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Abstract
We propose Robustness Temporal Logic (RobTL), a novel temporal logic for the specification and
analysis of distances between the behaviours of Cyber-Physical Systems (CPS) over a finite time
horizon. RobTL specifications allow us to measure the differences in the behaviours of systems with
respect to various objectives and temporal constraints, and to study how those differences evolve in
time. Specifically, the unique features of RobTL allow us to specify robustness properties of CPS
against uncertainty and perturbations. As an example, we use RobTL to analyse the robustness of
an engine system that is subject to attacks aimed at inflicting overstress of equipment.

2012 ACM Subject Classification Theory of computation → Verification by model checking; Theory
of computation → Modal and temporal logics

Keywords and phrases Cyber-physical systems, robustness, temporal logic, uncertainty

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.15

Supplementary Material Software: https://github.com/quasylab/jspear/tree/working [9]
archived at swh:1:dir:ddfb418d5a080b8e83323a1b2c38d9f7065e2554

Funding Simone Tini: This study received funding from the European Union – Next-GenerationEU
– National Recovery and Resilience Plan (NRRP) – MISSION 4 COMPONENT 2, INVESTMENT
N. 1.1, CALL PRIN 2022 D.D. 104 02-02-2022 – MEDICA Project, CUP N. J53D23007180006.
This publication is part of the project NODES which has received funding from the MUR – M4C2
1.5 of PNRR with grant agreement no. ECS00000036.

1 Introduction

When systems are subject to uncertainty and perturbations, like Cyber-Physical Systems
(CPS) [35] in which software components, or agents, must interact with an unpredictable
environment, it is crucial to provide some guarantees on their robustness. This is the ability
of a system to function correctly even in presence of uncontrollable events affecting its
behaviour, as, e.g., unexpected physical phenomena, failures, or cyber-physical attacks.

In the literature, we can find a wealth of proposals of robustness properties, that differ
in the underlying model (including how uncertainty is modelled), in the formalisation, or
in whether they are designed to analyse a specific feature of the behaviour of systems. We
refer to [24, 38, 40, 43] for an overview of these notions. Although it seems natural to us that
different application contexts call for different formalisations of robustness, the downside of
this variety is the lack of a general tool for the verification of robustness properties.

In this paper we provide a formal framework for the verification of robustness properties
of CPS. In this setting, robustness is usually formalised as a measure of the capability of
agents to tolerate perturbations in the environmental conditions and still fulfil their tasks.
This boils down to quantifying the differences between the behaviour of the system with its
behaviour under the effect of perturbations, possibly at different moments in time. Intuitively,
the system is robust if whenever the two behaviours are initially at a bounded distance, then
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15:2 RobTL: Robustness Temporal Logic for CPS

their distance after a given amount of time should always be smaller than a given threshold.
This means that whenever we require a CPS to be robust against perturbations, we are
actually specifying a property on the evolution in time of distances between behaviours.

Hence, a formal framework for the specification of similar properties should include:
A model for the specification of the behaviour of CPS.
A mechanism for the specification of the effects of perturbations on their behaviour.
A mechanism to define distances between the behaviours of CPS.
A temporal logic for the specification of properties on the evolution of those distances.

We adopt the model from the literature: the evolution sequence model introduced in [10,11].
The two mechanisms and the logic are introduced in this paper.

The evolution sequence model. The evolution sequence model follows a discrete-time,
data-driven approach: the behaviour of the system is modelled in terms of the modifications
that the interaction of the agents with the environment induces on a set of application-
relevant data, called data state. Due to the unpredictability of the environment and potential
approximations in the specification of agents, those modifications are modelled as continuous
distributions on the attainable data states. The evolution sequence of a system is then defined
as the sequence of the distributions over data states that are obtained at each time step.

The reason why we chose this model over classical and more established ones, like
Labelled Markov Chains and Stochastic Hybrid Systems [7, 27], is purely technical. The
most prominent consequence of the design choices in this model is that the behaviour of the
system is not given by a set of traces/trajectories, but by the combination of their effects. In
other words, an evolution sequence is the discrete-time version of the cylinder of all possible
trajectories of the system. This means that a property of an evolution sequence takes into
account the outcomes of all possible observations, at a given time step, on the system. This
is fundamental in the verification of robustness, since even the slightest modification induced
by uncertainty on behaviour is taken into account.

Robustness Temporal Logic. We introduce Robustness Temporal Logic (RobTL) that allows
us to compare distances between nominal and perturbed evolution sequences over a finite
time horizon, by also providing the means to specify the perturbations and the distances.
Specifically, RobTL offers:

A class of distance expressions for the definition of arbitrary distances between evolution
sequences. This freedom allows us to compare systems with respect to different aspects
of behaviour in time, as well as to combine distances having different formulations.
A class of perturbations for the definition of the effects of unpredictable events on the
behaviour of the system.
Atomic propositions ∆(exp, p) ▷◁ η to evaluate, at a given time step, the distance, specified
by a distance expression exp, between a given evolution sequence and its perturbed version,
obtained by some perturbation p, and to compare it with the threshold η.
Classical Boolean and temporal operators for the analysis of the evolution of the specified
distances over a finite time horizon.

We provide a statistical model checking algorithm for the verification of RobTL specifications.
As our algorithms are based on statistical inference, we need to account for the statistical
error when checking formulae. Hence, we also propose a three-valued semantics for RobTL,
in which the truth value unknown suggests that the parameters in the property need some
tuning, or that a larger number of samples is needed to obtain a precise evaluation of the
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distances. To showcase its features, we apply our framework to the analysis of a case-study
from Industrial Control Systems: an engine system that is subject to cyber-physical attacks
aimed at inflicting overstress of equipment [25].

All the algorithms and examples have been implemented in the tool Stark [12, 14].

Why a new logic? RobTL is the only existing temporal logic expressing properties of
distances between systems behaviours. Usually, even in logic equipped with a real-valued
semantics, the behaviour of a single given system is compared to the desired property.
Conversely, in RobTL the behaviours of two systems are taken into account. More precisely,
we distinguish three approaches to the specification of properties in the quantitative setting:

Specification of properties over a single trajectory of the system. This is the classic
approach of PCTL, probabilistic LTL, and their variants [4, 30,39].
Specification of properties across the trajectories of the system. This is the hyper-
property [15] approach of, e.g., HyperPCTL [2] or HPSTL [3], where one can express
quantitative dependencies, in the form of bounds on probabilistic weights, between
different independent trajectories of the system.
Specification of properties based on the comparison of all possible trajectories of two
different systems. This is the approach of RobTL, where one system is the perturbed
version of the other. This feature also distinguishes our approach to robustness from
classical ones, like those in [18,22]. Our properties are based on the comparison of the
evolution sequences of two different systems, whereas [18, 22] compare a single trajectory
of a single system with the set of the behaviours that satisfy a given property, which is
specified by means of a formula expressed in a suitable temporal logic, like, e.g., STL.

