
Advances in modelling x-ray absorption spectroscopy 
data using Reverse Monte Carlo

Journal: Physical Chemistry Chemical Physics

Manuscript ID CP-ART-12-2021-005525.R1

Article Type: Paper

Date Submitted by the 
Author: 02-Feb-2022

Complete List of Authors: Di Cicco, Andrea; Università di Camerino, Physics Division, School of 
Science and Technology
Iesari, Fabio; Aichi Synchrotron

 

Physical Chemistry Chemical Physics



Advances in modelling x-ray absorption spectroscopy
data using Reverse Monte Carlo†

Andrea Di Cicco∗a and Fabio Iesarib‡

Modern extended x-ray absorption fine structure (EXAFS) analysis is based on multiple-scattering
calculations. Those calculations are carried out for fixed atomic configurations and proper account
of the thermal and static disorder, corresponding to well-defined pair and higher-order distribution
functions, can be carried out using different methods. The application of the Reverse Monte Carlo
(RMC) method is able to provide tridimensional models of the atomic structure compatible with
a given set of experimental data, producing useful and consistent structural models. This method
has been proposed and applied also to EXAFS data by several authors in the last 25 years and has
been fully implemented in the framework of the RMC-GnXAS method for EXAFS data-analysis.
Here we present the extension and application of this method to multiple-edge studies of molecules,
crystalline solids and liquids, including the long-range constraints provided by other techniques (e.g.
diffraction). The potential and possible weaknesses of the RMC method are discussed, as well as the
importance of accounting for the effect of noise levels in XAFS data. Results of RMC refinements
are reported for several exemplary cases including Br2 and GeI4 molecular gases, crystalline Ge and
AgBr, amorphous Ge and liquid AgBr. Those applications show the general interest for this method,
and the importance of combining multiple set of data for improving the accuracy of the structural
refinement both at short and long range.

1 Introduction
Modern XAS (X-ray Absorption Spectroscopy) analysis is based
on the comparison of experimental data with accurate multiple-
scattering calculations1,2. Those calculations are carried out for
fixed atomic configurations and proper account of the thermal
and static disorder is usually performed using model distribution
functions composed of several distinct peaks (“peak-fitting” ap-
proach).1–3 The standard XAS structural refinement is then based
in refining the short-range distribution functions as a sum of indi-
vidual peaks associated with well-defined bonding distances cor-
responding to first and further neighbors for the pair (g2) and
higher-order (gn, n > 2) distribution functions,3 an approach eas-
ily justified for molecules and ordered condensed matter. De-
pending on the particular shape of the peak functions (Gaussian
for example) selected structural parameters can be optimized for
a given set of experimental data, e.g. average distance R, vari-
ance σ2

R (mean-square relative displacement), coordination num-
ber N, using different refinement techniques. This “peak-fitting”

a Physics Division, School of Science and Technology, Camerino University, 62032
Camerino (MC) Italy. E-mail: andrea.dicicco@unicam.it
b Aichi Synchrotron Radiation Center, 489-0965 Seto, Aichi, Japan. E-mail:
fabio.iesari@aichisr.jp
‡ These authors contributed equally to this work.

approach has proven to be very powerful reducing the struc-
tural problem to the derivation of a limited number of unknowns.
However, the problem of defining suitable model functions still
holds also in simple crystalline cases. Gaussian shapes correspond
to harmonic vibrations in solids, but visible deviations have been
observed and studied even at moderate temperatures, resulting
in asymmetric peaks of the radial distribution. Cumulant expan-
sion models were introduced in early times (see4–6) to account
for moderate disorder. The use of analytical non-Gaussian func-
tions modelling the g(r) peaks was developed (see7,8 and refs.
therein) and proved to be successful for moderate and large devi-
ations from a Gaussian shape.

Among different XAS data-analysis methods, the GnXAS ab-
initio suite of programs has been designed to produce accurate
simulations of the γ(n) MS XAS n-body signals associated with
the n-body distribution functions gn describing the local structure
around selected photoabsorbing atoms.2,3 The accuracy of the
data-analysis was widely tested on several crystalline and molec-
ular cases, and the above-mentioned “peak-fitting” scheme has
been used also in highly disordered substances, such as amor-
phous or liquid matter9. In these systems, short-range peaks of
the n-body distribution functions are usually merged into a long-
range tail and a meaningful XAS data-analysis can be only car-
ried out using suitable physical constraints.10,11 The application
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of this methodology has been shown to be successful in describing
the short-range pair distribution function of “simple” elemental
melts, ionic binary liquids and aqueous solutions (see ref.10,12–16

and the review paper17).
The “peak-fitting” approach have obvious advantages being

particularly simple for routine applications in XAS data-analysis,
providing also directly robust estimates for important average
structural parameters. However, a consistent description of the
local structure in terms of the gn distribution functions in both
ordered and disordered systems rather requires the development
of realistic tridimensional models of the atomic structure.

We have recently developed a strategy to incorporate the ac-
curate simulations provided by the GnXAS suite of programs
within a Reverse Monte Carlo (RMC) scheme18,19 for XAS struc-
tural refinement. Applications of the RMC method for XAS data-
analysis were originally suggested by Gurman and McGreevy19,
and also applied by other researchers mainly to disordered sub-
stances20,21. More recently, a modified RMC approach using sim-
ulated annealing and wavelet transforms analysis was proposed
for crystalline systems22.

Our advanced suite of programs, called RMC-GnXAS,23–25 was
originally designed to apply the RMC algorithm for calculating
the XAS signal starting from ensembles of either molecular repli-
cas or box with cyclic boundary conditions. In the latter case,
the RMC refinement is applied both to XAS experimental data
and the g(r) curve obtained by diffraction techniques, so that
XAS data probe the local structure around photoabsorbing cen-
ters, while diffraction data provide the necessary medium and
long-range constraints. Several initial applications regarded liq-
uid systems under high temperature and/or high pressure condi-
tions23,24,26–28. In this manuscript, we present the extension and
application of the RMC-GnXAS approach to multiple-edge studies
of exemplary molecules, crystalline solids and disordered systems
(glasses and liquids), including also relativistic effects29 in the
multiple-scattering calculations. The potential and the possible
weaknesses of the RMC method are discussed, including a spe-
cific example of the effect of the experimental noise levels on the
derived distribution functions.

