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Abstract. Identifying interacting sites of proteins is a relevant aspect
for drug and vaccine design, and it provides clues for understanding the
protein function. Although such a prediction is a problem extensively
addressed in the literature, just a few approaches consider the protein
sequence only. The use of the protein sequences is an important issue
because the three-dimensional structure of proteins could be unknown.
Moreover, such a structural determination experimentally is expensive
and time-consuming, and it may contain errors due to experimentation.
On the other hand, sequence based method suffers when the knowledge
of sequence is incomplete.

In this work, we present ProSPs, a method for predicting the pro-
tein residues considering protein sequence fragments, which are obtained
using sliding windows and become the samples for an unbalance binary
classification problem. We use the Random Forest classifier for data
training. Each amino acid is enriched using a selected subset of physico-
chemical and biochemical amino acid characteristics from the AAIndex1
database. We test the framework on two classes of proteins, Antibody-
Antigen and Antigen-Bound Antibody, extracted from the Protein-
Protein Docking Benchmark 5.0. The obtained results evaluated in terms
of the area under the ROC curve (AU-ROC) on these classes outperform
the sequence-based algorithms in the literature and are comparable with
the ones based on three-dimensional structure.
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1 Introduction

Proteins are versatile macromolecules consisting of one or more amino acid
sequences that carry out a broad range of functions in living organisms. These
biological roles are fulfilled by interacting with other molecules, including RNA,
other proteins, and small ligands [3]. The interactions between two proteins,
known as protein-protein interactions (PPIs), are responsible for the metabolic
and signaling pathways [13]. Dysfunction or malfunction of pathways and alter-
ations in protein interactions can cause several diseases, including neurodegener-
ative disorders and cancer. Therefore, the protein interaction knowledge allows
us to understand how proteins perform their functional roles and design new
antibacterial drugs [8]. The experimental determination of three-dimensional
structures of protein complexes is labor-intensive, time-consuming, and has high
costs. Therefore, efficient computational methods to predict PPIs play a funda-
mental role. The computational approaches can be broadly divided, according
to the protein representation, into sequence-based and structure-based. The for-
mer employs information derived from the amino acid sequence alone to predict
the site, while the latter considers the protein three-dimensional (3D) structure.
About the sequence-based methods, the representative ones include PPiPP [1],
PSIVER [14], DLPred [28], and NPS-HomPP [26]. PPiPP uses the position-
specific scoring matrix (PSSM) and amino acid composition, and PSIVER takes
advantage of PSSM and predicted accessibility as input for a Naive Bayes
classier. DLPred uses long-short term memory to learn features such as PSSM,
physical properties, and hydropathy index. To improve prediction, NPS-HomPPI
infers interfacial residues from the interfacial residues of homologous interacting
proteins. In the literature, structure-based methods usually perform better than
sequence-based ones. About the structural-based methods, several approaches
have been proposed in the literature. Some of them take advantage of the molec-
ular surface representations for describing the structure and use Zernike descrip-
tors or geometric invariant fingerprint (GIF) descriptors to identify possible bind-
ing sites [5,7,27]. Other methods use graph representations of proteins, such
as contact maps or hierarchical representations [19]. Most of these aforemen-
tioned methods employ machine learning algorithms, including support vector
machines, neural networks, Bayesian networks, naive Bayes classier, and random
forests. Although structure-based approaches are generally more accurate than
sequence-based ones, their applicability is limited since the structure is known or
contains some errors due to experimentation. As a consequence, an improvement
of sequence-based methods is necessary.