2 The Evolution Sequence Model

We recall the main elements of the evolution sequence model [11]. Systems consist of a
set of agents and an environment, whose interaction produces changes on a data space D,
containing the values assumed by variables, from a finite set Var, representing:

(i) physical quantities,
(ii) sensors,
(iii) actuators, and
(iv) internal variables of agents.
For each x ∈ Var, the domain Dx ⊆ R is either finite, or a compact subset of R (and thus
Polish), and equipped with the Borel σ-algebra Bx. Then D =×x∈VarDx and we equip it
with the product σ-algebra BD =

⊗
x∈Var Bx [6]. Let Π(D,BD) be the set of distributions

over (D,BD).
We call data state the current state of the data space, and represent it by a mapping

d : Var→ R, with d(x) ∈ Dx for all x ∈ Var. At each step, the agents and the environment
induce some changes on the data state, providing a new data state at the next step. Those
modifications are also subject to the presence of uncertainties, meaning that it is not always
possible to determine exactly the values assumed by the data at the next step. Hence, we
model the changes induced at each step as a distribution on the attainable data states. The
behaviour of the system is then expressed by its evolution sequence, i.e., the sequence of
distributions over the data states obtained at each step.

In this paper we do not focus on how evolution sequences are generated. In [11, Prop. 3.15]
it was proved that the function defining the combined behaviour of the agents and the
environment, specified according to the framework, is a Markov kernel. Hence, we simply
assume a Markov kernel step : D → Π(D,BD) governing the evolution of the system, and define
the evolution sequence as the Markov process generated by step (Definition 1): step(d)(D)

CONCUR 2024



15:4 RobTL: Robustness Temporal Logic for CPS

expresses the probability to reach a data state in D from d in one computation step. Indeed,
each system is characterised by a particular function step starting from an initial distribution
over D. For instance, for the engine system of our case study (presented below), the initial
distribution is a Dirac distribution over a chosen data state, and function step is obtained by
combining the effects of the agents in Figure 1c and the environment in Figure 1d.

▶ Definition 1. Let step : D → Π(D,BD) be the Markov kernel generating the behaviour of a
system s having µ as initial distribution. The evolution sequence of s is a countable sequence
Sµ = S0

µ,S1
µ, . . . of distributions in Π(D,BD) such that, for all D ∈ BD:

S0
µ(D) = µ(D) and Si+1

µ (D) =
∫

D
step(d)(D) dSi

µ(d).

▶ Remark 2. We shall write S,S1 in place of, respectively, Sµ,Sµ1 , whenever the formalisation
of the initial distributions µ, µ1 does not play a direct role in the discussion.

Case study: the engine system. As a running example, we consider a refrigerated engine
system [31], sketched in Figure 1. There is one agent with three tasks:

(i) regulate the speed,
(ii) maintain the temperature within a specific range by means of a cooling system, and
(iii) detect anomalies.
The first two tasks are on charge of a controller, the other is took over by an intrusion
detection system, henceforth IDS. Figure 1a shows that these two components use channels
to exchange information and to communicate with other agents. The variables used in the
system, and their role, are listed in Figure 1b. Variable stress quantifies the level of equipment
stress, which increases when the temperature stays too often above the threshold 100: the
higher the stress, the higher the probability of a wreckage. The agent and the environment
acting on these data have been specified in Stark, and are reported in Figure 1c and 1d,
respectively. At each scan cycle the controller sets internal variables and actuators according
to the values received from sensors, the IDS raises a warning if the status of sensors and
actuators is unexpected, and the environment models the probabilistic evolution of the
temperature. Notice that the controller must use channel ch_temp to receive data from
sensor temp. Even though the use of channels is a common feature in CPS, it exposes them
to attacks, as we will discuss in Example 11. We assume that the engine can cooperate
with other engines (e.g., in an aircraft with a left and a right engine), by receiving values on
channel ch_in and sending values on ch_out. If the engine is required to work at slow speed,
it asks to other engines to proceed at full speed to compensate the lack of performance.

3 Robustness Temporal Logic

Robustness Temporal Logic (RobTL) allows us to express temporal properties of distances
over systems behaviour, and, thus, to specify and verify robustness properties of CPS against
uncertainty and perturbations. RobTL uses atomic propositions of the form ∆(exp, p) ▷◁ η

to evaluate, at a given time step, the distance, specified by an expression exp, between a
given evolution sequence and its perturbed version, obtained by some perturbation p, and
to compare it with the threshold η. Atomic propositions are then combined with classic
Boolean and temporal operators, in order to extend and compare these evaluations over the
chosen time horizon. Hence, RobTL formulae are defined over three main components:
1. A language DistExp to specify distances.
2. A language Pert to specify perturbations.
3. Classic Boolean and temporal operators to specify requirements on the evolution of

distances in time.
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Ctrl

speed cool

ch_in ⇐

IDS

stress
p1, . . . , p6

temp

ch_temp

ch_out⇒

ch_wrn⇒

ch_speed

(a) Schema of the engine.

Name Domain Role
temp [0, 150] sensor detecting the temperature, accessed

directly by IDS, and via ch_temp by Ctrl
speed {slow, half, full} actuator regulating the speed
cool {on, off} actuator regulating the cooling
ch_temp [0, 150] insecure channel
ch_speed {slow, half} channel used by IDS to order Ctrl to set speed
ch_wrn {ok, hot} channel used by IDS to raise warnings
ch_out {half, full} channel used to send requests to other engines
ch_in {half, full} channel symmetric to ch_in
p1 , .., p6 [0, 150] internal variables storing last 6 values of temp
stress [0, 1] internal variable storing stress level

(b) The variables.

Eng = Ctrl ∥ IDS // Symbol “∥” denotes the classical parallel composition over processes
Ctrl = if [ch_temp ≥ 99.8] (on → cool).Cooling else Check

// If temperature is too high, cooling is activated by assigning on to actuator cool.
// As prefixing “.” consumes one time unit, process Cooling will start at next instant.

Cooling =
√

.
√

.
√

.
√

.Check // cooling is kept on for 4 more instants (
√

consumes one time unit).
Check = if [ch_speed = slow] ((slow → speed), (off → cool)).Ctrl

// If a slow down order comes from IDS through ch_speed, then speed is set to slow
else ((ch_in → speed), (off → cool)).Ctrl
// Otherwise, any speed regulation request from other engines via ch_in is satisfied.

IDS = if [temp > 101 ∧ cool = off] ((hot → ch_wrn), (slow → ch_speed), (full → ch_out)).IDS
// If there is an anomaly, a warning is raised on ch_wrn, slow down order is sent to
// Ctrl through ch_speed and a speed up request is sent to other engines via ch_out.
else ((ok → ch_wrn), (half → ch_speed), (half → ch_out)).IDS

(c) The agent Eng.

pk(τ + 1) =
{

temp(τ) if k = 1
pk−1 (τ) if k = 2, . . . , 6

stress(τ + 1) =
{

max(1, stress(τ) + stressincr) if |{k | pk(τ) ≥ 100}| > 3
stress(τ) otherwise

// stress grows iff temp was too high for > 3 instants over 6

temp(τ + 1) = temp(τ) + v
ch_temp(τ + 1) = temp(τ) + v

v ∼


U [−1.2, −0.8] if cool(τ) = on// v is negative if cooling is on

U [0.1, 0.3] if cool(τ) = off and speed(τ) = slow // otherwise
U [0.3, 0.7] if cool(τ) = off and speed(τ) = half // v is positive and
U [0.7, 1.2] if cool(τ) = off and speed(τ) = full. // depends on speed

// temp detects a value that varies by a value v uniformly distributed in an interval that
// depends on the actuators’ state. In the no-attack case, ch_temp takes the same value

(d) The environment.

Figure 1 The engine system.

