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Steady-state nested entanglement structures in harmonic chains with single-site
squeezing manipulation
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We show that a squeezed bath, that acts on the central element of a harmonic chain, can drive the whole
system to a steady state featuring a series of nested entangled pairs of oscillators that, ideally, covers the whole
chain regardless of its size. We study how to realize this effect in various physical implementations, including
optomechanical and superconducting devices, using currently available technologies. In these cases no squeezed
fields are actually needed, and the squeezed bath is, instead, simulated by quantum reservoir engineering with
bichromatic drives.
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I. INTRODUCTION

Quantum technologies and engineering exploit entangle-
ment to boost the efficiency of quantum devices. In spite of
the many small-scale demonstrations of engineered quantum
dynamics, the efficient control over large ensembles of
quantum systems, for realistic realizations of scalable quantum
technology applications, still seems to require significant effort
from both the experimental and the theoretical side [1,2].
Among the many strategies envisaged and pursued for
quantum manipulations, reservoir engineering is particularly
intriguing because it makes use of irreversible and dissipative
processes to achieve the designed result at the steady state of
controlled open quantum dynamics [3–12]. These techniques
have been also applied to the manipulation of arrays, proving to
be in principle applicable to a scalable architecture for quantum
computation and information [13–16]. Nevertheless, in the
schemes proposed so far, many control fields are typically
needed to engineer the dynamics of the many elements, and
the complexity of the problem increases quickly with their
number, making these strategies of difficult implementation
with present day technologies.

On the other hand it has been shown that in certain
cases it suffices to have access only to a limited part of
an ensemble of interacting elements to control the whole
dynamics [17,18,22,23]. In this context, here we propose a
new scheme for the preparation of entangled states in a chain
of harmonic oscillators with nearest-neighbor coupling, by
reservoir engineering, with active control over only a single
element of the chain. Specifically we show that a harmonic
chain can approach an entangled steady state when only
the central element of the chain is driven by a single mode
squeezed reservoir. In particular the oscillators of the chain get
entangled in pairs. Each pair is formed by the two oscillators at
equal distance, on the left and on the right, from the central one,
as sketched in Fig. 1. Ideally, all the pairs are entangled with
the same degree of entanglement (which is directly related to
the degree of squeezing of the bath) irrespective of the size of
the chain. This is the result of the interplay between localized
irreversible dynamics and coherent interactions under specific
symmetry conditions. Similar results, concerning pairs of en-
tangled systems belonging to two separated chains, have been
already discussed in [17,18], which extended and generalized
previous works on the transfer of entanglement to distant

quantum objects [19–21]. However, we remark that, differently
from the scheme discussed in [17,18], where the squeezed bath
consists of two entangled modes each of which drives two
independent arrays, here we consider a single squeezed mode
which interacts with a single element of the chain. Hence the
idea of entanglement transfer is absent and, here, no spatially
separated entangled fields are required.

We study the performance of this protocol in the case of
optomechanical and circuit-QED systems where the harmonic
chain is realized by, respectively, mechanical and coplanar-
waveguide resonators. In these implementations no squeezed
resources are actually needed. In fact, in both cases an effective
squeezed reservoir is realized by coupling the central resonator
to an additional system driven by a two-tone field, which
in appropriate parameter regimes can simulate a squeezed
reservoir in the spirit of reservoir engineering [24–29]. In the
first case the additional system is an optical cavity while in
the second it is a superconducting flux qubit. These results
may find application in the context of quantum information as
efficient strategies to generate entanglement between remote,
nondirectly interacting elements of a quantum processor.

The paper is organized as follows. In Sec. II we describe
the general model and the symmetry of the chains that are
required for the observation of the steady-state entangled pairs.
The properties of the steady state are then studied in detail in
Sec. III. Possible physical implementations are identified in
Sec. IV. Finally, Sec. V is devoted to outlooks and concluding
remarks.

II. GENERAL MODEL: CHAIN OF HARMONIC
OSCILLATORS WITH A LOCALIZED SQUEEZED

RESERVOIR

In this section we analyze the ideal model that is central
to this work, and we identify the necessary symmetries
the model has to fulfill in order to sustain the steady-state
entangled pairs. We consider a chain of harmonic oscillators
with nearest-neighbor coupling and with a localized squeezed
reservoir which affects only the central oscillator. Specifically,
we consider a chain of 2N + 1 linearly coupled harmonic
oscillators, with coupling strengths ηj , as depicted in Fig. 1,
and with creation and annihilation operators b

†
j and bj , for

j ∈ {−N · · · 0 · · · N}, where the index j = 0 corresponds
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FIG. 1. (Color online) An array of linearly coupled harmonic
oscillators is locally driven by a squeezed reservoir. The elements
in the array are labeled by the indices j ∈ [−N,N ], with j = 0
indicating the driven central oscillator. The steady-state entangled
pairs are marked by dashed arrows.

to the central oscillator while negative and positive indices
indicate, respectively, the oscillators to the left and to the right
of the central one in such a way that j = −N and N indicate,
respectively, the leftmost and the rightmost oscillator. We
assume that the coupling strengths follow a symmetric pattern
with respect to the central oscillator such that the coupling
between the oscillators j and j − 1 is equal to that between
−j and −j + 1. The frequencies of the oscillators, ωj , follow
instead an antisymmetric pattern with respect to the central
oscillator. In detail, pairs of oscillators with indices j and
−j (for j ∈ {1 · · · N}) are detuned from the central oscillator
(the frequency of which is ω0) by opposite quantities, that is,
ωj − ω0 = ω0 − ω−j = �j . The effects of deviations from
this symmetric situation are discussed in the next section.
The corresponding Hamiltonian, in the interaction picture with
respect to H0 = � ω0

∑N
j=−N b

†
j bj , is given by

Hchain = �

N∑
j=1

�j (b†j bj − b
†
−j b−j ) + �

N∑
j=1

ηj (bj−1b
†
j

+ b
†
j−1bj + b−j+1b

†
−j + b

†
−j+1b−j ). (1)