In this work, we introduce ProSPs, a method for predicting the protein
interaction sites taking into account protein sequence fragments. Consider-
ing sequence fragments is relevant when the entire sequence of proteins is
unknown. Such fragments, obtained using sliding windows approach over the
whole sequence or the known part of it, become the samples for an unbalance
binary classification problem. To determine whether a single residue is part of
the complex or not, we used a Machine Learning approach using a Random For-
est as a classifier [23]. Although methods based on Random Forests achieve good
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results with unbalanced data [23], we also employed Random Sampling and a
classifier combination approach, which further improved predictions made from
unbalanced data. Such predictions are performed on the central residues of slid-
ing windows, which are extracted from the entire protein sequence. Their length
is computed using a normalized version of the metric introduced by Sikic et al.
[23]. In other words, we select the length of the sliding windows considering the
minimum difference of normalized entropy. To better represent the data, each
amino acid is equipped with eight high-quality amino acid indices of physic-
ochemical and biochemical properties extracted from the AAindex1 database
[12]. We tested the framework on two classes of proteins, Antibody-Antigen and
Antigen-Bound Antibody, extracted from the Protein-Protein Docking Bench-
mark 5.0 [25] supposing that their 3D structures are unknown. We selected these
classes since antibodies recognize and bind several antigens. Such characteristic
makes them the most valuable category of biopharmaceuticals for both diagnos-
tic and therapeutic applications. To evaluate the model performance on the two
data sets, we consider only the area under the receiver operating characteristic
curve (AU-ROC) since the recognition of PPIs interface sites is an imbalanced
classification problem. This aspect can lead to classifiers that tend to label all
the samples as belonging to the majority class, thus trivially obtaining a high
accuracy measure. The obtained results in terms of AU-ROC on the data set
outperform the sequence-based algorithms in the literature. Moreover, they are
comparable with the ones based on three-dimensional structures.

The paper is organized as follows. In Sect. 2, we describe the dataset entries,
which consist of sliding windows of a predetermined number of residues In
Sect. 3, we describe the used dataset and the results obtained with the model,
described in Sect. 2.3. The paper ends with some conclusions and future perspec-
tive, Sect. 4.

2 Materials and Methods

2.1 Dataset Entry

Each dataset sample consists of sliding windows of a predetermined number of
residues extracted from the entire length of the antibody chains sequence. The
sliding window length can influence the classification of results.

Window Length Selection. To determine the sliding window length, we pro-
posed a method based on entropy, similar to one proposed by Sikic et al. [23] and
applied in Sriwastava et al. [24]. Our approach takes advantage of the normalized
entropy difference between the occurrence of a particular number of interacting
residues within a window length of N residues and the uniform occurrence dis-
tribution. To carry out this calculation, we define the interacting residues for
all proteins in the datasets, and we compute the number of interacting residues
using different length sliding windows. Finally, we consider only the windows
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having a central interacting residue. The normalized window entropy formula is

−∑N
i=1 pi · log2 pi − log2 N

N
(1)

where N is the length of a window, pi is the frequency appearance of i
interacting residues in a window of N residues, and log2 N is the window entropy
when the interacting residues number is distributed uniformly. In other words,
the value log2 N represents the maximum possible entropy of the window.

2.2 Features

In this work, we consider some physico-chemical and biochemical properties of
amino acids that are published in the AAindex [12]. AAindex is a database con-
taining numerical indices that represent various physico-chemical and biochem-
ical properties of residues and residue pairs published in the literature. Each
amino acid index is a set of 20 numerical values representing any of the different
physico-chemical and biological properties of each amino acid: the AAindex1
section of the database is a collection of 566 such indices. Using a consensus
fuzzy clustering method on all available indices in the AAindex1, Saha et al.
[22] identified three high-quality subsets (HQIs) of all available indices, namely
HQI8, HQI24, and HQI40. In this work, we use the features of the HQI8 amino
acid index set, reported in Table 1, that are identified as the medoids (centers)
of 8 clusters obtained by using the correlation coefficient between indices as a
distance measure.

Table 1. HQI8 indices.

