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Abstract
We extend the notion of quantum reading to the case where the information to
be retrieved, which is encoded into a set of quantum channels, is of quantum
nature. We use two-qubit unitaries describing the system-environment interac-
tion, with the initial environment state determining the system’s input-output
channel and hence the encoded information. The performance of the most
relevant two-qubit unitaries is determined with two different approaches: (i)
one-shot quantum capacity of the channel arising between environment and
system’s output; (ii) estimation of parameters characterizing the initial quantum
state of the environment. The obtained results are mostly in (qualitative) agree-
ment, with some distinguishing features that include the CNOT unitary.

Keywords: quantum reading, quantum fisher information,
one-shot quantum channel capacity

1. Introduction

Quantum reading is the process of retrieving classical information from a memory by using a
quantum probe [1] (for a survey on the subject see [2]). It is customary to see such information
encoded into a finite set of quantum channels, each one labeled by the value that a random
discrete variable can take. As a such, the process involves quantum channel discrimination
[3–6]. Quantum reading has been applied in various contexts, ranging from physical imaging
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[7], to radar [8], to biology [9], to cryptography [10], and showed advantages over classical
reading.

A prototypicalmodel for amemory cell in quantum reading is the environment parametrized
quantum channel [11–15]. This is a unitary acting on two systems: the main system and the
environment. Depending on the state of the latter, a channel can be realized on the former
by tracing out the environment at the end. Thus, the initial state of the environment can be
considered as the encoded information that has to be retrieved, while the main system plays
the role of the probe. This model was custumarily employed with environment input states
forming an orthonormal basis for the associated Hilbert space. In such a way it realized an
incoherent model of memory cell (investigated also for private reading [16]).

Here, we do not restrict the input quantum states of the environment to be discrete or even
orthogonal. Instead, we consider any possible state on the associated Hilbert space with the
goal of determining it. This seems to us the most natural way to look at quantum reading of
quantum information, or in other words at the quantum communication between encoder and
reader. That is inline with the coherent model of memory cell (allowing for entanglement gen-
eration between encoder and reader) put forward in [17] by resorting to conditional operations.
However, we shall consider generic unitaries together with generic environment states, rather
than conditional unitaries together with specific environment states. Furthermore, we shall
focus on finite (or even single) use of the channel connecting the environment with the output
of the main system (probe), rather than on its asymptotic behavior. In fact quantum inform-
ation has to be extracted with a finite number of usage of the channel realized on the main
system (probe) and a nonzero probability of error. Then, as a figure of merit we resort to the
one-shot quantum capacity [18]. Since explicit computation of one-shot capacity is challen-
ging, we shall compute a lower bound on it following [19]. Additionally, we shall consider the
information to be retrieved as residing on the parameters characterizing the encoded quantum
state, thus tracing back the problem to continuous multi-parameter estimation. In this case
as figure of merit we shall consider a Bayesian version of the quantum Cramer–Rao bound
derived from the classical bound [20]. We shall confine our attention to two-qubit unitaries. In
particular those that are entangling. These can be represented by points lying in a tetrahedron
in R3 (see e.g. [21]). Specifically, we characterize the quantum reading of quantum informa-
tion on the edges of this tetrahedron starting from its vertices. The found results show a large
qualitative agreement between the approach based on the one-shot quantum capacity bound
and the approach based on Bayesian quantum Cramer–Rao bound, with some distinguishing
features that include the CNOT unitary.

The paper is organized as follows. In section 2 we introduce the model and state the problem
to deal with. In section 3 we study the one-shot quantum capacity by evaluating a lower bound
for relevant two-qubit unitaries. Then, in section 4 we study the quantum state estimation by
evaluating on the same unitaries a Bayesian version of the Cramer–Rao bound. Finally in
section 5 we draw our conclusions.

2. The model

Consider a unitary UAE→BF with systems A≃ B and E≃ F (here, with little abuse of notation,
the system’s label also denotes the associated Hilbert space). By referring to figure 1, the
environment parametrization of quantum channel [11–15] consists in characterizing a channel
N A→B

θ between A and B in terms of the E state θ.
For the purpose of quantum reading systems A and B, i.e. input and output of N A→B

θ , are
both held by the reader, which wants to retrieve the state θ of the system E. It is customary
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Figure 1. General model for quantum reading based on environment parametrization of
quantum channels. |ψϕ⟩ is the purification of the input ϕ to the A system.

to consider x ∈ X (discrete and finite alphabet) encoded by E as orthogonal states |x⟩ with
probability px. Then, the objective for the reader, given N A→B

x , is to find x among all possible
values in X . This task can give rise to classical communication [22] as well as to quantum
communication [17] between E and B.