2 Background
In its original presentation, Reverse Monte Carlo is an "inverse"
modelling technique introduced by McGreevy and Pustzai18 as
an application of the Metropolis Monte Carlo (MMC) algorithm.
This application was conceived to produce a series of three-
dimensional structural models compatible with x-ray and neutron
scattering experimental data, but can be easily applied to other
experimental data. The basic idea of an iterative technique re-
constructing a model structure dates back to early attempts (see
for example30) but it became feasible and popular only with the
increasing availability of large computing resources.

In standard RMC methods31 we assume that the experimen-
tal data under consideration contain only statistical noise follow-
ing a normal distribution, so that the difference between exper-
imental (AE) and calculated (AC) structure factors for the ’real’
model of a given system will be a Gaussian random variable ei =

AE(qi)−AC(qi), where i runs over the experimental data points.

The original method was developed for diffraction data, but what
follows can be applied to any experimental technique for which
the calculated signal AC depends upon the atomic coordinates.
The total probability distribution is the product of the individual
Gaussian distributions for each point i. Modelling the structure
of the system requires the construction of a statistical ensemble
of atoms whose calculated signal AC satisfies the total probabil-
ity distribution. A simple calculation31 shows that that this is
obtained properly defining the variable χ2 = ∑

Nexp
i=1 [A

E
i −AC

i ]
2/σ2

i ,
where σi is the standard deviation of each data point i and Nexp is
the total number of data points. In this way, the total probability
function is found to be proportional to exp(−χ2/2) and it can be
immediately seen that χ2/2 plays the same role of U/kBT in the
classic Metropolis Monte Carlo procedure which generates atomic
configurations following the Boltzmann distributions of energies
for a given energy potential U and temperature T .

It is important here to stress the role played by the experimental
noise (standard deviations σi) that must be used to drive the RMC
refinement following the correct probability distribution. On the
other hand, interatomic potentials are not used for standard RMC
and very few assumptions on the structure are required. Of
course, the temperature of the measurements T is not explicitly
introduced in the refinement process (it acts obviously on the ex-
perimental data, collected at a given temperature). In principle
only number density and chemical composition are needed for
RMC modelling, although physical constraints are usually intro-
duced, as discussed in more detail in the original papers (see32

for a review) and in the following sections.
Having defined the correct random variable, the RMC refine-

ment proceeds similarly to a standard Metropolis Monte Carlo
procedure for which there is a common theoretical background.
An initial configuration, generated with or without periodic
boundary conditions (see next sections) is used to calculate the
signal AC to be compared with the experimental data AE . The
variable χ2

0 = ∑
Nexp
i=1 [A

E
i −AC

i ]
2/σ2

i is calculated for the initial struc-
ture. Then one atom is moved at random and again the variable
χ2

n = ∑
Nexp
i=1 [A

E
i −AC

i ]
2/σ2

i is calculated. The atom move is accepted
if χ2

n ≤ χ2
0 . If χ2

n > χ2
0 the move is accepted with probability

e−(χ
2
n−χ2

0 )/2 (rejected otherwise). The atom moves are repeated
until χ2 will oscillate around an equilibrium value, typically the
number of points when χ2 really represents a statistical χ2-like
random variable.

The resulting equilibrium atomic configurations are those con-
sistent with the experimental data under consideration, within
the experimental uncertainty. Independent configurations gen-
erated during the RMC procedure can be collected and used for
producing average quantities related to the structure evaluating
the fluctuations of a given model. Of course, the model struc-
ture can not be considered unique and we can only say that it
is compatible with the set of experimental data under considera-
tion. One of the main strengths of RMC is that it can be applied
formally to data of a variety of experimental techniques, provid-
ing different and more stringent constraints for determining the
structure of molecular, ordered and disordered condensed sys-
tems. Finally, the outcome is a set of three-dimensional structural
models for the investigated system on which a full statistical anal-
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ysis can performed to derive the pair distribution functions, the
distribution of bond angles and to identify specific local atomic
arrangements.

3 Methodology
In our current implementation of the RMC method it is possible
to refine not only the XAFS signals, but also partial or total pair
distribution functions, which can be obtained by x-ray/neutron
diffraction experiments or computer simulations. This feature is
used to provide a suitable constraint for the long-range order of
the system, since XAFS is mainly sensitive to the local structure
around the photo-absorber sites. Here we briefly review the work-
flow of the RMC-GnXAS program (for more information see24,33).

For creating the initial configuration two different strategies24

are used. The first standard choice consists in creating a box of
well-defined density with periodic boundary conditions, used for
bulk systems like solids and liquids. In this case, one can start
from a crystal unit cell, defining also the atomic density (which is
usually fixed), repeated in space to create a super-cell with a large
number of independent atomic sites. The second strategy consists
in creating many replicas of a given ensemble of atoms, without
introducing periodic boundary conditions. This second option is
very useful to describe isolated molecules or small nano-particles.
Structural quantities and signals are averaged over the different
replicas in order to reproduce the thermal disorder.

After constructing the initial configuration, the starting XAFS
signals and radial distribution functions are calculated. The initial
residual is therefore estimated, according to:

ξ
2 =

Ne

∑
n=1

Ni

∑
i=1

[χE
n (ki)−χC

n (ki)]
2

σ2
n,i

+ ∑
α,β

N j

∑
j=1

[gE
αβ

(r j)−gC
αβ

(r j)]
2

σ2
αβ , j

(1)

where the suffix E indicates the independent signals to be refined
and C the ones calculated from RMC coordinates. Ne is the num-
ber of n XAFS signals (here indicated as χn(ki) terms, not to be
confused with the χ2 function of the preceding section), Ni(n) is
the number of points for XAFS, α,β indicates element present
in system and N j(α,β ) is the number of points for each partial
distribution function gαβ (r). Alternatively, it is also possible to
use the total radial distribution function for RMC refinement. For
molecules or clusters (method of replicas) the density of the sys-
tem is not defined, so we use the number distribution function
(in place of the g(r)’s), giving directly the coordination number
by radial integration. The noise functions (σ2) are evaluated and
inserted in the quantity ξ 2 of Eq. (1), providing the correct es-
timate for the statistical χ2-like random variable for RMC refine-
ment as described in the preceding Section. The evaluation of the
noise function for radial distributions is usually carried out ac-
counting for pair statistics in the model. Typical fluctuations are
inversely proportional to the number of pair distances, so increas-
ing at short distances for constant radial mesh (see refs.33,34).

