
Università degli Studi di Camerino
School of Advanced Studies

Dottorato di Ricerca in Scienze e Tecnologie
Computer Science - XXXII Ciclo

Formalization and Animation of
Business Process Collaborations

Relatore Dottorando

Prof. Francesco Tiezzi Lorenzo Rossi

Co-Relatore
Prof.ssa Barbara Re

Commissione Esaminatrice
Prof. Maurice ter Beek
Prof. Pascal Poizat

Anno Accademico 2019-2020

University of Camerino
School of Advanced Studies

Doctor of Philosophy in Sciences and Technology
Computer Science - XXXII Cycle

Formalization and Animation of
Business Process Collaborations

Supervisor PhD Candidate

Prof. Francesco Tiezzi Lorenzo Rossi

Co-Supervisor
Prof.ssa Barbara Re

Doctoral Examination Committee
Prof. Maurice ter Beek
Prof. Pascal Poizat

Academic Year 2019-2020

To Chi:
I’m still convinced that you’re the horse to bet on.

ABSTRACT OF THE
DISSERTATION

The increasing adoption of modeling methods contributes to the better un-
derstanding of the flow of processes from the internal behavior of a single
organization to a wider perspective where several organizations exchange
messages. In this regard, the BPMN standard provides a suitable abstrac-
tion for modeling, analyzing, executing, and monitoring business processes
within the same organization or involving multiple ones.

Even if this is a widely accepted notation, a major drawback of BPMN
is related to the complexity of the semi-formal definition of its meta-model.
Moreover, only limited efforts have been expended in formalizing its exe-
cution semantics, especially for what concerns the interplay among control
features, data handling and exchange of messages in scenarios requiring mul-
tiple instances of interacting participants. Consequently, the modeling of a
BPMN diagram, as well as fully understanding of its behavior, may result
very difficult in presence of such concepts.

Thus, providing a formal semantics of the BPMN notation is crucial for
shaping collaborative systems and guaranteeing that these systems behave as
they are supposed to. Moreover, figuring out the interplay between control
flow, messages, and data, by looking at static process models, is in general
error-prone and time-consuming. In this regard, visualization techniques,
such as animation, can effectively support the designer. In addition, a formal
semantics gives the possibility to simulate business processes.

This thesis faces these problems by providing a formal semantics for
BPMN collaborations that includes elements dealing with multiple instances,
i.e., multi-instance pools and sequential/parallel multi-instance tasks. Be-
yond defining a novel formalization, the thesis proposes solutions that exploit
this formalization to dynamically visualize the behavior and the business con-
text of BPMN diagrams through 2D and 3D animation, and for generating

iv

event logs from the simulation of business processes.

LIST OF PUBLICATIONS

• F. Corradini, A. Morichetta, A. Polini, B. Re, L. Rossi, F. Tiezzi. Cor-
rectness checking for BPMN collaborations with sub-processes. Journal
of Systems and Software, 2020. 110594.

• F. Corradini, C. Muzi, B. Re, L. Rossi, and F. Tiezzi. Formalising and
Animating Multiple Instances in BPMN Collaborations. Information
Systems, 2019. 101459.

• B. M. Abdul, F. Corradini, B. Re, L. Rossi, F. Tiezzi. UBBA:
Unity Based BPMN Animator. In: International Conference on Ad-
vanced Information Systems Engineering, vol. 350 of LNBIP, pages
1-9. Springer, 2019.

• C. Muzi, L. Pufahl, L. Rossi, M. Weske, and F. Tiezzi. Formalising
BPMN Service Interaction Patterns. In: The Practice of Enterprise
Modeling, vol. 335 of LNBIP, pages 3-20. Springer, 2018.

• F. Corradini, C. Muzi, B. Re, L. Rossi, and F. Tiezzi. Animating
Multiple Instances in BPMN Collaborations: from Formal Semantics
to Tool Support. In: International Conference on Business Process
Management, vol. 11080 of LNCS, pages 83-101. Springer, 2018.

• F. Corradini, C. Muzi, B. Re, L. Rossi, and F. Tiezzi. MIDA: Multiple
Instances and Data Animator. In: Online Proceedings of BPM Demo
Track. pages 86-90. CEUR-WS.org, 2018.

• F. Corradini, C. Muzi, B. Re, L. Rossi, and F. Tiezzi. Global vs. local
semantics of BPMN 2.0 OR-join. In: International Conference on
Current Trends in Theory and Practice of Informatics, vol. 10706 of
LNCS, pages 321-336. Springer, 2017.

• F. Corradini, A. Polini, B. Re, L. Rossi, and F. Tiezzi. Support-
ing Multi-layer Modeling in BPMN Collaborations. In: Workshop on

vi LIST OF PUBLICATIONS

Enterprise and Organizational Modeling and Simulation, vol. 298 of
LNBIP, pages 53-67. Springer, 2017.

CONTENTS

Abstract of the Dissertation iii

List of Publications v

List of Figures ix

List of Tables xi

I Introduction and Background 1

1 Introduction 3
1.1 Motivations . 4
1.2 Research Objectives . 5
1.3 Thesis Structure . 6

2 Background 9
2.1 Business Process Management 9

2.1.1 Process Animation . 11
2.1.2 Process Mining . 12

2.2 Business Process Model and Notation 2.0 15
2.2.1 BPMN Notation . 16
2.2.2 Running Example . 22
2.2.3 BPMN XML Representation 26

2.3 Operational Semantics . 27

viii CONTENTS

II BPMN 2.0 Formal Framework 31

3 Formalization of BPMN Collaborations 33
3.1 Multiple Instances, Messages and Data in a Nutshell 33
3.2 Textual Notation of BPMN Collaborations 36
3.3 Semantics of BPMN Collaborations 44

3.3.1 Process Configuration 44
3.3.2 Process Semantics . 49
3.3.3 Collaboration Configuration 56
3.3.4 Collaboration Semantics 58

3.4 Lessons Learned . 60
3.5 Comparing with other Approaches 62

3.5.1 On Formalizing Multiple Instances and Data 63
3.5.2 On Formalizing the OR-Join Gateway 65

III Formalization at Work 69

4 MIDA: Multiple Instances and Data Animator 71
4.1 MIDA Overview . 71
4.2 MIDA in Action: Modeling 74
4.3 MIDA in Action: Animation and Debugging 80
4.4 Comparing with other Approaches 84

5 UBBA: Unity Based BPMN Animator 87
5.1 UBBA Overview . 87
5.2 UBBA in Action . 91
5.3 Comparing with other Approaches 96

6 PPLG: Purpose Parametric Log Generator 99
6.1 Motivations . 99
6.2 Event Logs Generation Methodology 101
6.3 Rediscoverability Example in PPLG 105
6.4 Comparing with other Approaches 112

IV Conclusions and Future Work 115

7 Conclusion and Future Work 117
7.1 Thesis Results . 118
7.2 Assumptions and Limitations 119
7.3 Future Work . 120

Bibliography 123

LIST OF FIGURES

1.1 Thesis structure. 6

2.1 BP life-cycle. 10
2.2 Process animation: highlighting (a) vs. token flow (b). 12
2.3 3D process animation example. 12
2.4 Mining techniques [68]. 13
2.5 Event log example. 15
2.6 Business process perspectives. 16
2.7 A BPMN pool (a) and a BPMN multi-instance pool (b). . . . 17
2.8 Considered BPMN activities. 17
2.9 BPMN connecting edges. 18
2.10 Considered BPMN events. 18
2.11 Considered BPMN gateways. 19
2.12 BPMN types of data objects. 21
2.13 Paper reviewing collaboration model. 24
2.14 Paper publication collaboration model. 25

3.1 Control, data, and message flows in the running example. . . . 34
3.2 Structures of data elements of the running example. 36
3.3 BNF syntax of BPMN collaboration structures. 37
3.4 Textual representation of the running example. 39
3.5 Task status evolution. 45
3.6 BPMN process semantics: events and gateways. 50
3.7 OR Join semantics according to the OMG standard BPMN 2.0. 52
3.8 BPMN process semantics: tasks with atomic and non-atomic

executions. 53
3.9 BPMN process semantics: parallel/sequential multi-instance

tasks. 55
3.10 BPMN process semantics: interleaving. 56

x LIST OF FIGURES

3.11 BPMN collaboration semantics. 59
3.12 Atomic vs. non-atomic task execution. 61
3.13 Parallel multi-instance send tasks (a) and its macro expan-

sion (b). 62
3.14 OR Join with deadlock upstream. 66

4.1 MIDA modeling interface. 72
4.2 MIDA animation interface. 73
4.3 Multi-instance pool modeling. 76
4.4 Multi-instance task modeling. 77
4.5 Data elements fields modeling. 77
4.6 Task’s guard and assignments. 79
4.7 Message exchanges. 79
4.8 Decision gateways. 80
4.9 MIDA in action. 81
4.10 Data panel before (a) and after (b) the execution of task Write

Paper. 82
4.11 Guard violation. 82
4.12 Wrong message arrival. 84

5.1 UBBA functioning. 88
5.2 View from the top of the 3D world. 89
5.3 Token point of view. 90
5.4 Paper publication collaboration. 91
5.5 UBBA startup. 92
5.6 Message token. 93
5.7 Camera selection. 94
5.8 Parallel control flows. 95
5.9 XOR splits in 3D. 95

6.1 Rediscover an exclusive choice. 100
6.2 Purpose parametric log generation methodology (PPLG). . . . 101
6.3 Delta evaluation. 105
6.4 Graphical interface of PPLG. 106
6.5 The input process model (a), and the related order relations

matrix (b). 107
6.6 Available rediscoverability algorithms in PPLG. 107
6.7 PPLG routine. 108
6.8 First resulting Petri net. 108
6.9 Discovered process behavior. 109
6.10 Final resulting Petri net. 110
6.11 Event log serialization. 111

LIST OF TABLES

3.1 Correspondence between graphical and textual notation:
pools and events. 40

3.2 Correspondence between graphical and textual notation: gate-
ways. 41

3.3 Correspondence between graphical and textual notation: tasks. 42

4.1 MIDA extension elements correspondence. 75
4.2 Literature comparison. 85

5.1 Literature comparison. 97

6.1 Rediscoverability results. 111
6.2 Literature comparison. 113

LISTINGS

2.1 Assign Paper XML fragment. 27
6.1 Semantic Engine interface. 102
6.2 Simulator implementation. 103
6.3 Giuded simulation. 104
6.4 Evaluator interface. 105
6.5 First random trace. 108
6.6 Second random trace. 110

PART I

INTRODUCTION AND BACKGROUND

CHAPTER 1

INTRODUCTION

In the last years, the Business Process Model and Notation (BPMN) [53]
became the most prominent notation for representing business processes,
thanks to its wide usage in academic and industrial contexts. BPMN is
a well-established standard for describing single organization processes and
their compositions in a very intuitive way, by means of Process and Col-
laboration diagrams respectively. These allow stakeholders, i.e., knowledge
workers with their organizational roles and skills [79], to communicate and
reason about business processes in a standard manner. Usually, companies
do not act alone, but often interact with other organizations in order to reach
a shared goal. Therefore, it is interesting to consider collaborative systems
where participants can interact and share information and data. BPMN
collaboration diagrams are particularly suitable to describe this kind of sce-
narios, while BPMN process diagrams focus on single participants. However,
this demands for a clear understanding of the internal behaviors and the in-
teractions among participants. To ensure proper carrying out of such interac-
tions, each participant’s process should be provided with enough information
about these interactions, i.e., messages they must or may send and receive
in a given context. This is particularly important when multiple instances
of interacting participants are involved. In this regard, BPMN collaboration
diagrams result to be an effective way to reflect how multiple participants
cooperate.

The rest of the chapter introduces the motivations behind the research
presented in this thesis, and the research questions it aims to answer. Finally,
the thesis structure is provided.

4 CHAPTER 1. INTRODUCTION

1.1 Motivations

The effective and efficient handling of business processes is a primary goal of
organizations in order to conduct a successful business. However, the mod-
eling of organizational processes is not always an easy task for designers,
especially if they include different participants, and make use of communi-
cation to spread data. Therefore, reflecting in a process model what organi-
zations are supposed to do is a time-consuming activity that requires one to
be familiar with the semantics of the process elements.

Even if widely accepted, a major drawback of BPMN is related to the
complexity of the semi-formal definition of its meta-model, and the possible
misunderstanding of its execution semantics defined by means of natural text
description, sometimes containing misleading information [64]. This becomes
a more prominent issue if one considers BPMN supporting tools, such as
animators and simulators, whose implementation of the execution semantics
may not be compliant with the standard and be different from each other,
thus undermining models portability and tools effectiveness [4].

To overcome these issues, several formalizations have been proposed,
mainly focusing on the process diagrams (e.g., [21, 18, 16, 25, 23, 81, 8, 73]).
Less attention has been paid to provide a formal semantics for collabo-
ration diagrams capturing the interplay between control features, message
exchanges, and data. These aspects are strongly related, especially when
multi-instance participants have to interact. In fact, to achieve successful
collaboration interactions, it is required to deliver the messages arriving at
the receiver side to the appropriate instances. As messages are used to ex-
change data between participants, the BPMN standard fosters the use of the
content of the messages themselves to correlate them with the corresponding
instances. Thus, data plays a crucial role when considering multi-instance
collaborations. Despite this, no formal semantics that considers all together
these key aspects of BPMN collaboration models has yet been proposed in the
literature. Therefore, the absence of a comprehensive semantic framework
for BPMN reduces the models comprehension.

Considering the representation of BPMN diagrams, the use of static 2D
flow charts, where the graphics of the elements embeds their semantic cate-
gories (e.g., rectangles for activities, diamonds for choices, circles for events)
affects the models understandability. Indeed, even if BPMN has a graphical
representation that is very straightforward to experts, it may result difficult
to understand for those stakeholders [9] who are not familiar with the syntax
and semantics of BPMN. Furthermore, when facing very large process and
collaboration diagrams it results difficult to follow their execution semantics,
while the use of static flow chart representations limits the amount of infor-
mation the user can perceive [78]. In this regard, the literature fosters new

CHAPTER 1. INTRODUCTION 5

process and collaboration diagrams visualization techniques, such as anima-
tion in 2D and 3D environments, capable of improving the use of the BPMN
notation. On the one hand, the animation of process and collaboration dia-
grams can increase their understanding [33, 24, 5] and also the possibility to
debug them, showing into practice the behavior of the process model. On the
other hand, a virtual world representing a process and a collaboration dia-
gram can enhance the communication activities, thus facilitating interactions
between designers and the stakeholders [30].

1.2 Research Objectives

This thesis aims at answering two research questions that are strictly related
one to the other. The first objective is to provide a formal characterization
of the BPMN semantics specifically given for collaboration models, with the
aim of fostering a correct modeling and understanding of the BPMN col-
laborations. The goal is to present a formal framework able to capture the
different aspects of the BPMN notation, with a specific focus on multiple
instantiation of processes, data handling, and message exchange.

Secondly, by means of this formalization, this thesis points at developing
animation and simulation tools to help both designers and stakeholders.
These goals can be achieved by answering the following research questions.

RQ1
What is the precise semantics of multi-instance BPMN collaborations
in presence of data and message exchanges?

RQ2
Can a formal semantics for multi-instance BPMN collaborations drive
the development of software tools based on BPMN collaboration di-
agrams?

To answer RQ1, an operational semantics of BPMN collaboration
models is provided, including multi-instance elements and taking
into account the data perspective. To answer RQ2, this work goes
beyond the mere formalization, by developing tools that faithfully im-
plement the proposed formal semantics in order to animate or
simulate the execution of multi-instance collaborations including
data.

6 CHAPTER 1. INTRODUCTION

1.3 Thesis Structure

This thesis is organized into four parts and seven chapters, as shown in
Figure 1.1. Following it is provided a brief overview on the rest of the thesis.

Part I

Chapter 1

Introduction

Chapter 2

Background

Part II

Chapter 3

Formalization of BPMN Collaborations

R
Q
1

Part III

Chapter 4

MIDA: Multiple
Instances and Data

Animator

Chapter 5

UBBA: Unity
Based BPMN

Animator

Chapter 6

PPLG: Purpose
Parametric Log

Generator

R
Q
2

Part IV

Chapter 7

Conclusions and Future Work

Figure 1.1: Thesis structure.

Part I - Introduction and Background. This first Part of the thesis
explains the intent of this work and the fundamental concepts.

• Chapter 2 - Background. This chapter collects all the background
materials and concepts, mainly regarding business process manage-
ment, needed for a proper understanding of the thesis.

CHAPTER 1. INTRODUCTION 7

Part II - BPMN Formal Framework. This Part is composed by a single
chapter that regards the formalization of BPMN.

• Chapter 3 - Formalization of BPMN Collaborations. This chap-
ter provides the whole formal framework defined for BPMN collabo-
ration diagrams in presence of multiple-instances, data, and message
exchanges. It discusses the most tricky parts of the standard and for-
malizes syntax and semantics. A comparison of the given formalization
with existing approaches in the literature is also presented.

Part III - Formalization at Work. This Part shows the application of
the proposed formalization.

• Chapter 4 - Multiple Instances and Data Animator. This chap-
ter introduces the animation of business processes and presents a 2D
animator called MIDA, and shows the benefits deriving from it.

• Chapter 5 - Unity Based BPMN Animator. This chapter present
an alternative approach for animating process models based on 3D
virtual worlds.

• Chapter 6 - Purpose Parametric Log Generator. This chap-
ter presents an automated methodology for the generation, through
simulation, of event logs suitable for different mining purposes.

Part IV - Conclusions and Future Work. This Part concludes the work.

• Chapter 7 - Conclusions and Future Work. This chapter sum-
marizes the work done and presents areas and topics that could be
investigated in the future.

CHAPTER 2

BACKGROUND

This chapter aims at gently introducing the set of background notions needed
for fully understanding the dissertation content. Firstly, it presents the busi-
ness process management and the phases composing the business process
life-cycle (BP life-cycle), with a focus on the concepts relevant for this the-
sis. Subsequently, the chapter introduces the standard modeling notation
BPMN 2.0 and the running example consisting in a BPMN scenario from
where collaboration diagrams are extrapolated to be exploited thorough the
rest of the thesis. To conclude, relevant notions about formal methods tech-
niques are given, focusing on the process of model formalization via an op-
erational semantics.

2.1 Business Process Management

Business Process Management (BPM) is the set of all activities to support
and improve organization performance by managing chains of events, tasks,
and decisions that ultimately add value to the organization. It includes
concepts, methods, and techniques to support the modeling, the analysis,
the execution, and the monitoring of business processes [79].

A Business Process is described as “a collection of related and structured
activities undertaken by one or more organizations in order to pursue some
particular goal. Within an organization a business process results in the pro-
visioning of services or in the production of goods for internal or external
stakeholders. Moreover business processes are often interrelated since the ex-
ecution of a business process often results in the activation of related business
processes within the same or other organizations” [44].

Business processes derive from the observation of products or services

10 CHAPTER 2. BACKGROUND

provided by a company. Business processes are the outcome of a number
of activities, and are the key instrument for organizing these activities and
improving the understanding of their interrelationships.

Moreover, there exist business process activities that can be enacted auto-
matically by information systems, without any human involvement. Hence,
business processes are an important concept to facilitating the collaboration
between companies and information systems. More and more business pro-
cesses also play an important role in the design and realization of flexible
information systems. These information systems are essential for providing
the technical basis useful for a quick implementation of new functionalities
that realize new products or services.

BPM is characterized by a set of steps that occur cyclically in order to
adapt and improve the model. Hence, BPM involves a continuous cycle, see
Figure 2.1, comprising the following phases: modeling, analysis, execution,
and monitoring.

BPM

Model in
g

A
nalysisExecut i

o
n

M
on

ito
ring

Figure 2.1: BP life-cycle.

• Process modeling. Business process models are important at vari-
ous stages. The modeling phase identifies the business goals and the
involved stakeholders in the process. During this phase, the business
process model is drawn by a business process designer. Since process
models are meant to facilitate communication between stakeholders,
they should be easy to understand. To this aim, modeling languages
are used to design business process models, so that different stakehold-
ers can efficiently communicate, refine and improve the models. The
outcome of process modeling is a new or updated process architecture
that provides an overall view of the processes in an organization and

CHAPTER 2. BACKGROUND 11

their relationships. Here, the current state of each of the relevant pro-
cesses is provided with one or several as-is process models. This phase
is also called as-is process modeling.

• Process analysis. It uses the as-is process model as reference for
verifying if it works seamlessly. The goal is to identify changes to the
process that would help to address the issues identified in the previous
phase and allow the organization to meet its performance objectives.
Analysis can be done to detect syntactic, structural or behavioral prob-
lems. This can be done by means of different techniques such as ani-
mation, verification, etc. One of its aims is to ensure correctness of the
designed business process model, because erroneous behavior can cause
high costs for the involved organizations and damage their reputation.

• Process execution. Weaknesses spotted during the analysis phase are
fixed to produce a process model to execute. In the execution phase,
the business processes are enacted for achieving the business goals.
The execution can be performed manually by humans, automatically
by means of software solutions, or with a combination of both methods.

• Process monitoring. To close the life-cycle, the monitoring phase
constantly oversees the process in execution to collect insights. This in-
formation allows to evaluate the outcomes of the business process, and
understand how much is required to reach the business goals. Among
the other approaches, this phase is mainly carried on by process mining
techniques.

This thesis tackles modeling, analysis, and monitoring phases. In par-
ticular, it first faces the modeling phase via the formalization of the BPMN
semantics. Then, it exploits animation techniques to enhance the analysis of
process models. Finally, it investigates the monitoring phase defining a novel
methodology that generates event logs for process mining through simulation.

2.1.1 Process Animation

Among the different techniques helping the analysis of business models, the
ones based on visualization features can be used to enhance process model
comprehension, and spot modeling errors. These techniques are exploited in
novel ways (e.g., animations, games, virtual words) to turn static represen-
tations into dynamic ones [3].

Animation consists in visualizing the model execution through graphic
effects. Basically, there exist two methods for animating a process model: one
consists in highlighting the process elements that have been already executed,
like in Figure 2.2 (a), the other one uses tokens crossing the model, where the

12 CHAPTER 2. BACKGROUND

moving of the token represents the shifts between configuration to another
one [30], as in Figure 2.2 (b).

Task B

Task A

(a)

Task B

Task A

(b)

Figure 2.2: Process animation: highlighting (a) vs. token flow (b).

Animation can enhance the understanding of business processes behavior
[33, 24], especially in the presence of a faithful correspondence with a pre-
cise semantics [5]. Moreover, despite the fact that business process notations
are usually quite intuitive, their way of representing processes with 2D flow
charts may result effective just for experts. In this regard, there exists tech-

Figure 2.3: 3D process animation example.

niques for animating business processes in 3D. The aim is to avoid complex
process modeling notation in favor of 3D representations that better embody
the situation described by the business process. Indeed, business process no-
tations are quite easy to understand for business experts, but they can result
incomprehensible for stakeholders.