Entry name Description

BLAM930101 Alpha helix propensity of position 44 in T4 lysozyme

BIOV880101 Information value for accessibility; average fraction 35%

MAXF760101 Normalized frequency of alpha-helix

TSAJ990101 Volumes including the crystallographic waters using the ProtOr

NAKH920108 AA composition of MEM of multi-spanning proteins

CEDJ970104 Composition of amino acids in intracellular proteins (percent)

LIFS790101 Conformational preference for all beta-strands

MIYS990104 Optimized relative partition energies - method C

2.3 Dataset Entries Definition

Each entries of the dataset is defined on a sliding window of N residues. It is
a vector that consists of N · k + 2 elements, where k is the number of selected
features. The input vector shows the following scheme:
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– Features represent the first N ·k elements of the input vector that assigns the
k selected features for each amino acids of the window.

– interface indicate whether the window is interfacing with a protein or not,
1 or -1 respectively. A window is defined as interfacing if its central residue
interacts with another one of the other proteins.

– group identifies the protein that contains the sequence.

Since each residue for each chain is the possible center of an interface window,
the number of windows belonging to the “interface” and “non-interface” classes
in the dataset reflects exactly the number of residues previously indicated as
interacting and non-interacting. There is a one-to-one correspondence between
each amino acid in the antibody sequence and the windows.

2.4 Dataset Imbalance Reducing

The prediction of PPI sites can be considered a classification problem, whose
objective is to assign a label, either 1 (interface) or 0 (no-interface), to each
residue. This problem is extremely imbalanced. This imbalance makes it dif-
ficult for a classifier to learn significant patterns with particular reference to
the samples belonging to the minority class. Therefore, a random subsampling
method is used to reduce the dataset imbalance. The “Non- Interface” samples
of the training set were randomly undersampled to reduce the class imbalance
ratio.

2.5 Random Forest

Random Forest is an ensemble model for classification and regression. The model
operates by constructing a multitude of decision trees at training time and out-
putting the class that is the mode (for classification problem) or mean/average
prediction (for regression) of the classes output by individual trees. Developed by
Breiman [4], the model combines the bagging approach with the random selec-
tion of features, introduced independently by Ho [9,10] and Amit and Geman [2],
to ensure that the decision trees of the forest are uncorrelated from each other.
In bagging, the decision trees depend on trees, which are created from a differ-
ent bootstrap sample of the training dataset. A bootstrap sample is a sample of
the training dataset with replacement, i.e., each sample may appear more than
once in the sample. In details, let S be the training set containing m samples,
the bagging procedure will initially realize B replicated datasets extracting by
uniform sampling with replacement of m′ samples from the entire dataset S. In
each dataset Si with i ∈ {1, 2, . . . , B} will therefore be possible to find samples
of S repeated several times, while some may not be selected at all. The replicated
datasets permit to train of decision trees, which will then make up the Random
Forest so that each tree will only see different portions of the original dataset
during training. This bagging approach is combined with the random selection
of features, that uses only different random subsets of the entire feature space
to train each tree in the random forest. This means that some features used to
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train a single tree may not be used to train other trees belonging to the forest.
Typically, for a classification problem with p features,

√
p features are used in

each split.
The Random Forest classifier has several hyper-parameters that can be tuned:

– number of decision trees inside the forest
– maximum depth of each decision tree
– minimal impurity of a node for it to be converted into a leaf
– maximum number of attributes used per tree training
– minimal impurity decrease of resulting subdatasets for a node to be created

3 Experiments

3.1 Dataset

The Protein–Protein Docking Benchmark 5.0 (DB5) [25], the standard bench-
mark dataset for assessing docking and interface prediction methods, is the
dataset in this work. The benchmark consists of 230 non-redundant, high-quality
structures of protein-protein complexes, selected from the Protein Data Bank
(PDB). PDB organizes the complexes according to the functional eight differ-
ent classes: Antibody-Antigen (A), Antigen- Bound Antibody (AB), Enzyme-
Inhibitor (EI), Enzyme-Substrate (ES), Enzyme complex with a regulatory or
accessory chain, Others, G-protein containing (OG), Others, Receptor contain-
ing (OR), and Others, miscellaneous (OX). This study considers only complexes
of classes A and AB. For each class, we separated the receptor proteins from
the ligand ones. To easily compare our approach with other methods in the lit-
erature, we split the data into training and test sets, as shown in Table 2 and
proposed in [6]. The residues of a given protein is labeled as part of the PPI
interface if they had at least one heavy (non-hydrogen) atom within 5Å from
any heavy atom of the other protein (the same threshold used in [6]).

