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Gaussian cluster states are ideal infinitely squeezed states. In practice it is possible to construct only approxi-

mated version of them with finite squeezing. Here we show how to determine the specific multi-mode squeezing

transformation, which generates a faithful approximation of any given Gaussian cluster state.

Cluster states are highly entangled states which are the fun-

damental resource for measurement based quantum compu-

tation [1, 2]. In the continuous variable setting the interest in

Gaussian cluster states [3–5] is motivated by the high scalabil-

ity of this states with optical setups [5–11]. In this article we

want to further analyze the relation between Gaussian cluster

states [12] and multi-mode squeezed states [13] (also called

canonical graph states and H-graph states respectively [5])

which may have relevance for their practical implementation.

The possibility to generate multi-mode squeezed states with

optical setups makes this class of Gaussian states very at-

tractive as possible Gaussian cluster states for measurement-

based universal quantum computation [14]. In fact, it as been

shown [5, 15], that any multi-mode squeezing transforma-

tion generates a cluster state. Here we show how to con-

struct the multi-mode squeezing transformation which gen-

erates any given cluster state. We also specify the conditions

under which a multi-mode squeezing transformation gener-

ates a cluster state. In particular, we describe in detail the

mathematical relations between the adjacency matrix of the

cluster and the matrix of squeezing interactions that constitute

the multi-mode squeezing transformation.

A Gaussian cluster state |Ψ〉 is a zero eigenstate of the col-

lective operators (the nullifiers)

x j = −i
(

b j ei θ j − b
†

j
e−i θ j

)

−

N
∑

k=1

A j,k

(

bk ei θk + b
†

k
e−i θk

)

,(1)

where, b j and b
†

j
are the annihilation and creation operators for

N bosonic modes, andA (real symmetric matrix) is the adja-

cency matrix which defines the cluster state, i.e. x j |Ψ〉 = 0,

∀ j. This means that these operators are infinitely squeezed.

In practice it is possible to realize only approximated clus-

ter states for which these operators are squeezed by a finite

amount. Note that in the definition of the nullifier we have in-

cluded also any possible local rotation (phase shift) ei θ j which

does not affect the global entanglement properties of the state.

In this work we show that every Gaussian cluster state de-

fined by a real symmetric adjacency matrixA can be approxi-

mated by a multi-mode squeezed state |Ψ〉 defined in terms of

a unitary transformation

U = e
−i z

2

∑N
j,k=1

(

Z j,kb
†
j
b
†

k
+Z

†

j,k
b j bk

)

(2)

as

|Ψ〉 = U |0〉 , (3)

where z is a real positive number,Z is a complex, symmetric

non-singular interaction matrix [16], and |0〉 is the vacuum.

Namely, we discuss the conditions under which the covariance

matrix C of the nullifiers over this state,

{C} j,k = 〈Ψ|
x j xk + xk x j

2
|Ψ〉 , (4)

approaches the null matrix in the limit of infinite z, i.e.

lim
z→∞
C = 0 . (5)

Notice that the modes described by the operators b j and b
†

j

are the physical modes that one can control, manipulate and

measure in a given experiment (such as the temporal or fre-

quency modes discussed in Refs. [5–10]. It is also important

to point out that even if Eq (2) is not the most general Gaus-

sian unitary transformation, since it does not include any b
†

j
bk

term, any zero-average Gaussian state can be generated from

the vacuum by a multi-mode squeezing transformation of the

form of Eq. (2) [17].

To be more specific, the central result of this work is the

following theorem.

Theorem: A state of the form (2)-(3), with Z ∈ CN×N non-

singular and Z = ZT , is a Gaussian cluster state with adja-

cency matrix A ∈ RN×N with A = AT , namely Eq. (5) is

true, if and only if the unitary matrixU, which enters into the

polar decomposition ofZ, defined by

Z = PU (6)

with P =
(

ZZ†
)1/2

hermitian positive definite (note that U

is symmetric becauseZ is symmetric), fulfills

U = −i e−iΘ A − i 11

A + i 11
e−iΘ , (7)

where Θ is the diagonal matrix with entries Θ j, j = θ j. In

particular, in this case

C = (A + i 11) eiΘ e−2 zP e−iΘ (A− i 11) (8)

= 4 e−iΘ
(

U + i e−2 iΘ
)−1

e−2 zP
(

U† − i e2 iΘ
)−1

eiΘ .

