresponding func-
tional for dimensions higher than one, the difficulty being the
presence of the off-diagonal elements of the friction matrix
feauturing in eqn (14) which render the equation non-integrable.
In other words, eqn (14) is only a mechanical balance condition
and involves transport coefficients, such as Gij, thus revealing the
true off-equilibrium nature of the active system, while in passive
systems the transport coefficients never appear when thermody-
namic equilibrium holds.

V Van der Waals bulk equation of state
for active matter

As we have just seen that the construction of a free energy
functional capable of describing the inhomogeneous properties
of active particles remains an open problem, nevertheless one
can focus on the less ambitious task of determining the
pseudo-free energy of a bulk system characterized by an effec-
tive pair interaction f(r), defined in Section III. Note that in the
homogeneous case the friction matrix reduces to a scalar

quantity due to the higher symmetry. As a prerequisite for a
successful mean-field approximation f(r) must be split into a
short range repulsive part, frep, and a weaker longer range
attractive contribution, fat, and only the latter can be treated
in a mean field fashion, the effect of repulsion is a highly
correlated phenomenon and not perturbative. Explicit expres-
sions for the split potentials are given by (36) and (37). To
capture the effect of repulsive forces a simple modification of
the ideal gas entropic term, already introduced by van der
Waals to account for the reduction of configurational entropy
due to the finite volume of the particles, is sufficient. Thermo-
dynamic perturbation theory would represent the natural
choice to determine the total free energy. It assumes a reference
hard-sphere system, whose Hamiltonian only depends on frep,
as the unperturbed system. In particular the reference system
characterized by a temperature dependent diameter, d(T), allows
us to determine the free energy excess associated with the
perturbing potential fat and the equation of state of the model.
However, since perturbation theory still requires a considerable
amount of computer calculations, here we make the simplest
ansatz and write the following free energy functional:

F vdW ¼ Ts

ð
drrð1ÞðrÞ ln

rð1ÞðrÞ

1� 2p
3
rð1ÞðrÞd3 Tsð Þ

0
B@

1
CA� 1

2
64

3
75

þ 1

2

ð
dr

ð
r0�rj4 d

dr0fatðr� r0Þrð1ÞðrÞrð1Þðr0Þ:

(34)

The first term is just the entropy of a fluid with the excluded
volume correction; the second term stems from the activity and
may lead to condensation phenomena for large values of t. In
relation to the naive mean-field functional (33), the van der
Waals entropic term already contains the repulsive part of the
direct interaction, whereas the attractive term which vanishes in
the t - 0 limit takes into account the activity. In principle this
form of free energy can be constructed by employing the Mayer
cluster expansion to evaluate ZN, associated with the effective
Hamiltonian H, in the approximation of neglecting m-body
interactions with m 4 2 in it, that is, using the effective potential
f(r). With these ingredients one can define the active com-
ponent of the van der Waals attractive parameter:

aðAÞ ¼ �ð1=2Þ
ð
r4 d Tsð Þ

d3rfatðrÞ (35)

and the co-volume

b ¼ 2p
d3 Tsð Þ

3

and estimate F vdW. Since the procedure adopted is completely
analogous to the one employed in equilibrium fluids one can
immediately derive a pressure equation by differentiating F vdW

with respect to volume:

pvdW ¼ �
@F vdW

@V
¼ Ts

r
1� br

� aðAÞr2

Fig. 3 Comparison between the outer and the inner local pressure
profiles for two choices of t/g, 0.1 and 0.3 in the presence of a repulsive
spherical soft wall at R0 = 10. The tangential component displays a peak at
a distance Es from the wall, whereas the normal component decreases
monotonically as the wall is approached. Note that the tangential com-
ponents are always larger than the corresponding normal components.
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which at low density reduces to the ideal bulk swim pressure Tsr.
Going further, one can add a square gradient contribution to the
free energy density, which simplifies the non-local functional
(34) while allowing us to describe inhomogeneous systems.
This is achieved by introducing a term m|rr|2, where
m ¼ �ð1=12Þ