In fact, for classical information transmission, an incoherent picture is used leading to the
final state of the whole system as

U

(
|ψϕ⟩⟨ψϕ | ⊗

∑
x

px|x⟩⟨x|

)
U†. (1)

Instead, for quantum information transmission, a coherent picture is used leading to the
final state of the whole system as∑

x

√
px (V

x|ψϕ⟩) |x⟩, (2)

where it is assumed U=
∑

xV
x⊗ |x⟩⟨x| applied to an environment state

∑
x
√
px|x⟩.4

Here we change the paradigm and according to figure 1 we consider a generic unitary U
together with a generic state θ encoded into E. Then the objective is to recover such a state.
This of course implies the necessity of transmitting quantum information from E to B or altern-
atively the necessity of estimating the environment state.

We will focus on two-qubit unitaries UAE→BF, with states ϕ, θ on A and E systems respect-
ively. The former is the input of the probe system and the latter the encoded state in the
memory. The bold symbols emphasize that the qubit states are characterized by vectors of
R3.

Two-qubit entangling unitaries that can be written as [24]

UAE→BF =
4∑

k=1

e−iλk |Λk⟩⟨Λk|, (3)

where |Λk⟩ are the so called magic basis states:

4 This picture was then extended to coherent quantum channel discrimination [23].
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Figure 2. Tetrahedron representing the parameters space of two-qubit unitaries, where
I, C, S, D stand for Identity, CNOT, SWAP and DCNOT unitaries respectively.

|Λ1⟩=
1√
2
(|0⟩A|0⟩E+ |1⟩A|1⟩E) , |Λ2⟩=

−i√
2
(|0⟩A|0⟩E− |1⟩A|1⟩E) ,

|Λ3⟩=
1√
2
(|0⟩A|1⟩E− |1⟩A|0⟩E) , |Λ4⟩=

−i√
2
(|0⟩A|1⟩E+ |1⟩A|0⟩E) , (4)

and the eigenvalues λk are

λ1 =
αx−αy+αz

2
, λ2 =

−αx+αy+αz
2

,

λ3 =
−αx−αy−αz

2
, λ4 =

αx+αy−αz
2

, (5)

with

π

2
⩾ αx ⩾ αy ⩾ αz ⩾ 0. (6)

In the canonical basis {|0⟩A|0⟩E, |0⟩A|1⟩E, |1⟩A|0⟩E, |1⟩A|1⟩E} we have

U=


cos
(

αx−αy

2

)
0 0 −i sin

(
αx−αy

2

)
0 eiαz cos

(
αx+αy

2

)
−i eiαz sin

(
αx+αy

2

)
0

0 −i eiαz sin
(

αx+αy

2

)
eiαz cos

(
αx+αy

2

)
0

−i sin
(

αx−αy

2

)
0 0 cos

(
αx−αy

2

)

 . (7)

All unitaries of this kind form, according to equation (6), a tetrahedron in the parameter space
αx,αy,αz (see figure 2). The vertices of such a tetrahedron represent Identity, SWAP, CNOT
and DCNOT unitaries.
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3. One-shot quantum capacity

By referring to figure 1, for a fixed probe state ϕ, we can consider the channel

N E→B
ϕ (θ) = TrF

(
UAE→BF (ϕ⊗θ)

(
UAE→BF

)†)
, (8)

and evaluate its capability in transmitting quantum information. In particular, we are interested

to the one-shot quantum capacity for the channel
(
N E→B

ϕ (θ)
)⊗n

. This will tell us how much

quantum information we can extract from system En by accessing system Bn in one shot and
with a finite probability of error.

3.1. Lower bound

Notice preliminarily that the complementary channel of N E→B
ϕ (θ) reads(

N E→B
ϕ

)c
(θ) = TrB

(
UAE→BF (ϕ⊗θ)

(
UAE→BF

)†)
. (9)

Let us also set

ρBF :=
(
idA→B⊗

(
N E→B

ϕ

)c)
(ΦAE) , (10)

where ΦAE is maximally entangled state across the systems A and E. In this way we will deal
with the Choi matrix of the channel (N E→B

ϕ )c. Analogously, it will be

ρBnF n :=

(
idA

n→Bn ⊗
((

N E→B
ϕ

)c)⊗n
)
(ΦAnEn) , (11)

with ΦAnEn a maximally entangled state across the systems An and En.