As shown in detail in the next section, by virtue of these
symmetry conditions the chain is invariant under the effect
of specific Bogoliubov transformations. The corresponding
Bogoliubov modes are combinations of pairs of oscillators,
and are the modes that are actually stabilized by the effect of
the squeezed bath, that drives, with rate �, only the central
oscillator. Its effect on the system density matrix ρ can be
described in terms of a Lindblad operator, L(�,n̄,m̄)

squeez , of the
form [30]

L(�,n̄,m̄)
squeez ρ = �{(n̄ + 1)D[b0,b

†
0] + n̄D[b†0,b0]

− m̄D[b0,b0] − m̄∗ D[b†0,b
†
0]}ρ (2)

with

D[x,y]ρ = 2 x ρ y − y x ρ − ρ y x. (3)

This model describes, for example, the effect of the output field
of a degenerate parametric oscillator (similar to the system
studied in [18]). The statistical properties of the squeezed
reservoir are determined by the parameters n̄, which accounts
for the number of excitations, and m̄, which accounts for
the correlations. In general |m̄| is bounded by the value

|m̄| �
√

n̄(n̄ + 1), with the equality corresponding to a pure
state of the reservoir. When |m̄| <

√
n̄(n̄ + 1), instead, the

reservoir is in a squeezed thermal state. Specifically, the
quadratures of the reservoir are squeezed below the vacuum
level only when |m̄| > n̄, and the variance of the maximum
squeezed quadrature (relative to the vacuum noise level) is

S = 2 n̄ + 1 − 2|m̄|. (4)

Finally in our description we also take into account thermal
dissipation at rates γj in a bath with nTj thermal excitations,
which can be described by a Lindblad operator of the form

Ldissρ =
N∑

j=−N

γj {(nTj + 1)D[bj ,b
†
j ] + nTjD[b†j ,bj ]}ρ. (5)

In summary we study a system described by the following
master equation:

ρ̇ = − i

�
[Hchain,ρ] + L(�,n̄,m̄)

squeez ρ + Ldissρ. (6)

We will show that, at the steady state, oscillators at equal
distance, on the left and on the right of the central one, are
entangled in pairs as depicted in Fig. 1.

We remark that the squeezed bath, described by Eq. (2),
is equal to a standard dissipative bath for a Bogoliubov
(squeezed) mode with annihilation operator crb0 − eiϕsrb

†
0,

that is,

L(�,n̄,m̄)
squeez ρ = �{(n̄r + 1)D[crb0 − eiϕsrb

†
0,crb

†
0 − e−iϕsrb0]

+ n̄r D[crb
†
0 − e−iϕsr b0,crb0 − eiϕsrb

†
0]}ρ, (7)

with eiϕ = m̄/|m̄|, sr/cr = (n̄ − ñr )/|m|, c2
r − s2

r = 1 and

ñr = 1
2 [

√
(2n̄ + 1)2 − 4|m̄|2 − 1]. (8)

Correspondingly, as a result of the symmetric pattern of
couplings ηj that we have chosen, the central Bogoliubov
mode is coupled to the two modes crb±1 + eiφsrb

†
∓1 and in

turn these are coupled to similar modes realizing a chain of
Bogoliubov modes the annihilation operators of which are
crb±j − (−1)j eiφsrb

†
∓j . Furthermore we note that the Hamil-

tonian term proportional to the detunings �j in Eq. (1) does not
induce additional couplings between these Bogoliubov modes.
This is a consequence of the chosen antisymmetric structure
of the detunings and of the fact that, in general, the number
difference operator b

†
j bj − b

†
kbk is invariant under the effect

of a two-mode squeezing transformation. In conclusion, as
discussed in more detail in the next section, due to the specific
symmetries that we have selected, the squeezed bath acts as
a standard dissipative reservoir over a chain of Bogoliubov
(squeezed) modes.

III. STEADY-STATE ENTANGLEMENT

A simple analytical solution for the steady state is found
when Ldiss = 0 (i.e., γj = 0 ∀j ). In this case it is useful to
study the system in a new representation defined by the unitary
operator

U = e
r
2 (eiϕb

†
0

2−e−iϕb0
2) ⊗N

j=1 e(−1)j r (eiϕb
†
j b

†
−j −e−iϕbj b−j ), (9)
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which realizes the Bogoliubov transformation

U b0 U † = cosh(r) b0 + eiϕ sinh(r) b
†
0,

U bj U † = cosh(r) bj + (−1)j eiϕ sinh(r) b
†
−j , (10)

with tanh(r) = (n̄ − ñr )/|m̄| and ñr defined in Eq. (8). We note
that ñr = 0 when |m̄| = √

n̄(n̄ + 1), that is, when the reservoir
is in a pure squeezed state.

In the new representation the system Hamiltonian remains
unchanged as a result of the symmetry that we have chosen.
The master equation for the transformed density matrix ρ̃ =
U †ρ U is, therefore, given by

˙̃ρ = − i

�
[Hchain,ρ̃] + �{(ñr + 1)D[b0,b

†
0]

+ ñrD[b†0,b0]}ρ̃, (11)

that has the same structure of Eq. (6) but with m̄ = 0, and ñr in
place of n̄. This master equation describes a system interacting
with a thermal environment with ñr thermal excitations. In
this representation, at large times, the system thermalizes and
all the oscillators approach the same thermal state with ñr

excitations ρ̃
(r)
st,j = ∑

n
1

1+ñr
( ñr

1+ñr
)
n|n〉〈n| (equal for all j ), so

that the global steady state is given by

ρ̃st = ⊗N
j=−N ρ̃

(r)
st,j , (12)

which is equal to the vacuum when ñr = 0, that is, when
the state of the driving reservoir is pure. We have to remark,
however, that although this thermal state is always a steady
solution in certain situations it is not unique. If for example
the matrix of coefficients, M, of the system of equations,
β̇(t) = M β(t), for the evolution of the average field operators
β = (〈b−N 〉, · · · ,〈b0〉, · · · ,〈bN 〉)T , corresponding to Eq. (11),
has eigenvalues with zero real part, then the corresponding
eigenmodes do not dissipate, and the steady-state solution is
not unique. This happens, for example, when there exists an
eigenvector, ṽk , of the matrix

M
∣∣∣
�=0

= −i

⎛
⎜⎜⎜⎜⎜⎜⎝

−�N ηN 0 · · · 0

ηN

. . .
...