3.1 Distance Expressions

We use expressions in DistExp, henceforth called distance expressions, to specify distances
over evolution sequences. As those are sequences of distributions over data states, firstly we
follow [11] and introduce a ground distance over such distributions allowing us to measure
the differences, with respect to a particular task, between two evolution sequences at a given
time step.

CONCUR 2024



15:6 RobTL: Robustness Temporal Logic for CPS

Then, we introduce the language DistExp whose operators allow us to combine various
instances of this ground distance and define more complex distances over evolution sequences,
while possibly taking into account different objectives of the system and temporal constraints.

Ground distance on distributions. In our setting, as in most application contexts, the
objectives of the system can be expressed in a purely data-driven fashion: at any step, any
difference between the desired value of some parameters of interest and the data actually
obtained can be interpreted as a flaw in the behaviour of the system. Hence, following [10],
to capture a particular objective, we use penalty functions ρ : D×N→ [0, 1] assigning to each
pair d, τ a penalty in [0, 1], expressing how far the values of the parameters related to the
considered task in d are from their desired ones at step τ . Hence, ρ(d, τ) = 0 if d respects
all the parameters at step τ . For brevity, we let ρτ (d) = ρ(d, τ). We remark that since we
are in a the discrete-time setting, we can safely identify time steps with natural numbers.

▶ Example 3. Consider the engine system from our case study. We define the penalty
functions ρw, ρt , and ρs, for all time steps τ , by:

ρw
τ (d) =

{
1 if d(ch_wrn) = hot, ρt

τ (d) = |d(ch_temp) − d(temp)|/150

0 if d(ch_wrn) = ok ρs
τ (d) = d(stress)

They express, respectively, how far the level of alert raised by the IDS, the value carried by
channel ch_temp, and the level of stress are from their desired value. These coincide with
the value ok, the value of sensor temp, and zero, respectively.

Penalty functions can be used also to express false negatives and false positives, repres-
enting, respectively, the average effectiveness, and the average precision of the IDS to signal
through channel ch_wrn that the engine system is under stress. We use two new variables
fn and fp to quantify false negatives and false positives depending on stress and ch_wrn.
Both variables are initialised to 0 and updated as follows:

fn(τ +1) = τ ∗ fn(τ) + max(0, stress(τ)− γ)
τ + 1 fp(τ +1) = τ ∗ fp(τ) + max(0, γ − stress(τ))

τ + 1

where γ is 0 if ch_wrn(τ) is ok, and γ is 1 if ch_wrn(τ) is hot. Then, penalties ρfn
τ (d) = d(fn)

and ρfp
τ (d) = d(fp) express how far fn and fp are from their ideal value 0.

We can then make use of penalty functions to define a distance on data states:

▶ Definition 4. Let ρ be a penalty function, and τ ∈ N. The metric on data states in D,
mρ

τ : D×D → [0, 1], is defined, for all d1, d2 ∈ D, by mρ
τ (d1, d2) = max{ρτ (d2)− ρτ (d1), 0}.

Note that mρ
τ (d1, d2) is a hemimetric, i.e., a pseudometric that is not required to be

symmetric, expressing how much d2 is worse than d1 according to ρτ .
Finally, we need to lift the hemimetric mρ

τ to a hemimetric over Π(D,BD). In the literature,
we can find a wealth of notions of function lifting doing so (see [34] for a survey). Among
those, the Wasserstein lifting [47] has the following advantages:

(i) it preserves the properties of the ground metric, and
(ii) one can apply statistical inference to obtain good approximations of it, whose exact

computation is tractable [11,44,46].
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▶ Definition 5. Let ρ be a penalty function, and τ ∈ N. For any µ, ν ∈ Π(D,BD), the
Wasserstein lifting of mρ

τ to a distance between µ and ν is defined by:

W(mρ
τ )(µ, ν) = inf

w∈W(µ,ν)

∫
D×D

mρ
τ (d, d′) dw(d, d′)

where W(µ, ν) is the set of the couplings of µ and ν, namely the set of joint distributions w

over the product space (D×D,BD×D) having µ and ν as left and right marginal, respectively,
i.e., w(D×D) = µ(D) and w(D × D) = ν(D), for all D ∈ BD. (See [11,23] and Appendix A
for an in depth discussion on the definition of the Wasserstein lifting over hemimetrics.)

▶ Proposition 6 ([11]). For each penalty function ρ, and time step τ ∈ N, function W(mρ
τ )

is a 1-bounded hemimetric on Π(D,BD).

The language DistExp. We can now proceed to define distances that take into account
several time steps in the evolution of systems.

▶ Definition 7. Expressions in DistExp are defined as follows:

exp ::= <ρ | >ρ | FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk · expk | σ(exp, ▷◁ ζ)

where ρ ranges over penalty functions, I is an interval, K is a finite set of indexes, wk ∈ (0, 1]
for each k ∈ K,

∑
k∈K wk = 1, ▷◁ ∈ {<,≤,≥, >} and ζ ∈ [0, 1].

Atomic expressions <ρ and >ρ are used to evaluate the ground distance with respect
to the penalty function ρ. We have two distinct atomic expressions because the ground
distance is a hemimetric: the direction of the arrowhead in <ρ and >ρ identifies which
argument is considered as the first one in the evaluation (cf. Definition 8 below). Moreover,
having penalty functions as parameters allows us to study the differences in the behaviour
of systems with respect to different data and objectives in time. Then, we provide three
temporal expression operators, namely FI , GI and UI , allowing for the evaluation of minimal
and maximal distances over a given time interval I. The comparison operator σ(exp, ▷◁ ζ)
returns a value in {0, 1} used to establish whether the evaluation of exp is in relation ▷◁ with
the threshold ζ.

Distance expressions are evaluated over two evolution sequences and a time τ , representing
the time step at which (or starting from which) the differences are computed.

▶ Definition 8. Let S1,S2 be to evolution sequences, and τ be a time step. The evaluation of
distance expressions in the triple S1,S2, τ is the function J·Kτ

S1,S2
: DistExp→ [0, 1] defined

inductively on the structure of expressions as follows:
J<ρKτ

S1,S2
= W(mρ

τ )(Sτ
1 ,Sτ

2 );
J>ρKτ

S1,S2
= W(mρ

τ )(Sτ
2 ,Sτ

1 );
JFI expKτ

S1,S2
= mint∈I+τ JexpKt

S1,S2
;

JGI expKτ
S1,S2

= maxt∈I+τ JexpKt
S1,S2

;
Jexp1 UI exp2K

τ
S1,S2

= min
t∈I+τ

max
{

Jexp2K
t
S1,S2

, max
t′∈I+τ,t′<t

Jexp1K
t′

S1,S2

}
;

J min (exp1, exp2)Kτ
S1,S2

= min{Jexp1K
τ
S1,S2

, Jexp2K
τ
S1,S2

};
J max (exp1, exp2)Kτ

S1,S2
= max{Jexp1K

τ
S1,S2

, Jexp2K
τ
S1,S2

};
J
∑

k∈K wkexpkKτ
S1,S2

=
∑

k∈K wk · JexpkKτ
S1,S2

;

Jσ(exp, ▷◁ ζ)Kτ
S1,S2

=
{

0 if JexpKτ
S1,S2

▷◁ ζ,

1 otherwise.
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15:8 RobTL: Robustness Temporal Logic for CPS