For a given ε> 0, the one-shot quantum capacity of
(
N E→B

ϕ

)⊗n
results as [18]

Qε
((

N E→B
ϕ

)⊗n
)
=max

{
log2m|Fmin

((
N E→B

ϕ

)⊗n
,m
)
⩾ 1− ε

}
, (12)

where

Fmin

((
N E→B

ϕ

)⊗n
,m
)
:= max

H ′
E ⊂H n

E ,

dim(H ′
E)=m

max
D

min
|ω⟩∈H ′

E

⟨ω|
(
D ◦

(
N E→B

ϕ

)⊗n
)
(ω) |ω⟩. (13)

Here D is a decoding map from H n
B ≃ H n

E to H ′
B ≃ H ′

E .
A lower bound to (12) is given as follows [19]

Qε
((

N E→B
ϕ

)⊗n
)
⩾ sup

δ∈
(
0,
√

ε/2
)
(
H
√

ε/2−δ

min (Bn|F n)ρn − 4log2
1
δ
− 2

)
. (14)

It is

Hε
min (B

n|F n)ρn := max
ρ ′
BnF n∈Bε(ρBnF n )

Hmin (B
n|F n)ρ ′

BnF n
, (15)

where

Bε (ρBnF n) =

{
ρ ′
BnF n | tr(ρ ′

BnF n)⩽ 1 ,
√
1−F(ρBnF n ,ρ ′

BnF n)⩽ ε

}
, (16)

with

F(ρBnF n ,ρ ′
BnF n) :=

∥∥∥√ρBnF n

√
ρ ′
BnF n

∥∥∥2
1
. (17)
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Furthermore

Hmin (B
n|F n)ρn =max

σFn
sup
{
λ ∈ R|ρBnF n ⩽ 2−λIBn ⊗σF n

}
, (18)

with ρBnF n given by (11).
We also have the following inequality for α ∈ (1,∞) [25]

Hε
min (B

n|F n)ρn ⩾Hq (B
n|F n)ρn −

g(ε)
q− 1

, (19)

being

g(ε) :=− log2
(
1−

√
1− ε2

)
. (20)

Here Hq is the conditional Renyi entropy, which is defined as

Hq (B
n|F n)ρn :=max

σFn
−Dq (ρBnF n∥IBn ⊗σF n) , (21)

with

Dq (ρBnF n∥IBn ⊗σF n) :=
1

q− 1
log2Tr

{[
(IBn ⊗σF n)

1−q
2q ρBnF n (IBn ⊗σF n)

1−q
2q

]q}
. (22)

Considering q= 2, by combining relations (14) and (19), we have

Qε
((

N E→B
ϕ

)⊗n
)
⩾ sup

δ∈
(
0,
√

ε/2
)
[
H2 (B

n|F n)ρn − g

(√
ε

2
− δ

)
− 4log2

1
δ
− 2

]
. (23)

By restricting the attention to product states σF n = σ⊗n
F and ρBnF n = ρ⊗n

BF in H2(Bn|F n)ρn and
using H2(Bn|F n)ρ⊗n ⩾ nH2(B|F)ρ, we finally arrive to

Qε,n
(
N E→B

ϕ

)
:=

1
n
Qε
((

N E→B
ϕ

)⊗n
)

⩾ sup
δ∈

(
0,
√

ε/2
)
[
H2 (B|F)ρ −

1
n

(
g

(√
ε

2
− δ

)
+ 4log2

1
δ
+ 2

)]

=H2 (B|F)ρ −
1
n

(
g

(√
ε

2
− δ⋆

)
+ 4log2

1
δ⋆

+ 2

)
, (24)

where δ⋆ is the value of δ minimizing the expression g
(√

ε/2− δ
)
− 4log2 δ within the inter-

val (0,
√
ε/2) (see appendix A).

3.2. Evaluation on the vertices

We now work out the calculation of the r.h.s. of (24) for the four cases of unitaries in the
vertices of tetrahedron (see figure 2).

(i) αx = αy = αz = 0 (U= I). In this case ρBF =ΦAE. Then, we have

H2 (B|F)ρ =−min
σF

log2Tr

{(
(IB⊗σF)

− 1
2 ΦAE

)2}
(25)

⩽− log2Tr
{
(ΦAE)

2
}
⩽ 0. (26)

Therefore the lower bound (24) trivially becomes zero.
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(ii) αx = π
2 , αy = αz = 0 (U=CNOT). In this case

ρBF =
1
4


1 isin(2ϕ1)cosϕ2 sin(2ϕ1)sinϕ2 1

−isin(2ϕ1)cosϕ2 1 1 −sin(2ϕ1)sinϕ2

−sin(2ϕ1)sinϕ2 1 1 −sin(2ϕ1)cosϕ2

1 isin(2ϕ1)sinϕ2 isin(2ϕ1)cosϕ2 1

 .

