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Abstract: Environmental exposure to pesticides during the early stages of development 

represents an important risk factor for the onset of neurodegenerative diseases in adult age. 

Neonatal exposure to Permethrin (PERM), a member of the family of synthetic pyrethroids, 

can induce a Parkinson-like disease and cause some alterations in striatum of rats, involving 

both genetic and epigenetic pathways. Through gene expression analysis and global DNA 

methylation assessment in both PERM-treated parents and their untreated offspring, we 

investigated on the prospective intergenerational effect of this pesticide. Thirty-three percent 

of progeny presents the same Nurr1 alteration as rats exposed to permethrin in early life. A 

decrease in global genome-wide DNA methylation was measured in mothers exposed in 

early life to permethrin as well as in their offspring, whereas untreated rats have a 

hypermethylated genomic DNA. Further studies are however needed to elucidate the 

molecular mechanisms, but, despite this, an intergenerational PERM-induced damage on 

progenies has been identified for the first time. 
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1. Introduction 

Early life environmental exposure to pesticides represents an important risk factor for the development 

of neurodegenerative diseases in adult age [1–3]. Understanding which, when and how neurotoxicants 

cause long-term effects on health is crucial, because it would increase our knowledge on the mechanisms 

associated with the aetiology of neurodegenerative processes and might permit one to identify healthy 

procedures devoted to avoiding or mitigating exposure during developmental stages. 

Pyrethroid pesticides exposure, as well as exposure to other neurotoxicants, are associated with 

neurodegenerative diseases because they can interfere with mitochondrial function, increase oxidative 

stress and alpha-synuclein aggregation by genetic and epigenetic mechanisms [4–7]. Permethrin 

(PERM) is a member of the family of synthetic pyrethroids, which is not only used in agriculture but is 

also largely employed as an insecticide for indoor residential treatment (i.e., carpets, kitchen worktops 

and other treated wood furniture), mosquitos control, occupational take-home exposures, pets, personal 

care products [8]. PERM was the first synthetic photostable pyrethroid to be used in agriculture and the 

most used pyrethroid in USA. It has a half-life of less than 28 days in soil and about 10 days on plants 

and its use is forbidden in seas, near rivers and lakes because of its high toxicity to fish (Agency for 

Toxic Substance and Disease Registry, 2005). The wide exposure to humans is demonstrated by the 

presence of a PERM metabolite, 3-phenoxybenzoic acid (3-PBA), in urine in 98% of the population; 

moreover, the higher level of 3-PBA in children compared to adults represents a worrisome aspect for 

health of future generations. 

In our animal model, we previously demonstrated that early life exposure (from postnatal day 6 to 21) 

to a low dose of PERM induces a Parkinson-like disease. In particular, in the striatum of adult and old 

rats, changes in Nurr1 gene expression and reduced dopamine (DA) level together with its accelerated 

turnover were observed [9–12]. Moreover, oxidative stress, high plasma NO production, protein and 

lipid oxidation, low GSH levels were measured [13]. In the same model, we demonstrated that PERM 

accumulates in the brain later after the end of treatment, and that early life exposure can modify DNA 

methyltransferases and alfa-synuclein, suggesting that PERM might mediate genetic and epigenetic 

modifications leading to development of neurological disorders with some typical features of 

Parkinson’s-like disease [7,9,10,12,14,15]. 

Since epigenetic mechanisms can mediate the interaction between environmental and genetic  

factors and provide a “cellular memory” that maintains a disease status over one’s lifetime and to the 

next generations [16]; here, we present data related to the intergenerational effect of early life PERM  

exposure. In particular, we analysed if the offspring (F1 generation) of rats exposed to a low dose of 

PERM from postnatal day 6 to 21, present alterations in Nurr1 gene expression as previously observed 

in male rats. Moreover, global DNA methylation was analyzed in untreated, early life exposed mothers 

and offspring (F1 generation). 
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2. Experimental Section 

2.1. Materials 

All reagents were of analytical grade and were obtained from Sigma Chemical Co. (Balcatta, WA, USA). 