Proof: It is useful to express our equations in vector

form in terms of the vector of mode operators b =
(

b1 · · · , bN , b
†

1
· · · , b

†

N

)T
[with T indicating the transpose

(which does not operates at the level of quantum operators)

such that b is a column vector]. Thereby, the nullifiers (1) can
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be expressed, in vector form x = (x1 · · · xN)T , in terms of the

N × 2 N matrix

Q = −
(

[A + i 11] eiΘ [A− i 11] e−iΘ
)

(9)

where 11 is the identity matrix, as

x = Qb . (10)

Correspondingly the covariance matrix is given by

C = 〈Ψ| Q
bbT
+

(

bbT
)T

2
QT |Ψ〉 . (11)

The transformation of the mode operators under the effect

of a Gaussian unitary operator U, which generates zero aver-

age Gaussian states [as Eq. (2)], can be expressed in terms of

a 2 N × 2 N Bogoliubov matrix B, such that

U† b jU =

2 N
∑

k=1

B j,k bk (12)

(where here j is an index over the vector of operators and not

an index of the modes). Thereby we find

C = QB 〈0|
bbT
+

(

bbT
)T

2
|0〉 BT QT

=
1

2
Q B G BT QT , (13)

with G =

(

11

11

)

, where the missing blocks are null matri-

ces. In particular every Bogoliubov matrix B takes the block

structures

B =

(

X Y

Y∗ X∗

)

, (14)

(note that with the symbolM∗ we indicate the matrix whose

entries are the complex conjugates of the entries ofM) where

the N × N complex matrices X and Y fulfill the relations

XX† − YY† = 11

XYT − YXT
= 0 , (15)

which are derived from the bosonic commutation relation. By

means of this, we find

QB = −
(

E E∗
)

(16)

with

E = (A + i11) eiΘX + (A − i11) e−iΘY∗ , (17)

so that

C = E E† , (18)

where the fact that C is real can be shown using the rela-

tions (15). This expression for the covariance matrix of the

nullifiers entails that Eq. (5) is equivalent to

lim
z→∞
E = 0 . (19)

In the case of the Gaussian transformation defined in

Eq. (2), the matrices X and Y can be expressed in terms of

the polar decomposition (6) as [13]

X = cosh (zP)

Y = −i sinh (zP) U . (20)

Thus, in general,

lim
z→∞
E =

1

2
lim
z→∞

{[

(A + i 11) eiΘ
+ i (A − i 11) e−iΘU∗

]

ezP

+

[

(A + i 11) eiΘ − i (A− i 11) e−iΘU∗
]

e−zP
}

,(21)

where we have used the fact that, since Z is symmetric,

PU = UP∗. So, finally, Eq. (21) is equal to the null matrix,

namely Eqs. (5) and (19) are true, if and only ifU is given by

Eq. (7). In this case we also find that E = (A + i 11) eiΘ e−zP

such that the covariance matrix is equal to Eq. (8). �

We also note that, given a symmetric unitary matrix U of

the form of Eq. (7) with A real symmetric, and a hermitian

matrix P, then PU is symmetric (i.e. PU = UP∗), if and

only if

(A + i 11) eiΘ P e−iΘ (A − i 11) ∈ RN×N . (22)

This proposition, in turn, entails that the covariance matrix in

Eq. (8) is real symmetric.