Table 2. The table gives the PDB code and chain ID of each protein used in this study
(the PDB code in parentheses identifies the corresponding bound complex in the DB5
database).

Dataset Training set Test set

Ar 1AY1.HL (1BGX), 1BVL.BA (1BVK), 2FAT.HL
(2FD6), 2I24.N (2I25), 3EO0.AB (3EO1), 3G6A.LH
(3G6D), 3HMW.LH (3HMX), 3L7E.LH (3L5W),
3MXV.LH (3MXW), 3V6F.AB (3V6Z), 4GXV.HL
(4GXU)

1FGN.LH (1AHW), 1DQQ.CD (1DQJ),
1QBL.HL (1WEJ), 1GIG.LH (2VIS),
2VXU.HL (2VXT), 3RVT.CD (3RVW),
4G5Z.HL (4G6J)

Al 1TAQ.A (1BGX), 3LZT (1BVK), 1A43 (1E6J),
1YWH.A (2FD6), 1IK0.A (3G6D), 1F45.AB
(3HMX), 3M1N.A (3MXW), 3F5V.A (3RVW),
3KXS.F (3V6Z), 1DOL.A (4DN4), 4I1B.A (4G6J),
1RUZ.HIJKLM (4GXU)

1TFH.A (1AHW), 1HRC (1WEJ), 2VIU.ACE
(2VIS), 1J0S.A (2VXT), 1QM1.A (2W9E),
1TGJ.AB (3EO1), 3F74.A (3EOA),
2FK0.ABCDEF (4FQI)

ABr 1BJ1.HL (1BJ1), 1FSK.BC (1FSK), 1I9R.HL
(1I9R), 1K4C.AB (1K4C), 1KXQ.H (1KXQ),
2JEL.HL (2JEL), 1QFW.HL (9QFW)

1IQD.AB (1IQD), 1NCA.HL (1NCA),
1NSN.HL (1NSN), 1QFW.IM (1QFW),
2HMI.CD (2HMI)

ABl 2VPF.GH (1BJ1), 1BV1 (1FSK), 1D7P.M (1IQD),
7NN9 (1NCA), 1HRP.AB (1QFW), 1S6P.AB
(2HMI), 1POH (2JEL)

1ALY.ABC (1I9R), 1JVM.ABCD (1K4C),
1PPI (1KXQ), 1KDC (1NSN)
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3.2 Implementation and Results

In our work, we use a Python implementation of the Random Forest [4] classi-
fier provided by 0.22.2 version of scikit-learn package [15]. The scheme of our
approach is shown in Fig. 1, while the code used in this manuscript are available
from the corresponding author upon reasonable request.

Input Data Definition 
Dataset Samples

Features

Dataset Imbalance
Reducing

Classification

Fig. 1. The scheme of our approach

The first step in creating the dataset samples is to identify the interaction
residues. Considering the PDB files of the protein-protein complexes taken from
DB5 as an input, the tool extracts the sequence and the interaction residues
taking advantage of Biopython package. The second step of the dataset samples
creation is the identification of the number of residues to build the sliding win-
dows. To carry out this calculation, only the windows with the central residue
classified as interacting (label equal to 1) were considered. In the case of windows
with the interacting central residues less than �N

2 � residues away from the edge
of the chain, to keep the size of the windows fixed, a padding of 0 was used to
cover the positions that would have been cut. To find the best value of N that
minimizes the Eq. 1, a range of possible values from 3 to 71 with a step of 2
were tested. The results of this analysis of classes A and AB are in Figs. 2 and 3.
Therefore, the dataset entries are windows composed of 28 residues for Al class,
14 residues for Ar class, 28 residues for ABl class, and 22 residues for ABr class.
In the entries definition, we need to introduce some padded residues when we
consider the first and N −1 last amino acids. The padded residues are conceived
as fictitious elements equipped with unnatural features. In particular, these val-
ues were obtained by increasing the maximum possible value of considered index
of HIQ8 set increased by 1.