(27)

Let us set ηF :=
√
σF/Tr

√
σF and assume that λ1 and λ2 are eigenvalues of σF with

ηF =
1
2

(
1+ r3 r1 − ir2
r1 + ir2 1− r3

)
, σF =

1
2

(
1+ p3 p1 − ip2
p1 + ip2 1− p3

)
. (28)

We have

H2 (B|F)ρ =max
σF

(
− log2Tr

{(
(IB⊗σF)

− 1
2 ρBF

)2})
(29)

=−min
σF

log2

Tr

{(
(IB⊗ ηF)

−1
ρBF

)2}
(
Tr
√
σF
)2 (30)

=−min
σF

log2
2
(
1+ r21 +

(
1− r21

)
cos2ϕ1 cos2ϕ2 sin

2 (2ϕ1)
)(

Tr
√
σF
)2 (

1− r21 − r22 − r23
)2

(31)

⩽−min
σF

log2
1+ r21

8
((

Tr
√
σF
)2
det(ηF)

)2 (32)

=−min
σF

log2

(
Tr
√
σF
)2 (

1+ r21
)

8det(σF)
(33)

=max
σF

− log2

(√
λ1 +

√
λ2
)2 (

1+ r21
)

8λ1λ2
(34)

⩽−min
σF

log2

(
1+ 2

√
λ1λ2

)(
1+ r21

)
8λ1λ2

⩽ 0. (35)

For the last inequality we used the fact that 1+ 2
√
x(1− x)⩾ 8x(1− x) for 0⩽ x⩽ 1.

Again the lower bound (24) trivially becomes zero.
(iii) αx = αy = αz =

π
2 (U= SWAP). In this case

ρBF =


1
2 cos

2 (ϕ1)
1
4e

iϕ2 sin(2ϕ1) 0 0
1
4e

−iϕ2 sin(2ϕ1) 1
2 sin

2 (ϕ1) 0 0
0 0 1

2 cos
2 (ϕ1) − 1

4e
iϕ2 sin(2ϕ1)

0 0 1
4e

−iϕ2 sin(2ϕ1) 1
2 sin

2 (ϕ1)

 . (36)
This can also be written as ρBF = I

2 ⊗ |ϕ ′⟩⟨ϕ ′| where |ϕ ′⟩= cosϕ1|0⟩+ eiϕ2 sinϕ1|1⟩.
Then, we have

H2 (B|F)ρ =−min
σF

log2Tr

{(
(IB⊗σF)

− 1
4

(
I
2
⊗ |ϕ ′⟩⟨ϕ ′|

)
(IB⊗σF)

− 1
4

)2
}

(37)

7
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=−min
σF

log2Tr

(
IB
4

)
Tr

{(
σ
− 1

4
F |ϕ ′⟩⟨ϕ ′|σ− 1

4
F

)2}
(38)

= 1− 2min
σF

log2⟨ϕ ′|σ− 1
2

F |ϕ ′⟩⩾ 0. (39)

Therefore, maxσF H2(B|F)ρ = 1 is attained when ϕ1 = ϕ2 = 0 and σF = (1/2)[(1+
r3)|0⟩⟨0|+(1− r3)|1⟩⟨1|] for r3 → 1.
As a result, the lower bound (24) reads

1− 1
n
g

(√
ε

2
− δ⋆

)
− 4
n
log2

1
δ⋆

− 2
n
. (40)

(iv) αx = αy =
π
2 , αz = 0 (U=DCNOT). In this case

ρBF =


1
2 cos

2 (ϕ1)
1
4 i e

iϕ2 sin(2ϕ1) 0 0
− 1

4 i e
−iϕ2 sin(2ϕ1)

1
2 sin

2 (ϕ1) 0 0
0 0 1

2 cos
2 (ϕ1) − 1

4 i e
iϕ2 sin(2ϕ1)

0 0 1
4 i e

−iϕ2 sin(2ϕ1)
1
2 sin

2 (ϕ1)

 . (41)

This can also be written as ρBF = I
2 ⊗ |ϕ ′⟩⟨ϕ ′| where |ϕ ′⟩= cosϕ1|0⟩+ ieiϕ2 sinϕ1|1⟩.