Ð
r4 d Tsð Þd

3rr2fatðrÞ.39 We choose, now, the bare

potential of the form wðrÞ ¼ w0
s
r

� �a
, where w0 is the strength

of the bare potential, s is a nominal diameter and define r̃ = r/s,

the non-dimensional temperature T� ¼ Ts

w0
and the parameter

Kp ¼
w0t
gs2
¼ 1þDt=Dað Þ

T�
Pe2, where the last expression displays

the dependence on the Péclet number. We, now, set:

frepð~rÞ
Ts

¼ 1

T�
1

~ra
þ Kp

a2

~r2aþ2

� 	
(36)

and

fatð~rÞ
Ts

¼ � ln 1þ 2Kp
aðaþ 1Þ

~raþ2

� �
1� 2Kp

a
~raþ1

h i2� 	
(37)

for r̃ 4 1. The effective hard-sphere diameter is given by the
Barker–Henderson formula

d Tsð Þ
s
¼
ð1
0

d~r 1� e�frepð~rÞ=Ts

� �
(38)

and is density independent, but depends on parameter Kp and
temperature. As Kp - 0 (i.e. at small Péclet number, i.e. small
persistence time) the system approaches the behavior of an
assembly of passive soft spheres at temperature T*, and inverse
power law potential analytic expressions for d(Ts) exist, whereas as
Kp - N (large Péclet number) the activity becomes increasingly
relevant and the effective radius increases with Kp.

Let us remark that with definition (37) of attractive potential
the coefficient a(A) of formula (35) has a strong dependence on
temperature Ts, at variance with standard passive fluids where
the dependence occurs through d(Ts) only. This makes the
condensation transition basically athermal and driven by the
activity parameter. This feature makes the case of active parti-
cles possessing also a direct attractive potential contribution
of the Lennard-Jones 6-12 type particularly interesting, which
is obtained by modifying the bare pair potential as

wlðrÞ ¼ w0
s
r

� �a
�l s

r

� �a=2� �
. In fact, one has to consider a

passive contribution similar to (35) to the vdW coefficient, say
a(P) whose dependence on temperature is rather weak as
compared to a(A). Thus one can expect that at low temperature
and small Pe the condensation is driven by standard attraction,
whereas at high Ts but large Pe the transition is determined by
the effective attraction determined by the activity.44

We turn, now, to consider the virial series of the pressure

p

Tsr
¼ 1þ BðtÞrþ Cr2 þ . . .
� 

and by comparing with the van der Waals equation we obtain

the second virial coefficient BðtÞ ¼ 2p
3
rd3 � aðAÞðtÞ

�
Ts

� 	
.

Using the effective pair potential we can obtain B as the integral
(with l = 0)

B T�;Kp

� 
¼ 2ps3

ð1
0

d~r~r2 1� exp � 1

T�
1

r�a
þ Kp

a2

~r2aþ2

� 	� ��

� 1þ 2Kp
aðaþ 1Þ

~raþ2

� �
1� 2Kp

a
~raþ1

h i2�
:

(39)

Formula (39) gives the second virial coefficient for active
spheres with purely repulsive potential and its a straight-
forward extension of yields the values with finite values of l.

The Boyle activity parameter, t* of the model, corresponds
to the values where B = 0. For systems without attraction
the curve Ts(t*), where B(Ts,t*) = 0, is monotonic and
decreases when t* increases and the resulting phase diagram
in a plane t, Ts is shown in Fig. 4: the region on the right
of each line corresponds to B o 0 for that given value of l.
The same calculation is repeated for an active system with
attraction and we found that the locus, where B(Ts,t*) = 0,
initially decreases as a function of t, but then it bends as
displayed in Fig. 4 and at sufficiently low temperatures Ts

shows the presence of a region close to the origin where B o 0.
Fig. 4 displays a re-entrant behavior of Boyle’s line for a = 12
when l 4 0: at low temperatures T* the region B o 0 under
the effect of the direct attractive force extends at small
values of t, while bending is totally absent in the case l = 0.
The Barker–Henderson diameter displays the same non-
monotonic trend along the Boyle line showing the correlation

Fig. 4 Plane t, Ts: the three curves in the main panel correspond to three
different values (from right to left) of the attractive parameter l = 0, 0.2, 0.4
and a = 12, respectively, and represent the loci where the second virial
coefficient, B(t,Ts), vanishes. In the purely repulsive case (red upper curve)
the behavior is monotonic, whereas when attraction is present the lines
bend in the low temperature region, where B changes sign under the
effect of the direct attractive force. In the inset we plot the effective
Barker–Henderson diameter as a function of the effective temperature
measured along the Boyle line in the three cases.
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between the structural properties and the thermal properties
of the system.