The evaluation bases on the two atomic expressions. We use <ρ to measure the distance
between the distributions reached by S1 and S2 at time τ (S1

τ and S2
τ ) with respect to the pen-

alty function ρ, i.e., W(mρ
τ )(Sτ

1 ,Sτ
2 ). Conversely, >ρ measures the distance W(mρ

τ )(Sτ
2 ,Sτ

1 ).
Operators FI , GI , and UI can be thought of as the quantitative versions of the corresponding
bounded temporal operators, respectively, eventually, always, and until. Their semantics
follows by associating existential quantification with minima, and universal quantification
with maxima. Hence, the evaluation of FI exp is obtained as the minimum value of the
distance exp over the time interval I. Dually, GI exp gives us the maximum value of exp over
I. Then, the evaluation of exp1 UI exp2 follows from that of bounded until (see Definition 14),
accordingly. The expression σ(exp, ▷◁ ζ) evaluates to 0 if the evaluation of exp is ▷◁ ζ;
otherwise it evaluates to 1. Informally, the comparison operator σ can be combined with
temporal expression operators to check if several constraints of the form ▷◁ ζi are satisfied
over a time interval under a single application of a perturbation function (see Example 16
below).

3.2 Perturbations
A perturbation is the effect of unpredictable events on the current state of the system. Hence,
we model it as a function that maps a data state into a distribution over data states. To
account for possibly repeated, or different effects in time of a single perturbation, we make
the definition of perturbation function also time-dependent: a perturbation function p is a
list of mappings in which the i-th element describes the effects of p at time i.

▶ Definition 9. A perturbation function is a mapping p : D × N→ Π(D,BD) such that, for
each τ ∈ N, the mapping d 7→ p(d, τ)(D) is BD-measurable for all D ∈ BD.

To describe the perturbed behaviour of a system, we need to account for the effects of a
function p on the evolution sequence. Hence, we combine p with the Markov kernel step:

▶ Definition 10. Given an evolution sequence Sµ generated by kernel step, and a perturbation
function p, the perturbation of Sµ via p is the evolution sequence Spµ obtained by:

Sp,0
µ (D) =

∫
D
p(d, 0)(D) dµ(d), Sp,i+1

µ (D) =
∫

D

∫
D
p(d′, i+1)(D) dstep(d)(d′) dSp,i

µ (d).

Specifying perturbations. We specify a perturbation function p via a (syntactic) perturba-
tion p in the language Pert:

p ::= nil | f@τ | p1 ; p2 | pn

where p ranges over Pert, n and τ are finite natural numbers, and:
nil is the perturbation with no effects, i.e., at each time step it behaves like the identity
function id : D → Π(D,BD) such that id(d) = δd for all d ∈ D;
f@τ is an atomic perturbation, i.e., a function f : D → Π(D,BD) such that the mapping
d 7→ f(d)(D) is BD-measurable for all D ∈ BD, and that is applied precisely after τ time
steps from the current instant;
p1 ; p2 is a sequential perturbation, i.e., perturbation p2 is applied at the time step
subsequent to the (final) application of p1;
pn is an iterated perturbation, i.e., perturbation p is applied for a total of n times.

Despite its simplicity, this language allows us to define some non-trivial perturbation functions
that we can use to test systems behaviour. (Unspecified perturbations behave like id.)
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▶ Example 11. In [31] several cyber-physical attacks tampering with sensors or actuators
of the engine system aiming to inflict overstress of equipment [25] were described. Here we
show how those attacks can be modelled by employing our perturbations.

Consider sensor temp. There is an attack that aims at delaying the cooling phase, forcing
the system to work for several instants at high temperatures and accumulate stress. It tricks
the controller by adding a negative offset o ∈ R≤0 to the value carried by the insecure channel
ch_temp. If [100, 200] is the attack window, the attack is modelled by perturbation ptemp,o =
(id@0)100; (ftemp,o@0)100, where ftemp,o(d) = δd′ with d′(ch_temp) = d(ch_temp)+rnd∗o,
with rnd uniformly distributed in [0, 1], and d′(x) = d(x) for all other variables in Figure 1b.

Consider now actuator cool. There is an attack aims at forcing the system to reach quickly
high temperatures after the start of a cooling phase. It switches off the cooling system as
soon as the temperatures goes below 99.8 − t degrees, for some t ∈ R≥0. This attack, is
stealth, meaning that the IDS does not detect it. If [0, 100] is the attack window, the attack
is modelled by perturbation pcool,t defined by pcool,t = (fcool,t@0)100, where fcool,t(d) = δd,
if d(temp) ≥ 99.8− t, and fcool,t(d) = δd′′ , otherwise, with d′′(cool) = off, and d′′(x) = d(x)
for all other variables in Figure 1b.

Each p ∈ Pert denotes a perturbation function as in Definition 9. To obtain it, we
exploit function effect(p), describing the effects of p at the current step, and function next(p),
identifying the perturbation to be applied at next step. Both functions are defined inductively
on the structure of perturbations.

effect(nil) = id effect(f@τ) =
{

id if τ > 0,

f if τ = 0

effect(pn) = effect(p) effect(p1; p2) = effect(p1)

next(nil) = nil next(f@τ) =
{

f@(τ − 1) if τ > 0,

nil otherwise

next(pn) =
{

next(p); pn−1 if n > 0,

nil otherwise
next(p1; p2) =

{
next(p1); p2 if next(p1) ̸= nil,
p2 otherwise.

We define the semantics of perturbations as the mapping ⟨⟨·⟩⟩ : Pert→ (D × N→ Π(D,BD))
such that, for all d ∈ D and i ∈ N, ⟨⟨p⟩⟩(d, i) = effect(nexti(p))(d), where next0(p) = p and
nexti(p) = next(nexti−1(p)), for all i > 0.

▶ Proposition 12. For each p ∈ Pert, ⟨⟨p⟩⟩ is a well defined perturbation function.

Proof. Since, by definition, each f occurring in atomic perturbations is such that d 7→ f(d)(D)
is BD-measurable for all D ∈ BD, and the same property trivially holds for the identity
function id, it is immediate to conclude that ⟨⟨p⟩⟩ satisfies Definition 9 for each p ∈ Pert. ◀

3.3 RobTL Formulae
We use RobTL formulae to specify and analyse distances between nominal and perturbed
evolution sequences over a finite time horizon h. By combining atomic propositions with
temporal operators, we can apply (possibly) different distance expressions and perturbations
at different steps, thus allowing for an analysis of behaviour in complex scenarios.
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▶ Definition 13. RobTL consists in the set of formulae L defined by:

φ ::= ⊤ | ∆(exp, p) ▷◁ η | ¬φ | φ ∧ φ | φ UI φ

where φ ranges over L, exp ranges over distance expressions in DistExp, p ranges over
perturbations in Pert, ▷◁ ∈ {<,≤,≥, >}, η ∈ [0, 1], and I ⊆ [0, h] is a bounded time interval.

Formulae are evaluated in an evolution sequence and a time step.