Then we can repeat the reasoning of case (iii) and arrive to the lower bound (24) as

1− 1
n
g

(√
ε

2
− δ⋆

)
− 4
n
log2

1
δ⋆

− 2
n
. (42)

Summarizing, for I and CNOT no quantum information can be retrieved according to the
used figure of merit. Instead for SWAP and DCNOT maximal quantum information retrieval
(1 qubit) can be approached by increasing the number of shots n even with a fixed value of
error ε.

3.3. Evaluation on the edges

We now extend, with the help of numerics, the analysis of the figure of merit along the edges
of the tetrahedron.

In the cases analyzed in section 3.2 the relevant part is given by maxσF H2(B|F)ρ. The
continuity of H2(B|F)ρ (see appendix B), hence its uniform continuity, allows us to reliable
sampling discrete points for plotting its behavior along edges of the tetrahedron of figure 2.
The results are summarized in figure 3.

We can see that, while along the edge IC the quantity maxσF H2(B|F)ρ remains always
zero, along the edges IS, ID (dotted curve), it becomes nonzero only after a certain (threshold)
value of |α| (|α| ≈ π/3.4). Instead, along the edges CD, CS (dashed-dotted curve), it smoothly
increases since the CNOT. Lastly, for the edge DS it is constant and equal to 1. This latter result
is inline with the fact that on the edgeDS the outputN E→B

ϕ (θ), forϕ= |0⟩⟨0| or |1⟩⟨1|, simply
gives a rotated version of the state θ, thus allowing its perfect recovery.

Overall the results indicate that there could be a nonzero volume of unitaries around identity
for which quantum information retrieval would not be possible. The use of conditional is due
to the fact that H2(B|F)ρ is a lower bound to the one-shot capacity.

8
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Figure 3. Quantity H2(B|F)ρ evaluated along the various edges of the tetrahedron as
function of the parameter |α|. Dashed curve corresponds to the edge IC; dotted curve
to the edges IS and ID; dashed-dotted curve to the edges CD and CS; solid curve to the
edge DS.

4. Quantum state estimation

By referring to figure 1, we now consider the goal of estimating parameters θ = (r,θ1,θ2) ∈Θ,
where Θ= [0⩽ r⩽ 1

2 ,0⩽ θ1 ⩽ π,0⩽ θ2 ⩽ 2π], characterizing the environment state

θ =
1
2
I+ rsinθ1 cosθ2σx+ rsinθ1 sinθ2σy+ rcosθ2σz. (43)

Here σx,σy,σz are the Pauli matrices. The estimation should be done by means of the channel
output Nθ(ϕ). As a figure of merit we will derive a Bayesian version of the quantum Cramer–
Rao bound following the classical bound [20].

4.1. Lower bound

Let {p(x;θ)}θ∈Θ be a family of probability density functions on a sample space X . Any
unbiased estimator θ̂ of θ satisfies the multivariate Cramer–Rao inequality:

Ep

[(
θ̂−θ

)(
θ̂−θ

)T]
⩾ I (θ)

−1
, (44)

where Ep denotes the expectation with respect to p(x;θ), I (θ) is the classical Fisher inform-
ation, and Ep[(θ̂−θ)(θ̂−θ)T] is the covariance matrix of θ̂.

After assigning a proper prior probability distribution π to θ and taking the expectation of
equation (44), we can get the simplest Bayesian Cramer–Rao bound:

Eπ

{
Ep

[(
θ̂−θ

)(
θ̂−θ

)T]}
⩾ Eπ {[I (θ)]}−1

. (45)

We assume the parameters r, θ1 and θ2 independent, and distributed according to
the measure [26] π(θ)dθ = sin θ1

2 drdθ1dθ2/(2π). Taking into account that quantum Fisher
information F (θ) upper bounds the classical Fisher information I (θ), we get

9
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Eπ

{
Ep

[(
θ̂−θ

)(
θ̂−θ

)T]}
⩾ {Eπ [I (θ)]}−1

=
4´

Θ
tr{I (θ)}π (θ)dθ

⩾ 4´
Θ
tr{F (θ)}π (θ)dθ

. (46)