2.1.2 Process Mining

Thanks to the wide usage of information systems, nowadays, process mining
[67] is recognized as an important discipline for extracting useful informa-
tion from the execution of business processes. Indeed, process mining aims

CHAPTER 2. BACKGROUND 13

at automatically providing insights on the process execution. This recently
discovered technique helps in closing the loop of the BP life-cycle, Figure 2.1.
Indeed, the monitoring phase uses data coming from the process execution
in order to derive additional information regarding problems or possible im-
provements.

So�ware System

"world"

business processes
machines

people

components
organiza�ons

(process)
model

event
log

records
events, e.g.,
messages,

transac�ons,
etc.

specifies
configures

implements
analyzes

models
analyzes

supports/
controls

conformance
checking

discoveryenhancement

diagnos�cs new model model

Figure 2.4: Mining techniques [68].

Within the sphere of process mining exists several purposes supported by
techniques for analyzing business processes from the event logs, Figure 2.4.

• Process discovery. Process discovery is the most common and also
most challenging activity in the process mining area. This technique
permits to recreate a process model from the analysis of its own event
log. The reliability of the result (hence the similarity between the
original and the mined model) depends on the log completeness and on
the used discovery algorithm.

• Conformance checking . Conformance checking compares the event
log with the activities in the process model to discover in the event
log deviations and differences with the intent of the process model.

14 CHAPTER 2. BACKGROUND

Conformance checking can detect unwanted deviations in the process
model execution that can refer to frauds or implementation issues.

• Enhancement. The enhancement points at improving process models
using insights discovered into the event logs. This technique changes
the original process in two ways. One is the repair, by which deviation
or unwanted behavior can be fixed. The other one is the extension,
that consists in adding new information into the process model that
comes from logs.

Event logs are the first class citizens in process mining. They are the
sources of knowledge where to apply process mining approaches. Event logs
store data about the performing of activities that were recorded by informa-
tion systems. They consist of sequences of records, each of which refers to a
performed process activity.

Data retrieved form the execution of a process can be used to increase the
knowledge on it. Indeed, events embody attributes that describe additional
information about them. Usually these attributes are the activity name, and
the execution timestamp; however, depending on the information system
generating the log, attributes can also refer to different perspectives of the
process model (e.g., control-flow, resource, information).

More practically, an event log can be seen as a table where each row is
an event, and the columns list the attributes which may be present or not.
For instance, Figure 2.5 shows a process model and a portion of an event log
generated by the process execution. The reference model is usually called
the gold standard [10], a ground truth acting as a compass during the mining
procedures. Focusing on the table, it has four columns, some of those, Case
and Event, can be used to join events into a trace, or to uniquely identify
them. The last two columns, Timestamp and Activity, contain information
specific of the activity.

In addition to these four attributes, the taxonomy of the events can be
enriched at will with information regarding different perspectives of the ac-
tivity execution. At this regard, one can exploit the Extensible Event Stream
(XES) [36]. This is a standard for representing event logs à la XML. It is
widely recognized as a de-facto standard and is used by many applications
and analysis tools. By following the syntax and semantics of XES, analysis
tools can easily interpret event data from applications. The XES standard
consists of three hierarchical levels: log, trace and events. Each of these
levels can contain attributes to add information to the respective level.

CHAPTER 2. BACKGROUND 15

A

D

B

C E

Case Event Timestamp Activity ...
1 0001 30-12-2019:11.02 A ...
1 0002 30-12-2019:11.31 D ...
1 0003 30-12-2019:11.44 E ...
2 0004 31-12-2019:01.25 A ...
2 0005 31-12-2019:01.43 B ...
2 0006 31-12-2019:02.09 C ...
2 0007 31-12-2019:03.02 E ...
...

Figure 2.5: Event log example.

2.2 Business Process Model and Notation 2.0

Many different languages and graphical notations have been proposed to
represent business process models, differing both in the possibility to express
aspects related to the organization perspectives and in the level of formal-
ity used to define the elements composing the notation. BPMN 2.0 [53] is
currently acquiring a clear predominance. It has been standardized by the
Object Management Group (OMG) and it is now widely accepted both in
industry and academia. Its first goal is to provide a notation that is readily
understandable by all business users. This includes the business analysts
that create the initial drafts of the processes to the technical developers re-
sponsible for implementing the technology that will perform those processes.

BPMN’s success comes from its versatility and capability to represent
business processes with different levels of detail and for different purposes.
Business process models are expressed in business process diagrams. Each
diagram consists of a set of modeling elements. These elements are parti-
tioned into a core element set and a complete element set. In particular,
the BPMN notation allows to design different kinds of diagrams: process,
collaboration, choreography and conversation diagrams. Moreover, in deriv-
ing a business process model, many different information and perspectives
of an organization can be captured [58]. This thesis shows the capability of
BPMN to describe the following aspects: who should perform the activities
(organization perspective), when they should be performed and how they

16 CHAPTER 2. BACKGROUND

are organized in a flow (control-flow perspective) and, finally, which data is
needed and produced (information perspective), see Figure 2.6. For a com-

 c

on
tro

l-flow

 inform

a�
o

n

 o
rg

an
is

a�

on

Figure 2.6: Business process perspectives.

plete and detailed description of each BPMN diagram, please refer to the
official BPMN Specification [53]. The thesis focuses on process diagrams,
which are used to represent processes within a single organization, and on
collaboration diagrams, that model processes of different organizations ex-
changing messages and cooperating to reach a shared business goal.

The next sections describe the BPMN elements that will be considered in
the thesis, some basic definitions regarding process models, and then intro-
duce an example used to show the reader how to employ the BPMN notation
and throughout the work as a running example to show the thesis results.

2.2.1 BPMN Notation

This section illustrates the BPMN elements considered in this thesis, which
include: pools, tasks, events, gateway, connecting edges and data objects.

• Pools, Figure 2.7, are used to represent participants or organizations
involved in the collaboration, and include details on internal process
specifications and related elements. Pools are drawn as rectangles,
and they usually have a name associated, referring to the name of the
organization. BPMN allows to assign a multi-instance marker (three

CHAPTER 2. BACKGROUND 17

vertical lines) to a pool, representing multiple instances playing the
same role.

O
rg
an
is
a
tio
n

O
rg
an
is
a
tio
n

(a) (b)

Figure 2.7: A BPMN pool (a) and a BPMN multi-instance pool (b).

• Tasks, Figure 2.8, are used to represent a specific piece of work to
be performed within a process. They are drawn as rectangles with
rounded corners.

Task

Multi-Instance
Sequential Task

Multi-Instance
Parallel Task

Send Task Receive Task

Figure 2.8: Considered BPMN activities.

– Task is a simple task that represents the performing of an activity.

– Send Task is a task that represents the performing of an activity
involving the sending of a message.

– Receive Task is a task that represents the performing of an activity
involving the receiving of a message.

– Multi-instance Parallel Task is a task that represents the perform-
ing of an activity more than one time concurrently.

– Multi-instance Sequential Task is a task that represents the per-
forming of an activity more than one time one after the other.

• Connecting Edges, Figure 2.9, are used to connect process elements
inside or across different pools. Sequence Edges are solid connectors
used to specify the internal flow of the process, thus ordering elements

18 CHAPTER 2. BACKGROUND

in the same pool, while Message Edges are dashed connectors used to
visualize communication flows between organizations1.

Figure 2.9: BPMN connecting edges.

• Events, Figure 2.10, are used to represent something that can hap-
pen. An event can be a Start Event representing the point from which
a process starts, an Intermediate Event representing something that
happens during process execution, or an End Event representing the
process termination. Events are drawn as circles. When an event is
source or target of a message edge, it is called Message Event. Accord-
ing to the different kinds of message edge connections, it is possible to
distinguish between the following type of events.

Start Event End Event Start Message
Event

Catch
Intermediate

Event

Throw
Intermediate

Event

End Message
Event

Terminate End
Event

Figure 2.10: Considered BPMN events.

– Start Message Event is a start event with an incoming message
edge; the event element catches a message and starts a process.

– Catch Intermediate Event is an intermediate event with an incom-
ing message edge; the event element receives a message.

– Throw Intermediate Event is an intermediate event with an out-
going message edge; the event element sends a message.

– End Message Event is an end event with an outgoing message
edge; the event element sends a message and ends a process.

1As a matter of terminology, Sequence Edge and Message Edge are referred in the
BPMN specification as Sequence Flow and Message Flow, respectively.

CHAPTER 2. BACKGROUND 19

There is also a particular type of end event, the Terminate End Event,
displayed by a thick circle with a darkened circle inside; it stops and
aborts the running process - all the ongoing activities are aborted and
the process is abnormally terminated.

• Gateways, Figure 2.11, are used to manage the flow of a process both
for parallel activities and choices. Gateways are drawn as diamonds
and act as either join nodes (merging incoming sequence edges) or split
nodes (forking into outgoing sequence edges). It is possible also to ex-
press gateways with multiple incoming and multiple outgoing edges in
BPMN. These gateways are called mixed gateways. Since two behav-
iors (split and join) are expressed by a single concept, best practice
is not to use mixed gateways but to use a sequence of two gateways
with the respective split and join behavior instead. Different types of
gateways are available.

Exclusive Split Gateway
(or XOR-Split Gateway)

Exclusive Join Gateway
(or XOR-Join Gateway)

Parallel Split Gateway
(or AND-Split Gateway)

Parallel Join Gateway
(or AND-Join Gateway)

Inclusive Split Gateway
(or OR-Split Gateway)

Inclusive Join Gateway
(or OR-Join Gateway)

Event Based Gateway

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2.11: Considered BPMN gateways.

– An Exclusive Gateway (or XOR gateway) gives the possibility
to describe choices. In particular, a XOR-Split gateway is used
after a decision to fork the flow into branches. When executed, it
activates exactly one outgoing edge. A XOR-Join gateway acts as
a pass-through, meaning that it is activated each time the gateway
is reached. A XOR gateway is drawn with a diamond marked with
the symbol “ˆ”.

– A Parallel Gateway (or AND gateway) enables parallel execution
flows. An AND-Split gateway is used to model the parallel ex-
ecution of two or more branches, as all outgoing sequence edges
are activated simultaneously. An AND-Join gateway synchronizes

20 CHAPTER 2. BACKGROUND

the execution of two or more parallel branches, as it waits for all
incoming sequence edges to complete before triggering the outgo-
ing flow. An AND gateway is drawn with a diamond marked with
the symbol “`” .

– An Inclusive Gateway (or OR gateway) gives the possibility to
select an arbitrary number of (parallel) flows. In fact, an OR-
Split gateway is similar to the XOR-Split one, but its outgoing
branches do not need to be mutually exclusive. An OR-Join gate-
way synchronizes the execution of two or more parallel branches,
as it waits for all active incoming branches to complete before
triggering the outgoing flow. An OR gateway is drawn with a
diamond marked with the symbol “#”.

– An Event-Based gateway is used after a decision to fork the flow
into branches according to external choice. Its outgoing branches
activation depends on the occurrence of catching events. Basically,
such events are in a race condition, where the first event that
is triggered wins and disables the other ones. An event-based
gateway is drawn with a diamond marked with the symbol “ D ”
double rounded.

Notably, XOR and OR splitting gateways may have guard conditions
in their outgoing sequence edges. Thus in some cases the decision on
XOR/OR-Split gateways is taken non-deterministically and in other
cases conditions are used to decide which edge to activate according to
data values.

• Artifacts, Figure 2.12, are used to show additional information about
a business process that “is not directly relevant for sequence flow or
message flow of the process”, as the standard mentions. Each artifact
can be associated with flow elements. There are different types of
artifacts. Among these, the thesis takes into account data objects.

Data objects represent information and material flowing in and out of
activities. They are depicted as a document with the upper-right corner
folded over, and linked to activities with a dotted arrow with an open
arrowhead (called data association in BPMN). The direction of the
data association is used to establish whether a data object is an input or
output for a given activity. Paper documents and electronic documents,
as well as information on any type of medium can be represented by
data objects. Sometimes data objects can refer to a state. Indicating
data objects’ states is optional: it can be done by appending the name
of the state between square brackets to a data object’s label. Different
types of data objects are available, they are reported in the following.

CHAPTER 2. BACKGROUND 21

•

•

•

•

•

•

•

•

•

•

•

•

Data Input

+

• • • •

•

•

•

•

•

•

Data Output :
•

•

Figure 2.12: BPMN types of data objects.

– The Data Input element is used to express (external) input data,
and it can be read by an activity.

– The Data Output element is used to express output data, and it
can be generated by an activity.

– The Data Object Collection element refers to multi-instance data
objects; using this a designer can express the involvement of more
than one Data Object.

– The Data Store element is used to express data that persists after
the process instance finishes.

As stated in the BPMN standard, a key concept related to the BPMN
process execution refers to the notion of token. The BPMN standard states
that

“a token is a theoretical concept that is used as an aid to define the be-
havior of a process that is being performed” [53, Sec. 7.1.1].

A token is commonly generated by a start event, traverses the sequence
edges and it is eventually consumed by and end event. Process elements
retrieve one or more tokens from the incoming sequence flow to be executed.
Once finished, they may produce one or more tokens on the outgoing se-
quence flows, depending on their behavior. In the collaboration, the process
execution also triggers message flows able to generate messages. They will
be referred to message flow tokens.

For better managing the semantics of the BPMN notation, sometimes it
is necessary to query the topology of the diagram. In order to do that, one
may consider a process model as a direct graph transforming sequence flows
and message flows into arcs, and flow elements into vertices. More precisely,
it is defined as follows, G “ pV,E, Aq where:

22 CHAPTER 2. BACKGROUND

• V is a set of vertices, ranged over by v and consisting of start events,
end events, and gateways; and

• A is a set of arrows, consisting of triples pv1, e, v2q with v1, v2 P V ,
v1 ‰ v2 and e P E, where E is the set of all (sequence) edges.

Since edges are uniquely identified in a BPMN model, it results that for each
pv1, e, v2q in A there exists no triple pv11, e1, v12q in A with e1 “ e. This allows
to write, when convenient, pv1, e, v2q as e.

Finally, given a direct graph representing a BPMN model, the concept
of path is defined. A path p P G is a non-empty ordered sequence of arrows
in A where the target vertex of an edge is also the source of the next edge
in the sequence, for instance p “ pva, e1, vf q, pvf , e2, vbq, pvb, e3, vrq. A path
that ends in its starting vertex is called a cycle. Given a path p of the
form pv0, e0, v1q, . . . , pvk´1, ek´1, vkq, notations firstppq and lastppq indicate the
starting edge e0 and the ending edge ek´1 of p, respectively.

2.2.2 Running Example

Throughout this thesis, a running example consisting of two collaborations is
used to help the reader in getting familiar with the BPMN modeling activity.
This section presents both the business scenario, and the collaboration dia-
grams. More in detail, a larger collaboration diagram is presented with an
almost complete set of BPMN elements. It is then used in Chapters 3 and 4
to introduce the operational semantics both formally and through animation.
Then, a second collaboration with a smaller core set of BPMN elements is
introduced. It appears in Chapter 5 as case study for the 3D animation.

The proposed collaboration diagrams depict procedures that come from
the same scenario. It regards the submission of a paper to a peer reviewed
journal, until its publication. The scenario involves different participants
that act in one or both of the collaboration diagrams. They are:

• Contact Author, who contributes to the realization of the paper and
performs the submission to the journal. Of course, she/he acts on
behalf of the other authors;

• Journal Handling Editor, the editor of the journal, whose responsi-
bility regards the assignment of the submitted paper to the reviewers,
and the subsequent managing of the decision procedure;

• Reviewer, a person with knowledge in some of the journal topics who
performs the reviewing activity. Since more than one reviewer takes
part in this, this role is modeled as a process instance of a multi-
instance pool;

CHAPTER 2. BACKGROUND 23

• Journal Publisher, who takes charge of the publication of the ac-
cepted papers. She/he is also responsible for the copyright duties and
the relative fee.

Paper Reviewing Collaboration. Figure 2.13 presents the first collabora-
tion diagram, that regards the reviewing procedure. It concerns the submis-
sion of a paper from a selected author, i.e., the Contact Author, to a scientific
journal and its management by the editor for the reviewing procedure. It
involves three reviewers to judge the paper. Of course, the management of
multiple papers submitted to the journal requires to enact the collaboration
for each paper.

The paper reviewing collaboration starts once the Contact Author ini-
tiates its process contained in the homonymous pool, the top one in Fig-
ure 2.13. This is reflected by the start event Paper Submission, this enacts
the following activity concerning the preparation of a draft of the paper,
based on the information retrieved from the Paper Data data input. Then,
the author writes the paper and in parallel, if necessary, gets the paper for-
mat and applies it. Then, once the manuscript is finalized, it is sent to the
Journal Editor through the Submit Manuscript send task.

This triggers the message start event contained in the pool Journal Han-
dling Editor and consequently enacts the inner process. He/she assigns the
paper to three reviewers via the multi-instance sequential send task Assign
Paper which loop cardinality is set to 3 according to the number of involved
reviewers for each paper. The receiving of the Review Request message, hence
of the paper to judge, starts an instance of the Reviewer process. Each in-
stance prepares a review that contains the reviewer’s name, a score, and a
text. Access to a shared repository of research articles is available for each
of the reviewers, it is depicted via the data store Papers Repository. When
the review is ready, the reviewer sends it back to the editor that waits for
receiving all three reviews.

After all reviews have been received, the editor stores them into the data
object collection Reviews and combines the judgments looking at the scores
in the reviews. According to the result of the Reviews Evaluation task, the
editor prepares the acceptance/rejection letter (stored in the Letter data
object) or, if the paper requires further discussion, postpones the decision.
The decision behavior is rendered via a data-based XOR-Split gateway which
relies on the review scores. Discussion interactions are here abstracted and
always result in an accept or reject decision. Finally, feedback regarding the
evaluations is sent to the reviewers, taking care of delivering each message
to the right reviewer. Thus, depending on the review result, an acceptance
or rejection notification is sent to the Contact Author. To finalize their
processes, the reviewers can get the feedback once received through a message
from the editor, or check it online repeatedly. In case of a delay in the

24 CHAPTER 2. BACKGROUND

Journal Handling Editor

A
ss

ig
n

P
ap

er

R
ev

ie
w

M
an

ag
em

en
t

R
ec

ei
ve

R
ev

ie
w

s
R

ev
ie

w
E

va
lu

a
tio

n

R
ev

ie
w

s

R
ev

ie
w

W
ha

t i
s

th
e

re
vi

ew
er

de
ci

si
on

?D
is

cu
ss

E
va

lu
a

tio
n

P
ap

er

P
re

p
ar

e
R

ej
ec

tio
n

 L
et

te
r

Le
tte

r

S
en

d
F

e
ed

ba
ck

vi
a

M
ai

l

P
re

p
ar

e
A

cc
ep

ta
nc

e
Le

tte
r

Is
 th

e
pa

pe
r

ac
ce

pt
ed

?

P
ap

er
A

cc
ep

te
d

P
ap

er
R

ej
ec

te
d

B
or

d
er

lin
e

R
ej

ec
t

A
cc

ep
t

Y
es N
o

Reviewer

P
ap

er
 R

ec
ei

ve
d

P
ap

er
 R

ev
ie

w
S

ub
m

it
R

ev
ie

w

P
ap

er
 R

ev
ie

w
P

ap
er

 In
fo

P
ap

er
s

R
ep

os
ito

ry

R
ev

ie
w

P
ro

ce
ss

Te
rm

in
at

ed

W
ai

t f
or

E
m

ai
l?

C
he

ck
F

ee
db

a
ck

O
nl

in
e

C
he

ck
A

ga
in

?

R
ev

ie
w

P
ro

ce
ss

C
om

pl
et

ed

F
ee

db
a

ck
 M

ai
l

R
ec

ei
ve

d

Y
es

N
o

N
o

Y
es

Contact Author

P
ap

er
 D

ra
ft

P
re

p
ar

e
D

ra
ft

F
in

al
 P

ap
er

R
ej

ec
te

d
P

ap
er

S
ub

m
is

si
on

W
rit

e
P

ap
er

A
pp

ly
 C

h
an

ge
s

F
in

al
iz

e
P

ap
er

S
ub

m
it

P
ap

er

A
cc

ep
te

d

P
re

p
ar

e
C

am
er

a
R

ea
dy

P
ap

er
A

cc
ep

te
d

P
ap

er
R

ej
ec

te
d

P
ap

er
 D

at
a

F
or

m
at

G
et

 J
ou

rn
al

S
ub

m
is

si
on

F
or

m
at

N
ee

d
Jo

ur
na

l
F

or
m

at
?

Y
es

N
o

R
ev

ie
w

 R
e

qu
es

t
R

ev
ie

w
F

ee
db

a
ck

P
ap

er
A

cc
ep

ta
nc

e
Le

tte
r

R
ej

ec
tio

n
Le

tte
r

Figure 2.13: Paper reviewing collaboration model.

CHAPTER 2. BACKGROUND 25

Contact Author

P
aper

P
ublishing

S
end C

a
m

era
R

eady P
a

per
R

eceive
C

opyright F
orm

S
ign C

o
pirygh

t

R
equire O

pen
A

ccess
P

ay F
ee

R
eceive P

aper
D

etails

Journal Publisher

A
pply Jou

rnal
Tem

plate

A
ssign D

O
I

S
ubm

it
C

opyright P
olicy

F
orm

R
eceive S

igned
C

opyright

R
eceive O

pen
A

ccess R
equ

est
G

et F
ee

S
end P

aper
D

etails

W
ant O

pen
A

ccess?
Y

es

D
ism

iss O
pen

A
ccess

N
o

P
aper

P
ublished

P
aper

P
rod

uction

N
o O

pen A
ccess

P
aper

P
rod

uced

P
aper D

etails
F

ee
R

ejectio
n

R
equest

S
igne

d F
orm

C
opyright F

orm
P

aper

Figure 2.14: Paper publication collaboration model.

26 CHAPTER 2. BACKGROUND

receiving of the e-mail, a reviewer can choose to abort its entire process by
means of the terminate end event Review Process Terminated.

Paper Publication Collaboration. The collaboration presented so far
ends with the acceptance or the rejection of the paper. The one in Figure 2.14
shows what happens next in case the paper has been accepted. Indeed, the
Paper Publication Collaboration specifies the interactions that take place
between the Contact Author and the Journal Publisher, in order to handle
the production of the accepted paper.