▶ Definition 14. Let S be an evolution sequence, and τ a time step. The satisfaction relation
|= is defined inductively on the structure of formulae as:
S, τ |= ⊤ for all S, τ ;
S, τ |= ∆(exp, p) ▷◁ η iff JexpKτ

S,S|⟨⟨p⟩⟩,τ
▷◁ η, with evolution sequence S|⟨⟨p⟩⟩,τ

defined as:

(S|⟨⟨p⟩⟩,τ
)t =

{
St if t < τ,

S⟨⟨p⟩⟩,t−τ
Sτ if t ≥ τ ;

S, τ |= ¬φ iff S, τ ̸|= φ;
S, τ |= φ1 ∧ φ2 iff S, τ |= φ1 and S, τ |= φ2;
S, τ |= φ1 UI φ2 iff there is a τ ′ ∈ I+τ such that S, τ ′ |= φ2 and for all τ ′′ ∈ I+τ, τ ′′ < τ ′

it holds that S, τ ′′ |= φ1, where, for I = [a, b], we let I + τ = [min{a + τ, h}, min{b + τ, h}].

Let us focus on atomic propositions. The evolution sequence S at time τ satisfies the
formula ∆(exp, p) ▷◁ η if the distance defined by exp between S and S|⟨⟨p⟩⟩,τ

is ▷◁ η, where
S|⟨⟨p⟩⟩,τ

is the evolution sequence obtained by applying the perturbation p to S at time τ .
For the first τ − 1 steps S|⟨⟨p⟩⟩,τ

is identical to S. At time τ the perturbation p is applied,
and the distributions in S|⟨⟨p⟩⟩,τ

are thus given by the perturbation via ⟨⟨p⟩⟩ of the evolution
sequence having Sτ as initial distribution (Definition 10). It is worth noticing that by
combining atomic propositions with temporal operators we can apply (possibly) different
perturbations at different time steps, thus allowing for the analysis of systems behaviour in
complex scenarios.

Naturally, other operators can be defined as macros in our logic:

φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) φ1 =⇒ φ2 ≡ ¬φ1 ∨ φ2 ♢Iφ ≡ ⊤ UI φ □Iφ ≡ ¬♢I¬φ.

We now provide some examples of robustness properties that can be expressed in RobTL.

▶ Example 15. By using the penalty functions in Example 3 and the perturbations from
Example 11, we can build a formula φ1 expressing that the attack on the insecure channel
ch_temp is successful. This happens if, whenever the difference observed along the attack
window I = [100, 200] between the physical value of temperature and that read by the
controller is in the interval [η1, η2], for suitable η1 and η2, then the level of the alarm raised
by the IDS remains below a given stealthiness threshold η3, and the level of system stress
overcomes a danger threshold η4 within the time interval J = [100, 210]:

φ1 = ♢[0,h](φ′
1 =⇒ φ′′

1)

φ′
1 = ∆(FI <ρt

, ptemp,o) ≥ η1 ∧∆(GI <ρt
, ptemp,o) ≤ η2

φ′′
1 = ∆(GJ <ρw

, ptemp,o) ≤ η3 ∧∆(GJ <ρs
, ptemp,o) ≥ η4.
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▶ Example 16. Consider the attack on actuator cool described in Example 11. We give a
formula φ2 expressing that such an attack fails within 210 units of time. This happens if
the level of the alarm raised by the IDS goes above a given threshold ζ2 at some instant
τ ′ ∈ [0, 210], i.e., the attack is detected, while the level of stress remains below an acceptable
threshold ζ1:

φ2 = ∆
(

σ(<ρs
, < ζ1) U[0,210] σ(<ρw

, > ζ2) , pcool,t
)

< 1.

Notice that in the formula φ2 the perturbation pcool,t is applied only once, at time 0, and by
means of the comparison and until operators on expressions we can evaluate all the distances
along the considered interval between the original evolution sequence and its perturbation
via pcool,t. Conversely, in the formula φ3 below, the time step at which a perturbation is
applied is determined by the bounded until operator:

φ3 = φ2 U [τ1,τ2] ∆(<ρfn
, pcool,t) ≤ η3.

This formula is satisfied if there is a τ̃ ∈ [τ1, τ2] s.t.:
1. the attack on actuator cool is detected regardless of the time step in [τ1, τ̃) at which

pcool,t is applied, and
2. the IDS is effective, up to tolerance η3, against an application of pcool,t at time τ̃ .
The effectiveness is measured in terms of the penalty function ρfn on false negatives presented
in Example 3.

4 RobTL model checker

A RobTL model checker has been implemented as part of the Software Tool for the Analysis
of Robustness in the unKnown environment (Stark) [12,14], available at https://github.
com/quasylab/jspear/tree/working, and the related, detailed, documentation can be
found at https://github.com/quasylab/jspear/wiki.

It consists of the following four procedures, based on statistical techniques and simulation:
(i) Simulation of the evolution sequence of system, assuming an initial distribution µ.
(ii) Simulation of the effects of a perturbation on a given evolution sequence.
(iii) Syntax driven estimation of the evaluation of distance expressions.
(iv) Satisfaction of a given RobTL formula by a given evolution sequence.

These four procedures are presented with more details below. Due to space constraints,
since all the algorithms are implemented in Stark, we only report them in Appendix B.
We also remark that the simulation procedure in (i) and that for the estimation of the
Wasserstein distance that is part of (iii) were already discussed at length in [11]. We briefly
report them here for the sake of readability. We discuss the time complexity of the model
checking algorithm in Section 4.1. Since the procedures outlined above are based on statistical
inference, we need to take into account the statistical error when checking the satisfaction
of formulae. Hence, in Section 4.2 we discuss a classical algorithm for the evaluation of
confidence intervals in the evaluation of distances. Then, we propose a three-valued semantics
for RobTL specifications, in which the truth value unknown is added to true and false.

Throughout the section, we also provide some examples of an application of the algorithms
to the analysis of the engine system. The interested reader can find the script used to generate
the plots and results as the Main.java file at https://github.com/quasylab/jspear/blob/
working/examples/engine/.
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Simulation of evolution sequences. Given a distribution µ and N, k ∈ N, we use function
Sim (Algorithm 1) to obtain an empirical evolution sequence of the form E0, . . . , Ek of size
N and length k, starting from µ. Each Ei is a tuple d1

i , . . . , dN
i of data states that are used

to estimate the probability distribution reached at step i. E0 is a sample of size N of µ

obtained by means of a function SampleDistr. Then, Ei+1 is obtained by simulating one
computation step from each element in Ei via a function SimStep that mimics the behaviour
of step (Section 2): for any d and D ∈ BD it holds that Pr{SimStep(d) ∈ D} = step(d)(D).
For any i ∈ [0, k], we let Ŝi,N

E0
be the distribution such that Ŝi,N

E0
(D) = |Ei ∩ D|/N for

any D ∈ BD. By applying the weak law of large numbers to the i.i.d. samples, we get
lim

N→∞
Ŝi,N

E0
= Si

µ. Henceforth, we identify ŜN
E0

with the estimated evolution sequence of size

N , E = E0, . . . , Ek.

Applying perturbations to evolution sequences. We use function SimPer (Algorithm 2)
to simulate the effect of a perturbation p on an estimated evolution sequence E of size N .
This function takes two integers as parameters: τ and ℓ. τ is the time step at which p is
applied. ℓ is the number of additional samples that we generate to evaluate the effect of p on
each data state, to guarantee statistical relevance of the collected data. Given E, we denote
by ℓ ·E the sample set obtained from E by replicating each of its elements ℓ times. Function
SimPer is similar to Sim. They differ in constructing the tuple Ei+1, as in SimPer we need
first to sample the effect of p. This is done by function Sample(f(d)) whose definition is
standard and therefore omitted. According to Section 3.2, function f in Sample(f(d)) is
effect(p), and the perturbation used at next time step is next(p).