0 η1 0 η1 0
...

. . . ηN

0 · · · 0 ηN �N

⎞
⎟⎟⎟⎟⎟⎟⎠

, (13)

that is orthogonal to the vector

v0 = (0, · · · 1, · · · 0)T (14)

that corresponds to the central oscillator, i.e., ṽT
k · v0 = 0.

In this case, in fact, the corresponding eigenmode remains
unaffected by the thermal reservoir. A specific realization of
this situation is observed, for example, when all the oscillators
are resonant �j = 0. If instead all the eigenvectors, ṽk , of

M|
�=0

are nonorthogonal to v0, i.e., ṽT
k · v0 
= 0, then the

steady state identified above is unique. We have checked that
this condition is fulfilled when, for example, the couplings
are uniform and the detunings vary linearly according to the
relations

ηj = η, for j ∈ {1 · · · N},
(15)

�j = � + j δ, for j ∈ {1 · · · N}.

We anticipate that the specific results that we discuss hereafter
are obtained for chains which follow this structure.

Before studying the system dynamics under more general
conditions we have to analyze the entanglement properties of
the steady state that we have just identified, and that is valid
when Ldiss = 0. Specifically, in the original representation,
the thermal steady state in Eq. (12) reduces to ρst = U ρ̃st U

†,
with U defined in Eq. (9), that corresponds to a factorized
state of the form ρst = ⊗N

j=0 ρst,j with the central oscillator in
a squeezed thermal state,

ρst,0 = Uρ̃
(r)
st,0U

†, (16)

and all the pairs of oscillators with opposite indices, j and −j ,
in two-mode squeezed thermal states,

ρst,j = U ρ̃
(r)
st,j ⊗ ρ̃

(r)
st,−j U †, (17)

that is the same for all the j regardless of the size of the chain.
We note that these density matrices describe pure two-mode
squeezed states when ñr = 0. The corresponding logarithmic
negativity [31,32] between each pair of oscillators can be
expressed in terms of the corresponding correlation functions
(see Appendix A) and is given by

EN [j, − j ] = max{0, − log2 S}, (18)

where S is defined in Eq. (4), which shows that the strength
of the pairwise entanglement increases with the degree of
squeezing of the driving reservoir. We remark that this value
is independent from the size of the chain and from the
parameters ηj and �j .

The results that we have discussed so far have been found
for Ldiss = 0. When this condition is not satisfied it is, in
general, not possible to identify a simple analytical solution.
In this case we resort to the numerical evaluation of the
steady state and we characterize its entanglement properties
in terms of the logarithmic negativity [31,32] for different
pairs of oscillators EN [j1,j2]. In general, finite values of γj

tend to reduce the entanglement of the pairs, which, however,
remain visible as long as the thermal noise is not too strong,
as depicted in Figs. 2(a) and 2(b). In any case, only oscillators
with opposite indices can be entangled, i.e., EN [j1,j2] = 0 for
j1 
= −j2. We further note that, when γj 
= 0, the pairwise
entanglement depends nontrivially on the structure of the
chain. For example, when the chain structure is described by
Eq. (15), the entanglement of the pairs is maximized for finite
values of η, while it oscillates as a function of � [see Figs. 2(c)
and 2(d)]. In detail, the optimal value of the entanglement is
observed when the projection ṽT

k · v0 of the eigenmodes of the
chain, ṽk , over the central oscillator, v0, is of similar size as
described by Fig. 3. In this case, in fact, all the normal modes
are equally coupled to the reservoir, and they are all efficiently
driven to their steady states. The behavior of the steady state
as a function of the size of the chain is shown in Fig. 4. As
already stated when γj = 0 all the pairs share the same degree
of entanglement regardless of the size of the chain. In contrast,
as shown in Fig. 4, when Ldiss 
= 0, the entanglement of each
pair decreases mildly with the number of the oscillators in the
chain. We also observe that, similar to the findings of [17], the
entanglement decreases with the distance of the pair from the
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FIG. 2. (Color online) (a) Steady-state logarithmic negativity, EN [j1,j2], for all the pairs of oscillators in a chain of nine oscillators (N = 4),
with couplings and detunings defined in Eq. (15), at the steady state of the dynamics described by Eq. (6), with n̄ = 2, m̄ = √

n̄(n̄ + 1)
(corresponding to reservoir squeezing of ∼10 dB), η = �, � = −0.4 �, δ = 0.1 �, and uniform dissipation with γj = 0.01 � and nTj = 0 ∀j .
(b), (c), and (d) Steady-state logarithmic negativity for the pairs with indices {j, − j}, as a function of, respectively, the mechanical dissipation
γ ≡ γj , ∀j ; the oscillators couplings η; and the detuning �. The other parameters are as in plot (a). The vertical thin lines in (b), (c), and
(d) indicate the parameters corresponding to plot (a). The horizontal thin lines indicate the level of entanglement at γj = 0, ∀j , as defined in
Eq. (18). In all cases the other pairs are not entangled, i.e., EN [j1,j2] = 0 for j1 
= −j2.

central oscillator, and exhibits a weak revival for a few pairs
at the ends of the chain.