The multi-mode squeezed state corresponding to a given

cluster state. The result that we have demonstrated implies

that, on the one hand, every cluster state with adjacency ma-

trix A (and local mode rotations defined by the matrix Θ) is

approximated by the state generated by (2) with Z given by

the product of the unitary matrix in Eq. (7) and any hermi-

tian positive definite matrix P that fulfill the relation (22). In

particular, given an adjacency matrix, there are infinite multi-

mode squeezed states (corresponding to different P) that ap-

proximate the cluster state. According to Ref. [18] a faithful

approximation is one for which the covariance matrix of the

nullifiers is diagonal. Our result shows that it is always possi-

ble to find such state. Specifically, if we choose

P = 11 + e−iΘ
ln

(

A2
+ 11

)

2 z
eiΘ , (23)

which is hermitian positive definite, and fulfill the rela-

tions (22) [whenU is given by Eq. (7)], then we find e−2 zP
=

e−2 z e−iΘ
(

A2
+ 11

)−1
eiΘ so that the covariance matrix of the

nullifiers is

C = e−2 z
11 , (24)

for every real symmetric adjacency matrixA.

The cluster state corresponding to a given multi-mode

squeezed state. On the other hand, given a general multi-

mode squeezed state defined by a complex symmetric matrix

Z, with polar decompositionZ = PU, there exists a cluster

state of which it is an approximation, when the relation (7)

can be solved forA, namely whenU+ i e−2 iΘ is non-singular

(and it is always possible to identify local rotations of angle θ j

for which this is true). In this case, the multi-mode squeezed
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state is an approximation to the class of cluster states, corre-

sponding to all possible local rotations which keepU+ i e−2 iΘ

non-singular, and defined by the adjacency matrix

A = −i
U − i e−2 iΘ

U + i e−2 iΘ
. (25)

At fixed Z, finding the cluster state [i.e. the adjacency ma-

trix A (25)] which best approximates (that is the closest, by

some measure to be determined, as a function of the local ro-

tations Θ, to) the multi-mode squeezed state is still an open

question [4, 18]. Note also that the unitary symmetric ma-

trix eiΘU eiΘ can be expressed as eiΘU eiΘ
= eiK , with K

real symmetric (because U is symmetric), therefore we can

express the adjacency matrix asA = −cos (K)/ [1 + sin (K)],

which shows explicitly thatA is real symmetric.

The singular values of Z and the generation of a clus-

ter state with many single-mode squeezed fields. We finally

note that the structure of the cluster state is determined only

by the unitary matrix of the polar decomposition (6). The

matrix P determines instead how much the nullifiers (1) are

actually squeezed. To gain insight into the meaning of the

matrix P it is useful to analyze the transformation that gen-

erates the state (2) in terms of the Bloch-Messiah reduction

formula [19–21], which shows how to generate any Gaussian

state as a set of single mode squeezing operations followed

by a set of beam splitter interactions and phase shifts [22–24].

In particular, the single mode-squeezing operations transform

the mode operators according to b j → µ j b j + ν j b
†

j
, where

µ j and ν j are the singular values of, respectively, the matrices

X and Y that constitute the Bogoliubov transformation cor-

responding to the state. In our case the singular values of X

and Y in Eq. (20) are given, in terms of the eigenvalues λ j

of P (that are the singular values of Z), by µ j = cosh(z λ j)

and ν j = sinh(z λ j) respectively. So that, the eigenvalues of P

are a measure of the single-mode squeezing operations which

enter in the Bloch-Messiah decomposition of the multi-mode

squeezing transformation that generate the state. This means

that a cluster state can be prepared by a set of squeezers with

squeezing strength given by the eigenvalues of P (i.e. the sin-

gular values of Z), followed by a sequence of properly se-

lected beam splitter interactions and phase shifts, determined

according to the Bloch-Messiah reduction formula [20–24].

We further highlight that with our approach we find the class

of multi-mode squeezing transformations which generates a

given cluster state. However the same state can be also gener-

ated by many generic Gaussian transformations as discussed

in Ref. [22, 24], see appendix A for more details.

An interesting case is whenP = 11, such that the state can be

created starting by many equal single-mode squeezed states.