Evaluation of distance expressions. Distance expressions are estimated following a syntax
driven algorithm (Algorithm 4). To deal with atomic expressions <ρ and >ρ, we rely on
an existing approach [46] to estimate the Wasserstein distance between two distributions
µ, ν ∈ Π(D,BD). We consider N independent samples {d1

1, . . . , dN
1 } taken from µ, and

ℓN independent samples {d1
2, . . . , dℓN

2 } taken from ν, for some integers N, ℓ. Then, we
exploit the penalty function ρi to map each sampled data state onto R, so that, to capture
the minimisation over the couplings, it is enough to consider the reordered sequences of
values {ωj = ρi(dj

1) | ωj ≤ ωj+1} and {νh = ρi(dh
2 ) | νh ≤ νh+1}. Then W(mρ,i)(ν, µ) =

1
ℓN

∑ℓN
h=1 max{νh − ω⌈ h

M ⌉, 0} [10, 11].
Function Wass (Algorithm 3) implements the procedure outlined above. Parameter

op ∈ {<, >} of Wass allows us to choose which between <ρ and >ρ we want to approximate:
if op is <, we approximate W(mρ,i)(µ, ν); if op is >, we approximate W(mρ,i)(ν, µ). Since
penalty functions allow us to evaluate W on R, rather than on Rn, the complexity of the
outlined procedure is O(ℓN log(ℓN)) [46], due to the sorting of {νh | h ∈ [1, . . . , ℓN ]}. We
refer to [44, Corollary 3.5, Equation (3.10)] for an estimation of the approximation error on
the evaluation of the Wasserstein distance over N, ℓN samples.

Using the estimation of the atomic expressions as base case, we define function EvalExpr
(Algorithm 4) recursively on the syntax of exp, following Definition 8.

Checking formulae satisfaction. Function Sat (Algorithm 5) allows us to verify whether a
given evolution sequence satisfies a given RobTL formula at a given time step. It takes five
parameters: the initial distribution µ, the time step τ , the formula φ, the two integers N

and ℓ identifying the number of samples. Function Sat consists of three steps. Firstly, we
compute, using structural induction, the time horizon k of φ to identify the number of steps
needed to evaluate it. Then, function Sim is used to simulate the evolution sequence from µ.
Finally, φ is evaluated over E and τ by calling function Eval (Algorithm 6), that yields the
Boolean evaluation of φ computed recursively on its structure following Definition 14.



V. Castiglioni, M. Loreti, and S. Tini 15:13

(a) Difference with respect to temp. (b) Difference with respect to stress.

Figure 2 Differences with respect to the values of temp and stress, under ptemp,o for o ∈
{−2, −1.5, −1}.

(a) exp1. (b) exp2.

Figure 3 Evaluation of exp1 and exp2 over the time interval [0, 50].

▶ Example 17. Consider the attack on the sensor temp, modelled by perturbation p = ptemp,o

(Example 11), and let 0 be the current step. To give an idea of the impact of p on the
behaviour S of the engine, in Figure 2a we report the pointwise evaluation of the distance
<ρ, where ρ(d) = d(temp)/150 for all d ∈ D, over the time window [90, 300], between the
temperature in S and that in three perturbations of it, obtained by three variations of p with
o ∈ {−2,−1.5,−1}. In all cases, the difference is greater in [100, 200], i.e., while ftemp,o is
active, and the smaller differences detected after 200 steps are due to the delays induced by
the perturbations in the regular behaviour. Clearly, the larger the offset interval, the greater
the difference. This is even more evident in Figure 2b, depicting the pointwise evaluations of
the distances <ρs between S and its three perturbed versions, for the penalty function ρs

defined as ρs
τ (d) = d(stress) in Example 3.

Let us now fix o = −1.5. Consider expressions exp1 = GJ <ρw and exp2 = GJ <ρs , where
J = [100, 210] and both penalty functions ρw and ρs are defined in Example 3. In Figure 3 we
report the variation of the evaluation of the two expressions over S and its 51 perturbations
via p, each obtained by applying p at a different τ ′ ∈ [0, 50]. We associate the coordinate
x = τ ′ with Jexp1K

τ ′

S,S|⟨⟨p⟩⟩,τ′
in Figure 3a, and with Jexp2K

τ ′

S,S|⟨⟨p⟩⟩,τ′
in Figure 3b. The two

plots show that by applying p at different time steps, we get different effects on system
behaviour, with variations of the order of 10−3. We run several experiments to infer for which
stealthiness threshold η3 and danger threshold η4, the formula φ1 in Example 15 is satisfied.
We concluded that for η3 ≥ 0.06 and η4 ≤ 0.45 the attack is successful (Example 20).

4.1 Complexity
We can assume that the evaluation of SimStep(d) needs a number of steps that is linear
with the number of variables in d. The same applies for the application of a perturbation
or penalty function to a data state d. Under these assumptions it is not hard to see that
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to evaluate Sim(µ, N, k) we need O(kN · |Var|) steps, while O(kℓN · |Var|) steps are needed
to evaluate SimPer({E1, . . . , Ek}, p, τ, ℓ). Moreover, O(|E2| log |E2|) steps are needed for
Wass(E1, E2, op, ρ). This is dominated by the number of steps needed to order the sequences
ωi and νh (lines 4 and 5). For the sake of simplicity, the algorithms in Algorithm 4 and
Algorithm 6 are presented following a forward approach where to compute the value at time
i, all the values in an interval [i + a, i + b] could be considered. This means that to compute
Eval(E, τ, φ, ℓ) (resp. EvalExpr(E, E′, τ, exp)), we need a number of steps that, in the
worst case, are linear with the length of E and exponential with the size of φ (resp. exp).
However, if a backward approach is used as in [17], the same functions can be computed with
a number of steps that is linear with both the length of E and the size of φ (resp. exp).

4.2 Statistical error
We provide an algorithm for the evaluation of a confidence interval CI on the estimation
of the value of a distance expression exp. This means that, given exp, a nominal evolution
sequence S, a perturbation p, two time steps τ and τ ′, and a coverage probability α, the
probability that the real value JexpKτ ′

S,S|⟨⟨p⟩⟩,τ
of the distance is in CI is at least α.

We start by evaluating the confidence intervals on W(mρ
τ )(µ, ν), obtained by applying

the empirical bootstrap method [19,20]:
1. Generate m bootstrap samples for µ and ν: these are obtained by drawing with replace-

ment a sample of size N from the elements of the original sampling of µ, and one of size
ℓN from those for ν. Let µ1, . . . , µm and ν1, . . . , νm the resulting bootstrap distributions.

2. Apply the procedure Wass m-times to evaluate the Wasserstein distances between the
bootstrap distributions. Let W1, . . . , Wm be the resulting bootstrap distances.

3. Evaluate the mean of the bootstrap distances W =
∑m

i=1 Wi/m.
4. Evaluate the standard error SE =

(∑m
i=1(Wi −W )2/(m− 1)

)1/2.
5. Let CI = W ±z1− α

2
SE, with z1− α

2
the 1− α

2 quantile of the standard normal distribution.