We finally discuss the effects of random deviations from
the symmetric configuration identified in Sec. II. The outcome
of this analysis is reported in Fig. 5, where we show the
results for the steady-state entanglement evaluated considering
a Hamiltonian of the form

Hchain = �

N∑
j=1

(� + jδ)[(1 + ζ�,j )b†j bj − (1 + ζ�,−j )

×b
†
−j b−j ] + �

N∑
j=1

η[(1 + ζη,j )(bj−1 b
†
j + b

†
j−1 bj )

+ (1 + ζη,−j )(b−j+1 b
†
−j + b

†
−j+1 b−j )], (19)
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FIG. 3. (Color online) Projection ṽT
k · v0 of the eigenmodes of the

chain, described by the eigenvectors ṽk of the matrix M|
�=0

, defined
in Eq. (13), over the central oscillator, described by the vector v0,
defined in Eq. (14), as a function of (a) the oscillators coupling η and
(b) the detuning �. Increasing values of the index k correspond to
increasing values of the frequency of the normal modes. The vertical
lines indicate the optimal parameters where all the curves converge
to a close value, and correspond to the parameters of Fig. 2(a) and to
the vertical lines in Figs. 2(c) and 2(d). The other parameters are as
in Fig. 2(a).

where ζη,j and ζ�,j are random variables uniformly distributed
in the ranges [−δζη,δζη] and [−δζ�,δζ�], respectively. Specif-
ically, Eq. (19) accounts for deviations from the configuration
described by Eq. (1) with the parameters defined in Eq. (15).
Figure 5 demonstrates that the protocol is significantly resilient
to small asymmetries. We also note that the protocol is
much less sensitive to deviations in the detunings than in the
oscillators couplings.

IV. PHYSICAL IMPLEMENTATION: RESERVOIR
ENGINEERING WITH BICHROMATIC DRIVING FIELDS

Here we analyze how to implement the dynamics discussed
in the previous section with actual physical systems. We first
note that, in principle, one could realize the model described in
Sec. II by, for example, driving arrays of optical or microwave
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FIG. 4. (Color online) Steady-state logarithmic negativity,
EN [j, − j ], for the pairs of oscillators with indices j and −j , for
chains of increasing size (from 3 to 19 oscillators, i.e., N ∈ {1 · · · 9}),
as detailed in the table. For each size the detuning � has been
optimized by matching the configuration for which the projections
ṽk · v0 are as close as possible according to the procedure outlined in
Fig. 3. For each j the lowest mark corresponds to the entanglement
realized with the largest size (N = 9). Increasing values of EN

correspond to decreasing sizes. The dashed lines connect the results
obtained with the same value of N . The other parameters are as in
Fig. 2(a).
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FIG. 5. (Color online) Steady-state logarithmic negativity,
EN [j, − j ], for the pairs of oscillators with indices j and −j .
Each plot reports the results for 200 different realizations (red
solid thin marks) of the dimensionless random variables ζη,j

and ζ�,j , uniformly distributed in the ranges ζη,j ∈ [−δζη,δζη]
and ζ�,j ∈ [−δζ�,δζ�], which describe small fluctuations of the
oscillators couplings and detunings about the ideal symmetric
situation identified in Sec. II, as discussed in the main text. Each
plot is evaluated with different values of the range of variability
δζη and δζ� of the random variables, as specified in the figure. The
black dashed thick marks indicate the entanglement in the symmetric
configuration, i.e., ζη,j = ζ�,j = 0, ∀j . The other parameters are as
in Fig. 2(a).

resonators with the output field of a degenerate parametric
oscillator below threshold, which would constitute a squeezed
reservoir similar to the proposal discussed in [18]. A promising
alternative approach, that we explore here, is instead that
of realizing a squeezed bath by reservoir engineering using
bichromatic driving fields. The idea of using bichromatic fields
to engineer quantum dissipative dynamics has been introduced
in the context of trapped ions in [24]. It has been then extended
to a number of different physical setups including mechanical
resonators [25–28] and circuit QED [29]. All these systems
are in principle suitable candidates for the engineering of
the dynamics that is the subject of the present proposal.
Hereafter we briefly review and extend these techniques
based on two-frequency drives to the simulations of our
protocols with two specific setups. First, we consider an array
of mechanical resonators and then one of superconducting
microwave resonators. In both cases we identify the parameters
for which the dynamics discussed in Sec. II can be efficiently
simulated. We characterize the system dynamics in terms of
the logarithmic negativity for pairs of oscillators evaluated
at the steady state of the system dynamics, showing that the
results identified in the previous section can be reproduced
under specific parameter regimes.

A. Optomechanics: Simulation with an array of
mechanical resonators

In this section we describe how to engineer the dynamics
introduced in Sec. III with a chain of mechanical resonators
similar to those discussed in [33–35], which are based
on optomechanical crystal implementations [36–41], where

mechanical and optical modes are defined by localized defect
in planar artificial quasiperiodic nanostructured crystals. The
system hence consists of an array of localized mechanical
modes in a phononic crystal. Phononic excitations can hop
between nearby mechanical modes [35] realizing the chain.
The squeezed reservoir is, instead, realized by having the
central mechanical mode coupled to an optical mode [40,41]
that, in turn, is driven by a two-tone field realizing a reservoir-
engineering scheme similar to the one investigated in [26,27].
The corresponding linearized optomechanical dynamics can
be described by a master equation for the system density matrix
ρ of the form (see Appendix B for a detailed derivation)

ρ̇ = − i

�
[H,ρ] + (La + Ldiss)ρ, (20)

where the cavity dissipation at rate κ is described by La =
κD[a,a†], with D defined in Eq. (3), Ldiss is introduced in
Eq. (5), and the Hamiltonian is given by

H = Hchain + �[a†(G+b0 + G−b
†
0) + a(G∗

+b
†
0 + G∗

−b0)].

(21)

Here Hchain is defined as in Eq. (1); the operators a and
bj account for the fluctuations of, respectively, the optical
cavity and the mechanical resonators about their corresponding
average fields; and the linearized coupling strengths G+ and
G− are proportional to the intensity of the driving fields on the
red and blue sideband, respectively (their specific dependence
on the other system parameters is discussed in Appendix B).

As discussed in [27], when |G+| > |G−| [which guarantees
the stability of this model keeping, however, in mind that in
certain cases, when |G+| ∼ |G−|, nonresonant processes that
have been neglected in this effective model (see Appendix B)
can modify the system stability [42]], this model describes
the cooling of the mechanical Bogoliubov mode of the central
oscillator given by B̂0 = (G+b0 + G−b

†
0)/

√
|G+|2 − |G−|2.