In this case Z is equal to the unitary matrix Z = U, and the

covariance matrix of the nullifiers is

C =
(

A2
+ 11

)

e−2 z . (26)

Moreover, if we restrict to the case of self-inverse adjacency

matrix A2
= 11, then the relations (5) and (19) are true for

U = −e−iΘA e−iΘ. In this case the covariance matrix reduces

to

C = 2 e−2 z
11 . (27)

We note that these Gaussian cluster states, with self-inverse

adjacency matrix, are the states discussed and generated in [4,

6, 7, 9, 14, 15, 25–29].

Conclusions. We have discussed the connections between

multi-mode squeezed states and cluster states showing that

any cluster state (not only bipartite ones [15]) can be approx-

imated by a multi-mode squeezed state. Namely, given any

cluster state, we have shown how to determine a multi-mode

squeezed state for which the covariance matrix of the nulli-

fiers (that determine the cluster) approaches the null matrix in

the limit of infinite squeezing. The choice of the multi-mode

squeezed state corresponding to a cluster is not unique, and

we have also shown that for any cluster state, the multi-mode

squeezed state can always be chosen such that the correspond-

ing covariance matrix of the nullifiers is diagonal.

These findings may help to identify additional interferomet-

ric strategies to entangle either temporal or frequency modes

alternative to those realized in [6–10] and that could achieve

more general cluster geometries.
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Appendix A: Relation between our result and Refs. [22, 24]

The Bloch-Messiah formula [19–21] shows that it is pos-

sible to generate any Gaussian state by manipulating many

squeezed mode with a multiport interferometer [19–23]. In

detail, the Bloch-Messiah formula shows that it is always pos-

sible to decompose the matrices X and Y that constitute a

general Bogoliubov matrix B (14) in terms of the single value

decompositions

X =V Dx W
†

Y =V Dy W
T (A1)

where V and W are two unitary matrices, and Dx and

Dy diagonal. In particular Dx and Dy can be expressed

in terms of a diagonal matrix zD as Dx = cosh(zD) and

Dy = sinh(zD). Note that this decomposition is gen-

eral [it is valid for any Bogoliubov matrix B, which corre-

sponds to any general Gaussian unitary transformation UB =

e
−i

∑N
j,k=1

(

Z j,k b
†

j
b
†

k
+Z∗

j,k
b jbk+S j,k b

†

j
bk+S

∗
j,k

b jb
†

k

)

, with Z = ZT and

S = S†, according to the relation B b = UB b U
†

B
=

(

UB b1 U
†

B
, · · ·UB bN U

†

B
,UB b

†

1
U
†

B
, · · ·UB b

†

N
U
†

B

)T
], and it

is different from Eq. (20) which is valid only for a multi-mode

squeezing transformation (2). Thus, a general Bogoliubov

matrix (14) can be decomposed as the product of three ma-

trices B = BV BD BW,

BV =

(

V

V∗

)

, BD =

(

Dx Dy

Dy Dx

)

, BW =

(

W†

WT

)

,

(A2)

where the missing blocks are null matrices, and BD describes

the squeezing of all the modes, while BV and BW represent
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multi-port interferometers. Moreover, since each Bogoliubov

matrix is related to a Gaussian unitary transformation UBx

(with x ∈ {V,D,W}) by the relation Bx b = UBx
b U

†

Bx
, one

finds UB = UBV UBD UBW , so that the state generated from

the vacuum |0〉 by a general Gaussian unitary transformation

can be always written as UB |0〉 = UBV UBD |0〉, where UBW
has no effect on the vacuum [22, 23].