VI Conclusions

In this paper we have investigated using a microscopic
approach the steady state properties of a system of active
particles and determined the stationary N-particle probability
distribution function by requiring the vanishing of all cur-
rents. We used such a distribution to construct the BGY
hierarchy for the reduce n-particle (with n o N) distribution
functions and found that it contains terms which do not have
a counterpart in systems of passive particles. The presence of
these terms explains several experimental or numerical find-
ings such as the modified barometric law, the effective attrac-
tion between nominally repulsive objects, negative second
virial coefficient, and condensation. We defined an effective
potential of attractive character due to the reduced mobility
experienced by the active particles and determined by the
combined effect of the excluded volume and the persistence of
their motion. In an inhomogeneous environment the mobility
turns out to be anisotropic and described by a tensor, whose
expression we have obtained in the case of a spherical surface
by separating its normal and tangential components. The
same type of analysis allows us to determine the mechanical
pressure in systems of non-interacting active particles via
an hydrostatic balance, but the full extension to the inter-
acting case remains an open problem. In order to obtain a
bulk equation of state connecting pressure to density, swim
temperature and activity parameter, we have explored an
alternative approach and constructed a mean field theory
introducing a (pseudo) Helmholtz functional and determined
the stationary distribution by a variational principle. In spite
of the great similarities with equilibrium systems, profound
differences remain. Already at the level of the first BGY
equation one sees that it is not possible to disentangle the
interaction terms stemming from the external potential from
those from the particle–particle interactions. Such a feature in
our opinion seems to obstruct the way to establish a full
density functional theory. In fact, it does not seem possible
to prove the so-called v-representability properties, i.e. the
unique correspondence between the one particle density profile
and a given external potential, which is on the basis of DFT. On
the other hand, if one constructs the functional using the two
body effective potential f(r) the DFT approach sounds promising
to tackle the properties of active particles under inhomogeneous
conditions. Finally we note that the homogeneous free energy
that we have constructed seems to reproduce the behaviour of
the active fluid, which helps in locating its instabilities and the
onset of phase separation. In this context it would be very
interesting to compare our approximate theory with numerical
simulations of interacting colored-noise driven particles. In
future we plan to apply the pseudo-Helmholtz functional to
the analysis of strongly in-homogeneous systems of active
particles and to investigate the MIPS in these situations.

Appendix A
Multidimensional unified colored noise approximation

In the present appendix, following the method put forward by
Cao and coworkers,45,46 we introduce an auxiliary stochastic
process, wi, defined by

wi ¼
Fi

g
þ vi:

By taking the derivative of wi with respect to t we obtain

_wi ¼
1

g

X
k

@Fi

@xk
_xk þ _vi: (A1)

After substituting relations (1) and (2) into eqn (A1) to eliminate
:
vi and :

xk we arrive at the evolution equation for wi:

_wi ¼
1

g

X
k

@Fi

@xk
wk þDt

1=2xtk
� �

� 1

t
wi �

Fi

g

� �
þDa

1=2

t
ZiðtÞ: (A2)

Now, we assume the unified colored noise approximation
(UCNA)25 dropping the ‘‘acceleration term’’, :wi, featuring on
the l.h.s. of this equation, so that we can write the following
system of algebraic linear equations for quantities wi:

dik �
t
g

X
k

@Fi

@xk

" #
wk ¼

t
g

X
k

@Fi

@xk
Dt

1=2xtk þ
Fi

g
þDa

1=2ZiðtÞ:

(A3)

With the help of matrix Gik (defined by eqn (4)) we go back to
the equation for xi, eqn (1), rewritten as wi = :

xi � Dt
1/2xt

i, to find
the following Langevin equation:

_xi ’
X
k

Gik
�11

g
Fk þDa

1=2Gik
�1ZkðtÞ þDt

1=2xtiðtÞ

þDt
1=2t

g

X
k

Gik
�1
X
l

@Fk

@xl
xtl

(A4)

which we interpret using the Stratonovich convention.27 We
finally observe that the last two terms can be gathered together
and after some manipulations reported hereafter

X
l

dil þ
X
k

Gik
�1t
g
@Fk

@xl

" #
xtl ¼

X
l

X
k

Gik
�1Gkl þ Gik

�1t
g
@Fk

@xl

� �
xtl

¼
X
l

X
k

Gik
�1 Gkl þ

t
g
@Fk

@xl

� �
xtl

¼
X
l

X
k

Gik
�1dklx

t
l

¼
X
k

Gik
�1xtk

give rise to the form of the stochastic equation for xi reported in
eqn (3).