If the cooling dynamics is sufficiently fast to overcome the
thermal noise then such a mode can be cooled to its ground
state, that corresponds to a squeezed state for the original
mode. In turn the other oscillators of the chain are driven to
an entangled steady state following a dynamics similar to the
one discussed in Sec. III. In particular, if the decay rate of
the cavity field, κ , is sufficiently large, the degrees of freedom
of the optical cavity can be adiabatically eliminated and the
system can be described by a model equal to Eq. (6) with

� = |G+|2 − |G−|2
κ

,

n̄ = |G−|2
|G+|2 − |G−|2 , (22)

m̄ = − G∗
+ G−

|G+|2 − |G−|2 .

Here we consider systems similar to the ones investigated
in [36–41], where the mechanical modes are at gigahertz
frequencies while the optical ones are in the near infrared.
In detail we choose ω0 = 2π × 1 GHz and the wavelength
for the cavity field λL = 1550 nm. Figures 6 and 7 show
that the model of Sec. II describes with high accuracy the
dynamics of this system in the corresponding parameter
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FIG. 6. (Color online) Steady-state logarithmic negativity
EN [j, − j ] for the pairs of resonators with opposite indices, in
a chain of nine (N = 4) mechanical resonators, as a function of
(a) |G−|, with κ = 0.01ω0, and (b) κ , with |G−| = 0.85 |G+|
(E− = 136ω0). The solid and dashed lines, that are almost
indistinguishable because they are very close to each other, are
evaluated from the steady state of, respectively, Eqs. (20) and (6)
with the parameters defined in Eq. (22). The vertical line in (a)
indicates the parameters used in (b) and similarly the one in
(b) indicates the value of κ used in (a). The other parameters
are ω0 = 2π × 1 GHz, g = 5 × 10−5ω0, δ = 0.2 × 10−3ω0,
λcav = 1550 nm, |G+| = 8 × 10−3ω0 (E+ = 160 ω0), temperature
T = 50 mK, and γj = 10−5ω0 ∀j . Moreover the chain follows
the structure defined by Eq. (15) with η = 2 × 10−3ω0 and
� = 0.8 × 10−3ω0 that are consistent with the optimal values
identified in Fig. 3. All the other pairs are not entangled, i.e.,
EN [j1,j2] = 0 for j1 
= −j2.

regime. We observe, in fact, that dashed and solid lines,
corresponding to the results obtained from the steady state
of, respectively, Eqs. (6) and (20), are always very close.
The pairwise entangled steady state is achieved whenever
the effective squeezed reservoir is efficiently realized. The
parameter regimes for which the bichromatic drives squeeze
efficiently a mechanical oscillator have been discussed in detail
in [27]. In particular, the squeezing is optimized at specific
values of |G−|/|G+|, and of the decay rate of the cavity field.
Correspondingly we observe strong pairwise entanglement as
described by Figs. 6(a) and 6(b). In turn, when the optimal
conditions for G± and κ are satisfied, the entanglement is
achieved if the chain follows the symmetries identified in
Sec. II, and the couplings and detunings are optimized as
discussed in the previous section. In this case, all the pairs of
resonators with indices j and −j exhibit roughly the same
value of the logarithmic negativity EN [j, − j ], and in general
larger entanglement is achieved for larger quality factor ω0/γj

of the resonators and for smaller temperatures as shown in
Fig. 7.

B. Circuit QED: Simulation with an array of superconducting
coplanar waveguide resonators

A different system that can be used to engineer the
dynamics described in Secs. II and III consists of a chain of
capacitively coupled microwave coplanar waveguide (CPW)
resonators [43,44]. This system is attractive because CPW
resonators can be efficiently coupled to superconducting
qubits, hence realizing a dynamics similar to the one discussed
in [17], where also the qubits get entangled in the steady state.
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FIG. 7. (Color online) Steady-state logarithmic negativity
EN [j, − j ] for pairs of resonators with opposite indices, in a chain
of nine mechanical resonators as a function of the dissipation rate
of the resonators (assumed uniform through the chain, γj ≡ γ ∀j ),
for three different values of the temperature T as specified by the
arrows. For each set of points the linearized coupling G− has been
chosen in order to optimize the entanglement of the pairs, and the
corresponding values of ξ = |G−|/|G+| are indicated in the plot.
The solid and dashed lines connect the results found from the steady
state of, respectively, Eqs. (20) and (6), where in the latter the bath
parameters are defined in Eq. (22). The other parameters are as in
Fig. 6. All the other pairs are not entangled, i.e., EN [j1,j2] = 0 for
j1 
= −j2.

In this case, the squeezed reservoir can be engineered
by coupling only the central resonator to a superconducting
qubit. Specifically one can implement the scheme described
in [29], where a superconducting flux qubit [45,46] with
tunable gap [47,48] is coupled to a CPW resonator at frequency
ω0, and the gap is modulated by a bichromatic field. We remark
that in principle similar dynamics can be realized with different
kinds of superconducting qubits. At the degeneracy point the
flux qubit is described (following the notation in [29]) as an
effective spin 1/2 in a modulated magnetic field,

Hq = �

[
ε

2
− E+ cos(ε + ω0) − E− cos(ε − ω0)

]
σz, (23)

while the interaction with the resonator, the creation and
annihilation operators of which are b0 and b

†
0, is given by

HI = � g (σ+ + σ−)(b0 + b
†
0), (24)

where σ± are the lowering and rising operators for the effective
spin. Here we assume that this resonator is the central element
of a chain of CPW resonators described by a Hamiltonian equal
to Eq. (B1). In the interaction picture with respect to Hq +
� ω0

∑
j b

†
j bj one finds that, similar to the derivation in [29],
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the total system Hamiltonian at lowest order in E±/(ε ± ω0),
and retaining only the dominant resonant terms, under the
condition κ, g E±/(ε ± ω0)  ω0, reduces to

Hs = Hchain + � σ+[G+b0 + G−b
†
0] + H.c., (25)

where

G± = g E±
ε ± ω0

, (26)

and Hchain is defined as in Eq. (1). Also in this case, if the
qubit decays fast enough, then the Bogoliubov mode B̂0 =
(G+b0 + G−b

†
0)/

√
|G+|2 − |G−|2 can be efficiently cooled.