The tool reduces the dataset imbalance by a random subsampling method.
In particular, it uses the RandomUnderSampler algorithm of Imbalanced-learn,
an open source library relying on scikit-learn, obtaining a ratio of 60-40 of the
number of samples in the “Interface” (minority) class over the number of samples
in the “No-Interface” (majority) class after resampling. Finally, we tune the
hyper-parameters of the Random Forest Algorithm, which is implemented with
RandomForestClassifier from the sklearn-ensemble package of version 0.22.2 of
Scikit-Learn.

Among the available hyper-parameters, we tune
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Fig. 2. Normalized Entropy difference for different windows sizes for ligands (left) and
receptors (right) of class A

Fig. 3. Normalized Entropy difference for different windows sizes for ligands (left) and
receptors (right) of class AB

– the number of decision trees in the forest, n estimators (tested value: 30)
– the criterion used to evaluate the imputiry of a split, criterion (tested Value:

“gini”, “entropy”)
– the maximum depth of each tree, max features (tested values: 2i, for i ∈

{2, . . . , 6})
– the maximum number of features that can be used to create a splitting rule

(tested values: “sqrt”, “log2”)
For example for a total of n features when “sqrt” is used for this parameter
only

√
n features are considered when performing each split

– the minimum number of samples in a leaf to consider further splitting (tested
Values: 2i, for i ∈ {1, . . . , 6})

– the minimum number of samples required for a leaf (tested Values: 2i, for i ∈
{1, . . . , 6})

– bootstrap that indicates whether to use bootstrap when creating each tree
during the fitting phase (tested values: True, False)
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To search for the optimal combination of hyper-parameter values, the Ran-
domizedSearchCV function of the sklearn.model selection package from Scikit-
Learn was used. This method allows to tune hyper-parameters using randomly
selected combinations of values from the set provided as input while also fitting
the model using cross-validation. As a cross-validation technique, GroupKFold
function of the sklearn.model selection package from Scikit-Learn is used. The
scoring used to train Random Forest is F1 Weighted, derived from the following
formula of the F1 score:

F1 = 2 · precision · recall
precision + recall

F1 weighted computes the F1 score for each class separately, attributing a dif-
ferent weight based on the support, which is the number of true instances of
each label. This metric is chosen as it takes into account the dataset’s imbal-
ance, giving more importance to the minority class. Furthermore, this score is
a more expressive indicator of the classifier’s real prediction capabilities com-
pared to other metrics commonly used such as AU ROC, as it highlights the
model’s ability to effectively predict samples belonging to the “interface” class.
Table 3 illustrates the values selected for the hyper-parameters of the final model
of each class (Ar, Al, ABr, ABl) following Randomized Search using Group K
Fold Cross-Validation with K = 10 folds and F1 weighted as scoring function.

Table 3. Hyperparameters values chosen from Randomized Search for ligands and
receptors of classes A and AB

Hyperparameters Ar Al ABr ABl

n estimators 115 52 94 73

Criterion gini entropy gini entropy

Max features log2 log2 log2 log2

Max depth 16 16 8 4

Min samples split 4 32 8 4

Min samples leaf 2 8 2 4

Bootstrap False False True False

F1 score 0.918 0.626 0.825 0.632

We applied our framework on ligands and receptors of classes A and AB. The
performance results, evaluated in terms of AU-ROC, for the proposed method-
ology on the test set are presented in Tables 4 and 5.