Having defined the terms in Eq. (1) the typical RMC iterative
algorithm then starts. One by one, each atom in the configura-
tion is moved randomly with a possible maximum displacement
and the new position is retained or discarded accordingly to the
Metropolis sampling. Additional constraints can be also intro-

duced: if the distance between two atoms become smaller than a
pre-defined minimum distance the move is rejected (hard-sphere
model), and for molecular cases a maximum distance can also
be imposed to avoid that the molecule breaks apart. After all
atoms have been moved (this is what we consider a RMC move),
the maximum distance displacement is increased or decreased de-
pending on the acceptance rate for the moves (decreased if less
than 50% of moves were accepted) and the process is then re-
peated. After some number of RMC moves, the residual reaches
a minimum value around which it will oscillate, indicating that
convergence to an equilibrium structure is reached. A series of
equilibrium configurations is then saved for structural analysis.

The indipendent signals χE
n (ki) and gE

αβ
(r j) contribute in the

same form to the two terms defining the residual function in Eq.
(1). The first term is related to the XAFS signals while the second
can include x-ray or neutron diffraction data using suitable radial
distribution retrieval schemes applied to the experimental struc-
ture factors. The pair distributions related to the second term can
be also obtained directly by MD or MC computer simulations. For
both terms the floating variables used in RMC refinements are the
atomic coordinates.

As also described in previous publications24,33,34, the practi-
cal implementation of the RMC-GnXAS refinement is carried out
using directly the raw XAFS signals χE

n (ki) obtained by a prelimi-
nary data-analysis performed using the fitheo program (GnXAS
suite) using a suitable structural model. The extraction of the
χE

n (ki) signals is done by a suitable modeling of the background
and normalization functions, as usual within the GnXAS fitting
procedures3 and is considered to be accurate for the successive
refinement purposes. Moreover, the pre-analysis provides also
estimates for the values of relevant XAFS non-structural param-
eters (amplitude reduction factor S2

0, difference between energy
scales of simulated and experimental data E0, experimental en-
ergy resolution). Those parameters are presently kept fixed in
the RMC-GnXAS refinement, limiting the floating variables to the
atomic coordinates which also define automatically the pair and
higher-order distributions. An extension of the present scheme
incorporating XAFS non-structural parameters (and background
modeling) is conceptually possible and technically feasible but the
present option is to treat the XAFS signals similarly to ND or XRD
data, for which only the final result of the extraction of the struc-
ture factor (and g(r)) are usually reported and employed in RMC.
In the present RMC-GnXAS applications to condensed systems we
have also opted to keep constant the density and cell parameters,
so that only the atomic fractional coordinates are used as floating
variables.

The typical size of the ensemble of atoms and the accuracy of
the structural parameters that can be obtained are important fea-
tures of the simulation process. Details on configuration sizes
and on the typical uncertainty on average structural quantities
in simple monoatomic systems have been given in ref.24. Typi-
cal configuration sizes are generally in the 103-104 range for the
number of atoms, whereas larger ensembles are not found to im-
prove the quality of the refinement on simple test cases. The un-
certainty on selected structural parameters (for example, a given
bond distance) can be evaluated looking at the fluctuations ob-
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served during the RMC procedure24. It must be stressed again
that the three dimensional structure produced by RMC is simply
a model consistent with the available data and constraints, and is
not unique. Other methods producing structural models equally
consistent with the available data and constraints are equally ac-
ceptable. Of course, increasing the number of experimental data
and constraints is likely to reduce the number of acceptable struc-
tural models. Therefore, the inclusion of multiple-edge XAFS data
and pair distribution constraints obtained by diffraction, for ex-
ample, is likely to produce more stable structural models for the
given substance under consideration.

Another interesting question is how much the energy extension
and the noise of the experimental XAFS data are affecting the
RMC structural refinement and the average structural quantities
of interest. The answer is basically related to the definition of the
χ2-like random variable for RMC refinement (see Eq. (1)) which
contains both noise functions and wave-vector extensions of the
experimental data. Clearly, higher levels of noise will correspond
to easier adjustments of the χ2-like function that in the limit of
infinite noise is of course insensitive to the particular model struc-
ture. Therefore, larger fluctuations for the atomic configurations
of the models will be expected for higher noise levels. An example
of the effect of an increasing noise in XAFS data of molecular Br2

is given in the next sections. The question about the energy ex-
tension is more subtle. Eq. (1) contains a simple summation over
the energy points indicating a more stringent constraint for the
structural model increasing the number of points (energy limit
for regularly spaced signals). However, there is a natural decay
in the amplitude and a typical frequency of the oscillating XAFS
signals so that the effect of the choice of a given energy (or wave
vector k) extension in XAFS may be system-dependent and need
more detailed studies35.