Fast relaxation, that should overcome the natural dephasing
of the device, can be engineered by constructing the sample
with a nearby transmission line which serves as an additional
dissipation channel. If the resulting relaxation rate, that we
denote as κ , is sufficiently large then the qubit remains mostly
in its ground state. In this case the effective spin can be
approximated as a harmonic oscillator. Thereby the system
description reduces to a model equal to Eq. (20), where
the bosonic operators a and a† have replaced σ− and σ+,
respectively. We have verified that using this model, with the
parameters that we will discuss below, the population of the
bosonized qubit is always very small (�0.02), hence providing
a justification of the results presented hereafter. Specifically,
under these conditions, the degrees of freedom of the qubit can
be adiabatically eliminated, and also in this case the system is
described by a model equal to Eq. (6), with the bath parameters
defined as in Eq. (22).

In detail, we consider system parameters consistent with
state-of-the-art circuit-QED experiments [44]. We focus on
resonators with frequencies of ω0 = 2π × 5 GHz, and quality
factors Q ∼ 105. The frequency of the central qubit is
2π × 10 GHz and its coupling to the resonator is g ∼ 2π ×
300 MHz. Moreover we employ a large decay rate of the qubit
κ ∼ 2π × 100 MHz, much larger than its natural dephasing
rate (the largest dephasing time in flux qubits is of ∼10 μs [49],
corresponding to rates of tens of kilohertz) which here is
therefore neglected. Assuming a chain of resonators described
by coupling strengths and detunings consistent with those
identified in Sec. III, the steady-state results are very similar
to those found for the mechanical resonators as depicted in
Fig. 8.

V. DISCUSSION AND CONCLUSIONS

We have shown that a harmonic chain with nearest-neighbor
coupling can be driven to a nontrivial steady state exhibiting
a series of nested entangled pairs covering the whole chain
when only the central oscillator is coupled to a single mode
squeezed bath. Ideally, when the effects of additional noise
are negligible (γj ∼ 0 ∀j ), the entanglement of all the pairs is
the same regardless of the size of the chain, and its strength is
directly related to the degree of squeezing of the reservoir [see
Eq. (18)]. We have shown that the efficiency for the production
of the pairwise entanglement is strongly dependent on the
structure of the chain. In particular we have identified the
symmetry conditions which are necessary for the observation
of this phenomenon, and we have described, in a simple
specific realization, how to optimize the entanglement based
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FIG. 8. (Color online) Steady-state logarithmic negativity
EN [j, − j ] for pairs of resonators with opposite indices, in
a chain of nine coplanar waveguide resonators as a function
of the dissipation rate of the resonators (assumed uniform
through the chain, γj ≡ γ ∀j ), for three different values of the
temperature T as specified by the arrows. The coupling strength
G− has been chosen in order to optimize the corresponding
entanglement for each set of points, and the corresponding values
of ξ = |G−|/|G+| are indicated in the plot. The results are
evaluated from the steady state of Eq. (6) with the bath parameters
defined in Eq. (22), and with the effective coupling G± defined in
Eq. (26). The other parameters are ω0 = 2π × 5 GHz, g = 0.06ω0,
η = 2 × 10−3ω0, � = 0.8 × 10−3ω0, δ = 0.2 × 10−3ω0, ε = 2ω0,
|G+| = 6 × 10−3ω0 (E+ = 0.25ω0), and κ = 0.02ω0. All the other
pairs are not entangled, i.e., EN [j1,j2] = 0 for j1 
= −j2.

on the study of the normal modes of the chain. Finally, we
have studied how to simulate this effect, using bichromatic
drives, and with actual physical systems, hence demonstrating
that optomechanical as well as circuit-QED systems offer the
potentiality to harness the discussed dynamics in parameter
regimes that are within the reach of near-future experiments.

A. Alternative implementations

Let us now comment on the possibility to simulate the
dynamics described in this paper with other physical systems.
We remark that any system that can be mapped in some limit
to a harmonic chain is a suitable candidate. Furthermore,
we observe that in principle the squeezed reservoir can be
realized using the output field of a degenerate paramet-
ric oscillator operating below threshold (similar dynamics
have been studied, for example, in [18]). It consists of a
continuous-wave squeezed field mode that, hence, exhibits
entanglement between the spectral components at opposite
sideband frequencies [50]. In this configuration, the entangled
pairs production that we have analyzed can be seen as a means
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to extract and spatially separate the entanglement contained in
a single mode squeezed continuous field.

Other systems which can be manipulated with bichromatic
drives, and that can be exploited in our protocol, are listed
below.

1. Array of optical cavities with optomechanical manipulation

First we note that in principle one can envisage an imple-
mentation, complementary to the one studied in Sec. IV A,
which makes use of an array of optical cavities where only the
central one interacts with a mechanical resonator. The central
cavity is driven by a two-tone field to engineer the squeezed
bath similar to the results discussed in [28]. The system is thus
described, with minor modifications, by the model of Sec. IV A
(see also Appendix B 2). In this case, the chain of optical
cavities can also be realized with arrays of microcavities which
are coupled via evanescent waves [51] or by optical fibers [52].

2. Arrays of mechanical resonators

Apart from optomechanical crystals, other realization of
mechanical arrays based on nano- and micromechanical can-
tilevers, beams, and membranes, and that can be manipulated
with either optical, electrical, or magnetic forces, could be
used for our purpose [53–58]. In particular electromechanical
arrays are very promising systems that are actively investigated
in many experiments. They can be efficiently coupled to
superconducting microwave cavities [59,60] which can, thus,
be used to realize a model formally equal to the one
described in Sec. IV A. Moreover squeezed reservoirs for an
electromechanical resonator have been recently realized using
two-frequency drives [11,12].