The participants in this collaboration are the Contact Author, the same
person who interacted with the editor, and the Journal Publisher. The col-
laboration starts once the author sends the revised paper to the publisher,
activating its process. The publisher receives the paper and then, at the
same time, applies to it a template to have a style compliant with the one
of the journal, and assigns to it a Digital Object Identifier (DOI). Once fin-
ished, the publisher sends a copyright form to the author that, in its turn,
fills, signs, and returns it. Subsequently, the Contact Author can choose to
require an open access policy for the manuscript and pay the corresponding
fee, otherwise he/she can refuse this possibility, and go on with the proce-
dure. Depending on this choice, the editor will receive the money or not.
Finally, he/she sends to the author the published paper with the publication
details.

2.2.3 BPMN XML Representation

To foster interchangeability and the spreading of BPMN, the OMG permits
to share diagrams in a standard manner. The OMG defines unique XML
based notation, namely .bpmn, to exchange BPMN 2.0 diagrams between
tools, companies, etc.

This format describes collaboration and process diagrams in a tree struc-
tured way, bringing all the information required for reproducing the elements
composing the diagram, and their disposition. Indeed, each BPMN element
can be mapped to an XML fragment containing semantic and visual informa-
tion. The first part of the fragment depicts the semantic information (e.g.,
the element id, the connected sequence flows), while the second part spatially
locates the element in the diagram.

More in general, the XML representation of the BPMN elements collects
all the attributes regarding it, also those that are not visible graphically
in the diagram. For instance, Listing 2.1 provides the corresponding XML
fragment of the multi-instance send task Assign Paper in Figure 2.13. Within
the fragment it is possible to identify: the element name and id (line 1),
the incoming and the outgoing sequence flows (lines 2-3), the referenced
data object (lines 4-8), and the multi-instance characteristics (lines 8-10).

CHAPTER 2. BACKGROUND 27

The remaining lines belong to the extension element tag, which is used to
include additional information with respect to the standard BPMN XML
schema. We make use of these lines to express additional attributes that will
be introduced by Chapter 3.

1 <bpmn:sendTask id="Assign_Paper" name="Assign Paper">
2 <bpmn:incoming>SequenceFlow_0b3rh0j</bpmn:incoming>
3 <bpmn:outgoing>SequenceFlow_0e7hug5</bpmn:outgoing>
4 <bpmn:dataInputAssociat ion

id="DataInputAssociation_0pz7bl9">
5 <bpmn:sourceRef>DataObjectReference_15eg2l l</bpmn:sourceRef>
6 <bpmn:targetRef>Property_0wufvcu</bpmn:targetRef>
7 </bpmn:dataInputAssociat ion>
8 <bpmn:mul t i Ins tanceLoopCharacte r i s t i c s i s S e qu en t i a l="true">
9 <bpmn: loopCardina l i ty

x s i : t y p e="bpmn:tFormalExpression">3</bpmn: loopCardina l i ty>
10 </bpmn:mul t i Ins tanceLoopCharacte r i s t i c s>
11 </bpmn:sendTask>
12 <bpmndi:BPMNShape id="SendTask_00bygr0_di"

bpmnElement="Assign_Paper">
13 <dc:Bounds x="277" y="541" width="100" he ight="80" />
14 </bpmndi:BPMNShape>

Listing 2.1: Assign Paper XML fragment.

2.3 Operational Semantics

Providing a formal semantics of informal languages is an essential step to
clearly define the requirements a system has to satisfy. In this regard, process
algebras are mathematically rigorous languages with well defined semantics
that permit describing and verifying properties of concurrent communicating
systems [51].

The basic component of a process algebra is its syntax, that defines what
well-formed terms are. Specifically, it is the combination of operators and
more elementary terms. Many different approaches (operational, denota-
tional, algebraic) can be used for describing the meaning of processes, that
is to provide a semantics of the considered operators. However, the opera-
tional approach has become the reference one. By relying on the so called
Structural Operational Semantics (SOS), an operational semantics models a
process as a labelled transition system (LTS), that consists of a set of states,
a set of transition labels and a transition relation. The states of the transi-
tion system are just process algebra terms while the labels of the transitions
between states represent the actions or the interactions that are possible from
a given state and the state that is reached after the action is performed by

28 CHAPTER 2. BACKGROUND

means of visible and invisible actions. Formally, an LTS [40] is defined as
follows.

Definition 1 (Labeled Transition System). A labeled state transition system
is a tuple pS,Σ, δq such that

• S is a finite set of states,

• Σ is a finite alphabet (i.e. a finite, non-empty set of symbols which
refer to actions that a system can perform),

• δ Ă S ˆ Σˆ S is a state transition relation.

Inference systems are used to associate LTSs to process terms and are
defined as follows.

• Inference Systems are a set of inference rule of the form

p1, . . . , pn

q

where p1, . . . , pn are the premises and q is the conclusion. Each rule is
interpreted as an implication: if all premises are satisfied then also the
conclusion is inferred.

• Axioms are rulel without premises and they are written as

q
or q

• Transition Rules represent transitions between states. In the case of
operational semantics the premises and the conclusions will be triples of
the form P

`
ÝÑ Q and thus the rules for each operator op of the process

algebras will be like the one below, where ti1, . . . , imu Ď t1, . . . , nu and
E 1i “ Ei when i R ti1, . . . , imu.

Ei1
`1
ÝÑ E 1i1 . . . Eim

`m
ÝÑ E 1im

oppE1, . . . , Enq
`
ÝÑ CrE 11, . . . , E

1
ns

In the rule the targets term Cr s indicates the new context in which the
new sub terms will be operating after the reduction. Sometimes, these
rules are enriched with side conditions that determine their applicabil-
ity. Therefore, transition rules, given a term representing a state of the
system, permit to determine the enabled actions and the corresponding
reachable states, thus defining an LTS.

CHAPTER 2. BACKGROUND 29

• Basic Actions represent the atomic (uninterruptible) step of a compu-
tation that is performed by a system to move from one state to the
next. Actions represent various activities of concurrent systems, like
sending or receiving a message, synchronizing with other processes etc.
In process algebras two main types of atomic actions are considered,
namely visible (or external) actions and invisible (or internal actions),
the latter referred by the Greek letter τ .

PART II

BPMN 2.0 FORMAL FRAMEWORK

CHAPTER 3

FORMALIZATION OF BPMN
COLLABORATIONS

This chapter formalizes the semantics of BPMN collaborations. It focuses
on those BPMN elements, informally presented in the previous chapter, that
are strictly needed to deal with multiple instantiations of collaborations,
namely multi-instance pools, message exchanges, multi-instance tasks (both
in sequence and in parallel), data objects, data collections and data stores.
Additionally, in order to define meaningful collaborations, some core BPMN
elements (e.g., gateways and events) are considered. The rest of the chapter
discusses the main issues related to the non trivial semantics of BPMN. To
conclude, a comparison between the approach showed in this thesis and the
literature is provided.

3.1 Multiple Instances, Messages and Data in
a Nutshell

To deal with multiple instances in BPMN collaboration models, it is nec-
essary to take into account the data flow. Indeed, the dynamic creation of
process instances can be triggered by the arrival of messages, which contain
data. Within a process instance, data can be accessed from data objects, data
collections and data stores (here, and in the following, the term data elements
is used to refer to all of them together), and drives the instance execution.
Values of data elements can be used to fill the content of outgoing messages
and, vice versa, the content of incoming messages can be stored in data el-
ements. Below the interplay between such concepts is made clear . To this

34 CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS

aim, Figure 3.1 depicts a colored version of the running example introduced
in Section 2.2.2, where the elements composing respectively the control, data,
and message flows have been colored respectively in blue, orange and green.

Figure 3.1: Control, data, and message flows in the running example.

Indeed, this collaboration model combines the activities of three par-
ticipants. Each of them follows the behavior of its internal process which
execution is driven by data, and finally, data is shared with the other pro-
cesses by using messages. In this scenario, data support is crucial to precisely
render the message exchanges between participants, especially because mul-
tiple instances of the Reviewer process are created. In fact, messages coming
into this pool might start a new process instance, or be routed to existing
instances already underway. Messages and process instances must contain
enough information to determine, when a message arrives at a pool, if a
new process instance is needed or, if not, which existing instance will handle
it. To this aim, BPMN makes use of the concept of correlation: it is up
to each single message to provide the information that permits to associate
the message with the appropriate (possibly new) instance. This is achieved
by embedding values, called correlation data, in the content of the message

CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS 35

itself. As reported in the standard,
“Correlation is used to associate a particular Message [...] between two

particular Process instances. BPMN allows using existing Message data for
correlation purposes [...] rather than requiring the introduction of technical
correlation data” [53, Sec. 8.3.2].

In particular, this formalization relies on pattern-matching to enable the
correlation of exchanged messages. Considering the running example, every
time the Journal Editor sends a Feedback of the review to a Reviewer, the
message must contain information (in this case the name of the reviewer) to
be correlated to the correct process instance of the Reviewer multi-instance
pool. In this way, the Feedback notification is properly delivered to the
Reviewer instance.

According to the BPMN standard, data elements do not have any direct
effect on the sequence flow or message flow of processes, since tokens do not
flow along data associations [53, p. 221]. However, this statement is question-
able. Indeed, on the one hand, the information stored in data elements can
be used to drive the execution of process instances, as they can be referred
in the conditional expressions of OR/XOR split gateways to take decisions
about which branch should be taken. On the other hand, data elements can
be connected in input to tasks. In particular, the standard states that

“the Data Objects as inputs into the Tasks act as an additional constraint
for the performance of those Tasks. The performers [...] cannot start the
Task without the appropriate input” [53, p. 183].

In both cases, a data element has an implicit indirect effect on the exe-
cution, since it can drive the decision taken by a OR/XOR split gateway or
acts as a guard condition on a task. In the running example, for instance,
according to the value of the Evaluation data object, the conditional expres-
sion What is the Reviewers Decision? is evaluated and a branch of the XOR
split gateway is chosen. As another example, the task Submit Paper in the
Contact Author pool can be executed only if the field finalized of the Final
Paper data object has been valorized to true.

Concerning the content of data elements, the standard left underspecified
its structure, in order to keep the notation independent from the kind of data
structure required from time to time. The presented formalism considers a
generic record structure, assuming that a data object/store is just a list of
fields, characterized by a name and the corresponding value. Instead, data
collections are thought of as special data objects consisting of lists of elements
that, in their own turn, are structured as lists of fields. Figure 3.2 reports
the structure of the data elements used in the running example. Messages
are structured as tuples of values; the latter can be manipulated and inserted
into data element fields via assignments performed by tasks.

Guards, assignments, and structure of data elements and messages are

36 CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS

PaperData tjournal, authors, formatu PaperDraft ttitle, authors, formatu

Format tstyleu FinalPaper ttitle, authors, format, text,finalizedu

Paper ttitle, authors,body, scoreu Review treviewer, title,body, scoreu

Reviews treviewer, title,body, scoreu

Evaluation ttitle,decisionu Letter tsubject, evaluationu

PaperInfo ttitle,bodyu PaperReview ttitle,body, score,decision,myNameu

PapersRepository tpapersu

Figure 3.2: Structures of data elements of the running example.

not explicitly reported in the graphical representation of the BPMN model,
but are defined as attributes of the involved BPMN elements.

3.2 Textual Notation of BPMN Collaborations

To simplify the formal treatment of the semantics, the formalism resorts
to a textual representation of BPMN models, which is more manageable
for writing operational rules than the graphical notation. Notice that this
work does not propose an alternative modeling notation, but it just defines
a Backus-Naur Form (BNF) syntax of BPMN model structures.

Figure 3.3 reports the BNF syntax defining the textual notation of BPMN
collaboration models. This syntax only describes the structure of models.
Notably, even if this syntax would allow to write collaborations that cannot
be expressed in BPMN, here are considered only those terms of the syntax
that can be derived from BPMN models.

In the proposed grammar, the non-terminal symbols C, P , T , Tem, N and
A represent Collaboration Structures, Process Structures, Task Structures,
Task Execution Modalities, Non-Atomic Execution Modalities, and Data As-
signments, respectively. The terminal symbols, denoted by the sans serif font,
are the typical elements of a BPMN model, i.e., pools, events, tasks and gate-
ways. The syntax of these elements is based on the following disjoint sets:

• the set P of pool names (ranged over by p, p1, . . .);

• the set E of sequence edges (ranged over by e, e1, ei, . . .) with E P 2E

ranging over sets of edges ;

• the set M of message names (ranged over by m, m1, mi, . . .);

• the set T of task names (ranged over by t, t1, . . .);

CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS 37

• the set C of counter names (ranged over by c, c1, . . .);

• the set D of data object names (ranged over by do, do1, . . .);

• the set DS of data store names (ranged over by ds, ds1, . . .);

• the set DF of data field names (ranged over by f, f 1, . . .);

• the set F of data fields (ranged over by do.f, ds.f 1, . . .); and

• the set V of values (ranged over by v, v1, . . .).

The syntax also uses a set EXP of expressions (ranged over by exp, exp1,
. . .), whose precise syntax is deliberately not specified; it just assumes that
expressions contain, at least, values v, data object fields do.f and data store
fields ds.f. Notation ˜̈denotes tuples; e.g., ˜exp stands for a tuple of expressions
xexp1, . . . , expny.

C ::“ poolpp, P q | miPoolpp, P,maxq | C ‖ C

P ::“ startpe, e1q | startRcvpm : t̃, eq | endpeq | endSndpe,m : ˜expq

| terminatepeq | interRcvpe,m : t̃, e1q | interSndpe,m : ˜exp, e1q

| andSplitpe, Eq | xorSplitpe, Gq | orSplitpe, Gq

| andJoinpE, eq | xorJoinpE, eq | orJoinpE, eq

| eventBasedpe, pm1 : t̃1, e1q, . . . , pmh : t̃h, ehqq

| T | mipTaskpe, exp, T, c, exp1, e1q | misTaskpe, exp, T, c, exp1, e1q

| P ‖ P

T ::“ taskpe, t, Tem, exp, A, e
1q | taskRcvpe, t, Tem, exp, A,m : t̃, e1q

| taskSndpe, t, Tem, exp, A,m : ˜exp, e1q

Tem ::“ a | N

N ::“ na_c | na_nc

A ::“ ε | do.f :“ exp | ds.f :“ exp | getpdoq | pushpdoq | A, A

Figure 3.3: BNF syntax of BPMN collaboration structures.

Intuitively, a BPMN collaboration model is rendered in the presented
syntax as a collection of (single-instance and multi-instance) pools, each one
specifying a process. Formally, a collaboration C is a composition, by means
of the operator ‖, of pools either of the form poolpp, P q (for single-instance
pools) or miPoolpp, P,maxq (for multi-instance pools), where p is the name
that uniquely identifies the pool, P is the enclosed process, and max is the

38 CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS

maximum number of instances that can be activated in case of a multi-
instance pool. Similarly, a process P is a composition of process elements by
means of the operator ‖.

The correspondence between the graphical notation of BPMN and the
textual representation used here is straightforward, except for the terms
mipTask and misTask where mip and mis stand for multiple-instance parallel
and multiple-instance sequential, respectively. This correspondence is exem-
plified by means of the running example in Figure 3.4, where for the sake of
readability the definition of those guard expressions that simply check the
initialization of data fields are omitted (only exp101 is kept as an example).

For a more detailed account of the one-to-one correspondence the inter-
ested reader can refer to Tables 3.1 to 3.3. In the textual representation there
is some information (content of messages, receiving templates, data element
assignments, etc.) that is not reported in the graphical notation. In fact,
for the sake of understandability, according to the BPMN standard these
technical details of collaborations are not part of the graphical representa-
tion, but they are part of the low-level XML characterization of the model.
This information is explicitly reported in the textual representation as it is
needed to properly define the execution semantics of the collaboration mod-
els. Moreover, to support a compositional approach, in the textual notation
each sequence/message edge in the graphical notation is split in two parts:
the part outgoing from the source element and the part incoming into the
target element; the two parts are correlated by the unique edge name.

No direct syntactic representation of data elements, i.e., data objects,
data collections and data stores is provided. The evolution of their states
during the model execution is a semantic concern (described later in this
chapter). Thus, syntactically, only the connections between data elements
and the other process elements are relevant. They are rendered by references
within expressions, used to check when a task is ready to start (graphically,
the task has an incoming data association from the data element), to update
the values stored in a data field (graphically, the task has outgoing data
association to the data element), and to drive the decision of a XOR split
gateway. The BPMN standard is quite loose in specifying what is the actual
structure of data elements. A generic record structure for data objects and
data stores is assumed to exist, so that a data object/store is just a list of
fields, characterized by a name and the corresponding value. Specifically, the
field named f of the data object named do (resp. the data store named ds) is
accessed via the usual notation do.f (resp. ds.f). A data collection instead is
a special data object consisting of a list of elements that, in their own turn,
are structured as lists of fields. The head element of a data collection do can
be retrieved by means of getpdoq; as effect of the execution of this action, the
fields of the retrieved element can be accessed as usual by means of do.f. To

CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS 39

Overall paper reviewing collaboration scenario:
C “ poolppca, Pcaq ‖ poolppjhe, Pjheq ‖ miPoolppr, Pr, 3q

Contact Author process:
Pca“ startpe101, e102q ‖ taskpe102,Prepare Draft, a, exp101,A101, e103q ‖ andSplitpe103, tpe104, e105uq ‖

taskpe104,Write Paper, a, exp102,A102, e106q ‖
xorSplitpe105, tpe107,PaperDraft.format “ nullq, pe108,PaperDraft.format ‰ nullquq ‖ endpe108q ‖
taskpe107,Get Journal Submission Format, a, true,A103, e109q ‖
taskpe109,Apply Changes, a, true,A104, e110q ‖ orJoinpte106, e110u, e111q ‖
taskpe111,Finalise Paper, a, true,A105, e112q ‖
taskSndpe112, Submit Paper, a, exp103, ε,Paper : ˜exp104, e113q ‖
eventBasedpe113, pAcceptance Letter :xFinal.papery, e114q, pRejection Letter :xFinal.papery, e115qq ‖
taskpe114,Prepare Camera Ready, a, true, ε, e116q ‖ endpe116q ‖ endpe117q

exp101“PaperData.journal ‰ null & PaperData.authors ‰ null
A101“PaperDraft.title :“ 1APaperTitle1, PaperDraft.authors :“ PaperData.authors,

PaperDraft.format :“ PaperData.format
A102“ FinalPaper.title :“ PaperDraft.title, FinalPaper.authors :“ PaperDraft.authors,

Manuscript.text :“ 1Lorem ipsum1, FinalPaper.format :“ PaperDraft.format
A103“ Format.style :“ 1style1

A104“ FinalPaper.format :“ Format.style
A105“ FinalPaper.text :“ 1Lorem ipsum dolor sit.1, FinalPaper.finalised :“ true

exp103“ FinalPaper.finalized
˜exp104“xFinalPaper.title,FinalPaper.authors,FinalPaper.texty

Journal Handling Editor process:
Ppc“ startRcvpPaper : ˜t201, e202q ‖

misTaskpe202, 3, taskSndpe1
202,Assign Paper, a, exp201, ε,Review Request : ˜exp201, e

1
203q, c201, false, e203q ‖

misTaskpe203, 3, taskRcvpe1
203,Receive Reviews, a, true,A201,Review : ˜t202, e1

204q, c202, false, e204q ‖
taskpe204,Review Evaluation, a, true,A202, e205q ‖ xorJoinpte205, e210u, e206q ‖
xorSplitpe206, tpe207,Evaluation.decision “ 0q, pe208,Evaluation.decision ą 0q, pe209,Evaluation.decision ă 0quq ‖
taskpe207,Discussion, a, true,A203, e210q ‖ taskpe208,Prepare Acceptance Letter, a, true,A204, e211q ‖
taskpe209,Prepare Rejection Letter, a, true,A205, e212q ‖ xorJoinpte211, e212u, e213q ‖
misTaskpe213, 3, taskSndpe1

213, Send Feedback Mail, a, exp202,A206,Feedback : ˜exp202, e
1
214q, c203, false, e214q ‖

xorSplitpe214, tpe215, Letterevaluation “ 1Accepted1q, pe216, Letterevaluation “ 1Rejected1quq ‖
endSndpe215,Acceptance Letter :xPaper.titleyq ‖ endSndpe216,Rejection Letter :xPaper.titleyq

˜t201“x?Paper.title, ?Paper.authors, ?Paper.bodyy
˜exp201“xPaper.title,Paper.bodyy
A201“Reviews.reviewer :“ Review.reviewer, Reviews.score :“ Review.score,Reviews.body :“ Review.body,

Reviews.title :“ Review.title, pushpReviewsq,Paper.score :“ Paper.score` Reviews.score
˜t202“x?Review.reviewer,Paper.title, ?Paper.score, ?Paper.bodyy

A202“Evaluation.title :“ 1EvaluationofthePaper1, Evaluation.decision :“ Paper.score
A203“Evaluation.decision :“ reevaluatepReviewsq
A204“ Letter.subject :“ 1AcceptanceLetter1, Letter.evaluation :“ 1Accepted1

A205“ Letter.subject :“ 1RejectionLetter, Letter.evaluation :“ 1Rejected1

A206“ getpReviewsq
˜exp202“xReviews.title,Evaluation.decisiony

Reviewer process:
Pr“ startRcvpReview Request : ˜t301, e302q ‖ taskpe302,Paper Review, a, exp301,A301, e303q ‖

taskSndpe303,Submit Review, a, exp302,A302,Review Request : ˜exp301, e304q ‖ andSplitpe304, te305, e306uq ‖
taskRcvpe305,Receive Feedback Mail, a, true, ε,Feedback : ˜t302, e307q ‖ xorJoinpte306, e311u, e308q ‖
taskpe308,Check Feedback Online, a, true, ε, e309q ‖ xorSplitpe309, tpe310, isEnoughpqqpe311, isNotEnoughpqquq ‖
andJoinpte307, e313u, e312q ‖ xorSplitpe310, tpe313,waitForMailpqq, pe314, dontWaitpqquq ‖
endpe312q ‖ terminatepe314q

˜t301“x?PaperInfo.title, ?PaperInfo.bodyy
A301“PaperReview.title :“ PaperInfo.title, PaperReview.score :“ judgepq,

PaperReview.body :“ 1Review1

A302“PaperReview.myName :“ myNamepq
˜exp301“xPaperReview.myName,PaperReview.title,PaperReview.score,PaperReview.bodyy
˜t302“xPaperReview.myName, ?PaperReview.title, ?PaperReview.decisiony

Figure 3.4: Textual representation of the running example.