4 Examples of molecular systems

4.1 Gas-phase bromine

Gaseous bromine, Br2, is a simple diatomic molecule: being the
simplest system we can study, it is often used as benchmark case
for various tests. The Br K-edge XAFS signal is completely deter-
mined by the distribution of the molecular bond distances, con-
sisting in an approximately Gaussian peak centered at r = 2.289
Å and standard deviation σ2 = 0.0019 Å2 (see24 and references
therein). For the RMC refinements we used 2500 replicas for re-
producing the k-weighted XAFS signal, which was extracted from
the experimental data by a conventional XAFS peak-fitting proce-
dure using GnXAS. In this way we also obtained the values of the
non-structural parameters, which are not refined during the RMC
process: the energy difference between experimental and theo-
retical scale, E0−Ee = 2.0 eV, and the reduction factor S2

0 = 1.00.
Lower and upper limit to the Br-Br distance were imposed at 2.0
and 2.55 Å respectively. After few moves, the RMC simulation al-
ready converged and after reaching equilibrium we accumulated
1000 moves to calculate average quantities. The RMC calculated
signal and the corresponding number distribution n(r) are shown
in Fig. 1. The average distance and Debye-Waller like factor calcu-
lated from RMC coordinates are, respectively, R= 2.2889(2) Å and

σ2
R = 2.03(5) · 10−3 Å2, in agreement with previous results. The

deviations are calculated as maximum and minimum values be-
tween different RMC equilibrium configurations, therefore these
values represent the oscillations of the average quantities during
the RMC process. Of course, they account only for statistical fluc-
tuations and do not consider possible non-statistical (systematic)
errors possibly present in both experiments and MS calculations.
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Fig. 1 RMC refinement of gaseous Br2. On the left: experimental
Br K-edge XAFS signal (Exp., blue dots), calculated signal from RMC
coordinates (green line), and their difference (Res., red line). On the
right: number distribution function n(r) obtained from averaging over
1000 configurations, error bars indicates the standard deviations of the
average.

The obtained results on the average structure of molecular
bromine are in nice agreement with previous determinations.
However, we can use this simple case to investigate how the noise
on the experimental data affects the results of the RMC refine-
ment. Noise enters into the RMC procedure not only in the fluc-
tuations of the data under consideration, but also in the definition
of the residual (σ2 in Eq. (1)). A higher value of the noise pro-
duces lower values of the residual χ2-like function (ξ 2), which
implies a higher probability of accepting moves increasing the
residual function and therefore a more disordered structure. In
other words, as mentioned above, the role of the noise is equiv-
alent to the temperature factor kBT in Metropolis Monte Carlo
(MMC) method32.

In this test, we have gradually increased the noise present in
the original data. For the k-weighted XAFS signal under consider-
ation, noise has been estimated to be of the order of σ2 ' 10−6.
We have then added artificially increasing levels of random noise
(from ×2 to ×50 the original one) and run specific RMC refine-
ments for each of them. The RMC procedures were applied in
two different ways: the first case (a) is one where the noise σ2

i is
correctly estimated and inserted in Eq. (1); the second case (b)
in which we used the original values for the noise σ2

i (' 10−6)
independently of the actual level of noise included in the XAFS
data.

Figure 2 shows the XAFS data incorporating different levels of
noise, and the results of the analysis in the two different scenarios
(a) and (b). When the level of noise is still close to the original
one, the results are similar and close to the original data, but as
the noise increases two different behaviors occur. For case (a),
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the quality of the fit decreases strongly when the noise reaches
higher values (>10−5). The bond distance distribution appears
to be broadened, similarly, as stated before, to having defined an
increased formal "temperature". The peak position still remains
at the correct value indeed. This is to be expected if we think at
the extreme case where the noise is much greater than the sig-
nal: there should be nothing to fit and the distribution is flat,
being unsensitive to the XAFS data. For case (b) instead, the use
of an artificially lower noise, as compared to that applied to the
XAFS data, produces a better refinement of the noisy XAFS data,
being more stringent the condition related to Eq. (1). The pair
distribution in this case seems more stable but becomes progres-
sively skewed as compared to the original curve for high levels of
noise. What happens in this case is that the configuration freezes
around a minimum from which it hardly moves. We have also
tried a third approach, where the noise was slowly reduced to the
value of 10−6 during the RMC refinement (similar to a sort of an-
nealing process), but the final results were basically identical to
case (b). All the calculations started from the same starting con-
figuration, and we additionally tested that the final results do not
change if a different initial configuration were used.

It is difficult to clearly state which is the more advisable proce-
dure for reliable RMC refinements accounting for the noise, since
each method has its drawbacks. Using a correctly estimated noise,
as defined in the mathematical background of RMC exposed in
Sec. 2, we found results in agreement with the general rule of
RMC of finding the most disordered structure that reproduces the
data, but in the case of highly noisy data an artificially lower noise
may be a more clever strategy to obtain more realistic distribu-
tions. Although in this case, deviations from the correct structure
could occur. A manuscript with a more in-depth investigation and
discussion about this topic is in preparation by the authors35.

4.2 Gas-phase GeI4

As an example of multi-atomic molecule we consider gaseous
GeI4, a five atom molecule with tetrahedral (Td) symmetry. This
case was also examined in a previous article36. Here, we have
here repeated the calculations with a larger number of atoms,
using a total of 4000 replicas (20000 atoms). The gas-phase
molecule XAS spectra was measured at about T ' 553K at the I
K-edge. A standard peak-fitting procedure was carried out on the
data in order to extract the XAFS structural signal and obtain the
non-structural parameters, the energy shift E0−Ee = 5.8 eV and
S2

0 = 1.00. The data consisted in a total of NXAS = 743 points.

RMC refinements were carried using the extracted XAFS sig-
nal (collected at a temperature T=553 K) together with number
distributions obtained by electron diffraction data37, available at
T=350 K (∆r = 0.01 Å spacing, N=285 points). Additional con-
straints on closest and maximum distances were used to avoid
intra-molecular separations: for Ge-I atoms, 2.15 and 3.00 Å, for
I-I atoms, 3.20 and 4.85 Å, respectively. After an initial run to
reach convergence (achieved after 50 moves), the RMC refine-
ment was kept running for 1000 steps saving the coordinates ev-
ery 10 steps, for a total of 100 equilibrium configurations from
which we calculated the average quantities shown in Fig.3.