▶ Remark 18. In [45] the bias-corrected, accelerated percentile intervals (BCa) is used.
We chose to use the empirical bootstrap method to find a balance between accuracy and
computational complexity. Empirical bootstrap can be subject to bias in the samples,
and more accurate techniques, like BCa, were proposed [16]. However, to reach the desired
accuracy with the BCa method, it is necessary to use m ≥ O(1000) bootstrap samples. Given
the cost O(ℓN log(ℓN)) of a single evaluation of W, and considering that in our formulae this
distance is evaluated thousands of times, this approach would be computationally unfeasible.
In our examples, m ≤ 100 is sufficient to obtain reasonable confidence intervals (Example 19).

The evaluation of the confidence interval for the Wasserstein distance is then extended
to distance expressions: once we have determined the bounds of the confidence intervals
of the sub-expressions occurring in exp, the interval of exp is obtained by applying the
function defining the evaluation of exp to them. For instance, if exp = max (exp1, exp2),
CIexp1

= (l1, r1), and CIexp2
= (l2, r2), then CIexp = (max{l1, l2}, max{r1, r2}).

▶ Example 19. In Figure 4 we report the 95% confidence intervals for Jexp1K
τ ′

S,S|⟨⟨p⟩⟩,0
, where

τ ′ ∈ [0, 50], with exp1 and p as in Example 17. The intervals in Figure 4a have been obtained
by means of m = 50 bootstrap samplings, whereas for those in Figure 4b we used m = 100.
In the former case, the maximal width of the interval is 9.39 · 10−3, with an average width of
8.07 · 10−3; in the latter case, those number become, respectively, 9.03 · 10−3 and 7.93 · 10−3.
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(a) m = 50, α = 0.05. (b) m = 100, α = 0.05. (c) η3 = 0.03, 0.04, 0.05, 0.06.

Figure 4 Confidence intervals of exp1, and three-valued evaluation of φη3 , over [0, 50].

A three-valued semantics for RobTL. Given the presence of errors in the evaluation of
expressions we extend our model checking algorithm with the possibility to assign a three-
valued semantics to formulae. Alongside the classical Boolean evaluations true (⊤) and false
(⊥), a RobTL formula can assume the value unknown (⋓). Intuitively, unknown is generated
by the comparison between the distance and the chosen threshold in atomic propositions: if
the threshold η does not lie in the confidence interval of the evaluation of the distance, then
the formula will evaluate to ⊤ or ⊥ according to the validity of the relation ▷◁ η. Conversely,
if η belongs to the confidence interval, then the atomic proposition evaluates to ⋓, since the
validity of the relation ▷◁ η may depend on the particular samples obtained in the simulation.

Starting from atomic propositions, the three-valued semantics is extended to the Boolean
operators via truth tables in the standard way [29, 48]. Then, we assign a three-valued
semantics to RobTL formulae via the satisfaction function ΩS : L× [0, h]→ {⊤,⋓,⊥}, defined
inductively on the structure of RobTL formulae, starting from atomic propositions as follows:

ΩS(⊤, τ) = ⊤

ΩS(∆(exp, p) ▷◁ η, τ) =
{
⋓ if η ∈ CIexp

S, τ |= ∆(exp, p) ▷◁ η otherwise.

ΩS(¬φ, τ) = ¬ΩS(φ, τ)
ΩS(φ1 ∧ φ2, τ) = ΩS(φ1, τ) ∧ ΩS(φ2, τ)

ΩS(φ1 UI φ2, τ) =
∨

τ ′∈I

(
ΩS(φ2, τ ′) ∧

∧
τ ′′∈I,τ ′′<τ ′

ΩS(φ1, τ ′′)
)

.

The algorithm for the evaluation of function ΩS is obtained in a straightforward manner
from the Boolean evaluation (Algorithm 6).

▶ Example 20. Consider the formula φη3 = ∆(exp1, p) ≤ η3 for exp1 and p as in Example 17.
In Figure 4c we report the variation of the evaluation of ΩS(φη3 , τ ′) with respect to τ ′ ∈ [0, 50]
and η3 ∈ {0.03, 0.04, 0.05, 0.06}, where we let ⊤ 7→ 1, ⋓ 7→ 0, and ⊥ 7→ −1. The plot confirms
the validity of the empirical tuning of parameter η3 that we carried out in Example 17.

5 Concluding remarks

The term robustness is used in several contexts, from control theory [50] to biology [28], and
not always with the same meaning. Since our objective was to provide a formal tool for the
verification of general robustness properties, we limit ourselves to recall that, in the context
of CPS, we can distinguish five categories of robustness [24]:
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(i) input/output robustness;
(ii) robustness with respect to system parameters;
(iii) robustness in real-time system implementation;
(iv) robustness due to unpredictable environment;
(v) robustness to faults.

Our framework is designed for properties of type (iv), and we plan to extend it to the others.
[49] presents a PCTL statistical model checker based on stratified sampling. This allows

for the generation of negatively correlated samples, thus considerably reducing the number of
samples needed to obtain confident verdicts, provided the PCTL formulae are of a particular
form. While direct comparison of the two algorithms would not be meaningful given the
disparity in the logics, we will study the use of stratified sampling in our model checker.

In [1] the model of discrete time stochastic hybrid systems is introduced and used to
formalise finite-horizon probabilistic reachability problems. Specifically, maximal probabilities
of reaching (and maintaining) a safe set of states are considered. There are two main differences
in between this model and the evolution sequence model that we would like to highlight:

The purely data-driven characterisation of systems behaviour of the evolution sequence
model has two crucial consequences. The first consequence is that the specification of
the behaviour of the agent and that of the environment are independent, and there is no
need to specify a system’s state space, as opposed to what happens with the model in
the proposed paper. The second consequence is that the behaviour of the system is not
given by a set of traces/trajectories, but by the combination of their effects.
The paper [1] only presents the analysis of probabilistic reachability properties, based
on the evaluation of the desired safety property on each single trace of the system and
the consequent computation of the total probability of executing those traces. In this
paper, we introduce a logic that allows us to specify robustness properties based on the
evaluation of distances between the behaviour of two different systems, the nominal and
the perturbed one.

We plan to apply our framework to the analysis of biological systems. Some quantitative
temporal logics have already been proposed in that setting [21,36,37] to capture some notions
of robustness in system biology [5, 28, 32, 41, 42]. We are confident that the use of RobTL
and evolution sequences can lead to new results, as shown in the preliminary work [13].
Moreover, we will apply our work to Medical CPS. In this context, statistical inference and
learning methods have been combined in the synthesis of controllers, in order to deal with
uncertainties [33]. The idea is then to use our tool to test the obtained controllers and verify
their robustness against uncertainties.

Finally, we plan to apply our work to the evaluation of the effectiveness of digital twins [26].
To this end, we will enrich Stark with a special construct, similar to perturbations, that
will allow us to model the communications, and their effects, between the digital and the
real-world (perturbed) twin in a concise, clean, fashion. A preliminary result in this direction
can be found in [8].
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A The Wasserstein hemimetric

Given a (pseudo-, hemi-)metric space (Ω, m), the (pseudo-, hemi-)metric m induces a
natural topology over Ω, namely the topology generated by the open ε-balls, for ε > 0,
Bm(ω, ε) = {ω′ ∈ Ω | m(ω, ω′) < ε}. We can then naturally obtain the Borel σ-algebra over
Ω from this topology.