40 CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS

Graphical Notation Textual Notation

poolpp, P q

miPoolpp, P,maxq

startpe1, eq

startRcvpm : t̃, eq

endpeq

endSndpe,m : ˜expq

terminatepeq

interRcvpe,m : t̃, e1q

interSndpe,m : ˜exp, e1q

Table 3.1: Correspondence between graphical and textual notation: pools
and events.

CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS 41

Graphical Notation Textual Notation

e1 e3

e4

e2

andSplitpe1, te2, e3, e4uq

e1

query

e2 v1

e3 v2

e4 v3

xorSplitpe1, tpe2, query “ v1q, pe3, query “ v2q, pe4, defaultquq

e1

query

e3 v2

e2 v1

e4 v3

orSplitpe1, tpe2, query “ v1q, pe3, query “ v2q, pe4, defaultquq

e2 e4

e3

e1

andJoinpte1, e2, e3u, e4q

e1

e2

e3

e4
xorJoinpte1, e2, e3u, e4q

e2

e1

e3

e4
orJoinpte1, e2, e3u, e4q

e2

e3

e4

e1

m2

m3

m4

eventBasedpe1, pm2 : t̃2, e2q, pm3 : t̃3, e3q, pm4 : t̃4, e4qq

Table 3.2: Correspondence between graphical and textual notation:
gateways.

42 CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS

Graphical Notation Textual Notation

taskpe, t, N, exppd1, d2q,
pd3.f1 :“ exp1, . . . , d3.fn :“ expnq, e

1q

taskRcvpe, t, N, exppd1, d2q,
pd3.f1 :“ exp1, . . . , d3.fn :“ expnq,m : t̃, e1q

taskSndpe, t, N, exppd1, d2q,
pd3.f1 :“ exp1, . . . , d3.fn :“ expnq,m : ˜exp, e1q

mipTaskpe, exp, taskpe2, t, N, notEmptypd1q,
pgetpd1q, d2.f1 :“ exp1, . . . , d2.fn :“ expn,

pushpd2qq, e3q, c, exp1, e1q

misTaskpe, exp, taskpe2, t, N, notEmptypd1q,
pgetpd1q, d2.f1 :“ exp1, . . . , d2.fn :“ expn,

pushpd2qq, e3q, c, exp1, e1q

Table 3.3: Correspondence between graphical and textual notation: tasks.

add an element in a data collection do, first the fields of the new element are
filled with values via assignments of the form do.f :“ exp, then the element
with the filled fields is inserted in the tail of the data collection by means of
pushpdoq. It is worth noticing that in the presented semantics concrete values
are associated to data object fields. The same applies to data stores and data
collections. This perfectly fits with the purpose of animating the execution
of collaboration models showing the evolution of the specified data.

Since data is explicitly considered, messages are characterized not only by
labels, but also by the values that they may carry. Therefore, a sending action
specifies a list of expressions whose evaluation will return a tuple of values
to be sent, while a receiving action specifies a template to select matching
messages and possibly assign values to data fields. Formally, a message is a
pair m : ṽ, where m is the (unique) message name (i.e., the label of the message

CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS 43

edge) and ṽ is a tuple of values representing the payload of the message.
Sending actions have as argument a pair of the form m : ˜exp. Receiving actions
have as argument a pair of the form m : t̃, where t̃ denotes a template, that is
a sequence of expressions and formal fields used as pattern to select messages
received by the pool. Formal fields are data object/store fields identified by
the ?-tag (e.g., ?do.f or ?ds.f) and are used to bind fields to values. Data
elements are associated to a task by means of a conditional expression, which
is a guard enabling the task execution, and a list of assignments A, each of
which assigns the value of an expression to a data field or retrieves/inserts
information in a data collection. When there is no data element as input to
a task, the guard is simply true, while if there is no data element in output
to a task the list of assignments is empty (ε).

The XOR split gateway as well as the OR split, specifies guard conditions
in the outgoing edges, used to decide which edge to activate according to the
values of data objects. This is formally rendered as a function G : EÑ EXP
mapping edges to conditional expressions. Notably, it is assumed that the
set EXP of expressions includes the distinguished expression default referring
to the default sequence edge outgoing from the gateway (it is assigned to at
most one edge). When convenient, function G is considered as a set of pairs
pe, exp).

Finally, the formalization supports the possibility of specifying the execu-
tion modality of tasks. This information is crucial when the data perspective
and multi-instance tasks are taken into account. In case of a task with
atomic execution (modality a), the evaluation of its enabling guard, the pos-
sible sending/receiving of a message, and the data object assignments, are
performed atomically. This semantics fits well in many scenarios, like e.g.,
when a task acts on a data element representing a paper document managed
by a human actor that cannot be accessed concurrently by other actors in-
volved in the collaboration. However, there are also some situations where a
non-atomic access is more suitable, e.g., when data elements represent shared
digital documents. In the non-atomic case it is also important to indicate if
the instances of a task can be executed concurrently (modality na_c) or not
(modality na_nc). Actually, the BPMN standard is intentionally loose on
these points, in order to allow the use of the modeling language in different
contexts of use. To more effectively support designers, they can specify for
each task the corresponding execution modality. This enables the identifi-
cation of concurrency issues in those data accesses where they can actually
arise and, at same time, it allows to ignore such issues when in the real-
ity they cannot occur. The role of task execution modalities is particularly
crucial in those cases where tasks act in parallel and access the same data
elements. Parallel execution of tasks can produce in these cases different
effects. This depends on the execution order of the internal steps of tasks,

44 CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS

i.e. guard checks, message sending/receiving, and data element assignments.
Considering, for instance, a simple scenario with two parallel tasks, each of
which makes an assignment producing a violation of the guard of the other
task. If the two tasks are atomic, the execution of one of them will be dead-
locked, while in the non-atomic case such deadlock can be avoided if both
tasks perform the guard checks before making the assignments. Concurrent
and non-concurrent non-atomic modalities play an active role mainly when
the involved tasks are multi-instance.

3.3 Semantics of BPMN Collaborations

The syntax presented so far represents the mere structure of processes and
collaborations. To describe their semantics, the structural information is en-
riched with a notion of execution state, given by the marking of sequence
edges with tokens [53, p. 27], the value of data elements, the status of tasks,
and the exchanged messages. These stateful descriptions are respectively
called process configurations and collaboration configurations, they produce
local and global effects, respectively, on the process and collaboration exe-
cution. The operational semantics at collaboration level is defined by means
of a labelled transition system (LTS), whose definition relies on an auxiliary
LTS on the behavior of processes. Firstly, the process semantics is presented,
and later the collaboration one.

3.3.1 Process Configuration

A process configuration has the form xP, σe, σdo, σdc, σds, σt, σcy, where:

• P is a process structure;

• σe : E Ñ N is a sequence edge state function specifying, for each se-
quence edge, the current number of tokens marking it (N is indeed the
set of natural numbers);

• σdo : F Ñ V is a data object state function assigning values (possibly
null) to data object fields;

• σdc : D Ñ pF Ñ Vqn is a data collection state function assigning to
each data collection a tuple of data object state functions;

• σds : FÑ V is a data store state function assigning values (possibly null)
to data store fields; even if this state function has the same type as σdo,
the formalism uses two separate state functions because the information
in data objects is treated differently from that in data stores, as this
latter kind of data is permanent and shared among instances;

CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS 45

• σt : T ˆ ta, s, ru Ñ N is a task state function used to keep track,
for each non-atomic task, of the number of task instances in a given
status, i.e., active (a), sending (s), and message received (r); the status
of a task depends on its evolution (depicted in Figure 3.5), where the
inactive status formally corresponds to haveing zero instances for all
other statuses;

• σc : C Ñ N is a counter state function used to keep track, for each
multi-instance task, of the number of times that the task still has to
be executed.

Task Send Task Receive Task

Inactive

Active

Guard
Evaluation

P
er
fo
rm

A
ss
ig
nm

en
ts

Inactive

Active

Sending

Guard
Evaluation

Perform
Assignments

M
es
sa
ge

Se
nt

Inactive

Active

Received

Guard
Evaluation

Message
Received

P
er
fo
rm

A
ss
ig
nm

en
ts

Figure 3.5: Task status evolution.

For the sake of presentation, in the following notation σd is used to de-
note in a compact way the triple pσdo, σdc, σdsq representing the state of all
data elements. Thus, a process configuration can be written for example
as xP, σe, σd, σt, σcy. With σ0

e (resp. σ0
d, σ

0
t , σ

0
c) is denoted the edge (resp.

data element, task and counter) state where all edges are unmarked (resp.
all data object/store fields are set to null, all data collections are empty, all
tasks are inactive, and all counters are set to 0). Formally, σ0

epeq “ 0 @e P E,
σ0
dopdo.fq “ null @ do.f P F, σ0

dcpdoq “ ε @do P D, σ0
dspds.fq “ null @ ds.f P F,

σ0
t pt, aq “ σ0

t pt, sq “ σ0
t pt, rq “ 0 @t P T, and σ0

c pcq “ 0 @c P C. The state
obtained by updating in σe the number of tokens of the edge e to n, written
as σe ¨ re ÞÑ ns, is defined as follows: pσe ¨ re ÞÑ nsqpe1q returns n if e1 “ e,
otherwise it returns σepe1q. The updates of states σdo, σdc, σds, σt, and σc are
defined similarly.

Auxiliary Functions and Relations. To simplify the definition of the op-
erational rules, some auxiliary functions and relations are defined to update
states of process configurations and to act on the model topology.

46 CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS

• Function incpσe, eq increments by one the number of tokens marking
the edge e in the state σe on σe.

incpσe, eq “ σe ¨ re ÞÑ σepeq ` 1s

It extends in a natural way to sets E of edges. Specifically, inc is
inductively defined as follows:

incpσe,Hq “ σe
incpσe, teu Y Eq “ incpincpσe, eq, Eq

• Function decpσe, eq on σe decrements by one the number of tokens mark-
ing the edge e in the state σe on σe.

decpσe, eq “ σe ¨ re ÞÑ σepeq ´ 1s

It extends in a natural way to sets E of edges. Specifically, dec is
inductively defined as follows:

decpσe,Hq “ σe
decpσe, teu Y Eq “ decpdecpσe, eq, Eq

• Function resetpσe, eq sets to zero the number of tokens marking the
edge e in the state σe.

resetpσe, eq “ σe ¨ re ÞÑ 0s

It extends in a natural way to sets of edges as follows:

resetpσe,Hq “ σe
resetpσe, teu Y Eq “ resetpresetpσe, eq, Eq

Moreover, function resetpσeq “ σ0
e resets all edges in the state σe.

• Function setpσe, e, hq sets to h the tokens marking the edge e in the
state σe

setpσe, e, hq “ σe ¨ re ÞÑ hs

• Relation evalpexp, σd, vq states that v is one of the possible values re-
sulting from the evaluation of the expression exp on the data element
state σd; this is a relation, because an expression may contain non-
deterministic operators, and is not explicitly defined, since the syntax
of expressions is deliberately not specified (the only assumption is that
evalpdefault, σd, vq implies v “ false for any σd).

Relations evalp ˜exp, σd, ṽq and evalp t̃ , σd, ẽt q evaluate tuples of expres-
sions and templates, respectively.

CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS 47

• Relation updpσd, A, σ
1
dq states that σ1d is one of the possible states re-

sulting from the update of σd with assignment A. It is inductively
defined as follows, for any σdo, σdc, σds:

updppσdo, σdc, σdsq, ε, pσdo, σdc, σdsqq

updppσdo, σdc, σdsq, do.f :“ exp, pσdo ¨ rdo.f ÞÑ vs, σdc, σdsqq

with v such that evalpexp, pσdo, σdc, σdsq, vq.

updppσdo, σdc, σdsq, ds.f :“ exp, pσdo, σdc, σds ¨ rds.f ÞÑ vsqq

with v such that evalpexp, pσdo, σdc, σdsq, vq.

updppσdo, σdc, σdsq, getpdoq, pσdo ¨ σ
1
do, σ

1
dc, σdsqq

with σdcpdoq “ xσ1
do, σ

2
do, ..., σ

n
doy and σ1dc such that

σ1dcpdoq “ xσ2
do, ..., σ

n
doy and σ1dcpdo1q “ σdcpdo1q with do ‰ do1, where

σdo ¨ σ
1
do “ σdo ¨ rdo1.f1 ÞÑσ

1
dopdo1.f1q, ..., don.fn ÞÑσ

1
dopdon.fnqs, @doi.fi P F

such that σ1dopdoi.fiq ‰ null.

updppσdo, σdc, σdsq, pushpdoq, pσdo, σ
1
dc, σdsqq

with σdcpdoq “ xσ1
do, σ

2
do, ..., σ

n
doy and σ1dc such that σ1dcpdoq “

xσ1
do, σ

2
do, ..., σ

n
do, σ

1
doy and σ1dcpdo1q “ σdcpdo1q for do1 ‰ do, and σ1do

such that σ1dopdo2.fq “ σdopdo2.fq if do2 “ do and σ1dopdo2.fq “ null if
do2 ‰ do.

updppσdo, σdc, σdsq, pA1, A2q, pσ
2
do, σ

2
dc, σ

2
dsqq

with σ2do, σ
2
dc, σ

2
ds such that updppσ1do, σ

1
dc, σ

1
dsq, A2, pσ

2
do, σ

2
dc, σ

2
dsqq and

σ1do, σ
1
dc, σ

1
ds such that updppσdo, σdc, σdsq, A1, pσ

1
do, σ

1
dc, σ

1
dsqq.

• Function incpσt, t, Sq increments by one the number of instances of task
t in the status S P ta, s, ru in the state σt.

incpσt, t, Sq“σt ¨ rpt, Sq ÞÑσtpt, Sq`1s

• Function decpσt, t, Sq decrements by one the number of instances of task
t in the status S P ta, s, ru in the state σt.

decpσt, t, Sq“σt ¨ rpt, Sq ÞÑσtpt, Sq´1s

• Function resetpσtq sets to inactive the status of all tasks in the state
σt.

resetpσtq “ σ0
t

48 CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS

• Function isInactivepσt, tq returns true if the task t is in the inactive
status in the state σt.

isInactivepσt, tq “ pσtpt, aq “ 0^ σtpt, sq “ 0^ σtpt, rq “ 0q

• Function setpσc, c, hq sets to h the value of the counter c in the state
σc.

setpσc, c, hq “ σc ¨ rc ÞÑ hs

• Function decpσc, cq decrements by one the value of c in the state σe.

decpσc, cq “ σc ¨ rc ÞÑ σepcq ´ 1s

• Function resetpσc, cq resets the value of the counter c in the state σc.

resetpσc, cq “ σc ¨ rc ÞÑ 0s

The auxiliary LTS of the behavior of processes is a triple xP ,L,Ñy
where: P is a set of process configurations; L, ranged over by
`, is a set of labels ; and ÑĎ P ˆ Lˆ P is a transition relation.
As simplification, xP, σe, σd, σt, σcy

`
ÝÑ xP, σ1e, σ

1
d, σ

1
t, σ

1
cy indicates that

pxP, σe, σd, σt, σcy, `, xP, σ
1
e, σ

1
d, σ

1
t, σ

1
cyq PÑ, and says that ‘the process in the

configuration xP, σe, σd, σt, σcy can do a transition labelled by ` and evolve to
the process configuration xP, σ1e, σ1d, σ1t, σ1cy’. The labels used by the process
transition relation are generated by the following production rules:

` ::“ τ | !m : ṽ | ?m : ẽt, A | new m : ẽt τ ::“ ε | kill

The meaning of labels is as follows. Label τ denotes an action internal
to the process, while !m : ṽ and ?m : ẽt, A denote sending and receiving
actions, respectively. Notation ẽt denotes an evaluated template, that is a
sequence of values and formal fields. Notably, the receiving label carries
information about the data assignments A to be executed after the message
m is actually received. Label new m : ẽt denotes the occurrence of a receiving
action that instantiates a new process instance (i.e., it corresponds to the
occurrence of a start message event in a multi-instance pool). The meaning
of internal actions is as follows: ε denotes an internal computation concerning
the movement of tokens, while kill denotes the occurrence of the termination
event.

Moreover, in order to catch the model semantics some functions that work
on its topology are required.

Function edgespP q permits to get the set of all edges used in the process
P , and function inpT q (resp. outpT q) to get the edge incoming in (resp.
outgoing from) the task T .

CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS 49

PH refers to the set of all paths in G and PH : E Ñ 2PH to a function
that, given as input an edge e P E returns the set of all paths ending in the
OR Join uniquely identified by e and starting from all the possible vertices
between the start event and the OR Join, which do not visit the considered
OR Join. Notably, this function returns a finite set of paths, because cycles
within paths are not repeated.

Finally, to properly formalize the OR Join semantics in presence of vicious
circles (i.e., keeping the execution blocked), for each OR Join has to be
detected the presence of OR Joins from which it depends. This is expressed
as a Boolean predicate noDep : E Ñ ttrue, falseu, which taken as input an
edge e identifying an OR Join, holds if no other OR Join mutually depends
on e.

Notational simplifications. To improve the readability of the operational
rules, the following simplifications reduce the notation of transitions. More
specifically, unnecessary information is omitted: (i) the states σe, σd, σt,
σc from the source configuration of transitions, since the same notation is
used for them in all rules; (ii) the structure from the target configuration of
transitions, since process execution only affects the current states and not the
process structure; (iii) those states from the target configuration that are not
affected by transitions. Thus, for example, a transition xP, σe, σd, σt, σcy

`
ÝÑ

xP, σ1e, σ
1
d, σ

1
t, σ

1
cy will be written as P `

ÝÑ xσ1ey when it simply affects the
sequence edge state function.

3.3.2 Process Semantics

The operational rules defining the transition relation of the process semantics
are given by the inference rules in Figures 3.6, 3.8, 3.9, and 3.10.

Now a brief comment on the rules in Figure 3.6 is given. Rule P -Start
starts the execution of a process when it has been activated. To denote the
enabled status of start events an incoming (spurious) edge, named enabling
edge, is included in their syntactical definition. Thus, the process is activated
when the enabling edge of a start event is marked. The effect of the rule is
to increment the number of tokens in the edge outgoing from the start event
and to decrease the marking of the enabling edge. Rule P -End instead is
enabled when there is at least one token in the incoming edge of the end
event, which is then simply consumed. Rule P -Terminate is similar, but
it produces a kill label and forces the termination of the process instance
by resetting the marking of edges and the status of tasks. Rule P -StartRcv
starts the execution of a process by producing a label denoting the creation
of a new instance and containing the information for consuming a received
message at the collaboration layer (see rule C -CreateMi in Figure 3.11). Rule

50 CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS

startpe, e1q
ε
ÝÑ xincpdecpσe, eq, e

1qy σepeq ą 0 pP -Startq

endpeq
ε
ÝÑ xdecpσe, eqy σepeq ą 0 pP -Endq

terminatepeq
kill
ÝÝÑ xresetpσeq, resetpσtqy σepeq ą 0 pP -Terminateq

startRcvpm : t̃, eq
new m : ẽt
ÝÝÝÝÝÝÑ xincpσe, eqy eval p̃t, σd, ẽtq pP -StartRcvq

endSndpe,m : ˜expq
!m : ṽ
ÝÝÝÑ xdecpσe, eqy

σepeq ą 0 ^
evalp ˜exp, σd, ṽq

pP -EndSndq

interRcvpe,m : t̃, e1q
?m : ẽt,ε
ÝÝÝÝÝÑ xincpdecpσe, eq, e

1qy

σepeq ą 0 ^
evalp t̃ , σd, ẽt q

pP -InterRcvq

interSndpe,m : ˜exp, e1q
!m : ṽ
ÝÝÝÑ xincpdecpσe, eq, e

1qy

σepeq ą 0 ^
evalp ˜exp, σd, ṽq

pP -InterSndq

andSplitpe, Eq
ε
ÝÑ xincpdecpσe, eq, Eqy σepeq ą 0 pP -AndSplitq

xorSplitpe, tpe1, expqu YGq
ε
ÝÑ xincpdecpσe, eq, e

1qy

σepeq ą 0 ^
evalpexp, σd, trueq

pP -XorSplit1 q

xorSplitpe, tpe1, defaultqu YGq
ε
ÝÑ xincpdecpσe, eq, e

1qy

σepeq ą 0 ^
@pej , expjq P G .
evalpexpj , σd, falseq

pP -XorSplit2 q

orSplitpe, tpe1, exp1q, . . . , peh, exphqu YGq
ε
ÝÑ

xincpdecpσe, eq, tpe1, exp1q, . . . , peh, exphquqy

σepeq ą 0 ^
@j s.t. 1 ď j ď h .
evalpexpj , σd, trueq

pP -OrSplitq

orSplitpe, tpe1, defaultqu YGq
ε
ÝÑ xincpdecpσe, eq, e

1qy

σepeq ą 0 ^
@pej , expjq P G .
evalpexpj , σd, falseq

pP -OrSplit2 q

andJoinpE, eq
ε
ÝÑ xincpdecpσe, Eq, eqy @e1 P E . σepe

1q ą 0 pP -AndJoinq

xorJoinpteu Y E, e1q
ε
ÝÑ xincpdecpσe, eq, e

1qy σepeq ą 0 pP -XorJoinq

orJoinpE1 \ E2, e
1q

ε
ÝÑ xincpdecpσe, E1q, e

1qy

@ei P E1 . σepeiq ą 0 ^
@ej P E2 . σepejq “ 0 ^
E1 ‰ H ^

@p1 P Π .D p2 P Πp1

pP -OrJoinq

eventBasedpe, pm1 : t̃1, e1q, . . . , pmh : t̃h, ehqq
?mj : ẽtj ,ε
ÝÝÝÝÝÝÑ xincpdecpσe, eq, ejqy

σepeq ą 0^ D 1 ď j ď h.
evalp t̃j , σd, ẽtj q

pP -EventGq

Figure 3.6: BPMN process semantics: events and gateways.

CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS 51

P -EndSnd is enabled when there is at least a token in the incoming edge of
the end event, which is then removed. Moreover, a send label is produced
in order to deliver the produced message at the collaboration layer (see rule
C -DeliverMi in Figure 3.11). Rules P -InterRcv and P -InterSnd are enabled
when there is at least a token in their incoming edge and move it to their
outgoing edge, while producing a receive or a send label, respectively. Rule
P -AndSplit is applied when there is at least one token in the incoming edge
of an AND split gateway; as result of its application, the rule decrements
the number of tokens in the incoming edge, and increments the tokens in
each outgoing edge. Rule P -XorSplit1 is applied when a token is available
in the incoming edge of a XOR split gateway and a conditional expression
of one of its outgoing edges is evaluated to true; the rule decrements the
token in the incoming edge and increments the token in the selected outgoing
edge. Notably, if more edges have their guards satisfied, one of them is
non-deterministically chosen. Rule P -XorSplit2 is applied when all guard
expressions are evaluated to false; in this case the default edge is marked.
Rule P -OrSplit is activated when there is a token in the incoming edge of an
OR-Split gateway, which is then removed while a token is added in all the
outgoing edges where the conditional expression is evaluated to true1. Rule
P -OrSplit2 is applied when all guard expressions are evaluated to false; in
this case the default edge is marked. Rule P -AndJoin decrements the tokens
in each incoming edge and increments the number of tokens of the outgoing
edge, when each incoming edge has at least one token. Rule P -XorJoin is
activated every time there is a token in one of the incoming edges, which is
then moved to the outgoing edge. Rule P -EventG is activated when there is a
token in the incoming edge and there is a message mj to be consumed, so that
the application of the rule moves the token from the incoming edge to the
outgoing edge corresponding to the received message. A label corresponding
to the consumption of a message is observed.