The refinement of the EXAFS signal is excellent as indicated
by the almost flat residual in Fig.3. The main contribution to
the XAFS signal comes from the two-body γ2 I-Ge contribution,
although I-I contributions are also important to reproduce oscil-
lations in the lower k region of the spectra as shown in Fig.3.
The three-body term I-Ge-I is almost negligible. The number den-
sity distribution obtained from RMC agrees well with the previous
one determined by ED, although the peaks are broader, due to the
higher temperature of the XAFS experiment. Average cumulants
for the distributions of the two peaks have been calculated from
atomic coordinates. For the Ge-I peak, the average distance is
R1 = 2.507(1) Å and the standard deviation σ2

1 = 5.13(4) · 10−3

Å2; while for the I-I peak, R2 = 4.084(1) Å and σ2
2 = 35.0(4) ·10−3

Å2. The bond-angle distribution centered on the Ge atoms (bot-
tom right of Fig. 3) shows a well-defined peak centered around
109.3◦, close to the ideal tetrahedral angle, with a standard devi-
ation of about 9.5 ◦.

Overall the results agree nicely with previously published
data36, confirming our previous finding that increasing the num-
ber of atoms does not improve the RMC refinement after reaching
sufficient accuracy24.

5 Examples of crystalline systems

5.1 Germanium

Germanium is an important semiconductor material with a wide
range of applications. Its crystal configuration at ambient condi-
tion is the diamond structure, where atoms form covalent bonds
with their 4 nearest neighbors in a typical tetrahedral configu-
ration corresponding to a bond-angle of about 109.47◦. Ge also
possesses a rich phase diagram upon increasing pressure, where
the tetrahedral structure is broken in favor of more dense and
metallic phases and meta-stable phases upon decompression38.

The c-Ge K-edge XAFS spectrum collected at room temperature
(experimental details can be found in ref.7) is mainly composed
by the two-body MS terms related to the first three coordination
shells (first three peaks of the radial distribution), while three-
body oscillations can be considered negligible. RMC simulations
can be used in this case to obtain information about the bond-
angle distribution also including contributions from long-distance
shells using suitable additional constraints, since the amplitude of
the XAFS signals decreases as 1/r2 and is also strongly damped by
thermal disorder.

A starting configuration of 1728 atoms was created by combin-
ing 6x6x6 unit cells of diamond Ge with a lattice parameter value
of 5.658 Å, in agreement with literature data at room temperature
(see7 and refs. therein). From the pre-analysis we also obtained
the non-structural parameters S2

0 = 0.8595 and E0−Ee =−0.5 eV.
The extracted XAFS signal consisted in a total of 600 points and
the estimated noise for the k2-weighted data estimated to be of
the order σ2 ' 10−4.

Before running the RMC simulation of XAFS data, an initial
refinement was run using a model pair distribution function. Po-
sition and area of the peaks were a consequence of distances and
coordination numbers related to the diamond crystal structure
with the given lattice parameter. The widths of the peaks are due
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Fig. 2 RMC refinement of Br2 data adding increasing levels of noise. On the left, the synthetic data and the RMC simulations are shown, where
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effect, but the peak becomes slightly distorted and skewed.
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k [Å−1]

I K-edge

n
(r
)

r [Å]
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Fig. 3 RMC refinement of gas-phase GeI4 XAFS data (T=553 K). On
the left: experimental I K-edge XAFS signal (Expt, blue dots), and cal-
culated signals from RMC coordinates showing the contributions of dif-
ferent atomic configurations (green lines I-I, I-Ge, and I-Ge-I, see text).
The almost flat residual is shown as a red line. Top right: number
distribution function n(r) obtained from averaging 100 RMC configura-
tions, compared with ED data (Ref.37). The broadening of the peaks
is assigned to the different temperature between the two experiments.
Bottom right: bond-angle distribution from the central Ge atom. The
main peak centered around 109◦ indicates a tetrahedral configuration.

to the correlated vibrations of the atoms (Debye-Waller-like fac-
tors σ2

R) for which we can find several different approximations
for increasing shell distances. In our case, we used values ob-
tained by DFT39 for the first three shells, σ2

R = 3.98,11.91,15.03
×10−3 Å2 respectively. The Debye-Waller-like of farther shells
were fixed to 18 ×10−3 Å2, corresponding to the limiting case
of uncorrelated vibrations. The RMC refinement using the result-
ing g(r) (∆r = 0.025 Å, N = 240 points) was carried out for 500
RMC moves, and the final configuration was used as the start-
ing configuration for the subsequent full RMC analysis. The noise
function for g(r) data was chosen to account for pair statistics (see
Sec. 3). The XAFS signals of crystalline Ge were calculated up to
a cut-off distance of 7.8 Å with a Gaussian smoothing of 0.3 Å. A
closest distance constraint was also imposed, so that atoms could
not become closer than 2 Å.

The results of the full RMC simulation are shown in Fig.4. We
can see that the XAFS signal is well reproduced, with some small
high-frequency oscillations in the residual and a feature in the
lower k-range, around 5 Å−1, that could be associated with an
additional multiple-electron excitation in the background.

The pair distribution function obtained by RMC agrees closely
to the model distribution previously mentioned, showing that
the latter one was a good approximation to the thermal disorder
present in crystalline Ge at room temperature. The first nearest-
neighbor distribution was found to show an average distance
R = 2.4502(4) Å and standard deviation σ2 = 3.26(2) · 10−3 Å, in
agreement with previous findings7. The bond-angle distribution
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Fig. 4 Results of the RMC refinement of room temperature crystalline
Ge. Upper panel: experimental K-edge XAFS signal (Expt, blue points)
compared with the result of the RMC simulation after convergence (RMC,
green line). The difference spectrum is also shown (Res., red line). Bot-
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RMC refinement (RMC) is compared with the model used also as a con-
straint. On the right, the bond-angle distribution of the nearest-neighbors
is shown, which shows a clear peak centered around 109◦.

of the first nearest-neighbors is also shown in Fig. 4, where we
observe a clear peak centered around 109.4◦ (tetrahedral angle),
with a standard deviation σ = 4.1.

In Fig. 5 we show the results of a RMC refinement using only
the XAFS experimental data. In this case, we have used only
the first sum in Eq. 1. As expected, the residual in this case
slightly improves, although some minor disagreements still re-
main. Looking at the pair distribution function obtained, we see
the appearance of small bumps around 2.9, 3.5 and 5.4 Å which
are not compatible with the diamond structure, which is found
to be very disordered at large distances. On the other hand, the
first peak is almost identical, because of the high sensitivity of
XAFS at short distances. This finding confirms that for crystalline
materials, whose average structure is known, the inclusion of a
model distribution (obtained by experiments or simulations) can
avoid the appearance of unphysical features related to the intrin-
sic sensitivity of XAFS to the local structure within a few Å around
photoabsorbing sites.