Then the quantity of interest for us becomes

Fϕ :=

ˆ
Θ

tr{F (θ)}π (θ)dθ, (47)

where the subscript emphasizes its dependence from the input state ϕ of the A system.
Its maximum overall states ϕ will be denoted by F. Due to the convexity of the Fisher

information, the optimization can be restricted to pure states of the form

|ϕ⟩= cos
ϕ1
2
|0⟩+ eiϕ2 sin

ϕ1
2
|1⟩, (48)

where ϕ1 ∈ [0,π] and ϕ2 ∈ [0,2π].
From [27], we know that the basis-independent expression of quantum Fisher information

for a single-qubit mixed state ρ(θ) reads

Fab = tr [(∂aρ)(∂bρ)]+
tr [ρ(∂aρ)ρ(∂bρ)]

det(ρ)
, (49)

where ∂aρ= ∂ρ/∂θa. For a pure qubit state equation (49) reduces to

Fab = 2tr [(∂aρ)(∂bρ)] . (50)

4.2. Evaluation on the vertices

We now work out the calculation of F for the four cases of unitaries in the vertices of the
tetrahedron (see figure 2).

(i) αx = αy = αz = 0 (U= I). In this case equation (7) reduces to the identity and henceF =
0 for all input |ϕ⟩. As a consequence F= 0.

(ii) αx = π
2 , αy = αz = 0 (U=CNOT). In this case

Nθ (ϕ) =
1
2
+ rsinθ1 cosθ2 sinϕ1 sinϕ2|0⟩⟨0|

+
1
2
sinϕ1 cosϕ2 + i rsinθ1 cosθ2 cosϕ1|0⟩⟨1|

+
1
2
sinϕ1 cosϕ2 − i rsinθ1 cosθ2 cosϕ1|1⟩⟨0|

+
1
2
− rsinθ1 cosθ2 sinϕ1 sinϕ2|1⟩⟨1|. (51)

10
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Then

Fθ1,θ1 =
4r2 cos2 θ1 cos2 θ2

(
1− sin2ϕ1 cos2ϕ2

)
1− 4r2 sin2 θ1 cos2 θ2

,

Fθ2,θ2 =
4r2 sin2 θ1 sin

2 θ2
(
1− sin2ϕ1 cos2ϕ2

)
1− 4r2 sin2 θ1 cos2 θ2

,

Fr,r =
4sin2 θ1 cos2 θ2

(
1− sin2ϕ1 cos2ϕ2

)
1− 4r2 sin2 θ1 cos2 θ2

. (52)

The maximum of

Fϕ =

ˆ
Θ

Tr{F (θ)}π (θ)dθ. (53)

is achieved for ϕ1 = 0,π or ϕ2 = π
2 ,

3π
2 , In this case it is F= 1.76108.

(iii) αx = αy = αz =
π
2 (U= SWAP). In this case

Nθ (ϕ) =

(
1
2
+ rcosθ1

)
|0⟩⟨0|+ re−iθ2 sinθ1|0⟩⟨1|

+ reiθ2 sinθ1|1⟩⟨0|+
(
1
2
− rcosθ1

)
|1⟩⟨1|. (54)

Then

Fθ1,θ1 = 4r2, (55)

Fθ2,θ2 = 4r2 sin2 θ1, (56)

Fr,r =
4

1− 4r2
. (57)

Clearly ˆ
Θ

Tr{F (θ)}π (θ)dθ, (58)

diverges, meaning that for any state ϕ we will have a good estimation on average.
(iv) αx = αy =

π
2 , αz = 0 (U=DCNOT). In this case

Nθ (ϕ) =

(
1
2
+ rcosθ1

)
|0⟩⟨0|+ i e−iθ2rsinθ1 cosϕ1|0⟩⟨1|

− i eiθ2rsinθ1 cosϕ1|1⟩⟨0|+
(
1
2
− rcosθ1

)
|1⟩⟨1|. (59)

Then

Fθ1,θ1 =
4r2
(
sin2 θ1 −

(
4r2 − cos2 θ1

)
cos2ϕ1

)
1− 4r2

(
cos2 θ1 + sin2 θ1 cos2ϕ1

) , (60)

11
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Fθ2,θ2 = 4r2 sin2 θ1 cos
2ϕ1, (61)

Fr,r =
4
(
cos2 θ1 + sin2 θ1 cos2ϕ1

)
1− 4r2

(
cos2 θ1 + sin2 θ1 cos2ϕ1

) . (62)

Notice that these three terms are non negative, hence maximizing (47) is equivalent to
maximize them. However, their derivative with respect to cos2ϕ1 never nullify. Hence, the
maximum is at the extreme points. Actually it is easy to see that it occurs for cos2ϕ1 = 1.
As a consequence we will have

F=

ˆ
Θ

[
4r2 + 4r2 sin2 θ1 +

4
1− 4r2

]
π (θ)dθ, (63)

which diverges, likewise the case of SWAP.