Technical grade (75:25, trans:cis; 94% purity) 3-phenoxybenzyl-(1R,S)-cis,trans-3-(2,2-dichlorovinyl)-

2,2-dimethylcyclopropanecarboxylate, Permethrin was a generous gift by Dr. A. Stefanini of ACTIVA, 

Milan, Italy. 

2.2. Animals 

Male and female Wistar rats aged about 90 days weighing 250–270 g were obtained from Charles 

River (Calco, Lecco, Italy). The rats were housed in plastic cages (five rats/cage) in a temperature 

controlled room (21 ± 5 °C) and fed with a laboratory diet and water ad libitum. The light/dark cycle 

was from 7 a.m. to 7 p.m. Animal used in this study complied with European Directive (2010/63/EU) 

related to the protection of animals used for scientific studies. Rat pups born in our laboratory from 

primiparous dams were used in the study. The parturition day was set as Post Natal Day 0 (PND0). On 

PND1, all litters were checked for the presence of gross abnormalities, sexed and weighed. Two male 

and one female pup were assigned to each dam until weaning (PND21). No cross-fostering was 

employed. At two days of age, litters were casually assigned to two experimental groups named control and 

treated ones. 

2.3. Treatment and Experimental Design 

PERM was solubilized in corn oil and the animals were gavaged with intragastric tube (4 mL/kg) at 

a dose of 1/50 of LD50 corresponding to 34.05 mg/kg (Agency for Toxic Substance and Disease 

Registry, 2005). The dosage was chosen considering that NOAEL (no observed adverse effect level)  

for PERM is 25 mg/kg. The compound was administered daily in the morning from PND6 to PND21. 

Control group was administered with vehicle (corn oil, 4 mL/kg) on a similar schedule. The volume of 

solutions to be administered were adjusted daily based on body weight. On PND21, the pups were 

weaned, housed two per cage and assigned to two different experiments. 

Experiment 1: at the adolescent age (PND < 90 days), six male rats treated with PERM and six male 

rats not treated were sacrificed by exposure to CO2. The striatum from each rat was isolated from the 

brain and immediately placed in liquid nitrogen and stored at −80 °C. 

Experiment 2: at the age of four months, females treated with PERM were mated with males treated 

with PERM and females not treated with PERM were mated with males not treated (no siblings). Their 

F1 offspring were the focus of the present study. The final F1 sample sizes were nine pups from the 

treated F0 group and two pups from the control F0 group, and F1 generation was not submitted to any 

treatment. At the adolescent age (PND 65), five males and four females from treated F0 group and three 

males and three females from the control F0 group were sacrificed by exposure to CO2. The striatum 

from each rat was isolated from the brain and immediately placed in liquid nitrogen and stored at −80 °C. 
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2.4. Nucleic Acids Extraction 

Genomic DNA was extracted from striatum obtained from each rat, by DNazol Reagent (Life 

Technologies, Thermo Fisher Scientific Inc., Waltham, MA, USA) according to the manufacturer’s 

instructions. Total RNA was also extracted from striatum of each sample by using a RNA Isolation kit 

(NucleoSpin RNA Purification Kit, Macherey-Nagel, GmbH & Co. KG, Düren, Germany). DNA and 

RNA purity and quantity were checked by spectrophotometric analysis (OD260/280; OD260/230) with 

K2800 Nucleic Acid Analyzer (Beijing Kaiao Technology Development Co., Ltd., Beijing, China). 

2.5. MeSAP-PCR 

Methylation Sensitive Arbitrarily Primed Polymerase Chain Reaction (MeSAP-PCR) is a technique 

based on a methylation-sensitive enzymatic digestion, followed by two consecutive PCR reactions.  