5.2 Silver Bromide
An interesting example of the application of RMC to a mul-
tiatomic condensed system is Silver Bromide (AgBr). Very good
multiple-edge XAFS data have been collected at the ESRF (BM29)
and analyzed several years ago8 using the peak-fitting technique
and showing that useful structural information can be obtained
both for crystalline and liquid phases. In particular, clear evidence

−2

−1

0

1

2

4 6 8 10 12 14 16

0
1
2
3
4
5
6
7
8

2 3 4 5 6 7 8

k
2
χ
(k
)
[Å
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Fig. 5 Results of the RMC refinement of room temperature crystalline Ge
using only XAFS data. Upper panel: experimental K-edge XAFS signal
(Expt, blue points) compared with the result of the RMC simulation
afterconvergence (RMC, green line). The difference spectrum is also
shown (Res., red line). Bottom panel: the pair distribution function
g(r) resulting from RMC refinement (RMC) is compared with the model
shown in the previous figure.

for an asymmetric distribution of the first-neighbor distances was
found in crystalline AgBr, and for an increasing skewness with
temperature. Moreover, the structure of liquid AgBr was stud-
ied by using proper constraints for the medium and long-range
correlations as described in refs.8,10,14,17.

As mentioned above, RMC XAFS data-analysis offers the possi-
bility of overcoming the peak-fitting technique producing realistic
models for the tridimensional structure, without the limitation of
a given functional form for the radial and higher-order distribu-
tion functions. This may be interesting for the AgBr case for which
we can put to a test particular features like the strong asymme-
try of the first-neighbour distribution in crystalline AgBr and the
shape of the radial distributions in liquid AgBr as shown in the
next sections.

The starting model for the RMC XAFS data-analysis of solid
AgBr has been a box containing 125 cubic unit cells (5x5x5) for
a total of 1000 atoms. The atomic positions have been initially
adjusted to model a realistic radial distribution function by RMC,
using the known density of solid AgBr at 303 K (lattice param-
eter a= 5.7745 Å corresponding to ∼ 0.04155 atoms/Å3) and
suitable estimates for the variances σ2

n of the peaks (n=1,2,3,..)
of the radial distribution function g(r) corresponding to specific
coordination shells (Ag-Ag, Ag-Br, Br-Br) in crystalline AgBr (see
right-hand panels of Figs. 6 and 7 as an example). For this inves-
tigation, evaluation of the variances (mean-square relative dis-
placements) associated with Ag-Ag, Ag-Br, and Br-Br distances
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crystalline model (cryst. mod., see text) used as a long-range constraint.

(shells) was carried out using a simple model for atomic vi-
brations. The known difference in Debye-Waller factors related
to Ag and Br positions40 and a simplified Keating dispersion
model41,42, within the Debye approximation43,44 (Debye tem-
perature θD ∼ 140 K), was used to model the increase of the
variances with distance, taking into account the results of pre-
vious XAFS investigations8 indicating precise values for the first-
neighbor distribution (R=2.893 Å, σ2

1 = 0.0285 Å2, skewness β1

= 0.67).

Subsequently, we have performed RMC refinements including
directly the XAFS data collected at both Br and Ag K-edges of
crystal AgBr at 303 K. The XAFS structural signals χ(k) were ex-
tracted for both edges using the GnXAS suite of programs and
used subsequently with a k2 weight (k2χ(k), 422 and 424 data
points for Br and Ag K-edge respectively). In this work we have
kept fixed the background and normalization functions as well
as the values of all the relevant non-structural parameters (Edge
energy, S2

0, experimental resolution) as described in a previous
work8. More details about the XAFS data-analysis of AgBr using
GnXAS can be found elsewhere8

Here we show the main results obtained by RMC XAFS refine-
ments either using a long-distance radial distribution constraint
provided by realistic g(r) models (Fig. 6) or without those con-
straints (Fig. 7).

The RMC refinements were carried out using rather standard

prescriptions regarding other constraints such as the density (kept
fixed to the initial value) and closest approach distance limits.
Choice of the closest approach distances is usually not obvious
and in this case they were inferred by the starting radial distri-
bution model (2.35 Å for AgBr and 3.4 Å for BrBr and AgAg dis-
tances). Shorter distances were not allowed in the final model.
An important factor in those multiple data-set RMC refinements
is the noise function to be used, that should reproduce the ac-
tual uncertainty of the data in order to mimic the χ2 statistical
function. The noise functions adopted for XAFS data correspond
to the statistical fluctuations of the data and were estimated by
a specific program (noise).33,34 When using the radial distribu-
tions as a further long-distance constraint, the noise function was
calibrated to account for pair statistics, so that the typical fluctu-
ations are inversely proportional to the number of pair distances
found in a given radial bin. For a constant radial mesh (in this
case points were equally spaced ∆r =0.01 Å), fluctuations are
obviously higher at short distances and the noise function is in-
versely proportional to r2 33,34. The global cut-off distance was set
to 9.8 Å while XAFS simulations were carried out using a smooth-
ing half-Gaussian window centered at Rwin =8.7 Å with standard
deviation ∆R= 0.3 Å (this is important to avoid truncation and
side effects at long distances). We verified that other choices of
these parameters in reasonable ranges (Rwin ∼ 5-9 Å and ∆R ∼
0.3-0.5 Å) do not affect final results.
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We have allowed a total of 104 RMC moves for each atom,
corresponding to a total of 107 refinement attempts, verify-
ing convergence to a given minimum.24 As the expected resid-
ual value corresponds to the number of data points, this turns
out to be different when including the radial distributions
(gBrBr,gAgBr,gAgAg each one 780 points). In the present RMC pro-
cedure, the expected residual value was 3186 when including the
medium/long-range constraint associated with the three partial
radial distributions and 846 when considering only the XAFS sig-
nals.