The OR Join semantics is quite complex, Figure 3.7 distills its charac-
teristics from a detailed reading of the BPMN specification (as a matter of
terminology, Inclusive Gateway stands for OR Join, while Sequence Flow for
sequence edge).

From the standard it is clear that the OR Join has a non-local semantics
and its activation may depend on the marking evolution considering the
whole diagram. More in detail, given an OR Join with a token in at least
one of its incoming edges, it has to wait for a token that is in a path ending
in an empty incoming edge of such OR Join that does not visit the OR Join
itself. However, if this token is also in a path ending in a non-empty incoming
edge, then the OR Join is activated and the execution can proceed.

1Notably, in the rule operator \ denotes the disjoint union of sets, i.e. E1\E2 stands
for E1 Y E2 if E1 X E2 “ H, it is undefined otherwise.

52 CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS

Rule P -OrJoin defines the semantics of the OR Join gateway. The opera-
tor\ is used to split the set of edges incoming in the OR Join into two disjoint
sets, E1 and E2, such that one contains marked edges (@e1 P E1.σepe

1q ą 0)
and the other one contains unmarked edges (@e1 P E2.σepe

1q “ 0).

The Inclusive Gateway is activated if:

• At least one incoming Sequence Flow has at least one token and
• For every directed path formed by sequence flow that:

(i) starts with a Sequence Flow f of the diagram that has a token,
(ii) ends with an incoming Sequence Flow of the inclusive gateway that has no

token,
(iii) does not visit the Inclusive Gateway.

• There is also a directed path formed by Sequence Flow that:

(iv) starts with f,
(v) ends with an incoming Sequence Flow of the inclusive gateway that has a

token,
(vi) does not visit the Inclusive Gateway.

Figure 3.7: OR Join semantics according to the OMG standard BPMN 2.0.

In describing the rule, the BPMN 2.0 specification is exploited to make
clear the correspondence. “The Inclusive Gateway is activated if” the condi-
tions for the rule applications are satisfied. Thus, the requirement “At least
one incoming Sequence Flow has at least one token” is represented by con-
dition E1 ‰ H. The second requirement “For every directed path formed by
Sequence Flow that (i)... (ii)... (iii)... There is also a directed path formed
by Sequence Flow that (iv)... (v)... (vi)” is represented by the condition
@p1 P Π .D p2 P Πp1 , where Π is the set of paths satisfying piq, piiq and piiiq,
while the sets Πp, one for each path p in Π , contain paths satisfying pivq,
pvq and pviq. Formally, they are defined as Π “ tp P PHpeq |σepfirstppqq ą
0 ^ lastppq P E2u and Πp “ tp

1 P PHpeq | firstpp1q “ firstppq ^ lastpp1q P E1u.
In particular, a path p in Π is such that: “(i) starts with a Sequence Flow f of
the diagram that has a token” (σepfirstppqq ą 0), “(ii) ends with an incoming
Sequence Flow of the inclusive gateway that has no token” (lastppq P E2), and
“(iii) does not visit the Inclusive Gateway” (ensured by definition of PH). In-
stead, given a path p in Π , a path p1 in Πp is such that: “(iv) starts with f ”
(firstpp1q “ firstppq, as f is the first edge of p), “(v) ends with an incoming
Sequence Flow of the inclusive gateway that has a token” (lastpp1q P E1), and
“(vi) does not visit the Inclusive Gateway” (ensured again by definition of
PH).

The rules in Figure 3.8 deal with task execution, both atomic and non-
atomic. Starting with the non-atomic tasks, rule P -TaskA deals with non-

CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS 53

taskpe, t, a, exp, A, e1q
ε
ÝÑ xincpdecpσe, eq, e

1q, σ1
dy

σepeq ą 0 ^
evalpexp, σd, trueq ^
updpσd, A, σ

1
dq

pP -TaskAq

taskRcvpe, t, a, exp, A,m : t̃, e1q
?m : ẽt,A
ÝÝÝÝÝÝÑ xincpdecpσe, eq, e

1qy

σepeq ą 0 ^
evalpexp, σd, trueq ^
evalp t̃ , σd, ẽt q

pP -TaskRcvAq

taskSndpe, t, a, exp, A,m : ˜exp, e1q
!m : ṽ
ÝÝÝÑ xincpdecpσe, eq, e

1q, σ1
dy

σepeq ą 0 ^
evalpexp1, σd, trueq ^
updpσd, A, σ

1
dq ^

evalp ˜exp, σd, ṽq

pP -TaskSndAq

taskpe, t, N, exp, A, e1q
ε
ÝÑ xdecpσe, eq, incpσt, t, aqy

σepeq ą 0 ^
evalpexp, σd, trueq ^
N “ na_ncñ isInactivepσt, tq

pP -TaskN1 q

taskpe, t, N, exp, A, e1q
ε
ÝÑ xincpσe, e

1q, σ1
d, decpσt, t, aqy

σtpt, aq ą 0 ^
updpσd, A, σ

1
dq

pP -TaskN2 q

taskRcvpe, t, N, exp, A,m : t̃, e1q
ε
ÝÑ xdecpσe, eq, incpσt, t, aqy

σepeq ą 0 ^
evalpexp, σd, trueq ^
N “ na_ncñ isInactivepσt, tq

pP -TaskRcvN1 q

taskRcvpe, t, N, exp, A,m : t̃, e1q
?m : ẽt,ε
ÝÝÝÝÝÑ xincpdecpσt, t, aq, t, rqy

σtpt, aq ą 0 ^
evalp t̃ , σd, ẽt q

pP -TaskRcvN2 q

taskRcvpe, t, N, exp, A,m : t̃, e1q
ε
ÝÑ xincpσe, e

1q, σ1
d, decpσt, t, rqy

σtpt, rq ą 0 ^
updpσd, A, σ

1
dq

pP -TaskRcvN3 q

taskSndpe, t, N, exp, A,m : ˜exp, e1q
ε
ÝÑ xdecpσe, eq, incpσt, t, aqy

σepeq ą 0 ^
evalpexp, σd, trueq ^
N “ na_ncñ isInactivepσt, tq

pP -TaskSndN1 q

taskSndpe, t, N, exp, A,m : ˜exp, e1q
ε
ÝÑ xσ1

d, incpdecpσt, t, aq, t, sqy
σtpt, aq ą 0 ^ updpσd, A, σ

1
dq pP -TaskSndN2 q

taskSndpe, t, N, exp, A,m : ˜exp, e1q
!m : ṽ
ÝÝÝÑ xincpσe, e

1q, decpσt, t, sqy
σtpt, sq ą 0 ^ evalp ˜exp, σd, ṽq pP -TaskSndN3 q

Figure 3.8: BPMN process semantics: tasks with atomic and non-atomic
executions.

54 CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS

communicating tasks, possibly equipped with data objects. It is activated
only when the guard expression exp is satisfied and there is a token in the
incoming edge, which is then moved to the outgoing edge. The rule also
updates the values of the data objects connected in output to the task by
performing the assignments A. Rule P -TaskRcvA is similar, but it produces a
label corresponding to the consumption of a message. In this case, however,
the data updates are not executed, because they must be done only after
the message is actually received; therefore, the assignments are passed by
means of the label to the collaboration layer (see rule C -ReceiveMi in Fig-
ure 3.11). Rule P -TaskSndA sends a message, updates the data object and
moves the incoming token to the outgoing edge. The produced send label is
used to deliver the message at the collaboration layer (see rule C -DeliverMi
in Figure 3.11).

The remaining rules deal with tasks with non-atomic execution, with both
concurrent and non-concurrent modalities. According to the evolution of the
task status, shown in Figure 3.5, the execution of non-communicating tasks
is split in two steps: task activation (rule P -TaskN1), dealing with the eval-
uation of the guard and consumption of the token in the incoming edge, and
task completion (rule P -TaskN2), dealing with the execution of the assign-
ments and the insertion of the token in the outgoing edge. Notably, in case
of non-concurrent execution, the task activation is performed only if the task
is in the inactive status (i.e., there are no active instances). Similarly, the
execution of receiving/sending tasks is split in three steps: task activation,
receiving/sending of the message while the task is running, and task com-
pletion. Again, non-concurrent tasks are activated only if they are in the
inactive status.

The rules in Figure 3.9 deal with multi-instance tasks, both in parallel and
in sequence. A parallel multi-instance task is activated when it is inactive
(i.e., σcpcq “ 0) and has an incoming token. If the loop cardinality expression
exp is evaluated to a natural number h greater than 0 (rule P -MipTask1),
this value is assigned to the task counter c, and h tokens are inserted in the
incoming edge of the wrapped task T . Instead, if the loop cardinality is 0
(rule P -MipTask2), no execution of T is performed and the incoming token is
moved directly to the outgoing edge. When the multi-instance task is active,
the wrapped task can be executed according to the task rules previously
described (rule P -MipTask3). Finally, the multi-instance task completes (rule
P -MipTask4) when either all task instances have completed their execution
(i.e., the number of tokens in the outgoing edge of T is equal to the loop
cardinality stored in the counter c) or the completion condition expression
exp1 is evaluated to true. Rules for sequential multi-instance task are similar,
thus just the key differences are discussed. When the multi-instance task is
activated, only one token is inserted in the incoming edge of the wrapped

CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS 55

mipTaskpe, exp, T, c, exp1, e1q
ε
ÝÑ xsetpdecpσe, eq, inpT q, hq, setpσc, c, hqy

σepeq ą 0 ^
σcpcq “ 0 ^
evalpexp, σd, hq
with h ą 0

pP -MipTask1 q

mipTaskpe, exp, T, c, exp1, e1q
ε
ÝÑ xincpdecpσe, eq, e

1qy

σepeq ą 0 ^
σcpcq “ 0 ^
evalpexp, σd, 0q

pP -MipTask2 q

xT, σe, σd, σt, σcy
`
ÝÑ xσ1e, σ

1
d, σ

1
t, σ

1
cy

mipTaskpe, exp, T, c, exp1, e1q
`
ÝÑ xσ1e, σ

1
d, σ

1
t, σ

1
cy

pP -MipTask3 q

mipTaskpe, exp, T, c, exp1, e1q
ε
ÝÑ xincpresetpσe, edgespT qq, e1q, resetpσc, cqy

σepoutpT qq “ σcpcq
_

evalpexp1, σd, trueq
pP -MipTask4 q

misTaskpe, exp, T, c, exp1, e1q
ε
ÝÑ xincpdecpσe, eq, inpT qq, setpσc, c, hqy

σepeq ą 0 ^
σcpcq “ 0 ^
evalpexp, σd, hq
with h ą 0

pP -MisTask1 q

misTaskpe, exp, T, c, exp1, e1q,
ε
ÝÑ xincpdecpσe, eq, e

1qy

σepeq ą 0 ^
σcpcq “ 0 ^
evalpexp, σd, 0q

pP -MisTask2 q

xT, σe, σd, σt, σcy
`
ÝÑ xσ1e, σ

1
d, σ

1
t, σ

1
cy

misTaskpe, exp, T, c, exp1, e1q
`
ÝÑ xσ1e, σ

1
d, σ

1
t, σ

1
cy

pP -MisTask3 q

misTaskpe, exp, T, c, exp1, e1q
ε
ÝÑ xincpdecpσe, outpT qq, inpT qq, decpσc, cqy

σcpcq ą 1 ^
σepoutpT qq “ 1 ^
evalpexp1, σd, falseq

pP -MisTask4 q

misTaskpe, exp, T, c, exp1, e1q
ε
ÝÑ xincpdecpσe, outpT qq, e

1q, resetpσc, cqy

σepoutpT qq “ 1 ^
pσcpcq “ 1 _
evalpexp1, σd, trueqq

pP -MisTask5 q

Figure 3.9: BPMN process semantics: parallel/sequential multi-instance
tasks.

56 CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS

task (rule P -MisTask1). Then, when the wrapped task produces a token in
its outgoing edge, indicating its termination, if the multi-instance task has
not completed its execution then the wrapped task is reactivated and the
counter decreased (rule P -MisTask4).

xP1, σe, σd, σt, σcy
`
ÝÑ xσ1

e, σ
1
d, σ

1
t, σ

1
cy
pP -Int1 q

P1 ‖ P2
`
ÝÑ xσ1

e, σ
1
d, σ

1
t, σ

1
cy

xP2, σe, σd, σt, σcy
`
ÝÑ xσ1

e, σ
1
d, σ

1
t, σ

1
cy
pP -Int2 q

P1 ‖ P2
`
ÝÑ xσ1

e, σ
1
d, σ

1
t, σ

1
cy

Figure 3.10: BPMN process semantics: interleaving.

The last group of rules, P -Int1 and P -Int2 in Figure 3.10, deal with
interleaving of process elements in a standard way, so that if an element of a
process evolves then the whole process evolves accordingly.

3.3.3 Collaboration Configuration

Now consider the semantics at collaboration level. A collaboration configu-
ration has the form xC, σi, σm, σdsy, where:

• C is a collaboration structure;

• σi : PÑ 2SσeˆSσdoˆSσdcˆSσtˆSσc is an instance state function mapping
each pool name to a multiset of instance states, ranged over by I and
containing quintuples of the form xσe, σdo, σdc, σt, σcy (where Sσ is the
set of states of type σ);

• σm : MÑ 2Vn is a message state function that assigns to each message
name m a multiset of value tuples representing the messages received
along the message edge labelled by m;

• σds is a data store state function, defined as for process configurations.

Notice that the semantics have been defined according to a global perspec-
tive. Indeed, the overall state of a collaboration is collected by functions σi,
σm and σds of its configuration. On the other hand, the global semantics of
a collaboration configuration is determined, in a compositional way, by the
local semantics of the involved processes, which evolve independently from
each other. The use of a global perspective simplifies (i) the technicalities re-
quired by the formal definition of the semantics, and (ii) the implementation
of the animation of the overall collaboration execution. The compositional
definition of the semantics, anyway, would allow to easily pass to a purely
local perspective, where state functions are kept separate for each process.

CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS 57

Auxiliary Functions. To simplify the definition of the operational rules,
some auxiliary functions, presented in the following, permit to update states
of collaboration configurations.

• Function newI pσi, p, σe, σdo, σdc, σt, σcq adds the new instance
xσe, σdo, σdc, σt, σcy to the multiset of instances of pool p in the
state σi.

newI pσi, p, σe, σdo, σdc, σt, σcq “ σi ¨ rp ÞÑ σippq ` txσe, σdo, σdc, σt, σcyus

• Function updI pσi, p, σe, σdo, σdc, σt, σc, Iq replaces an existing instance
of p in the state σi, leaving instances I unaltered.

updI pσi, p, σe, σdo, σdc, σt, σc, Iq “ σi ¨ rp ÞÑ txσe, σdo, σdc, σt, σcyu ` Is

• Function addpσm,m, ṽq adds the value tuple ṽ for the message name m
in the state σm.

addpσm,m, ṽq “ σm ¨ rm ÞÑ σmpmq ` tṽus

• Function rmpσm,m, ṽq removes the message with value tuple ṽ for the
message name m from the state σm.

rmpσm,m, ṽq “ σm ¨ rm ÞÑ σmpmq ´ tṽus

• Function matchpẽt, ṽq is a partial function performing pattern-matching
on structured data (like in [57]), thus determining if an evaluated tem-
plate ẽt matches a tuple of values ṽ. A successful matching returns a
list of assignments A, updating the formal fields in the template; oth-
erwise, the function is undefined. The patter-matching function match
is inductively defined as follows:

matchpv, vq “ ε
matchp?do.f, vq “ pdo.f :“ vq
matchp?ds.f, vq “ pds.f :“ vq
matchppet1, ẽtq, pv1, ṽqq “ matchpet1, v1q,matchpẽt, ṽq

Returning to the running example, the scenario in its initial state is ren-
dered as the collaboration configuration

xppoolppca, Pcaq ‖ poolppjhe, Pjheq ‖ miPoolppr, Pr, 3qq, σi, σm, σdsy

where: σippcaq “ txσe, σdo, σdc, σt, σcyu with σe “ σ0
e ¨ re101 ÞÑ 1s

and σdo “ σ0
do ¨ rPaperData.journal,PaperData.authors,PaperData.format ÞÑ

58 CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS

1Journal Name 1, 1Names and Surnames 1, nulls; and σippjheq “ σipprq “ H.
Notice that the σdo function of the pca instance is initialised with the content
of the PaperData data input.

The labelled transition relation on collaboration configurations formalises
the message exchange and the data update according to the process evolu-
tion. The LTS is a triple xC,Lc,Ñcy where: C is a set of collaboration
configurations; Lc, ranged over by l, is a set of labels; and ÑcĎ C ˆ Lc ˆ C
is a transition relation. The same readability simplifications used for process
configuration transitions has been considered again. The labels used by the
collaboration transition relation are generated by the following grammar:

l ::“ τ | !m : ṽ | ?m : ṽ | new m : ṽ

Notably, internal and sending labels coincide with the same labels at the
process level, while the receiving labels here just keep track of the received
message.

3.3.4 Collaboration Semantics

The operational rules defining the transition relation of the collaboration se-
mantics are given in Figure 3.11. In the following we propos a discussion
on the relevant points. The first two rules deal with instance creation. In
the single instance case (rule C -Create), an instance is created only if no
instance exists for the considered pool, and there is a matching message.
As a result, the assignments for the received data are performed, and the
message is consumed. In the multi-instance case (rule C -CreateMi), the cre-
ated instance is simply added to the multiset of existing instances of the
pool. Anyway, the instance is created only if the maximum number of al-
lowed instances is not exceeded. The next three rules allow a single pool,
representing organization p, to evolve according to the evolution of one of its
process instances. In particular, if the process instance performs an internal
action (rule C -InternalMi) or a receiving/delivery action (rules C -ReceiveMi
or C -DeliverMi), the pool performs the corresponding action at collabora-
tion layer. As for instance creation, rule C -ReceiveMi can be applied only
if there is at least one matching message. Recall indeed that at process
level the receiving labels just indicate the willingness of a process instance to
consume a received message, regardless of the actual presence of messages.
The delivering of messages is based on the correlation mechanism: the cor-
relation data are identified by the template fields that are not formal (i.e.,
those fields requiring specific matching values). Moreover, when a process
performs a sending action, the message state function is updated in order to
deliver the sent message to the receiving participant. Finally, rules C -Int1
and C -Int2 permit to interleave the execution of actions performed by pools

CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS 59

σippq “ H xP, σ0
e , σ

0
d, σ

0
t , σ

0
c y

new m : ẽt
ÝÝÝÝÝÝÑ xσ1

e, σ
1
d, σ

1
t, σ

1
cy

ṽ P σmpmq matchpẽt, ṽq “ A updpσ1
d, A, σ

2
do, σ

2
dc, σ

2
dsq

pC -Createq
poolpp, P q

new m : ṽ
ÝÝÝÝÝÝÑ xnewI pσi, p, σ

1
e, σ

2
do, σ

2
dc, σ

1
t, σ

1
cq, rmpσm,m, ṽq, σ

2
dsy

|σippq| ă max xP, σ0
e , σ

0
d, σ

0
t , σ

0
c y

new m : ẽt
ÝÝÝÝÝÝÑ xσ1

e, σ
1
d, σ

1
t, σ

1
cy

ṽ P σmpmq matchpẽt, ṽq “ A updpσ1
d, A, σ

2
do, σ

2
dc, σ

2
dsq

pC -CreateMiq
miPoolpp, P,maxq

new m : ṽ
ÝÝÝÝÝÝÑ xnewI pσi, p, σ

1
e, σ

2
do, σ

2
dc, σ

1
t, σ

1
cq, rmpσm,m, ṽq, σ

2
dsy

σippq “ txσe, σdo, σdc, σt, σcyu

xP, σe, σdo, σdc, σds, σt, σcy
τ
ÝÑ xσ1

e, σ
1
do, σ

1
dc, σ

1
ds, σ

1
t, σ

1
cy

pC -Internalq
poolpp, P q

τ
ÝÑ xupdI pσi, p, σ

1
e, σ

1
do, σ

1
dc, σ

1
t, σ

1
c,Hq, σ

1
dsy

σippq “ txσe, σdo, σdc, σt, σcyu ` I

xP, σe, σdo, σdc, σds, σt, σcy
τ
ÝÑ xσ1

e, σ
1
do, σ

1
dc, σ

1
ds, σ

1
t, σ

1
cy

pC -InternalMiq
miPoolpp, P,maxq

τ
ÝÑ xupdI pσi, p, σ

1
e, σ

1
do, σ

1
dc, σ

1
t, σ

1
c, Iq, σ

1
dsy

σippq “ txσe, σdo, σdc, σt, σcyu

xP, σe, σdo, σdc, σds, σt, σcy
?m : ẽt,A
ÝÝÝÝÝÑ xσ1

e, σ
1
d, σ

1
t, σ

1
cy

ṽ P σmpmq matchpẽt, ṽq “ A1 updpσ1
d, pA

1, Aq, σ2
do, σ

2
dc, σ

2
dsq

pC -Receiveq
poolpp, P q

?m : ṽ
ÝÝÝÑ xupdI pσi, p, σ

1
e, σ

2
do, σ

2
dc, σ

1
t, σ

1
c, Iq, rmpσm,m, ṽq, σ

2
dsy

σippq “ txσe, σdo, σdc, σt, σcyu ` I

xP, σe, σdo, σdc, σds, σt, σcy
?m : ẽt,A
ÝÝÝÝÝÑ xσ1

e, σ
1
d, σ

1
t, σ

1
cy

ṽ P δpmq matchpẽt, ṽq “ A1 updpσ1
d, pA

1, Aq, σ2
do, σ

2
dc, σ

2
dsq

pC -ReceiveMiq
miPoolpp, P,maxq

?m : ṽ
ÝÝÝÑ xupdI pσi, p, σ

1
e, σ

2
do, σ

2
dc, σ

1
t, σ

1
c, Iq, rmpσm,m, ṽq, σ

2
dsy

σippq “ txσe, σdo, σdc, σt, σcyu

xP, σe, σdo, σdc, σds, σt, σcy
!m : ṽ
ÝÝÝÑ xσ1

e, σ
1
do, σ

1
dc, σ

1
ds, σ

1
t, σ

1
cy

pC -Deliverq
poolpp, P q

!m : ṽ
ÝÝÝÑ xupdI pσi, p, σ

1
e, σ

1
do, σ

1
dc, σ

1
t, σ

1
c, Iq, addpσm,m, ṽq, σ

1
dsy

σippq “ txσe, σdo, σdc, σt, σcyu ` I

xP, σe, σdo, σdc, σds, σt, σcy
!m : ṽ
ÝÝÝÑ xσ1

e, σ
1
do, σ

1
dc, σ

1
ds, σ

1
t, σ

1
cy

pC -DeliverMiq
miPoolpp, P,maxq

!m : ṽ
ÝÝÝÑ xupdI pσi, p, σ

1
e, σ

1
do, σ

1
dc, σ

1
t, σ

1
c, Iq, addpσm,m, ṽq, σ

1
dsy

xC1, σi, σm, σdsy
l
ÝÑ xσ1

i, σ
1
m, σ

1
dsy

pC -Int1 q
C1 ‖ C2

l
ÝÑ xσ1

i, σ
1
m, σ

1
dsy

xC2, σi, σm, σdsy
l
ÝÑ xσ1

i, σ
1
m, σ

1
dsy

pC -Int2 q
C1 ‖ C2

l
ÝÑ xσ1

i, σ
1
m, σ

1
dsy

Figure 3.11: BPMN collaboration semantics.