3. Array of superconducting microwave resonators with
electro-optical manipulation

Another intriguing possible implementation relies on the
realization of the squeezed reservoir, for a chain of CPW
resonators, by coupling the central oscillator to an optical
cavity via an electro-optic modulator [61]. It consists of a
second-order nonlinear-optical medium which is simultane-
ously placed inside an optical cavity and between the plate of a
capacitor which is connected to the CPW resonator. It induces
a voltage-dependent phase shift to the cavity optical field,
the corresponding interaction Hamiltonian of which is, thus,
equal to the standard optomechanical one. Consequently, if the
cavity is driven by a two-tone field, this system is described
by a model equal to the one discussed in Sec. IV A and in
Appendix B. The experimental feasibility of similar devices
is still to be demonstrated, and the actual implementation of
these ideas would, most probably, require careful studies of
improved system design in order to achieve sufficiently large
coupling strengths.

4. Trapped ions

Trapped ions are highly controllable systems that have
been proved to be an efficient platform for quantum sim-
ulations and engineering [62], and for which the squeezed
reservoir, engineered with two-frequency drives, has been
already experimentally realized [10]. In this case, however,

the challenging aspect is probably the design of the chain.
In fact, the long-range nature of the Coulomb interaction
between the ions makes the realization of chains with only
nearest-neighbor coupling problematic. In any case, it is worth
observing that this aspect does not necessarily prevent the
possibility of applying our protocol to trapped ions. Indeed, an
interesting question, that deserves further investigation, is how
the dynamics that we have studied is affected when long-range
interactions are taken into account.

B. Outlook

In conclusion we observe that, while we have shown
how to optimize the entanglement of the pairs under the
specific simple conditions defined by Eq. (15), a still open
and compelling question is the identification of the optimal
structure of the chain (coupling strengths and frequencies of
the oscillators) which could result in the maximum steady-state
entanglement depending on the specific statistical properties
of the driving reservoir. Moreover, we note that it would be
interesting, in relation to the analysis of Sec. IV B, to extend
the presented scheme to the situation in which each resonator
interacts with a superconducting qubit, such that also pairs of
qubits could get entangled at the steady state, analogously to
the findings discussed in [17]. Similar considerations in the
context of trapped ions could, instead, lead to the creation of
entanglement between the internal states of the ions. Finally,
another very challenging, but fascinating, future research
direction would be the investigation of possible extensions
of this protocol for the generation of more complex quantum
states, in higher-dimensional arrays and with arbitrary-range
interactions which could be useful, for example, in the context
of one-way quantum computation.
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APPENDIX A: STEADY-STATE CORRELATIONS WHEN
Ldiss = 0

Here we study the correlations between the operators of
the oscillators at the steady state of the dynamics described
by Eq. (6) when Ldiss = 0. Since the system is Gaussian, the
following expressions fully characterize the steady state.

Specifically, the correlation matrix for the central oscillator,
the elements of which are written in terms of the vector
of operators b0 = (b0,b

†
0) as {C0}�,�′ = Tr[{b0}� {b0}�′ ρst,0],

where ρst,0 is defined in Eq. (16) and �,�′ are vector indices
not to be confused with the indices of the oscillators, is

C0 =
(

m n + 1
n m∗

)
. (A1)

This corresponds to a squeezed state if |m| > n, that is, when
the reservoir is actually squeezed. The correlation matrix for
two modes j and −j , the elements of which are written in terms
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of the vector of operators bj = (bj ,b−j ,b
†
j ,b

†
−j ) as {Cj }�,�′ =

Tr[{bj }� {bj }�′ ρst,j ], with ρst,j defined in Eq. (17), is instead
given by

Cj =

⎛
⎜⎜⎝

0 (−1)jm n + 1 0
(−1)jm 0 0 n + 1

n 0 0 (−1)jm∗

0 n (−1)jm∗ 0

⎞
⎟⎟⎠, (A2)

that corresponds to an entangled state when |m| > n, and
describes a pure state when |m| = √

n(n + 1). All the other
correlation functions between different oscillators are zero.

APPENDIX B: OPTOMECHANICAL CHAIN DRIVEN BY
A BICHROMATIC FIELD

We consider 2N + 1 resonators, in a configuration similar
to the one discussed in Sec. II, and described by a Hamiltonian
of the form

H chain = � ω0 b
†
0b0 + �

∑
ξ=±1

N∑
j=1

(ω0 + ξ�j ) b
†
ξj bξj

+�

∑
ξ=±1

N∑
j=1

ηj [b†ξ (j−1) + bξ (j−1)][bξj + b
†
ξj ],

(B1)

where positive and negative indices indicate resonators that
are placed, respectively, to the left and to the right about
the central one the index of which is j = 0. The central
oscillator is coupled to an optical cavity at frequency ωc

with annihilation and creation operators a and a†, via an
optomechanical interaction, with strength g, described by

Hom = � g a†a(b†0 + b0). (B2)

The cavity is driven by two laser fields at the mechanical
sideband frequencies ωL ± ω0, where the central frequency is
shifted from the cavity resonance by a small quantity

δc = ωc − ωL,

the specific value of which, as specified below, is chosen to
be opposite to the shift of the cavity resonance due to the
optomechanical interaction. The corresponding Hamiltonian
term describing the cavity driving, in a reference frame rotating
at the frequency ωL, is given by

Hd = � a†[E− e−i ω0 t + E+ ei ω0 t ] + H.c., (B3)

where H.c. indicates the Hermitian conjugates. We further take
into account the dissipation of the cavity field at rate κ , which is
described by the standard Lindblad operator La = κD[a,a†],
where D is defined in Eq. (3), and the thermal noise at rate γj ,
due to thermal reservoirs with nTj thermal excitations, that is
described by Eq. (5).

The total system dynamics is therefore described by the
master equation:

ρ̇ = − i

�
[� δc a†a + H chain + Hom + Hd,ρ] + (La + Ldiss)ρ.