We limit ourselves to consider the stationary solutions
with vanishing current and since we have assumed that the
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determinant is non-vanishing the only solution of eqn (6)
corresponding to Jl = 0 is obtained by imposing the conditions:

1

Da þDtð ÞgFkPN � PN

X
j

@

@xj
Gjk
�1 ¼

X
j

Gjk
�1 @

@xj
PN (A5)

Multiplying by Gnk and summing over k after some algebra we
obtain the first order differential equations for PN:

PN
t

Da þDtð Þg
X
k

GnkFk þ PN

X
jk

Gjk
�1 @

@xj
Gkn

� 	
¼ @PN

@xn

(A6)

Since the matrix elements Gij contain 2nd cross derivatives
q2/qxiqxj of potential U we have

@

@xj
Gkn ¼

@

@xn
Gkj (A7)

and we finally get

X
jk

Gjk
�1 @

@xj
Gkn

� 	
¼
X
jk

Gjk
�1 @

@xn
Gkj

� 	

¼ 1

detG
@

@xn
detG (A8)

The last equality is derived from the following Jacobi’s formula:

1

detG
@

@y
detG ¼ Tr G�1

@

@y
G

� 	
(A9)

where y stands for any of the variables xi.
By explicitly using (A6) and (A8) we find the system of

differential eqn (7) determining the full probability distribution.

Appendix B
H-theorem for the FPE

The functional F½ fN � ¼ TrfN Hþ Ts ln fNð Þ discussed in Section
IV also has interesting dynamical properties. In fact, after
rewriting it in the form

1

Ts
F fN½ � ¼ TrfN ln

fN

PN

� 	
� lnZN

where fN({x},t) is a normalized solution of the dynamical
Fokker–Planck equation at instant t and PN is the stationary
distribution and the first term is the so-called Kullback–
Leibler relative entropy,40,47 one can show the following
H-theorem:

dF
dt
� 0: (B1)

The proof follows closely the method presented by Risken40

(Section 6.1 of his book), but before proceeding it is necessary
to reduce the FPE described by eqn (5) and (6) to the canonical
form

@fN
@t
¼
X
i

@

@xi

X
j

@

@xj
D
ð2Þ
ij fN �D

ð1Þ
i fN

" #
(B2)

where the diffusion matrix is

D(2)
ij = (Da + Dt)Gij

�2 (B3)

and the drift vector is

D
ð1Þ
i ¼

1

g
Glk
�1Fk þ Da þDtð ÞGjk

�1 @

@xj
Gik
�1 (B4)

Now using some standard analytic manipulations reported by
Risken it is simple to show the following formula:

dF
dt
¼ �

ð
dNxfND

ð2Þ
ij

@ lnR

@xi

@ lnR

@xj
� 0 (B5)

where R = fN/PN. If D(2)
ij is positive definite F must always

decrease for
@lnR

@xi
a0 towards the minimum value �Ts ln ZN.

This result also implies that the solution of the FPE is unique,
and after some time T the distance between two solutions is
vanishingly small.

Appendix C
Detailed balance

The detailed balance implies a stronger condition than the
one represented by having a stationary distribution, since it
implies that there is no net flow of probability around any
closed cycle of states. In practice if detailed balance holds it is
not possible to have a ratchet mechanism and directed motion.
Again we use the equations derived by Risken (Section 6.4 of
his book),40 which represent the sufficient and necessary condi-
tions for detailed balance. Since the variables {xi} are even under
time reversal we have to verify the validity of the following
equations:48,49

D
ð1Þ
i PNðfxgÞ ¼

@

@xj
D
ð2Þ
ij PNðfxgÞ (C1)

Using the explicit form of (B3) and (B4) it is straightforward
to verify that the detailed balance conditions are verified
since they are the same as the conditions expressing the
vanishing of the current components Ji in the stationary state
(see eqn (B2)).

Appendix D
Approximation for the determinant

The exact evaluation of determinant G associated with the
Hessian matrix is beyond capabilities of the authors and we
look for approximations in order to evaluate the effective forces.
We consider the associated determinant in the case of two
spatial dimensions:
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and to order t/g is

detG � 1þ t
g

X
i;j;iaj

wxx ri; rj
� 

þ wyy ri; rj
� � �

(D1)

It is interesting to remark that the off-diagonal elements
contain only one term, while the diagonal elements and their
neighbors contain N elements. Thus in the limit of N - N we
expect that the matrix would effectively become diagonal.
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