In Fig. 6 we report the results of the RMC refinement consider-
ing both the XAFS signals and the radial distribution constraints.
The agreement among RMC simulations and experimental XAFS
data is pretty good as shown in the left panels of Fig. 6 although
the residual curves indicate that there is still some unexplained
signal especially for the Br K-edge. The resulting partial and total
distribution functions, averaged over the last 2000 RMC moves
and shown in the right-hand panel of Fig. 6, indicate only small
intrinsic fluctuations and minor differences as compared to the
g(r) models. Due to the different vibrational amplitudes at Ag and
Br sites40, the peaks of the partial gAgAg distribution are broader
than those of the gBrBr one. The crystalline structure is obviously
retained.

In Fig. 7 we show the results of the RMC refinement carried

out only considering the XAFS signals reported in the left panels.
There is a visible slight improvement in the agreement obtained in
this unconstrained refinement, but we observe much larger fluc-
tuations (as compared to Fig. 6) in the reconstructed radial dis-
tributions reported in the right-hand panels of Fig. 7. Moreover,
the peaks of the gAgBr and gBrBrradial distributions (averaged over
the last 2000 RMC moves) are largely broadened departing also
for simple Gaussian profiles. The resulting distributions are not
compatible with previous data indicating different vibrational am-
plitudes for Ag and Br40 ions although the first-neighbor AgBr
peak (the only one strongly constrained by XAFS) is in agreement
with the constrained RMC refinement of Fig. 6 and with previous
investigations8. These results reflect naturally the short-range
nature of XAFS data, for which accurate information can be ob-
tained only for short distances, and the fact that RMC converge to
the most disordered structure (higher Entropy) compatible with
the given set of data under consideration.

6 Disordered systems

6.1 Amorphous Germanium

Another interesting application of RMC is the study of amorphous
and glassy materials. As explained in the introduction, this is par-
ticularly useful for the analysis of XAFS data, where the standard
peak-fitting procedure presents some limitations. Germanium,
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which we have shown in the previous section in the crystalline
phase, has also a glassy phase at ambient conditions, with a low-
density to high-density transition upon application of pressure45.
XAFS data of amorphous Ge (a-Ge) were collected at room tem-
perature7.
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Fig. 8 Result of RMC refinement for amorphous Ge at room temperature.
Top panel: experimental K-edge XAFS signal (Expt, blue points) and av-
erage signal obtained from RMC coordinates after convergence (RMC,
green line) using both XAS and XRD data. The difference spectrum is
also shown (Res., red line). Bottom panel: pair distribution function
g(r) obtained from RMC considering only XAFS data (RMC XAS, ma-
genta dashed-dotted line), or using both XAFS and XRD data (RMC
XAS+XRD, green solid line). The g(r) obtained by X-ray diffraction46

(XRD, dashed) is also shown.

For the initial configuration, we used 6x6x6 unit cell of dia-
mond structure with a lattice parameter a = 5.737 Å, in order to
reproduce the experimental value of the density for a-Ge (ρ =
0.04236 atoms/Å−3). An initial refinement was carried out using
only a pair distribution function obtained from X-ray diffraction
data46 as a constraint for a total of 104 steps, to make sure that
the initial crystal structure became completely amorphous. The
binning step for determining the g(r) is ∆r = 0.025 Å, resulting in
N = 240 data points. The last configuration obtained was used as
starting position for the RMC refinement including XAFS data.

RMC results for a-Ge are shown in Fig.8. The RMC simulation
was extended to 1500 RMC moves and convergence was achieved
after about 50 moves. The experimental XAFS signal consisted
of NXAS=658 points and was reproduced quite accurately. The
XAFS signal is described mainly by a single well-defined oscil-
lation, associated with first nearest-neighbors at an average dis-
tance R = 2.470(1) Å and bond variance σ2 = 5.1(1) ·10−3 Å2, cal-
culated directly from the RMC coordinates of the atoms in the
range 2.25−2.70 Å, and in close agreement with previously pub-
lished results7. The shape of the first g(r) peak is therefore mainly

determined by refining the XAFS data. This explains the differ-
ences observed in the first peak with the model obtained from
XRD, which is less sensitive to short-range ordering. At higher
distance instead, the pair distribution function follows closely the
XRD model, since EXAFS contributions are strongly damped (see
Fig.8, RMC XAS+XRD). In this way, we exploit the complemen-
tarity of the two techniques, because the XRD data probe the in-
termediate and long-range structure, while XAFS is more sensi-
tive to the short-range. In fact, without the additional constraint
of the pair distribution function, the resulting g(r) obtained by
RMC reported in Fig.8 (RMC XAS, lower panel) shows a practi-
cally featureless long-distance tail and is not reproducing at all
the existing XRD data. On the other hand, the XAFS data are
nicely reproduced with similar values for the first-neighbor distri-
bution (R = 2.472(2) Å and width σ2

R = 5.4(4) ·10−3 Å2).

6.2 Molten Silver Bromide

As anticipated in the previous sections, we have performed a
RMC-GnXAS refinement of multiple-edge XAFS data of liquid
AgBr. Previously, the structure of liquid AgBr was investigated by
XAFS8 using proper constraints for the medium and long-range
correlations as described in refs.10,14,17. Specific g(r) functions
obtained by neutron diffraction47 or molecular-dynamics simula-
tions48 were used for reproducing the structure beyond the first-
neighbor distribution. Low-noise XAFS data of liquid AgBr at 725
K were collected at the ESRF (BM29) and are here re-analyzed by
RMC-GnXAS using basically the same strategy illustrated above
for solid AgBr.