The experiments were trained using 32 parallel threads on a HPC Server
with eight 12-Core Intel Xeon Gold 5118 CPUs @2.30 GHz and 1.5 TB RAM
running Fedora Linux 25.

Thanks to the appropriate division of molecules, we can compare our results
with the ones obtained in [6]. The proposed methodology was also compared with
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Table 4. Classification results (AU-ROC) on the test set for the proteins of class A of
DB5.

Receptors Ligands

Bound Unbound Bound Unbound

ProSps 0.962 0.962 0.615 0.615

Other Methods

GCN Method with Contact Map 0.953 0.952 0.737 0.760

GCN Method with Hierarchical
Representation 10

0.963 0.962 0.729 0.755

Daberdaku et al. 0.954 0.942 0.589 0.595

SPPIDER 0.773 0.754 0.630 0.575

NPS-HomPPI 0.796 0.780 0.610 0.626

PrISE 0.770 0.758 0.622 0.569

Table 5. Classification results (AU-ROC) on the test set for the proteins of class AB
of DB5.

Receptors Ligands

Bound Unbound Bound Unbound

ProSps 0.841 0.841 0.702 0.702

Other Methods

GCN Method with Contact Map Å 0.904 0.899 0.711 0.778

GCN Method with
Hierarchical Representation

0.905 0.903 0.749 0.800

Daberdaku et al. 0.813 0.840 0.599 0.729

SPPIDER 0.757 0.783 0.573 0.556

NPS-HomPPI 0.701 0.698 0.675 0.713

PrISE 0.776 0.789 0.683 0.649

two state-of-the-art homology-based PPI interface prediction algorithms: NPS-
HomPPI [26] and PrISE [11], and with the well-known structure-based approach
SPPIDER [16,17]. The results obtained with ProSPs and evaluated in terms of
the AU-ROC on ligands and receptors of A and AB classes outperform HomPPI,
a competitor predictors sequence-based, except for ligand of AB class. Moreover,
they are comparable with the other results obtained with approaches based on
the on three- dimensional structure (GCN Method with Contact Map, GCN
Method with Hierarchical Representation, Daberdaku et al., SPIDER, PrISE).

4 Conclusions and Future Work

In this work, we have faced the protein interfaces prediction considering frag-
ments of the amino acid sequence. We have proposed ProSPs, a method based
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on the sliding windows approach and the Random Forest technique as a residue
classifier. Such a method considers the minimum difference of normalized entropy
to select the length of the sliding windows. Such a sliding windows approach is
a fundamental aspect when only parts of proteins are known since it allows
us to consider only fragments of the amino acid sequence. We tested the
ProSPs on two classes of proteins, Antibody-Antigen and Antigen-Bound Anti-
body, extracted from the Protein-Protein Docking Benchmark 5.0. The obtained
results evaluated in terms of the AU-ROC on these classes outperform HomPPI,
a sequence-based competitor. They are comparable with the ones based on three-
dimensional structure (GCN Method with Contact Map, GCN Method with
Hierarchical Representation, Daberdaku et al., SPIDER, PrISE). As future work,
we plan to apply our framework to all classes of DB5. Moreover, we intend to
investigate the role of the length of the sliding windows. Therefore, we want to
consider other methods to determine the number. Feature selection is another
fundamental aspect to investigate since it represents a crucial step to repre-
sent the data. Moreover, our approach achieves better classification results for
receptors than ligands, so we plan to evaluate different sets of features for the
various protein classes. Motivated by the obtained results, we intend to extend
the framework for predicting interacting sites in Protein-RNA interaction com-
plexes. Moreover, we want also to consider the whole 3D structure of proteins
considering structural features, such as the protein secondary structure by fur-
ther exploring the RNA-based methodology introduced in [18,20,21].
Funding. MQ is supported by the “GNCS - INdAM”. CF has been partially
supported by the University of Padua project BIRD189710/18 “Reliable identi-
fication of the PPI interface in multiunit protein complexes”.
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