60 CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS

of the same collaboration, so that if a part of a larger collaboration evolves,
then the whole collaboration evolves accordingly.

3.4 Lessons Learned

The BPMN standard has the flavor of a framework rather than of a con-
crete language, because some aspects are not covered by it, but left to the
designer [79]. For example, the standard leaves unspecified the internal struc-
ture of data objects:

“Data Object elements can optionally reference a DataState element [...]
The definition of these states, e.g., possible values and any specific semantics
are out of scope of this specification” [53, p. 206].

The situation does not change if one refers to the internal structure of
data stores and data collections. This gap left by the BPMN standard must
be filled in order to concretely deal with data in the formalization. To this
aim, this formalism considers a generic record structure for data elements.
Similarly, the expression language operating on data is left unspecified by the
standard. This is not an issue for the formalization, but the expression lan-
guage has to be instantiated in the concrete implementation of the semantics,
for instance in developing an animator or a simulator.

The BPMN standard also lacks a clear description of the task execution
modality. This formalism contributes to fill this gap thanks to its capability
to manage different modalities of task execution taking into account atomic-
ity and concurrency. This feature is explained by means of the process model
in Figure 3.12. It provides a minimal example whose execution consists in
performing firstly Task A, then Task B and Task C in parallel, and when
both complete, the process ends. All these tasks can access the data object
Data composed by the three fields a, b, and c. Guards and assignments are
specified as follows: (i) Task A has true as guard condition and performs the
assignment Data.a :“ 1; (ii) Task B has Data.a “ 1 as guard and performs
Data.b :“ 2 andData.a :“ 0 as assignments; and (iii) Task C hasData.a “ 1
as guard and performs Data.c :“ 5 and Data.a :“ 0 as assignments. The
execution of this process can produce different results depending on the ex-
ecution modality setting of its tasks. In case all tasks are executed with
the atomic modality, the assignment to the field a performed by the firstly
executed task between Task B and Task C disables the other task (because
it makes the task’s guard become false). Therefore, regardless of the order
of execution of the parallel tasks, the execution of the overall process never
reaches the end. In the non-atomic case, instead, different process executions
can take place, as the task execution is now split in two steps: (i) guard eval-
uation, and (ii) assignments execution. Depending on how these steps of the
execution of Task B and Task C interleave, the process may end properly

CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS 61

or not. Finally, in case the tasks could be activated more than once at the
same time (e.g., in case they would be multi-instance tasks, or in case of an
unsafe process), the overall behavior would be also affected by the setting of
the concurrent execution modality, which may allow or not the interleaved
execution among instances of the same task.

Figure 3.12: Atomic vs. non-atomic task execution.

In addition, the lack of formal semantics in the standard may lead to dif-
ferent interpretations of the tricky features of BPMN. This work aims at clar-
ifying the interplay between multiple instances, messages and data objects.
In particular, the standard provides an informal description of the mecha-
nism used to correlate messages and process instances [53, p. 74], which has
been formalized and implemented by following the solution adopted by the
standard for executable business processes [52]. However, the BPMN stan-
dard does not provide any hint on how instances of the same process can
communicate with each other. This may be particular useful in practical
scenarios when instances of the same pool have to coordinate (in case, e.g.,
they need to achieve an agreement on a shared decision). To this aim, a data
store serves to share persistent information among the instances.

Finally, even if from the semantic point of view it is common practice
to consider multi-instance tasks as macros, the proposed work provides a
direct characterization of their semantics. Concerning the sequential case, it
is clear that the multi-instance task can simply be dealt with as a macro:
it corresponds to a task enclosed within a sort of ‘for’ loop. Indeed, this
was the solution I adopted in [17]. However, to keep track of the number of
executed instances it is necessary to add to the model a further data object,
to be used as a counter, for each multi-instance task. Moreover, to provide a
complete specification of this BPMN element, a loop cardinality expression
and a completion condition have to be considered. Even if formally sound,
the use of this macro alters the original model, increasing its complexity,
and hence is not practical in supporting tools. This is why we introduce
a syntactic term for sequential multi-instance tasks with its own semantic

62 CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS

O
R

G
 B

Task B

O
R

G
A

Task A

m

(a)

O
R

G
A

Task A

Task A

Task A

O
R

G
 B

Task B

mm m

(b)

Figure 3.13: Parallel multi-instance send tasks (a) and its macro
expansion (b).

rules. The parallel case, instead, is more tricky. It is commonly considered as
a macro as well: the parallel multi-instance task is thought of as a set of tasks
between AND split and join gateways [25, 80], assuming to know at design
time the number of instances to be generated. However, this replacement is
no longer admissible when this kind of element is used within multi-instance
pools, thus requiring a direct definition of its formal semantics. In fact,
consider for example the collaboration fragment in Figure 3.13 (a), where
a multi-instance receiving task communicates with a multi-instance pool.
Supposing to have three instances of Task A, by applying the mentioned
macro replacement we obtain the collaboration fragment in Figure 3.13 (b),
which however is not semantically equivalent. Indeed, each instance of ORG
B in Figure 3.13 (a) has a Task B that sends only one message, while in
Figure 3.13 (b) each instance has a Task B sending three times the same
message, one for each copy of Task A in ORG A. This suggests that parallel
multi-instance tasks are not simple macros, but they require their own direct
formalization, as done in this thesis.

3.5 Comparing with other Approaches

This section discusses the most relevant attempts at formalizing the seman-
tics of BPMN collaborations in the presence of multiple instances and data.
The rest of the section focuses on the formalization of the more intricate
aspects of the semantics.

CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS 63

3.5.1 On Formalizing Multiple Instances and Data

Many works in the literature attempted to formalize the core features of
BPMN. However, most of them (see, e.g., [21, 18, 16, 25, 23, 81, 8, 73])
do not consider multiple instances and data, which are the focus of this
work. Considering these features in BPMN collaborations, relevant works
are [47, 49, 41, 27]. Meyer et al. in [47] focus on process models where data
objects are shared entities and the correlation mechanism is used to distin-
guish and refer to data object instances. The use of data objects local to
(multiple) instances, exchange of messages between participants, and corre-
lation of messages are instead the focus of this thesis. In [49], the authors
describe a model-driven approach for BPMN to include the data perspec-
tive. Differently from us, they do not provide a formal semantics for BPMN
multiple instances. Moreover, they do not use data in decision gateways.
Moreover, Kheldoun et al. propose in [41] a formal semantics of BPMN cov-
ering features such as message-exchange, cancellation, multiple instantiation
of sub-processes and exception handling, while taking into account data flow
aspects. However, they do not consider multi-instance pools and do not ad-
dress the correlation issue. Semantics of data objects and their use in decision
gateways is instead proposed by El-Saber and Boronat in [27]. Differently
from the proposal, this formal treatment does not include collaborations
and, hence, exchange of messages and multiple instances. Considering other
modeling languages, YAWL [80] and high-level Petri nets [69] provide direct
support for the multiple instance patterns. However, they lack support for
handling data. In both cases, process instances are characterized by their
identities, rather than by the values of their data, which are however neces-
sary to correlate messages to running instances.

Regarding choreographies, relevant works are [28, 42, 32]. López et al. [28]
study the choreography problem derived from the synchronization of multi-
ple instances necessary for the management of data dependencies. Knuplesch
et al. [42] introduce a data-aware collaboration approach including formal
correctness criteria. However, they define the data perspective using data-
aware interaction nets, a proprietary notation, instead of the wider accepted
BPMN. Improving data-awareness and data-related capabilities for chore-
ographies is the goal of Hahn et al. [32]. They propose a way to unify the
data flow across participants with the data flow inside a participant. The
scope of data objects is global to the overall choreography, while the pro-
posed work considers data objects with scope local to participant instances,
as prescribed by the BPMN standard. Apart from the specific differences
mentioned above, our work differs from the others for the focus on collabo-
ration diagrams, rather than on choreographies. This allows to specifically
deal with multiple process instantiation and messages correlation.

Concerning the correlation mechanism, the BPMN standard and, hence,

64 CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS

this thesis have been mainly inspired by works in the area of service-oriented
computing (see the relationship between BPMN and WS-BPEL [52] in [53,
Sec. 14.1.2]). In fact, when a service engages in multiple interactions, it is
generally required to create an instance to concurrently serve each request,
and correlate subsequent incoming messages to the created instances. Among
others, the COWS [57] formalism captures the basic aspects of service-
oriented systems, and in particular service instantiation and message correla-
tion à la WS-BPEL. From the formal point of view, correlation is realized by
means of a pattern-matching function similar to that used in the provided
formal semantics. Let us focus more on how correlation is dealt with in
BPMN [53, Sec. 8.3.2]. The standard identifies two mechanisms to manage
the correlation of messages with process instances. The first is a key-based
mechanism that couples sender and receiver by means of the concept of cor-
relation key. Any message, to be properly correlated, needs to carry values
of a correlation key within its payload. Those values are initialized during
the first interaction and then extracted, even partially, to correctly match
the follow-up messages. The second is instead a context-based mechanism,
as it depends on the process data (i.e., the content of data elements) associ-
ated to the process instances. This is a more expressive form of correlation
with respect to key-based correlation, since this latter can only populate a
correlation key implicitly from the values of the first message. Instead, in
this case a correlation key can contain formal expressions dynamically eval-
uated at run-time using the process context, hence the correlation key can
be automatically updated whenever the underlying data elements change.

“In that sense, changes in the Process context can alter the correlation
condition” [53, p. 75].

Similarly, the presented formalization defines correlation keys in the re-
ceiving elements to match the correct messages and to store their payload. In
particular, in this case correlation keys are identified by the template fields
that are not formal (i.e., without the ?-tag). Since non formal fields are either
values or expressions, the proposed approach based on pattern-matching is
able to mimic both the key-based and the context-based mechanism. How-
ever, BPMN considers a correlation key as

“a composite key out of one or many CorrelationProperties that essentially
specify extraction Expressions atop Messages” and, in the context-base case,
“atop the Process context" [53, pp. 75-76].

Thus, correlation properties can be quite articulate expressions, especially
when they have to be used to match messages with complex structures. In-
stead, in this case, messages have a simple tuple structure, i.e., they are
ordered lists of values. As a consequence, templates are ordered lists as well,
and the correlation mechanism, once the template expressions have been
evaluated, simply performs a (field-by-field) pattern-matching check.

CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS 65

Concerning data-awareness in process modeling, several works refer to
the data-centric approach (see, e.g., the surveys [59, 11, 34]). This approach
uses data elements as first class citizens and focuses on their life cycles (i.e.,
on the data flow) [48]. Differently, the proposed approach focuses on BPMN
as reference language, thus concentrating on activities and, more generally,
on control flow. Data elements act as pre- and post-conditions for activity
execution, and as main decision indicator at exclusive gateways. Moreover,
the main interest of this thesis is the study of the BPMN management of
multiple instances that, even if it is affected by data, keeps the focus on the
control flow perspective.

Finally, to the best of our knowledge, no work in the literature permits to
specify different execution modalities (i.e., atomic, non-atomic concurrent,
non-atomic non-concurrent) for tasks of BPMN models. This feature allows
to study, e.g., the impact of different settings of such modalities in BPMN
models involving multi-instance tasks that access data.

3.5.2 On Formalizing the OR-Join Gateway

Most of the previous attempts to formalize the semantics of the OR Join
[76, 26, 65, 12] are based on earlier versions of the BPMN standard, which
provides different semantics for the OR Join. Moreover, also when the same
version of the standard is considered, different interpretations of the OR
Join behavior, not always faithful to the specification, have been given. In
particular, these differences regard the treatment of mutually dependent OR
Joins (the so-called ‘vicious circles’) and of deadlock upstream an OR Join.
In fact, from a faithful translation of the standard, it results that mutually
dependent OR Joins are blocked, and that an OR Join is not able to recognize
that there is a deadlock on a path leading to it, thus it will wait forever.
Below, we discuss the most significant related works.

Volzer [76] proposes a non-local semantics for the OR Join in the
BPMN 1.0 specification (2006) using workflow graphs. In case of vicious
circles he argues that the intended meaning is not clear and hence they
should be sorted out by static analysis. This approach is then improved in
[77], which quotes the 2010 version of the specification and gives an infor-
mal description of this one by means of inhibiting and anti-inhibiting paths.
Dumas et al. [26] base their work on BPMN 1.0 and on the definition of
the Synchronisation Merge pattern to which the specification refers to. They
provide a local semantics, without imposing restrictions on the language,
able to detect deadlocks upstream and to unlock mutually dependent OR
Joins. Thalheim et al. [65] make use of ASMs to introduce the OR Join, by
referring to the the specification of 2006, and make a comparison between the
definitions given by other authors. Adopting a token-based view of workflow
semantics, they start to analyze acyclic models. In this case, to treat the

66 CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS

OR Join, they introduce a special type of synchronization tokens that fire
flow objects in their downstream. They then consider cycles and, to deal
with synchronization in their presence, they introduce sets of tokens, which
are viewed as a coherent group when a join fires. Carbone et al. [12] refer
to BPMN 2.0 - Beta 1, providing a global semantics directly in terms of a
subset of BPMN. As for the vicious circles, they argue that, since informally
the BPMN specification does not include the resolution strategy and their
work is a faithful translation, they do not consider it.

Differently from this thesis, the above approaches rely on past versions
of the BPMN standard, which provide different semantics for the OR Join
with respect to the current 2.0 version. Thus, they cannot be applied as
they are to the standard BPMN 2.0. Moreover, concerning the issues about
vicious circles and deadlocks upstream considered by some of those works,
we have checked how they are dealt with by the current specification and,
to be completely faithful with it, we have simply applied the same solution.
Indeed, in the current description of the OR Join semantics (Figure 3.7),
there does not seem to be any ambiguity about these two issues. The OR
Join is able to detect neither a vicious circle nor a deadlock upstream, thus
in both cases its execution is blocked forever.

Start
End

ANDs1

ANDj1

ORj1

XORj1

e1

e2

e3

e4 e7

e5

e6

Figure 3.14: OR Join with deadlock upstream.

As an example, consider the situation depicted in Figure 3.14, where
ANDj1 is deadlocked because no token will ever arrive in e5 to synchronize
with the one in e4. The OR Join activation condition “At least one incoming
Sequence Flow has at least one token” is satisfied, as there is a token in e2.
Regarding the other condition, the sequence edge f can only be e4; now, for
the path formed by e4 and e6 there is no other path starting with e4 and
ending with a marked edge incoming to the OR Join (like e2). Thus, the OR
Join is not activated and will never be, as the waiting token in e4 will never
move.

Recently, Prinz et al. [56] propose a formalization of the OR Join se-
mantics referred to the current version of the standard. However, they limit
the work to sound workflow graphs, which identify a quite restricted class
of BPMN processes [83]. In fact soundness is defined as the combination of
properties concerning the dynamic behavior of a process: option-to-complete,
proper-completion, and no-dead-activities. Moreover, the proposed seman-

CHAPTER 3. FORMALIZATION OF BPMN COLLABORATIONS 67

tics do not fit with the standard as, for instance, it avoids vicious circles
by determining which OR Join in a circle has to wait and which one must
proceed.

PART III

FORMALIZATION AT WORK

CHAPTER 4

MIDA: MULTIPLE INSTANCES
AND DATA ANIMATOR

The formal semantics introduced so far shows how complex the modeling of
a collaboration diagram can be, and how to properly figure out the interplay
between multiple-instances, messages and data is in general an error-prone
and time-consuming task. Business process animation plays an important
role in facing the understanding of a multi-instance collaboration. Indeed,
the dynamic visualization of business processes through animation allows to
control the execution of multiple process instances at the same time thanks
to graphical effects. Moreover, the animation can facilitate the modeling and
comprehension of other intricate situations, such as the complex management
of the correlation mechanism or the handling of data and messages.

This chapter proposes a tool for animating BPMN diagrams by means of
2D token flow. The rest of the chapter presents the tool and shows how it
can effectively support designers in debugging their models. The description
of the tool’s functionalities resorts to the running example in Figure 2.13.

4.1 MIDA Overview

MIDA (Multiple Instances and Data Animator), is an animator tool that
supports designers in achieving a more precise understanding of the behav-
ior of a collaboration diagram by means of the visualization of the model’s
execution, also in terms of the evolution of the values of data objects and
messages. MIDA animation features result helpful both in educational con-
texts, for explaining the behavior of BPMN elements, and in practical mod-
eling activities, for debugging errors that can easily arise in multi-instance

72 CHAPTER 4. MULTIPLE INSTANCES AND DATA ANIMATOR

collaborations.
Technically speaking, MIDA is a web application written in JavaScript,

it is accessible online by users via a web browser without installing any
software, or it can be ran locally using the executable version available for
Windows, OSX, and Linux systems. MIDA has been realized by extending
the “bpmn.io Token Simulation” plugin by Camunda [55]. The tool as well as
its source code, binaries, a tutorial and example models are freely available
at http://pros.unicam.it/mida. MIDA can be redistributed and/or
modified under the terms of the MIT License.

Concerning the user interface, MIDA provides two main views, one for
the modeling and one for the animation. Both of them are composed by a
top navigation menu and a visualization area.

Launching the application, the modeling interface is shown. It embeds a
user-friendly BPMN modeling environment, by which to design the process
diagrams, and the menu where to find the main functionalities, see Figure 4.1.
More in detail, the elements composing the modeling interface are:

Figure 4.1: MIDA modeling interface.

• the animation mode toggle, that permits to switch from the modeling
interface to the animation one, and vice-versa;

• the upload button to load models previously designed;

• the save button, that permits to locally save models in the standard
format .bpmn;

http://pros.unicam.it/mida

CHAPTER 4. MULTIPLE INSTANCES AND DATA ANIMATOR 73

• the property panel including the MIDA tab, to specify attributes of
the BPMN elements contained in the diagram;

• the canvas, where BPMN elements are placed to form a collaboration
diagram; and

• the palette, where to drag and drop elements in the diagram.

Differently, by switching to the animation mode, the interface changes
a bit by disabling the modeling functionalities, and enabling the ones for
animation. More specifically, the animation interface, Figure 4.2, is composed

Figure 4.2: MIDA animation interface.

of:

• the animation mode toggle, that allows to switch back to the mod-
eling interface;

• the speed choicer for increasing or decreasing the speed of the anima-
tion;

74 CHAPTER 4. MULTIPLE INSTANCES AND DATA ANIMATOR

• the animation controls that permit to pause or reset the animation,
and open a pop-up panel showing all the events that happened during
the animation; and

• the data panel for monitoring the evolution of values associated to
data items.

4.2 MIDA in Action: Modeling

The starting point to exploit the MIDA functionalities is the modeling of a
BPMN diagram by means of the MIDA modeling environment. This can be
done starting from an empty diagram or loading a .bpmn file. The palette
on the left side of the interface permits to insert new elements like tasks or
gateways and choose their specialization such as a send task or a xor gateway.
A complete reference on the usage of the modeler can be found here at the
bpmn.io website 1.

Notably, the design goes beyond the graphical representation of the col-
laboration diagram. The standard .bpmn file format stores various informa-
tion of model elements. Those are essential for modeling BPMN diagrams.
However, capturing all the aspects described by our semantics requires to
extend the XML.

The MIDA modeler uses the extension element tag to include addi-
tional information, regarding execution modality, data, and message con-
tents, in the .bpmn file, keeping intact the compatibility with the other
modeling tools. Table 4.1 shows the elements which XML representa-
tion has been extended and the corresponding fragment. Activities em-
bed into their extension elements attributes specifying the execution modal-
ity, the guard, and the assignments (i.e., respectively the <mida:type>,
<mida:guard>, and <mida:assignments> tags). Sending and receiving ele-
ments uses the <mida:message> tag to provide message related information
by means of fields. Finally, data elements specifies variables through the
<mida:dataObjFields> tag.

In this regard, the property panel plays a key role when modeling collabo-
rations with MIDA as it permits exploiting XML attributes of the .bpmn for-
mat to specify and save information about the BPMN elements. It provides
several fields where to insert information that regards the selected element.
Apart from a subset of fields that is in common with all the elements (i.e.,
id and name), different information needs to be provided depending on the
considered BPMN element. In particular, information about multi-instance
characteristics, data elements, and messages. Such information, which rep-
resents the peculiarities of the proposed formal semantics, are introduced

1https://bpmn.io

https://bpmn.io

CHAPTER 4. MULTIPLE INSTANCES AND DATA ANIMATOR 75

Element Extension Element

Task
Multi-Instance
Parallel Task

Multi-Instance
Seuential Task

Receive Task

Send Task

<bpmn:extensionElements>
<mida:taskType>

<mida:type>a</mida:type>
</mida:taskType>
<mida:guard>

<mida:exp>x == 0</mida:exp>
</mida:guard>
<mida:ass ignments>

<mida:ass ignment ass ignment="y = 2" />
<mida:ass ignment ass ignment="y = x" />

</mida:ass ignments>
</bpmn:extensionElements>

Send Task

<bpmn:extensionElements>
<mida:message>

<mida : f i e l d f i e l d="10" />
<mida : f i e l d f i e l d="a" />

</mida:message>
</bpmn:extensionElements>

ReceiveTask

<bpmn:extensionElements>
<mida:message>

<mida : f i e l d f i e l d="x" />
<mida : f i e l d f i e l d="y"

i sC o r r e l a t i o n="true" />
<mida : f i e l d f i e l d="z" />

</mida:message>
</bpmn:extensionElements>

<bpmn:extensionElements>
<mida:dataObjFie lds>

<mida :dataFie ld dataFie ld="x = 1" />
<mida :dataFie ld dataFie ld="y = ’Text’" />
<mida :dataFie ld dataFie ld="z" />

</mida:dataObjFie lds>
</bpmn:extensionElements>

Table 4.1: MIDA extension elements correspondence.

during the design of the model by means of the MIDA tab contained in the
Property Panel. Following, it is shown how to specify this information in
MIDA using the paper reviewing collaboration of Figure 2.13 as example.