The starting model for the RMC-GnXAS data-analysis of liquid
AgBr has been again a box containing 125 cubic unit cells (5x5x5)
for a total of 1000 atoms. The atomic positions have been initially
adjusted using a specific RMC procedure applied only to given ra-
dial distribution functions, in this case taken from ref.48 using the
known atomic density for the liquid phase at 725 K (ρ ∼ 0.0354
atoms/Å3). This initial procedure introduces the necessary spread
in atomic positions for a typically highly disordered phase facili-
tating the successive refinement using XAFS data. We have then
performed RMC refinements including directly the XAFS data of
liquid AgBr collected at both Br and Ag K-edges. The XAFS struc-
tural signals χ(k) were extracted for both edges using the GnXAS
suite of programs and used subsequently with a k1 weight (kχ(k),
456 and 438 data points for Br and Ag K-edge respectively). Simi-
larly to the case of solid AgBr, we have used the same background
and normalization functions, as well as the values of all the rel-
evant non-structural parameters (Edge energy, S2

0, experimental
resolution), as reported in a previous work8.

The RMC-GnXAS refinements were carried out using typical
constraints such as the given atomic density and closest approach
distance limits. The closest approach distances were chosen to be
2.05 Å for AgBr and 2.4 Å for BrBr and AgAg distances, allowing
rather short distances as expected in this liquid ionic system. The
noise functions adopted for XAFS data were estimated to repro-
duce the statistical fluctuations of the data as in previous cases.
The noise function applied to the model radial distribution func-
tions was calibrated as usual to account for pair statistics.33,34.
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Fig. 9 Results of the RMC-GnXAS refinement of the double-edge XAFS spectra of liquid AgBr at 725 K using the partial pair distributions obtained by
previous MD simulations as long-range constraints. Left figures: Br and Ag K-edge experimental data (Expt) are compared with the RMC simulation
in the upper and bottom panels respectively. The excellent agreement between XAFS and RMC simulations can be appreciated by the differences
(Res) reported as dotted curves. Right-hand panels: from top to bottom the averaged RMC total and partials (gAgAg,gAgBr, gBrBr) pair distributions are
reported (RMC aver.). The estimated standard deviation (st. dev.) and the observed fluctuations of the partial radial distributions (fluct.) are also
reported. The partial distributions are in agreement with the MD simulations (model, see text) only for long-range correlations. Important deviations
are visible for the short and medium range distributions.

In this specific application, we have used a constant radial mesh
(in this case points were equally spaced ∆r =0.02 Å). The global
cut-off distance was set to 9.65 Åwhile XAFS simulations were
carried out using a smoothing half-Gaussian window centered at
8.5 Åwith standard deviation 0.4 Å.

We have allowed a total of 104 RMC moves for each atom, cor-
responding to a total of 107 refinement attempts, verifying con-
vergence to a given minimum.24 The expected residual value cor-
respond to the total number of data points (2040) including the
radial distributions (gBrBr,gAgBr,gAgAg total of 1146 points).

In Fig. 9 we report the results of the present RMC-GnXAS re-
finement of liquid AgBr. The agreement between RMC simula-
tions and experimental XAFS data is rather spectacular as shown
in the left panels of Fig. 9 where the residual curves are sub-
stantially dominated by statistical noise. The RMC residual has
been found to converge near to the expected value quite rapidly,
typically within 100 RMC moves (105 atom moves) over the total
of 10000 of the entire run. The resulting partial and total dis-
tribution functions, averaged over the last 2000 RMC moves and
shown in the right-hand panel of Fig. 9, indicate small intrinsic
fluctuations with the possible exception of the short-range side of
the gAgAg distribution.

The results obtained here nicely reproduce those obtained for
the shape of the short-range gAgBr peak using the more standard
peak-fitting technique reported in ref.8. The first-neighbor Ag-Br

distribution results to be narrower than the current models for the
liquid structure based on neutron diffraction47 and molecular-
dynamics calculations48,49 as also previously noted. The shape
of the first Ag-Br peak is determined very accurately as shown
by the small fluctuations reported in the right-hand panel of Fig.
9 and reflects the exceptional short-range XAFS sensitivity. On
the other hand, larger fluctuations are observed for the gAgAg and
gBrBr functions, as a consequence of the decreased sensitivity at
medium and large distances.

Presence of Ag-Ag and Br-Br distances in the short-range side
below 4 Å confirms the occurrence of an almost structureless and
broad distribution that can be typical of these ionic liquids. The
long range structure found in this RMC refinement is compatible
with the structural model used here48 while larger deviations are
observed at intermediate distances.

Generally speaking, the results obtained here confirm that the
current MD models (see for example refs.48,49) for the first-
neighbor Ag-Br distribution are broader and clearly shifted to-
ward shorter distances, indicating the need of developing more
accurate models for the interaction potential, particularly for the
short-range repulsive part. The same holds for the results of neu-
tron diffraction experiments, also analyzed using RMC, providing
accurate information on medium-range order, but less precise at
short distances8,14.
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7 Conclusions
In this work, we have presented a detailed account of the appli-
cation of the Reverse Monte Carlo refinement methods for XAFS
structural refinements in exemplary molecular and condensed
systems. The method used is an application of the original RMC
technique based rigorously on the Metropolis Monte Carlo algo-
rithm, using XAFS calculations performed by the advanced RMC-
GnXAS programs. This approach has been used for multiple-edge
studies of molecules, crystalline solids as well as glasses and liq-
uids, including the long-range constraints provided by other tech-
niques (e.g. diffraction). The RMC-GnXAS method has been
developed to consider naturally a combination of experimental
XAFS data and model pair distribution functions, including di-
rectly the noise of the experimental data in the random variable
to be minimized in the Monte Carlo iterative process.

The detailed usage, potential and possible weaknesses of the
RMC method are discussed looking also at specific exemplary ap-
plications like gaseous Br2 and GeI4, crystalline Ge and AgBr, as
well as amorphous Ge and liquid AgBr. A specific study on the
effect of noise levels in XAFS data on the derived distribution
functions is presented for gaseous Br2, showing how the accu-
racy of structural results depend on accounting data fluctuations.
The importance of the long-range constraints in RMC refinement
of XAFS data is also discussed in this work with specific exam-
ples. The lack of these constraints results in largely disordered
structures for distances beyond the first coordination shells, in
agreement with the short-range nature of the XAFS technique.

The method and applications reported in this work highlight
the general interest of the RMC technique applied to XAFS data
within the RMC-GnXAS scheme, and the importance of combining
multiple set of data for improving the accuracy of the structural
refinements both at short and long range.
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