Exploiting this result it is possible to identify a Gaussian

unitary transformation which generates any cluster state, see

Refs. [22, 24]. Let us now rephrase this result following our

notation. Using the decomposition (A1) in Eq. (17) we find

lim
z→∞
E =

1

2
lim
z→∞

{[

(A + i 11) eiΘV + i (A − i 11) e−iΘV∗
]

ezD

+

[

(A + i 11) eiΘV − i (A − i 11) e−iΘV∗
]

e−zD
}

W† ,

(A3)

which is zero (meaning that the corresponding state is a Gaus-

sian cluster state) if and only if

(A + i 11) eiΘV + i (A − i 11) e−iΘV∗ = 0, (A4)

and, introducing the real and imaginary parts of eiΘV such

that eiΘV = Vr + iVi, we find that this expression can be

rewritten as

Vi −AVr = 0 (A5)

which is equivalent (apart form the detail of the local rotations

eiΘ) to the Eq. (17) of Ref. [22] and to the Eq. (5) of Ref. [24].

In particular this entails that Vi = AVr , so that eiΘV =

(11 − iA) Vr, and since eiΘV is unitary (eiΘVV† e−iΘ
= 11)

we find VrV
T
r =

(

11 +A2
)−1

, which is equivalent to Eq. (9)

of Ref. [24]. Correspondingly, we findVr =

(

11 +A2
)−1/2

O,

where O is a generic real orthogonal matrix. Thus, we find

V = e−iΘ (11 + iA)
(

A2
+ 11

)−1/2
O , (A6)

which is equivalent to the Eq. (12) of Ref. [24]. This equation

shows that any Gaussian state generated by a unitary transfor-

mation, whose corresponding Bogoliubov matrix is decom-

posed as in Eq. (A1), with the unitary matrixV which fulfills

Eq. (A6), is a faithful approximation of a Gaussian cluster

state with adjacency matrixA.

Let us now analyze how this known result is related to

the result that we discuss in this work. In order to compare

our results with Eq. (A6), we have to find a relation between

the Bloch-Messiah decomposition (A1) and the decomposi-

tion (20) (which is valid only for multi-mode squeezed states).

A singular value decomposition of the matrices X and Y in

Eq. (20) is obtained by exploiting the diagonalization of the

matrix P, that is P = T † DP T (with T unitary andDP diag-

onal), and which gives

X = T † cosh(DP) T

Y = T † sinh(DP) T (−iU) . (A7)

This is not in the form of Eq.(A1). In fact the singular value

decomposition of a matrix is not unique, and Eq.(A1) is made

by the pair of singular value decompositions which are writ-

ten in terms of only two unitary matricesV andW. Eq. (A7)

can be cast in this peculiar form following the procedure dis-

cussed in Refs. [20, 21]. Specifically, one can find a balancing

matrix R (unitary) such that Eq.(A7) can be cast in the form

of Eq. (A1) with

V = T † R (A8)

W = −iUT T R∗ (A9)

zD = DP . (A10)

In particular, the balancing matrix is the one given by the Au-

tonne–Takagi factorization [20, 21] of the symmetric unitary

−iT U T T , such that

−iT U T T
= R RT . (A11)

Equivalently, the unitary T † R is given by the Au-

tonne–Takagi factorization of −iU, that is

−iU = T † R RT T ∗ . (A12)

Thereby, using Eqs. (A8) and (A12) we find

U = iVVT . (A13)

This relation indicates that given a general Gaussian unitary

transformation UB, with corresponding Bogoliubov matrix B

which can be decomposed in terms of the matrices V and D

as in Eq. (A1), generates, from the vacuum, the same state

generated by a multi-mode squeezing transformations U (2),

characterized by an interaction matrixZ with polar decompo-

sition (6) expressed in terms of the unitary matrixU given in

Eq. (A13) and a matrix P with eigenvalues equal to the diag-

onal elements of the diagonal matrixD.

In particular, if we consider a general Gaussian unitary

transformation which generates an approximation of a clus-

ter state with adjacency matrixA, and which is characterized

by Eq. (A1), withV given in Eq. (A6), we find that the same

approximation is generated by a multi-mode squeezing trans-

formation characterized by a matrixU (A13) given by

U = i e−iΘ (11 + iA)
(

A2
+ 11

)−1
(11 + iA) e−iΘ (A14)

which is equal to Eq. (7). This is an alternative derivation,

which makes use of the Bloch-Messiah decomposition, of the

theorem discussed in the main text.
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