It is able to identify different methylation patterns in GC-rich genomic DNA regions [17]. Genomic 

DNA from each subject was digested for 16 h at 37 °C with RsaI (10 U), in a final volume of 50 μL, 

obtaining the mono-digested DNA (M). Then, half of this product was processed with a second digestion 

with HpaII (10 U) overnight, gaining the double-digested DNA (D). Contrary to the first digestion, the 

second one is methylation-sensitive: HpaII cuts its restriction site only if the cytosines are un-methylated; 

then, enzymes heat-inactivation (65 °C for 30 min) was performed. An Arbitrarily Primed PCR  

(AP-PCR) was performed with both M and D from each sample. This AP-PCR consists of two 

consequent PCR reactions: AP1 and AP2. The same arbitrary oligonucleotide (5′-AAC TGA AGC AGT 

GGC CTC GCG-3′) was used as primer for both amplifications: it is GC-rich (more than 50%) and has 

a CGCG-3′ tail, so it can preferentially anneal and amplify GC-rich DNA sequences. Different 

temperature programs and MgCl2 concentrations were used to keep the AP1 non-specific and AP2 

specific. The reaction mix for AP1 was: MgCl2 4.5 mM; dNTP 0.2 mM; arbitrary primer 10 μM, Taq 

DNA Polymerase (Roche) 0.8 U in a final volume of 25 μL. AP1 thermal profile was: initial denaturation 

of 94 °C for 5 min; 4 cycle of 94 °C for 30 s, 40 °C for 60 s, 72 °C for 90 s. AP2 reaction mix was 

completed by adding MgCl2 4.5 mM, dNTP 0.2 mM and Taq polymerase 2.5 U, in a final volume of  

75 μL. AP2 thermal profile was: 29 cycles of 94 °C for 60 s, 60 °C for 60 s, 72 °C for 120 s. 

The amplification products were analyzed with a high resolution polyacrylamide gel (12%), running 

for 5 h at 200 V in TBE 1× buffer. After gel treatment with GelRed (Biotium Inc., Hayward, CA, USA) 

for 40 min, a DNA fingerprinting was revealed on Chemidoc (Bio-rad Inc., Hercules, CA, USA). With a 

densitometric analysis and the usage of specific software (SigmaGel, Jandel Scientific, Erkrath, 

Germany), it is possible to obtain a graph that clearly shows the differences in genomic methylation 

between each sample. Comparing for each sample, the M fingerprinting with the D one, it is possible to 

show and semi-quantify different methylation patterns. 

2.6. Gene Expression Analysis 

The expression of target gene was assessed by RT-PCR. RNA was transcribed in vitro to cDNA using 

PrimeScriptTM RT reagent Kit (Takara Bio, Inc., Kusatsu, Japan) according to the manufacturer’s 

instructions. The following specific sense and antisense primers were designed considering gene and 

mRNA sequences available online [18] and then purchased from Sigma Chemical Co. (USA): β-Actin, 
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TAAAGACCTCTATGCCAACACAGTGC (forward) and AGAGTACTTGCGCTCAGGAGGAG 

(reverse); Nurr-1, GGTTTCTTTAAGCGCACGGTG (forward) and TTCTTTAACCATCCCAAC 

AGCCAG (reverse). The primers used here were designed as previously reported in [9]. β-actin was 

considered as a relatively invariant internal reference, and its amplification was performed in parallel. 

RT-PCR analysis was executed in a total volume of 20 μL containing 50 ng of template cDNA, 0.5 μM 

sense and antisense primers and 10 μL of iQ SYBR Green Supermix (Bio-Rad Inc.), by using a CFX 

Connect Real-Time PCR Detection System (Bio-Rad Inc.). The real-time PCR program was: initial 

denaturation at 95 °C for 3 min; and 40 cycles at 95 °C for 30 s, 63 °C for 30 s and 72 °C for 1 min, 

followed by a melting curve (65 to 95 °C, increment 0.5 °C, for 5 s). Relative mRNA expression on each 

tissue sample was quantified according to the ΔΔCt method. The experiment was run three times  

in triplicate. 

2.7. Statistical Analysis 

Data are presented as media ± SD. The data were analyzed by means of a Student t-test. Differences 

were considered significant at p value ≤ 0.05. 

3. Results and Discussion 

3.1. General Findings 

No significant changes in body weight of early life PERM-treated rats compared to controls were 

measured throughout their life in mothers and in offspring (data not shown). 