Multi-instance characteristics. This information affects both pools and
tasks, identifying how many repetitions of the inner process or the activity
have to be done. By selecting a pool element in the collaboration diagram,
Figure 4.3, two input fields named Minimum and Maximum become avail-
able. They allow to constrain the number of instances that will be executed
for that pool. In the running example, the Reviewer pool has Minimum “

76 CHAPTER 4. MULTIPLE INSTANCES AND DATA ANIMATOR

1 and Maximum “ 3, hence every time a ReviewRequest message is received
by the pool, it triggers the activation of one instance. Three instances at
most will be activated for the Reviewer pool.

Differently, to model a multi-instance task one has to firstly insert a
new task in the diagram dragging it from the palette. Then, the needed

Figure 4.3: Multi-instance pool modeling.

multi-instance marker (||| or ”) has to be chosen from the element con-
text pad. At this point, the MIDA tab provides two input fields where to
express the loopCardinality and the completionCondition of the task, see Fig-
ure 4.4. These two parameters can be either a concrete value, for instance
loopCardinality “ 5 and completionCondition “ true, or expressions such
as x ` y and x ą 0. However, the evaluation of these input fields indicates,
respectively, the number of task instances to be executed and the condi-
tion for an early termination of the multi-instance task. For example, the
parallel multi-instance AssignPaper send task in the running example has
loopCardinality “ 3 and completionCondition “ false, meaning that there
will be exactly three parallel executions of the task.

Data element variables. Data elements specify which are the variables
that have a role in the collaboration, formally they are structured in fields,
so that to mention a variable one needs to use the syntax do.field, where the
dot is a fields operator. Since MIDA is developed in Javascript, it exploits
the same syntax in order to specify data element fields, as well as conditions,
expressions, and so on. Moreover, MIDA exploits the Javascript capability
of evaluating at run time scripts written in this scripting language. Thus,

CHAPTER 4. MULTIPLE INSTANCES AND DATA ANIMATOR 77

Figure 4.4: Multi-instance task modeling.

one cannot use the dot symbol to mean the access to the fields of a data
element, because it serves as member operator. To overcome this problem,
one can alternatively use the _ symbol (e.g., do_field). Anyway, fields in data

Figure 4.5: Data elements fields modeling.

elements (i.e., data objects, data stores, data collections, data input/output)
are specified in the same way. They can be added one by one from the
MIDA tab pressing the Add data field button which lets a new input text
appear, see Figure 4.5. The designer can write the name of the variable
he/she needs. Due to the use of Javascript, that is an untyped language,
data element fields can hold a value of any data type. They can be initialized

78 CHAPTER 4. MULTIPLE INSTANCES AND DATA ANIMATOR

(e.g., PaperData_journal “ ‘Journal Name’), in order to specify data inputs,
or be undefined (e.g., PaperDraft_title).

Using the MIDA tab, users can also select among a simple data object, in-
put/output data object or data object collection. Notably, a data collection
represents a stack of data items that can be created, retrieved, and rein-
serted. As prescribed by the formal semantics, MIDA provides dedicated
functions to support such features. For instance, given a data collection
named Collection with two fields first and second, the designer can:

• create a new item for the collection by means of function cre-
ateItem(Collection). Once the new item is created, the designer can
assign values or expressions to their fields (e.g., Collection_first = 9);

• retrieve the item on top of the collection via function
getItem(Collection). This function makes available the two fields
on top of the collection in order to change their values or use
them in the right term of an assignment (e.g., DataObject_field =
Collection_second); or

• insert an item on top of the collection using function
putItem(Collection). This function requires the creation or the
retrieving of an item to be subsequently pushed in the collection.

Variables manipulation. According to the BPMN standard, the access to
data is represented by associations between data elements and tasks that can
predicate over field names. These associations can define preconditions for
the execution of a task, expressed in MIDA as a task guard. On the other
hand, the effects of a task execution on a data element is instead specified
by means of a list of assignments. Figure 4.6 shows the guard and the as-
signments related to the WritePaper task introduced in the Contact Author
pool. Guards can be any kind of Boolean expression over data elements fields
or concrete values using the standard operators (e.g., equal to ===, not equal
to !=, lower than <, greater than >, lower than or equal to <=, greater than
or equal to >=, etc.). Likewise for the assignments that use the standard
operators (e.g., basic assignment =, addition assignment +=, subtraction as-
signment -=, multiplication assignment *=, division assignment /=, etc.). It is
worth noting that the MIDA tab allows to change the execution modalities
of a task. Task behavior can be chosen from atomic, non-atomic concurrent,
or non-atomic non-concurrent. A golden label at the right-bottom corner of
the task shows the acronym of the execution modality (i.e., a, na_c, na_nc).
In the running example all tasks are atomic.

Message exchanges. Sharing information between participants is done by
means of message exchange. Indeed, the presented semantics allows one to

CHAPTER 4. MULTIPLE INSTANCES AND DATA ANIMATOR 79

Figure 4.6: Task’s guard and assignments.

(a) (b)

Figure 4.7: Message exchanges.

express both the content of the message to be delivered from the sender,
and also which kind of messages the receiver wants to get. From the sender
perspective, the designer specifies a tuple of concrete values and/or data
element fields. This tuple is the payload of the message, and it is specified
in the MIDA tab by a list of fields as shown in Figure 4.7 (a). On the other
hand, the receiver can retrieve only the messages that matches particular
requirements. This is expressed by a template, that is a tuple of data element
fields. Also in this case this tuple is provided for all the receiving elements as
separate input fields, see Figure 4.7 (b). In addition, for each message field
there is also the possibility to put a tick on a correlation box in order to set
the functioning of pattern matching. Fields with a tick are used to match
the correct message, while those without a tick represent the fields that will
take values from the received message.

80 CHAPTER 4. MULTIPLE INSTANCES AND DATA ANIMATOR

Data driven gateways. Values stored in data elements can also be used by
conditions associated to the outgoing sequence edges of XOR and OR split
gateways, in order to support decisions. Conditions have to be specified in
the input field of the MIDA tab that appear selecting each outgoing sequence
flow of the decision gateway. Figure 4.8 (a) shows the conditional expression

(a) (b)

Figure 4.8: Decision gateways.

contained into the Yes branch of the XOR gateway in the Contact Author
process of the running example that is PaperDraft_format === undefined. It
checks if the task Prepare Draft in the pool Contact Author has set any
value in the field format of Paper Draft, and consequently drives the process
execution to the following task that isGet Journal Submission Format. While
Figure 4.8 (b) shows the conditional expression contained into the No branch
that is PaperDraft_format != undefined.

4.3 MIDA in Action: Animation and Debug-
ging

The key characteristic of MIDA is the animation of collaboration models,
which enables models debugging, supporting the visualization of data evolu-
tion and multiple instances execution. Anyway, like in software code debug-
ging, the identification and fixing of bugs are still in charge of the human
user.

By selecting the Animation Mode button in the modeling interface of
MIDA, Figure 4.1, the element palette disappears, as well as the load and
save buttons to leave space for the animation controls.

Once in animation mode, MIDA depicts a play button over each fireable
start event, see Figure 4.2. Every time this button is clicked, a new instance
of the corresponding process is activated, accordingly with the multi-instance
constraints specified in the modeling phase. Graphically, this correspond to

CHAPTER 4. MULTIPLE INSTANCES AND DATA ANIMATOR 81

the creation of a new token labeled by a fresh instance identifier. Process
tokens in MIDA are golden circles containing their instance identifiers, tokens
with the same identifier corresponds to parallel executions of the same process
instance. Notably, to show the delivery of a message, message tokens cross
the message flows. Message tokens are green circles with an identifier equal
to the one of the process instance throwing the message. Then, as shown in
Figure 4.9, the token starts to cross the model according to the operational
rules induced by the formal semantics. The animation terminates once no
token can move forward, since no semantic rule can be applied.

Figure 4.9: MIDA in action.

From the Data Panel, users can monitor the evolution of the data state
function σd of each process instance, by observing the values associated by
the function to data element fields, which are organized according to the
process instances they belong to. Figure 4.10 shows how data values change
after the execution of the task WritePaper by means of the application of
rules P -TaskA. This rule requires to satisfy the guard condition associated to
the task and perform the assignments. The guard condition, PaperDraft_title
!= undefined & PaperDraft_authors != undefined, checks that the paper draft
has been created, while the assignments populate the fields of Final Paper
data object. Indeed, fields title, authors, and format of Final Paper are
filled with the values of the homonym fields of data object Paper Draft (e.g.,
FinalPaper_title = PaperDraft_title), while field text is populated with a custom
string.
Debugging. MIDA can effectively support designers in identifying issues
in their business collaborations that can be related to bad modeling or a
misunderstanding of the BPMN semantics. Indeed, the animation permits

82 CHAPTER 4. MULTIPLE INSTANCES AND DATA ANIMATOR

(a) (b)

Figure 4.10: Data panel before (a) and after (b) the execution of task Write
Paper.

to control the spread of tokens, hence the running activities, the spread of
messages, and the evolution of the data elements fields. By pausing the an-
imation, the designer can carefully observe the distribution of both process
and message tokens, and at the values taken by data element fields in the
data panel in order to immediately detect unwanted behavior. That infor-
mation is strictly related to the provided semantics, representing respectively
the state functions σe, σm, and σd. Moreover, if a token remains blocked or
violates conditions (e.g., guard conditions, XOR/OR split conditions, con-
straints about maximum number of instances), MIDA highlights it in red, as
shown in Figure 4.11 where the violation comes from the presence of an unde-
fined field in the Paper Data data input. Considering the running example,

Figure 4.11: Guard violation.

CHAPTER 4. MULTIPLE INSTANCES AND DATA ANIMATOR 83

receiving a ReviewRequest message triggers the activation of a new process
instance of Reviewer rules P -StartRcv in combination with C-CreateMi ,
while a Feedback message has to be routed to an already existing Reviewer
instance rules P -TaskRcvA in combination with C-ReceiveMi . Hence, in
the latter case, the message needs to be properly correlated to the right in-
stance. Otherwise, the Journal Handling Editor risks to send information to
the wrong person. To ensure the correct correlation, the Review message,
sent by each reviewer to the editor, contains a field representing the name of
the reviewer that one can consider a unique identifier for the Reviewer in-
stances. These names are then stored in the data collection Reviews, where
each item of the collection contains a review for the same paper. Then,
the task Send Feedback via Mail of the editor’s pool retrieves the reviewer
names and puts one of them in each of the payloads of the messages to send.
Thus, thanks to the pattern-matching, each Reviewer instance will match
the correct message comparing the field name of Paper Review with the one
contained in the message payload. The same techniques can be applied in
case of multiple submission of papers, so transforming the Contact Author
pool to a multi-instance one. In order to do that, the editor has to associate
to receiving a submission unique identifier that can be for instance the con-
catenation of the paper name and the authors. Then, once an acceptance or
a rejection letter has to be delivered to a specific Contact Author instance,
this identifier can be used to match the message. However, if the correlation
check is not properly specified in the intermediate catch events Accepted and
Rejected (e.g., no correlation data is provided), letters with the reply of the
editor can be received by the wrong author. This possibly results with a
review different from the correct one. However, MIDA allows to detect, and
hence solve, this correlation issue.

Similarly, malformed or unexpected messages may introduce deadlocks
in the execution flow, which can be easily identified by looking for blocked
tokens in the animation. More in detail, MIDA depicts a red circle over a
BPMN element in case a token remains blocked. This depends on the im-
possibility to apply any semantic rule to this particular token. For instance,
in the running example a Paper message without the title field would never
be consumed by the start message event Review Management of the Journal
Handling Editor pool, because the premise of rule C-ReceiveMi performing
thematch function check is not satisfied, thus making the rule not applicable,
see Figure 4.12.

Finally, since the proposed animation is based on data elements fields,
also issues due to bad data handling can be detected using MIDA. Let us
suppose that the sequential multi-instance receive task Receive Reviews in
the pool Journal Handling Editor has a wrong loop cardinality set to two
(instead of three). Rule P -MisTask1 activates the multiple instance task.

84 CHAPTER 4. MULTIPLE INSTANCES AND DATA ANIMATOR

Figure 4.12: Wrong message arrival.

Then, after receiving two Review messages from the Reviewers, rules P -
TaskRcvA and P -MisTask3 can be applied, the two reviews are inserted as
two items in the Reviews data collection, and the editor judges the paper
with just two reviews. Finally, rules P -MisTask3 completes the execution
of multiple-instance tasks passing the token to the Review Evaluation task.
However, once reached the task Send Feedback via Mail, the sending of three
messages requires to retrieve three names from the data collection Reviews,
but this cannot be applied, since the data collection contains just two items.
This results in a deadlock easily detectable by means of MIDA.

To sum up, the MIDA tool can support designers in debugging their
multi-instance collaboration models, as it permits to check the evolution of
data, messages and processes marking while executing the models step-by-
step.

4.4 Comparing with other Approaches

Scientific contributions concerning this topic are few, even if animation is rec-
ognized as a useful approach to enact the comprehension of business models.
Some relevant contributions can be found in the literature, but also com-
panies and modeling tool vendors provide some proposals. Differently from
this work, in such implementations the interplay between multiple instances,
messages and data is not fully supported.

For what concerns research papers focusing on the animation of business
processes, Allweyer and Schweitzer [1] propose a tool for animating BPMN
models that considers only processes, as it discards to animate message ex-

CHAPTER 4. MULTIPLE INSTANCES AND DATA ANIMATOR 85

changes, both semantically and graphically. In addition, decision gateways
do not depend on data conditions that the designer can specify a priori, but
instead the tool requires that the user statically marks the path to choose.
The authors permit to execute multiple instances of the same process, dis-
tinguishing them by the color of the tokens. However, the lack of data
management does not allow to influence the behavior of the single process
instances.

Aysolmaz [2] proposes an animator, PRIME, for BPMN process models
decoupling the animation from the modeling that is not directly supported
by the tool. PRIME animates process models using token flows upon the
process model as in MIDA. It permits to watch continuous animations or
step-wise ones of process models without handling message and data flow.
Even though the graphical approach is notable, several BPMN concepts and
modeling elements are not supported by the tool, and some of them have a
wrong implementation. For instance, OR and Event-Based gateways behave
in completely unpredictable ways, and End events act as Terminate End
events killing any parallelization of the control flow.

About solutions for animation of BPMNmodels, some contributions come
from the vendors of BPM tools. The animator of the Signavio [61] modeler
allows users to step through the process element-by-element and to focus
completely on the process flow. However, it discards important elements,
such as message flows and data objects. Hence, Signavio animates only
non-collaborative processes, without data-driven decisions, which instead are
key features of this approach. Differently, Visual Paradigm [75] provides an
animator that supports also collaboration diagrams. This tool allows users to
visualize the flow of messages and implements the semantics of receiving tasks
and events, but it does not animate data evolution and multiple instances. It
is worth noting that animation via token flow affects also other fields of BPM
since its capability simplifies the visualization of complex concepts. Indeed,
the BPM tool Apromore [43] introduces the possibility to animate business
processes via flows of tokens guided by event logs.

[1] [2] [61] [75] [43] MIDA
Multiple instances 3 7 7 7 7 3

Message exchange 7 7 7 3 7 3

Data 7 7 7 7 7 3

Data-driven gateways 7 7 7 7 7 3

Formal semantics 7 7 7 7 7 3

3: supported, 7: not supported

Table 4.2: Literature comparison.

Table 4.2 summarizes the features provided by the tools available in the

86 CHAPTER 4. MULTIPLE INSTANCES AND DATA ANIMATOR

literature and by MIDA. In detail, it compares the ability of: manage multi-
ple instantiating of processes, animate message exchange, hence deal with
BPMN collaborations, express data features, specify gateways conditions
with data, and behave according to a formal semantics.

CHAPTER 5

UBBA: UNITY BASED BPMN
ANIMATOR

The 2D animation approach proposed by MIDA can improve the under-
standing of the BPMN semantics and the quality of the produced BPMN
diagrams. In the same fashion, this chapter investigates the possibility to
exploit 3D graphical approaches for improving the stakeholders’ experience
when facing a BPMN model.

This chapter presents a tool that permits to create custom 3D virtual
worlds from an input process model. Besides this 3D view of the diagram, the
tool permits to see the model execution by means of an animation that faith-
fully follows the BPMN semantics. The chapter firstly provides an overview
on the tool development and functioning. Finally, it concludes showing the
tool in action using a collaboration diagram taken from the running example.

5.1 UBBA Overview

Business processes in the BPMN graphical notation are represented by means
of static 2D flow charts, where the graphics of the elements embed their se-
mantic categories (e.g., rectangles for activities, diamonds for choices, circles
for events, etc.). This graphical representation is very straightforward for ex-
perts, but it may results difficult to understand by people who do not know
the syntax and semantics of BPMN [9] (e.g., stakeholders). To this aim,
BPMN animation tools can help model comprehension. However, animation
approaches are mainly based on 2D diagrams, just few works investigate the
use of a 3D world as an environment to closely portray the reality of the
business process. Furthermore, when models become very large it is difficult

88 CHAPTER 5. UNITY BASED BPMN ANIMATOR

to follow their execution semantics [46, 15] and the use of 2D instead of 3D
representations limits the amount of information the user can perceive [78].
Indeed, to better explain the meaning of a flow element in a BPMN diagram,
the designer can just make use of textual annotations. While turning a col-
laboration diagram into a virtual world, where 3D images replace textual
information can be more effective.

Notably, the main objective of 2D animation is to facilitate the modeling
and the debugging of BPMN collaborations. Differently, the 3D animation
is intended to increase the comprehension of the business setting depicted in
the diagram.

To overcome the above limitations, the prototype tool UBBA (Unity
Based BPMN Animator) is proposed. Taken as input a BPMN collaboration
diagram in standard XML format, UBBA recreates a custom virtual world
where to visualize and to animate the input diagram decorated with 3D
graphics chosen by the user. The user can follow the execution of its model
looking at the animation on the newly created virtual world.

Figure 5.1: UBBA functioning.

As far as we know, UBBA is the first tool that can be exploited for rep-
resenting and animating any kind of business scenario (e.g., order fulfillment,
retrieval of healthcare data, bureaucratic procedures), thanks to its capabil-
ity of loading standard BPMN XML files and custom 3D graphics. UBBA
is conceived to support its users, i.e. business process designers, in:

• validating their BPMN diagram, possibly in collaboration with domain
experts who help in choosing effective 3D graphics, and

• creating appealing 3D animations for stakeholders, who are the final
audience for the products of the tool.

UBBA is a cross-platform and stand-alone tool that has been realized
in Unity1, a game engine for creating 2D/3D video-games or other interac-
tive contents, such as architectural visualizations or animations in real time.

1www.unity3d.com

www.unity3d.com

CHAPTER 5. UNITY BASED BPMN ANIMATOR 89

UBBA as well as its source code, binaries, guide, and a short demonstration
video are available at http://pros.unicam.it/ubba/. UBBA can be
redistributed and/or modified under the terms of the MIT License.

More in detail, UBBA aims at reproducing the setting described in a
BPMN collaboration diagram and animating its execution, from the point of
view of the resource, by means of token flow. Indeed, the BPMN elements
are transformed into 3D graphics and visualized in a virtual space. Then,
one or more tokens cross the diagram following the semantics of the BPMN
elements they met. Figure 5.1 depicts the UBBA workflow functioning. In
the following, the tool is introduced focusing on the visualization and then
on the animation features.

The first characteristic of UBBA is the rendering of a BPMN model into
a 3D space. To this aim, UBBA provides three main features:

• read a standard .bpmn file;

• associate a graphic to each diagram element;

• show the resulting 3D scene.

To read a BPMN file the tool resorts to a parser, which takes as input a
.bpmn file and produces a custom data structure.

Figure 5.2: View from the top of the 3D world.

From the parsed model, UBBA collects the information regarding the
elements contained in the diagram, such as the id, the name, the type (e.g.,
activity, gateway, event, etc.), the position in the 2D plane, and the list of

http://pros.unicam.it/ubba/

90 CHAPTER 5. UNITY BASED BPMN ANIMATOR

nodes reachable from it. The tool exploits this information to set the 3D
space. For each discovered element the tool allows to associate a 3D graphic;
the designer can choose whether to load them from his/her PC or choose the
ones already present in UBBA.

External graphics have to be .fbx files2, available online for free or for
sale. Even the tokens can be customized: the user can specify a personal
graphic representing tokens generated by each pool in the diagram. The
chosen graphics for elements and tokens are then embedded by the tool in a
3D space. Those graphics are positioned following the spatial information of
the .bpmn file and connected by lines that represent sequence flows. Then a
view from above of the model is shown, and the user can start to navigate
it, see Figure 5.2.

The already created custom 3D world lets one introduce the animation
feature of UBBA. It supports the diagram execution by means of token
movements so that the user can continuously check their distribution. This
facility results particularly useful for understanding not only the role of the
token as process actor but also the semantics of the BPMN elements and
the meaning of the diagram. The animation can be triggered by the user by

Figure 5.3: Token point of view.

clicking the Play button depicted on the top right side of the interface. In
turn, from each start event the chosen 3D graphic, representing the token,
starts to cross the diagram following the path indicated by sequence flows.
The animation terminates once no more token moves are allowed.

2Filmbox (.fbx) is a file format for geometry definition widely adopted by 3D graphical
application vendors, storing 2D, 3D, motion, audio, and video data.

CHAPTER 5. UNITY BASED BPMN ANIMATOR 91

A token can behave differently depending on the type of the node it is
going to cross. UBBA implements the semantics of a core set of BPMN
elements. Clearly, this collection is not the full list of BPMN elements, but
it is enough to capture several semantic concepts.