(B4)

1. Linearized dynamics, approximation in powers of g, and
elimination of the fast rotating terms

The optomechanical nonlinear dynamics can be linearized
around the steady-state average amplitudes of the cavity field,
α(t), and of the mechanical resonators, βj (t), which fulfill the
relations

α̇(t) = −(i δc + κ)α(t) − 2 i g α(t)Re{β0(t)}
−i[E−e−i ω0 t + E+ei ω0 t ],

β̇(t) = −(W + i ω0 1)β(t) − i g|α(t)|v0, (B5)

where we have introduced the vectors

β(t) = (β−N (t) · · ·β0(t) · · ·βN (t))T ,
(B6)

v0 = (0 · · · 1 · · · 0)T

and the matrix

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

w−N i ηN 0 · · · 0

i ηN

. . .
...

0 i η1 w0 i η1 0
...

. . . i ηN

0 · · · 0 i ηN wN

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B7)

with w±j = ±i�j + γ±j for j ∈ {0,1, · · · N}. In the shifted
representation described by the density matrix ρ ′ =
U (t)† ρ U (t), where U (t) is the displacement operator U (t) =
Dα(t) ⊗N

j=−N Dβj (t), with Dα(t) = eα(t) a†−α(t)∗ a and Dβj (t) =
eβj (t) b

†
j −βj (t)∗ bj , that realizes the transformations

U (t)† a U (t) = a + α(t),
(B8)

U (t)† bj U (t) = bj + βj (t),

the optomechanical interaction Hamiltonian can be approxi-
mated as

H ′
om = U (t)† Hom U (t) � 2 � g a†a Re{β0(t)}

+ � g[α(t) a† + α(t)∗ a](b†0 + b0). (B9)

The first term is a time-dependent shift of the optical
frequency, while the second one accounts for the linearized
optomechanical interaction. We note that the zero-frequency
component of the coefficients β0(t), that we indicate with the
symbol βDC

0 , and that contributes to a constant shift of the
cavity resonance, can be taken into account by defining a
renormalized cavity frequency:

ω′
c = ωc + 2 g Re

{
βDC

0

}
. (B10)

In particular we set the central frequency of the driving field
ωL to be resonant with this shifted cavity frequency:

ωL = ω′
c. (B11)

Correspondingly we define the time-dependent part of β0(t) as

β̄0(t) = β0(t) − βDC
0 . (B12)

Explicit solutions for the steady state of α(t) and β̄j (t)
cannot be found in general; however, when ω0 is sufficiently
large [42],

κ, g|E±|/ω0  ω0, (B13)
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it is a valid approximation to expand the solution for α(t) and
β̄j (t) at the lowest relevant order in g, and simple analytical
expressions can be found. In detail,

α(t) = α+eiω0t + α−e−iω0t + o(g2) (B14)

with

α± = −i E±
κ ± i ω0

, (B15)

and

β̄0(t) � β+
0 e2iω0t + β−

0 e−2iω0t + o(g3) (B16)

with

β±
0 = −i g α± α∗

∓ vT
0 [W + i (1 ± 2) ω0 1]−1v0. (B17)

Finally, in the interaction picture with respect to the
Hamiltonian H0 = � ω0

∑N
j=−N b

†
j bj , the transformed density

matrix ρ̃ = eiH0t/�ρ ′e−iH0t/� fulfills a master equation of the
form

˙̃ρ = − i

�
[H + H̃ (t),ρ̃] + (La + Ldiss)ρ̃, (B18)

where the time-independent part of the system Hamiltonian
H is equal to Eq. (21) with the linearized coupling strength
defined as

G± = g α±, (B19)

while the residual time-dependent part is given by

H̃ (t) = 2 � g Re{β̄0(t)} a†a

+�

∑
ξ=±1

N∑
j=1

ηj [b†ξ (j−1)b
†
ξj e

2iω0t + bξ (j−1)bξj e
−2iω0t ]

+� a†[G−e−2iω0t b0 + G+e2iω0t b
†
0]

+� a[G∗
−e2iω0t b

†
0 + G∗

+e−2iω0t b0]. (B20)

The time-independent part is the one responsible for the
squeezing dynamics as discussed in the main text, while
H̃ (t) accounts for spurious processes which tend to degrade
the squeezing dynamics. When, consistently with Eq. (B13),
|G±|,g|β̄0(t)|,|ηj |  ω0, the time-dependent term can be
neglected and we find Eq. (20).

2. Optomechanics II: Simulation with an array of
optical cavities

A second possible implementation, complementary to the
one just discussed, consists in the realization of the chain
in terms of optical cavities, while the squeezed reservoir
is engineered by optomechanical interactions between an
additional mechanical resonator and the central cavity which in
turn is driven by a bichromatic field as in [28]. Differently from
the conditions identified above, here the steady-state entangled
dynamics is observed in a different optomechanical parameter
regime corresponding to large mechanical dissipation.

Analogously to the derivation of the previous section, we
find that also this system can be described by a model similar
to the one introduced in Eq. (20):

ρ̇ = − i

�
[H,ρ] + [

L(na )
a + L(nTj =0)

diss

]
ρ, (B21)

with H formally equal to Eq. (21), but where now bj and b
†
j

are the operators for the cavity fields realizing the chain of
oscillators, while a and a† are the operators for the mechanical
resonator. Furthermore the linearized coupling strengths G±
have a different dependence on the system parameters and are
defined as

G− = g β−
0 , G+ = g β+

0
∗
, (B22)

with

β±
0 = −i E± vT

0 [W ± i ωm 1]−1v0, (B23)

where v0 andW are defined in Eqs. (B6) and (B7), respectively.
We note that also the dissipative parts are slightly modified.
The term L(nTj =0)

diss is equal to Eq. (5) with nTj = 0, and
describes the dissipation of the optical cavities at rates γj ,
while L(na )

a = κ(na + 1)D[a,a†] + κ naD[a†,a] describes the
dissipation of the mechanical resonator at rate κ in a thermal
bath with na average excitations.

In this case if the mechanical dissipation κ is sufficiently
large then the mechanical resonator can be adiabatically
eliminated and the resulting dynamics is described, by a model
equal to Eq. (6), but where now

� = |G+|2 − |G−|2
κ

,

n̄ = na + (2 na + 1)
|G−|2

|G+|2 − |G−|2 , (B24)

m̄ = −(2 na + 1)
G∗

+ G−
|G+|2 − |G−|2 .
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