3.2. Nurr 1 Gene Expression in Young Rats 

Figure 1 shows Nurr1 gene expression in adolescent rats exposed to PERM pesticide during early  

life from PND6 to PND21. A significant increase in Nurr1 gene expression was measured in treated 

animals compared to control ones. 

 

Figure 1. qPCR to quantify relative changes in Nurr1 expression in striatum of young rats 

exposed to permethrin treatment in early life. All expression values were normalized to the 

value of β-actin gene used as an internal control. * p < 0.05 vs. control. 
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3.3. Nurr1 Gene Expression in F1 Offspring 

Figure 2 shows Nurr1 gene expression measured in offspring born from parents treated in early life. 

Both mothers and fathers were treated in early life, while offspring were untreated. Comparing the average 

of each group by sex, no significant differences between F1 control group and F1 offspring group from 

treated parents were observed (data not shown). Instead, comparing single rats with their matched sex 

control group, 40% males and 50% females, an increase in Nurr1 gene expression was observed. This 

increase was higher in males (S3M: 3.43, p = 0.0028; S4M: 1.83, p = 0.032) than females (S3F: 1.64,  

p = 0.0027; S5F: 2.05, p = 0.00023) as displayed in Figure 2. 

 

Figure 2. qPCR to quantify Nurr1 expression relative changes in striatum of control,  

early life treated mother and offspring (F1 generation, untreated rats). All expression values 

were normalized to the value of β-actin gene used as an internal control. * p < 0.05; ** p< 0.01; 

*** p < 0.001 vs. matched sex control group. 

3.4. Global DNA Methylation Assessed by MeSAP 

With reference to MeSAP, banding patterns obtained after amplification of DDD and MDD will be 

the same only when CpG-rich sequences are hypermethylated; on the contrary, banding patterns will 

result differently in direct relationship with hypomethylation. The differences can be: (i) presence or 

absence of additional bands (appearance/disappearance) representing other fragments with different 

molecular weight or (ii) variations in the intensity of pre-existing bands (attenuation/intensification), 

depending on the co-migration of missing or additional fragments with the same molecular weight but 

with different sequence. 
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Table 1 shows genomic methylation changes observed in DNA of untreated rats, mothers (treated in 

early life) and offspring F1 generation (untreated). 

Table 1. Genomic methylation changes observed in DNA of untreated rats, mother  

(early life treated) and offspring F1 generation (untreated). NTM (untreated male controls) 

and NTF (untreated female controls) SM (male son rat) SF (female daughter rat). 

Sample Total of Variations Mean Value ± SD 

NTM (Untreated) 3 
3.5 ± 0.707 

NTF (Untreated) 4 

M1 (Mother) 8 

7 ± 1.732 M2 (Mother) 8 

M3 (Mother) 5 

S1M 4 

7 ± 2.00 

S2M 8 

S3M 6 

S4M 9 

S5M 8 

S1F 5 

6.5 ± 2.38 
S2F 10 

S3F 6 

S5F 5 

Global methylation decreased similarly in early life exposed mothers and in untreated offspring  

(F1 generation). MeSAP-PCR analysis of representative samples shows that DNA of mothers and 

untreated offspring is hypomethylated compared to the control (untreated) (Figure 3). 

 

Figure 3. Methylation sensitive Arbitrarily Primed PCR of four representative samples.  

UTM = Untreated Male; TM1 = Early life treated mother; S4M = Male F1 Offspring;  

S5F = Female F1 Offspring. M= Mono-digested DNA; D= Double-digested DNA. Arrows 

in yellow indicate the disappearing/appearing of bands; arrows in green indicate 

attenuation/intensification of bands. 

3.5. Discussion 

Nurr1, an orphan nuclear receptor belonging to NR4A subfamily, is a transcription factor expressed 

in the embryonic ventral midbrain. It is critical for the development and maintenance of DA neurons 
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because it activates the transcription of tyrosine hydroxylase (TH) and DA active transporter (DAT) 

genes, whose corresponding proteins are required for biosynthesis and storage of DA, respectively. It is 

also known that D2-like receptors interact with Nurr1 via extracellular signal-regulated kinase (ERK) 

signaling, that, in turn, is critical for the activation of Nurr1 and for dopaminergic (DArgic) neuronal 

development [19]. For its function on dopaminergic neurons, Nurr1 has been studied in the midbrain 

autopsy of Parkinson’s disease (PD) patients, where an unbalanced expression was observed [20]. 