In this paper we are interested in defining a hemimetric on distributions. To this end
we will make use of the Wasserstein lifting [47] whose definition is based on the following
notions and results. Given a set Ω and a topology T on Ω, the topological space (Ω, T ) is
said to be completely metrisable if there exists at least one metric m on Ω such that (Ω, m)
is a complete metric space and m induces the topology T . A Polish space is a separable
completely metrisable topological space. In particular, we recall that:

(i) R is a Polish space; and
(ii) every closed subset of a Polish space is in turn a Polish space.

Moreover, for any n ∈ N , if Ω1, . . . , Ωn are Polish spaces, then the Borel σ-algebra on their
product coincides with the product σ-algebra generated by their Borel σ-algebras, namely

B(
n×

i=1
Ωi) =

n⊗
i=1
B(Ωi).

(This is proved, e.g., in [6] as Lemma 6.4.2 whose hypothesis are satisfied by Polish spaces
since they are second countable.) These properties of Polish spaces are interesting for us
since they guarantee that all the distributions we consider in this paper are Radon measures
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and, thus, the Wasserstein lifting is well-defined on them. For this reason, we also directly
present the Wasserstein hemimetric by considering only distributions on Borel sets.

▶ Definition 21 (Wasserstein hemimetric). Consider a Polish space Ω and let m be a hemi-
metric on Ω. For any two distributions µ and ν on (Ω,B(Ω)), the Wasserstein lifting of m

to a distance between µ and ν is defined by

W(m)(µ, ν) = inf
w∈W(µ,ν)

∫
Ω×Ω

m(ω, ω′) dw(ω, ω′)

where W(µ, ν) is the set of the couplings of µ and ν, namely the set of joint distributions
w over the product space (Ω × Ω,B(Ω × Ω)) having µ and ν as left and right marginal,
respectively, namely w(A× Ω) = µ(A) and w(Ω× A) = ν(A), for all A ∈ B(Ω).

Despite the original version of the Wasserstein distance being defined on a metric on Ω,
the Wasserstein hemimetric given above is well-defined. We refer the interested reader to [23]
and the references therein for a formal proof of this fact. In particular, the Wasserstein
hemimetric is given in [23] as Definition 7 (considering the compound risk excess metric
defined in Equation (31) of that paper), and Proposition 4 in [23] guarantees that it is indeed
a well-defined hemimetric on Π(Ω,B(Ω)). Moreover, Proposition 6 in [23] guarantees that
the same result holds for the hemimetric m(x, y) = max{y − x, 0}.

B The algorithms

In this section we report the algorithms described in Section 4.

Algorithm 1 Simulation of a evolution sequence.
1: function Sim(µ, N, k)
2: i← 0
3: E0 ← SampleDistr(µ, N)
4: while i < k do
5: Ei+1 ← ∅
6: for d ∈ Ei do
7: Ei+1 ← SimStep(d), Ei+1
8: end for
9: i← i + 1

10: end while
11: return E0, . . . , Ek

12: end function
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Algorithm 2 Computation of the effect of a perturbation.

1: function SimPer(E, p, τ, ℓ)
2: ∀i < τ. E′

i ← Ei

3: E′
τ ← ℓ · Eτ

4: i← τ

5: while i < k do
6: f ← effect(p)
7: p← next(p)
8: for d ∈ E′

i do
9: d′ ← Sample(f(d))

10: E′
i+1 ← E′

i+1, SimStep(d′)
11: end for
12: i← i + 1
13: end while
14: return E′

0, . . . , E′
k

15: end function

Algorithm 3 Evaluation of the Wasserstein distance.
1: function Wass(E1, E2, op, ρ)
2: (d1

1, . . . , dN
1 )← E1

3: (d1
2, . . . , dℓN

2 )← E2
4: ∀j : (1 ≤ j ≤ N) : ωj ← ρ(dj

1)
5: ∀h : (1 ≤ h ≤ ℓN) : νh ← ρ(dh

2 )
6: re index {ωj} s.t. ωj ≤ ωj+1
7: re index {νh} s.t. νh ≤ νh+1
8: if op =< then
9: return 1

ℓN

∑ℓN
h=1 max{νh − ω⌈ h

ℓ ⌉, 0}
10: else
11: return 1

ℓN

∑ℓN
h=1 max{ω⌈ h

ℓ ⌉ − νh, 0}
12: end if
13: end function
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Algorithm 4 Evaluation of distance expressions.

1: function EvalExpr(E, E′, τ, exp)
2: match exp
3: with <ρ :
4: return Wass(Eτ , E′

τ , <, ρ)
5: with >ρ :
6: return Wass(Eτ , E′

τ , >, ρ)
7: with FI exp :
8: return mini∈τ+I{EvalExpr(E, E′, i, exp)}
9: with GI exp :

10: return maxi∈τ+I{EvalExpr(E, E′, i, exp)}
11: with exp1 U[τ1,τ2] exp2 :
12: ∀i ∈ [τ + τ1, τ + τ2] d2

i ← EvalExpr(E, E′, i, exp2)
13: ∀j ∈ [τ + τ1, τ + τ2] d1

j ← EvalExpr(E, E′, j, exp1)
14: return minτ+τ1≤i≤τ+τ2{max{d2

i , max 0≤j<i{d1
j}}

15: with min (exp1, exp2) :
16: v1 ← EvalExpr(E, E′, τ, exp1)
17: v2 ← EvalExpr(E, E′, τ, exp2)
18: return min{v1, v2}
19: with max (exp1, exp2) :
20: v1 ← EvalExpr(E, E′, τ, exp1)
21: v2 ← EvalExpr(E, E′, τ, exp2)
22: return max {v1, v2}
23: with

∑
i∈K wi · expi :

24: vi ← EvalExpr(E, E′, τ, expi)
25: return

∑
i∈K wi · vi

26: with σ(exp, ▷◁ ζ) :
27: v ← EvalExpr(E, E′, τ, exp)
28: if v ▷◁ ζ then
29: return 0
30: else
31: return 1
32: end if
33: end function

Algorithm 5 Checking the satisfaction of a formula.
1: function Sat(µ, τ, φ, N, ℓ)
2: k ← Horizon(φ)
3: E ← Sim(µ, N, k)
4: return Eval(E, τ, φ, ℓ)
5: end function
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Algorithm 6 Evaluation of RobTL formulae.

1: function Eval(E, τ, φ, ℓ)
2: match φ

3: with φ = ⊤ :
4: return true

5: with φ = ∆(exp, p) ▷◁ η :
6: E′ ← SimPer(E, p, τ, ℓ)
7: v ← EvalExpr(E, E′, τ, exp)
8: return v ▷◁ η

9: with φ = ¬φ1 :
10: return ¬Eval(E, τ, φ1, ℓ)
11: with φ1 ∧ φ2 :
12: return Eval(E, τ, φ1, ℓ) ∧Eval(E, τ, φ2, ℓ)
13: with φ1 U [τ1,τ2] φ2 :
14: j ← τ + τ1
15: i← j − 1
16: res← false

17: res′ ← true

18: while j ≤ τ + τ2 ∧ ¬res ∧ res′ do
19: res← Eval(E, j, φ2, ℓ)
20: i← i + 1
21: res′ ← Eval(E, i, φ1, ℓ)
22: j ← j + 1
23: end while
24: return res
25: end function
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