The fact that F diverges for DCNOT and SWAP is in line with the results in section 3
where the bound for one-shot capacity in these cases turns out to be (close to) 1. In other
words for DCNOT and SWAP the environment state can be estimated with perfect accuracy
or analogously it can be transmitted with maximum reliability to the B system.

Also for identity we have concordance between the two approaches. In fact the environment
state can be estimated with total inaccuracy or analogously it can be transmitted to theB system
in a total unreliable way.

The situation is slightly different for CNOT, since according to the one-shot capacity
approach it behaves like identity, while state environment estimation can be done with a finite
average error.

4.3. Evaluation on the edges

We now extend, with the help of numerics, the analysis of the figure of merit along the edges
of the tetrahedron.

The continuity of the average quantum Fisher information (see appendix C), hence its uni-
form continuity, allows us to reliable sampling discrete points for plotting its behavior along
edges of the tetrahedron of figure 2. The results are summarized in figure 4.

We can see that along the edges (IC), (ID), (IS) the quantity F smoothly increases from zero,
remaining finite only for (IC). Instead for (CS and CD) it starts from a finite positive value and
then diverges. These results indicate that only for identity quantum information retrieval would
not be possible. For all other unitaries it would be possible, although in some cases with a finite
average error.

However, from figure 4 it is left out the edge (SD). On that edge, we have (7) as

U=


e−

i z
2 0 0 0

0 0 −i e i z
2 0

0 −i e i z
2 0 0

0 0 0 e−
i z
2

 . (64)

Therefore

Nθ (ϕ) =

(
1
2
+ rcosθ1

)
|0⟩⟨0|+ re−iθ2 sinθ1 (sinαz+ i cosαz cosϕ1) |0⟩⟨1|

12
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Figure 4. Quantity F evaluated along the various edges of the tetrahedron as function of
the parameter |α|. Curves from bottom to top refer respectively to the edges (IC), (ID),
(IS), (CS and CD). The edge (DS) is not represented because along it, the value of F is
infinity.

+ reiθ2 sinθ1 (sinαz− i cosαz cos(ϕ1)) |1⟩⟨0|+
(
1
2
− rcosθ1

)
|1⟩⟨1|, (65)

and

Fθ1,θ1 =
4r2
(
1− 4r2 +

(
4r2 − cos2 θ1

)
sin2ϕ1 cos2αz

)
1− 4r2

(
1− cos2αz sin

2 θ1 sin
2ϕ1
) , (66)

Fθ2,θ2 = 4r2 sin2 θ1
(
1− cos2αz sin

2ϕ1
)
, (67)

Fr,r =
4
(
1− cos2αz sin

2 θ1 sin
2ϕ1
)

1− 4r2
(
1− cos2αz sin

2 θ1 sin
2ϕ1
) . (68)

Fϕ does not have extrema with respect to αz inside the interval
(
0, π2

)
, and we know that on

the two ends of the interval it has the same maximum value. Thus, we can conclude, that on
the edge SD we have a constant infinite value of F (allowing quantum information recovering
with zero average error), that originates form the fact that the outputN E→B

ϕ (θ), forϕ= |0⟩⟨0|
or |1⟩⟨1|, simply gives a rotated version of the state θ (as discussed in section 3.3).

5. Conclusion

In conclusion, we have addressed the problem of reading quantum information by a quantum
probe, thus going beyond the standard paradigm that confines quantum reading to the retrieval
of classical information. As a model of quantum memory we used environment parametrized
quantum channels arising from two-qubit unitaries. Since these unitaries lie in a tetrahedron in
R3, we characterized those on the edges to have general insights. To this end, we used a lower
bound to the one-shot quantum capacity of the channel connecting the environment with the
output of the main system (probe) as well as a Bayesian version of the quantum Cramer–Rao
bound for the initial environment state. We remark that while the first also showed the behavior
vs the number n of shots, the second just refers to one-shot, Notwithstanding, the results of

13
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the first are more restrictive. In fact, according to the first figure of merit, there should be a
nonzero volume of unitaries around identity for which quantum information retrieval would
not be possible. Instead, the second shows that only for identity quantum information retrieval
would not be possible. For all other unitaries it would be possible, although in some cases with
a finite average error.