Moreover, an experimental rat model of PD, obtained by treating rats during early life with PERM, 

showed a change in Nurr1 regulation with aging [9,10]. In the present study, we observed that neonatal 

exposure to PERM during brain development, leads to an increase in Nurr1 gene expression in 

adolescent age (Figure 1) and that 44.4% of untreated offspring, generated by early life exposed rats, 

have a similar variation in Nurr1 gene expression (Figure 2). Considering that PERM is able to cross  

the blood brain barrier, it can accumulate inside the brain after the end of treatment, and that in silico 

studies have identified several sites of binding between Nurr1 and PERM [7,20], and a direct interaction 

between PERM and Nurr1 might be suggested in treated rats. Furthermore, since dopamine level 

decreases 10 times from adolescent to old age together with an imbalance in the redox system [11,12,21], 

other disturbing factors, which indirectly perturb the neuronal homeostasis, should also be considered. 

To explain the intergenerational effect on Nurr1 in F1 generation, epigenetic modifications should be 

considered. Epigenetic changes, like DNA methylations and histone modifications, are tissue specific 

modifications able to perturb gene expression without modifying the gene sequence and can be transferred 

to the progenies. Increase in DNA methyltransferases activity (DNMTs), the enzymes responsible for 

DNA methylation, was measured in this animal model [7], in agreement with the literature where several 

evidences on epigenetic modulation induced by pesticides are described [22–25]. 

Our data also underline an intergenerational alteration in Nurr1 expression in F1 generation from 

PERM-treated parents. In particular, the effect is stronger in male rats than in females.  

Moreover, if we analyze data on global DNA methylation, we observe that hypomethylation measured 

in the mothers exposed to PERM during early life, is detectable also in the offspring, and that, on the 

contrary, DNA of untreated rats is hypermethylated. 

This result, apparently not consistent with higher DNMT expression levels detected in adolescent 

PERM-treated rats (unpublished data), could be explained by an indirect unbalanced methylation effect 

promoted by PERM-induced reactive oxygen species (ROS) [26]. In fact, it has been described that ROS 

are able to induce genomic hypomethylation of DNA by the formation of 8-hydroxy-2′-deoxyguanosine 

(8-OHdG), which can lead to DNA hypomethylation. On the other hand, ROS may induce site-specific 

hypermethylation via the up-regulation of expression of DNA methyltransferases (DNMTs) [27]. We 

believe that PERM-induced ROS are the real actors of genomic hypomethylation and of the 

contemporary DNMT up-regulation. This hypothesis is in agreement with previous studies where an 

increase in oxidative stress in striatum of PERM-treated rats was observed [5,10,11,28,29].  

In particular, these rats showed lipid and protein oxidation, DNA damage and lower levels of GSH in 

the striatum [5,10,11,28,29]. 

In support of the above is that global DNA hypomethylation was also reported in the population with 

high blood levels of pesticides [24,30,31]. The most interesting finding of the present study is the 

intergenerational effect of PERM. In particular, the same alteration in DNA methylation was seen in 
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treated parents and in unexposed offspring. This alarming intergenerational effect of PERM must be 

better investigated in further studies. 

The clinical effects linked with the observed alteration are not known yet. Nevertheless, we can  

expect that the untreated F1 generation could develop the same clinical impairment observed in their 

PERM-treated parents [11–13,29]. Knowledge on intergenerational heritage could open a path for 

recognizing new risk factors associated with the development of dopaminergic neurodegeneration. 

4. Conclusions 

In conclusion, we here demonstrate for the first time that early life exposure to PERM can be 

associated with intergenerational effects on offspring. Further studies on PERM-induced ROS and on 

Nurr1 promoter methylation and histone modifications will be required to define the mechanisms 

associated with the change in Nurr1 gene expression. 
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