This difference of behavior between the two figures of merit (to most striking of which
occurs for CNOT) should be ascribed to the non tightness of the used lower bound for to the
one-shot quantum capacity.

In future, besides investigating also the unitaries inside the tetrahedron, we plan to charac-
terize spatial arrays of the presented model to figure out the performance of realistic quantum
memories. A fact that can be useful for applications in quantum cryptography as well as in
quantum computation.

Data availability statement

No new data were created or analyzed in this study.

Appendix A. Value of δ⋆

δ⋆ =
13
√
ε

15
√
2

−
(
1+ i

√
3
) 3
√√

2ε3 +
√
1728ε2 + 715392ε− 5971968+ 648

√
2ε

30 22/3

−
(
1− i

√
3
)
(ε+ 144)

30 3
√
2

3
√√

2ε3 +
√
1728ε2 + 715392ε− 5971968+ 648

√
2ε
. (69)

Appendix B. Continuity of lower bound on the one-shot quantum capacity

Let us consider

ρBF =
(
idA→B⊗ (NE→B)

c)
(ΦAE) , (70)

ρ ′
BF =

(
idA→B⊗ (N ′

E→B)
c)
(ΦAE) , (71)

where N and N ′ refer respectively to the unitaries Uα and Uα ′ . Then, we have

∥ρBF− ρ ′
BF∥1 =

∥∥(idA→B⊗
(
(NE→B)

c− (N ′
E→B)

c))
(ΦAE)

∥∥
1

(72)

⩽
∥∥(NE→B)

c− (N ′
E→B)

c∥∥
⋄ (73)

⩽ C1 ∥Uα −Uα ′∥∞ (74)

⩽ C2 ∥α−α ′∥R3 , (75)

where Ci <+∞ are positive constants. Furthermore, ∥ · ∥⋄ is the diamond norm and rela-
tion (74) comes from [28].
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Now, for a given ε= ∥α−α ′∥R3 > 0, it is shown [29] that∣∣∣H2 (B|F)ρ −H2 (B|F)ρ ′

∣∣∣⩽ log2
(
1+

√
ε
)
+ 3log2

(
1+ 64 3

√
ε−

√
ε

3
√
1+

√
ε

)
, (76)

where H2(B|F)ρ is defined in (21).

Appendix C. Continuity of average quantum Fisher information

Let us denote by α the parameters vector characterizing the unitary.

∣∣Fα −Fα ′
∣∣= ∣∣∣∣max

ϕ

ˆ
Θ

Tr{Fα (θ,ϕ)}π (θ)dθ−max
ϕ

ˆ
Θ

Tr{Fα ′ (θ,ϕ)}π (θ)dθ
∣∣∣∣ (77)

⩽ max
ϕ,ϕ ′

∣∣∣∣ˆ
Θ

Tr{Fα (θ,ϕ)}π (θ)dθ−
ˆ
Θ

Tr{Fα ′ (θ,ϕ ′)}π (θ)dθ
∣∣∣∣ (78)

⩽ max
ϕ,ϕ ′

ˆ
Θ

|Tr{Fα (θ,ϕ)}−Tr{Fα ′ (θ,ϕ ′)}|π (θ)dθ (79)

⩽ C1 max
θ,ϕ,ϕ ′

|Tr{Fα (θ,ϕ)}−Tr{Fα ′ (θ,ϕ ′)}| (80)

⩽ C2 max
θ,θ ′,ϕ,ϕ ′

|Tr{Fα (θ,ϕ)}−Tr{Fα ′ (θ ′,ϕ ′)}| (81)

⩽ C3 max
θ,θ ′,ϕ,ϕ ′

∥∥∥N α
θ (ϕ)−N α ′

θ ′ (ϕ ′)
∥∥∥
1

(82)

= C3 max
θ,θ ′,ϕ,ϕ ′

∥∥∥TrE [Uαϕ⊗θU†
α

]
−TrE

[
Uα ′ϕ ′ ⊗θ ′U†

α ′

]∥∥∥
1

(83)

⩽ C4 max
θ,θ ′,ϕ,ϕ ′

∥∥∥Uαϕ⊗θU†
α −Uα ′ϕ ′ ⊗θ ′U†

α ′

∥∥∥
1

(84)

⩽ C5 ∥Uα −Uα ′∥∞ (85)

⩽ C6 ∥α−α ′∥R3 , (86)

where Ci <+∞ are positive constants. In going from (81) to (82) we used the continuity of
the Fisher information [30]. In going from (83) to (84) we used the property that discarding a
system cannot increase the norm [31].
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