More in detail, UBBA considers BPMN collaboration or process mod-
els with the following elements: Task, Send Task, Receive Task, Exclusive
Gateway, Parallel Gateway, Event-Based Gateway, Start Event, Start Mes-
sage Event, End Event, Intermediate Catch Event, and Intermediate Throw
Event. The semantics of such elements is implemented in UBBA leaving the
possibility of adding other element behavior just extending a project class.

During the animation, different points of views on the 3D environment
are available for the user, who is free to switch from a camera to another one
using the buttons on the right side of the interface. UBBA has a point of
view for each active token, see Figure 5.3, plus another that covers the whole
collaboration.

5.2 UBBA in Action

To show UBBA at work we present the implementation of a case study
consisting in the BPMN collaboration diagram presented in Chapter 1, that
is related to the scenario of the running example. For sake of presentation,
Figure 5.4 repeats the diagram. The use here of a BPMN collaboration
different from that used in the previous chapters is due to the need of a
smaller diagram that permits to keep the focus more on the 3D animation.

C
on

ta
ct

 A
ut

ho
r

Paper
Publishing

Send Camera
Ready Paper

Receive
Copyright Form

Sign Copiryght

Require Open
Access

Pay Fee

Receive Paper
Details

Jo
ur

na
l P

ub
lis

he
r

Apply Journal
Template

Assign DOI

Submit
Copyright Policy

Form

Receive Signed
Copyright

Receive Open
Access Request

Get Fee

Send Paper
Details

Want Open
Access? Yes

Dismiss Open
Access

No

Paper
Published

Paper
Production

No Open Access

Paper
Produced

Paper DetailsFeeRejectionRequestSigned FormCopyright FormPaper

Figure 5.4: Paper publication collaboration.

For what concerns the UBBA functioning, it can be executed as a stan-
dard executable program. A double click on its executable file starts UBBA

92 CHAPTER 5. UNITY BASED BPMN ANIMATOR

(a) (b)

(c)

Figure 5.5: UBBA startup.

and provides the first interaction interface, Figure 5.5 (a), and a file chooser
where to load the collaboration diagram to animate. The tool comes with
some example BPMN diagrams (e.g., the running example in Figure 5.4),
but of course any .bpmn file can be chosen from the file system. Subse-
quently, UBBA needs element graphics to be associated to the collaboration
elements. UBBA asks the user to select 3D from the tool assets or directly
from the file system, see Figure 5.5 (c). Selecting the checkbox Save my
choices, before moving on to the next step, the associations between BPMN
elements and 3D graphics are saved in a preference file. Thus the next time
the user want to animate the same model with the same 3D graphics, he/she
can use the saved choices by pressing the Use file with choices button.

To recreate the setting described in the Paper Publishing collaboration
diagram the designer needs to use graphics capable to embody together the
element type and the specific meaning it has in the diagram. For instance, a

CHAPTER 5. UNITY BASED BPMN ANIMATOR 93

mailbox is suitable for symbolizing a receive task in general, but in some cases
it may results less effective if used in place of receiving tasks with specific
meanings such as Get Fee. Indeed, the user has to consider the context of
the business process in which the Fee message represents a money transfer,
hence a 3D cash register or a wallet better clarifies this setting. The choice
of the 3D graphics for the tokens is crucial, as well as a meaningful 3D
graphic is essential to carry additional information on the diagram meaning.
Tokens should represent the entities who perform the activities in the pool,
see Figure 5.3. Alternatively, tokens describing more abstract actors, for
instance, processes representing software components, can be depicted with
a sphere. In the example, I associate two of men graphics to the tokens of
Journal Publisher and Contact Author pools.

Once the association of the graphics is finished, UBBA generates the
3D model ready to be animated. Starting the animation, it is possible to
appreciate the UBBA capability to represent the reality. The man graphics
representing the author is placed near the Paper Publishing start event, which
is represented by a 3D model of a door in order to mimic the entering in the
process area. The Contact Author graphic crosses the door approaching the
next element that is the Send Camera Ready Paper send task. It instead is
rendered as it were the author’s desk, where the PC notifies users by means
of an envelope on the screen. The execution of this task involves the delivery
of a message that UBBA depicts with a red sphere crossing the message flow,
see Figure 5.6.

Figure 5.6: Message token.

The arrival of this message token triggers a new instance of the Journal

94 CHAPTER 5. UNITY BASED BPMN ANIMATOR

Publisher pool; having a new token in the collaboration, UBBA adds in
the interface a new button identifying the Journal Publisher instance just
created, see Figure 5.7. The button switches from the current view (i.e.
whole collaboration or man perspective) to that of the publisher token.

Figure 5.7: Camera selection.

Following the publisher token, it is possible to observe the processing of
the received paper. In parallel, the publisher applies the journal template
and the DOI to the paper. To render the parallel of the control flows, once
it reaches a parallel split gateway, the token is cloned as many times as
the number of parallel branches. While meeting a parallel join gateway,
tokens are merged according to the operational semantics of the gateway.
The collaboration continues with the publisher that sends to the author a
copyright form to fill in. The author on its turn signs the form and gives it
back to the publisher. This exchange of information is a block of two send and
two receive tasks in the collaboration diagram, see Figure 5.4. UBBAuses
another time graphics of desks; in this case the author and the publisher
have different desks decorated with different accessories to explain the tasks’
meaning.

Therefore, the author’s token reaches the Want Open Access? exclusive
split gateway, where he/she has to decide for an open access publication or
not. The choice of the path to follow is interactive and made by the user;
indeed he/she has to click on one of the 3D arrows depicted over the outgoing
sequence flows, see Figure 5.9.

Following the No path, the Contact Author reaches a red cross graphic
symbolizing the rejection. Otherwise, the Yes path brings the author to a
graphic symbolizing the open access request. In both the cases, the author
communicates its choice to the publisher through a message, but only in case

CHAPTER 5. UNITY BASED BPMN ANIMATOR 95

Figure 5.8: Parallel control flows.

the author requires the open access, he/she performs the Pay Fee send task.
This regards a very straightforward activity that indeed is represented as a
stack of cash.

Figure 5.9: XOR splits in 3D.

Then the publisher reacts on the author’s decision according to the seman-
tics of the event-based gateway. An open access request brings the publisher
token to an open lock graphics and to a cash register for collecting the Fee,
while a rejection routes it to a closed one. To conclude the collaboration,
the publisher sends to the author some details about the published paper.
This is again rendered with desks, the one of the publisher has a PC on top

96 CHAPTER 5. UNITY BASED BPMN ANIMATOR

showing the paper details, while the author’s one has an envelope containing
the same paper details.

5.3 Comparing with other Approaches

In recent years several works foster new techniques for modeling and visu-
alizing organization processes capable to bridge the gap between business
people and BPMN. On the one hand, a virtual world representing a business
process can enhance the communication activities, thus facilitating interac-
tions between businessmen and stakeholders [30]. On the other hand, the
animation of business processes can increase their understanding [33, 24, 5]
and also the possibility to debug them [17].

The literature proposes several tool prototypes that follow such principles.
Indeed, in [9] an implementation of a 3D virtual BPMN editor that embeds
process models into a 3D world is presented. Similarly, in [6] and [82] the
representation of Petri net-based business process models is enriched with the
third dimension. Virtual worlds have also been used in the context of Work-
flow Management Systems (WfMSs). In [31] the authors have implemented
an agent-based simulation architecture that can be used as a simulation com-
ponent for any WfMS. It is also worth mentioning the BPM simulation game
Innov8 by IBM [35]. It offers both IT and business players an excellent in-
troduction to BPM, useful for learning the anatomy of a model. Another
example is Be a Token [62], a JavaScript tool based on the A-Frame frame-
work. This tool represents sequence flows as hallways to cross, and tasks as
rooms with a door in the wall for each incoming/outgoing sequence flow. For
what concerns the business process animation there are works attempting to
show the processes execution, which however just provide a 2D visualization.
These contributions use token flow or elements highlighting to indicate the
current execution state of the process models. In [1], business processes are
animated by means of a token game within the Signavio modeler, where users
can step through the process element-by-element. Visual Paradigm [75] pro-
vides an animator that supports also collaboration diagrams. Finally, [20]
provides an animator of BPMN collaborations enriched with data and mul-
tiple instances, which is based on token flow animation.

However, the above solutions suffer from three main limitations. Firstly,
works recreating a 3D world do not provide any animation of the business
process, but just visualization. This means that they statically show a 3D
version of the model without supporting a representation of its execution.
Moreover, these projects are not very customizable, but instead are limited
to describing a particular setting without the possibility of using custom 3D
models. Finally, works providing animation of business processes use only
2D environments.

CHAPTER 5. UNITY BASED BPMN ANIMATOR 97

Table 5.1 summarizes the features provided by the tools available in the
literature and by UBBA. In detail it compares the tools with respect to their
capability to: deal with BPMN collaboration models, visualize and animate
in 2D or 3D the models’ execution, insert custom graphical elements, and
parse model files compliant with the standard format .

[9] [6] [31] [35] [62] [1] [75] [20] UBBA
Collaboration 7 7 7 7 7 7 3 3 3

Visualization 3D 3D 3D s 7 2D 2D 2D 3D
Animation 7 7 7 s 3D 2D 2D 2D 3D

Custom Graphics 7 7 7 7 7 7 7 s 3

Standard Input 7 3 3 7 7 3 3 3 3

3: fully, s: partially, 7: not supported

Table 5.1: Literature comparison.

CHAPTER 6

PPLG: PURPOSE
PARAMETRIC LOG

GENERATOR

This chapter exploits the provided BPMN formal semantics for enabling pro-
cess and collaboration diagrams simulation to automatically generate event
logs suitable for a precise mining purpose. The following sections show the
motivation behind the development of this log generation methodology. More
in detail, we describe the methodology from a architectural point of view,
and introduce a prototypical tool implementing the methodology through a
use case example. Finally, we conclude with a tools comparison.

6.1 Motivations

We already mentioned the importance of process mining in the BP life-cycle,
see Section 2.1. The role of process mining is also well recognized by compa-
nies, which appreciate the possibility to gather information from their pro-
cesses [84]. In most of the cases, the effectiveness and the precision of min-
ing techniques is strictly related to the reliability of the mining algorithms
and/or the quality and the availability of event logs. When developing a
process mining algorithm, it has to be tested against different event logs [22].

To evaluate the quality of a mining algorithm event logs are essential,
especially those coming from real-world processes. In addition, to properly
carry out a mining procedure, it may be necessary to refer to the gold stan-
dard [13, 60], i.e., the process models generating the log. However, it is quite
unusual to find company logs directly extracted from IT systems, hence real

100 CHAPTER 6. PURPOSE PARAMETRIC LOG GENERATOR

processes. Indeed, organizations hardly spread their logs for analysis pur-
poses, especially not coupled with the reference process diagrams [10].

In this regard, several approaches [10, 74, 22] in the literature started
to investigate the automated generation of artificial event logs to overcome
this issue. These approaches are used to execute several instances of the
process models to generate the event logs. These instances behave differently
according to the choices made by the simulator, that can be random or
based on probability distributions. Therefore, the event logs made with these
approaches cannot be tuned for specific purposes.

Depending on the mining purpose (e.g., rediscoverability, social network
analysis, compliance checking, decision mining, what-if analysis), and on the
applied mining algorithm, one may ask for event logs that guarantee partic-
ular properties [71]. For instance, the rediscoverability problem requires to
guarantee that the event logs to analyze show all possible behavior of the
process model, or at least all the directly following relations between activ-
ities. Using, for instance, the α -algorithm [70] in order to rediscover an
exclusive choice like the one in Figure 6.1, the mined event log has to show
traces where activity A is directly followed both by activity B and C.

A

B

C

...

...

...

Figure 6.1: Rediscover an exclusive choice.

Another drawback regards the kind of information related to an event
that a log generator can create. Indeed, the existing log generation tools
simulate only the control-flow of the input process model. As consequence,
most of the process mining techniques available today consider just control-
flow related values to analyze business processes [45]. However, modern
IT systems store huge amount of information that regards the execution
of processes and collaborations. Apart from the attributes describing the
control-flow (e.g., the activity name, the timestamp), event logs may carry
resource, communication, and data related values.

To address these problems, we present a novel log generation method-
ology that is parametric on the input process model language and on the
mining purpose, to produce artificial event logs. The methodology is meant
to ensure the possibility of simulating any kind of process model through the
implementation of several modeling language semantics (e.g., BPMN, Petri
net, EPC, WF-net), and also the possibility to decide characteristics of the
output event log according to the requirements of a mining procedure.

CHAPTER 6. PURPOSE PARAMETRIC LOG GENERATOR 101

6.2 Event Logs Generation Methodology

This section presents the methodology, Figure 6.2, for generating automati-
cally, from process models simulation, event logs suitable for the desired min-
ing purpose. The methodology requires as input a business process model
and a mining purpose, the result is an event log with specific properties
directly related to that purpose.

Delta

Evaluator

Simulator

LOG

IN
P

U
T

P
P

LG
O

U
TP

U
T

Seman�c Engine

Purpose

0
011

10101

0101111

001010001

11011111010

0010110101010

101010110010101

10101010010101010

101000100100101010

101010101110101010

10101010101010101100101010010101001

1010101010101010110100101010101010101

10100101010101010110101010101000100101

101010101010101101010100101010101101010

0101010101010110101010101010101101110101

101101010101010101101001010101010011010101

1010101010101010110100101010101010110101010

1010101010101010110100101010101010110101010

10100101010101010110100101010101010111010101010

1010101010101010110100101010101010110100101011001

1010101010101010110100101010101010110100101011001

1010101010101010110100101010101010110100101010110

101010101010101101001010101010101101010100101010110

101010101101010010101010101011010101010101010101010101

0101010101010110100101010101010110100010101011010011010

010101010101011010010101010101011010010101010101011010101

0101010101010110100101010101010110100101010101010110101010

010101010101011010010101010101011010010101010101011010010101

XES

__

Business Model

Figure 6.2: Purpose parametric log generation methodology (PPLG).

The generation of purpose aware logs is made possible through a guided
simulation of the process model. The simulation is guided in the sense that
it explores (and logs) just those traces needed for the mining purpose, rather
than consuming resources in finding useless ones. Indeed, over the possibly
infinite executions that a process model can perform, mining techniques may
require only a subset of traces in order to accomplish their goal.

The duty of guiding the simulation is up to an evaluator that provides
hints to the simulator. The evaluator is a function that compares the input
model with the event log generated up to that moment by the simulator. It
clearly depends on the mining purpose, in particular on the properties the
final log must show. The result of the evaluation, called delta, represents the

102 CHAPTER 6. PURPOSE PARAMETRIC LOG GENERATOR

distance between the inputs of the comparison. More concretely, it contains
parts of the execution traces that are missing in the event log. This sub-traces
are the hints that act as bias in the next step of the simulation, guiding the
simulator to execute traces containing them. Once the purpose is satisfied,
i.e., the evaluation function returns a distance that is small enough for the
user, the simulation terminates and the produced event log is given as output.

The methodology is independent from the modeling language of the busi-
ness process given as input, and also from the mining purposes. It points at
guiding the simulator in covering only the execution paths needed to satisfy
the purpose. From an architectural point of view the methodology relies on
the following components:

• the semantic engine; this component interprets the input process
model and its semantics, it describes the possible executions of the
process model;

• the guided simulator; this component has the duty of logging specific
runs of the process model, it interacts with the semantic engine to know
the possible executions, and receives hints from the evaluator to know
the ones to log.

• the evaluator; this component compares the input model and the event
log discovered through simulation and returns the resulting distance
(i.e., delta) representing the hints for the next simulation run.

In the following some insights on the functioning of each of the compo-
nents are given. Some of these components are described only in an abstract
way through interfaces to be implemented. This permits to introduce addi-
tional features that guarantee the methodology to simulate several modeling
languages for different mining purposes.

Semantic Engine. This component is responsible of parsing process models
written in different notations.

1 pub l i c i n t e r f a c e SemanticEngine {
2

3 pub l i c Model parseModel (F i l e input) ;
4

5 pub l i c Map<Conf igurat ion , Set<Event>>
getNexts (Conf igurat ion c) ;

6 }

Listing 6.1: Semantic Engine interface.

In this regard, different semantic engines should be implemented in order
to enable the simulation of different languages. A new semantic engine can

CHAPTER 6. PURPOSE PARAMETRIC LOG GENERATOR 103

easily be produced following the contract of the semantic engine interface,
Listing 6.1. It requires to implement a method for parsing the process model
(line 3), and a method that serves the simulator to execute the process model
(line 5).

The first method is straightforward, it reads an input file to produce a
model data structure. The latter method implements the semantics of the
modeling language. It provides the possible execution steps reachable from
a process model configuration, and returns a set of reachable configurations
and the related generated events. The semantic engine interface makes use
of the same concept of configuration as in the formal semantics of Chapter 3,
to represent a snapshot of the model execution.

Simulator. This component is the core of the methodology. Differently
from the semantic engine, the simulator component does not require any
customization to work in different settings.

1 pub l i c c l a s s Simulator {
2

3 pr i va t e SemanticEngine eng ine ;
4 pr i va t e Log log ;
5

6 pub l i c Simulator (SemanticEngine e) {
7 t h i s . eng ine = e ;
8 t h i s . l og = new Log () ;
9 }

10

11 @Override
12 pub l i c EventLog s imulate (Delta de l t a) {
13 i f (d e l t a . isEmpty ()) {
14 return randomSim(nu l l) ;
15 }
16 f o r (Trace h int : d e l t a) {
17 Set<Conf igurat ion> s t a r t s = LTS . f i nd (h int . pop ()) ;
18 f o r (Conf igurat ion s : s t a r t s) {
19 Trace p r e f i x = ge tPr e f i x (s) ;
20 l og . append (guidedSim (pr e f i x , s , h int)) ;
21 }
22 }
23 return l og ;
24 }
25 }

Listing 6.2: Simulator implementation.

Listing 6.2 reports part of the simulator implementation: the constructor
that initializes the simulation on the basis of a semantic engine, and the
simulate method at line 12. This method runs through the semantic engine
new model executions based on the input parameter delta. Delta is the

104 CHAPTER 6. PURPOSE PARAMETRIC LOG GENERATOR

product of the evaluation that guides the simulator, it contains sub-sequences
of execution traces. It is empty at the first run of simulation, because the
evaluator has not performed any comparison yet. The empty delta makes
the simulation execute the model in a random way (line 14), logging one of
the possible execution traces of the input diagram. Otherwise, the simulation
loops the hints contained in the delta (line 16). These hints are lists of events
that the simulator uses to guide the simulation and to log new traces. To
achieve this goal, the simulator uses a partial labeled transition system of
the diagram, generated by previous simulation runs. It serves to find one
or more possible configurations that correspond to the execution of the first
event in the considered hint (line 17). For each of these configurations, the
simulator creates a prefix trace that leads to this configuration (line 19), and
calls the giudedSim() method in order to complete them with events that
include the remaining part of the hint.

1 pr i va t e Trace guidedSim (Trace p r e f i x , Conf igurat ion current ,
Trace h int) {

2 i f (h int . isEmpty ()) return p r e f i x ;
3 Conf igurat ion next = hint . pop () ;
4 Path path = findPath (current , next) ;
5 i f (path . isEmpty ()) return randomSim(p r e f i x) ;
6 p r e f i x . add (path . getEvents ()) ;
7 re t run guidedSim (pr e f i x , next , h int) ;
8 }

Listing 6.3: Giuded simulation.

Indeed the guided simulation method, Listing 6.3, takes as input the prefix,
the current configuration, and the remaining part of the hint (the head el-
ement of hint has been retrieved at line 17 of Listing 6.2). The method is
recursive, it tries to find a path connecting the current configuration to the
next defined in the hint. Then, in the recursive case, the method adds the
discovered path to the prefix and calls itself with the new parameters (line 7).
In case of an empty hint or path, the base cases (lines 2 and 5) are activated.
An empty path means that the simulator cannot provide the desired trace
(so it returns a random one), the empty hint, instead, means that the entire
trace has been found.

Evaluator. Finally, there is the evaluator. This component is devoted to
optimize the work of the simulation. After any simulation run, the evaluator
receives the current event log. This has to be compared with the business
diagram by means of an evaluation function that depends on the mining
purpose. To permit to extend the framework, the evaluator interface exposes
the method evaluate to be implemented, Listing 6.4.

CHAPTER 6. PURPOSE PARAMETRIC LOG GENERATOR 105

1 pub l i c i n t e r f a c e Evaluator {
2

3 pub l i c Delta eva luate (EventLog d i scovered , SemanticEngine
engine , I n t eg e r tau) ;

4

5 }

Listing 6.4: Evaluator interface.

The implementation of the evaluation is not an easy task. Indeed, it has to
compare objects of different categories: an event log and a diagram. However,
in terms of process executions, these concepts can be compared. Indeed, an
event log represents just a subset of the possible diagram executions. The
same for the event log to achieve, the goal of the purpose, and for delta.
All these concepts can be represented as parts of a transition system, like in
Figure 6.3, the gray area (possibly infinite) represents the possible executions
of the model, that include all the subsets, in red the discovered log, in green
the goal of the purpose, and delta in purple.

model execu�ons

delta

XES

goal

Figure 6.3: Delta evaluation.

Therefore, to implement a new evaluation function for a mining purpose
one needs to transform the members of the comparison onto comparable
entities, the resulting difference will specify the delta. An evaluation result
lower than a tolerance (tau) value set in input concludes the generation of
the log. Indeed, it means that no more traces are required in the produced
event log.

6.3 Rediscoverability Example in PPLG

This section introduces the prototypical tool PPLG (Purpose Parametric
Log Generator) that implements the described methodology, and presents
a use case example in order to better explain how each component of the

106 CHAPTER 6. PURPOSE PARAMETRIC LOG GENERATOR

methodology works. Finally, it concludes comparing PPLG with other log
generator tools.

Figure 6.4: Graphical interface of PPLG.

PPLG, Figure 6.4, is an extensible progressive web app written
in Java using the full stack developing framework Vaadin1. Thus,
it can be executed in any operating system. The tool is still un-
der development, but it can be already downloaded and used. The
source code both with usage instructions are available at https:
//bitbucket.org/proslabteam/guidedsimulator/, while builds
of PPLG are available at https://bitbucket.org/proslabteam/
guidedsimulator-builds/src/0.1/.

The tool already implements the rediscoverability purpose, through the
evaluation of the ordering relations between tasks, for the BPMN language.
PPLG implements the BPMN semantics described in Chapter 3 and its
relaxed version which discards data related features. Thus, it can read and
simulate BPMN processes and collaborations with multiple instances, data
and messages, to produce multi-perspective event logs.

To better show the methodology and the tool functionalities, we present
in the following an example concerning the generation of an artificial event
log from the BPMN process model in Figure 6.5 (a). The purpose is the redis-
coverability by means of the α-algorithm. This algorithm aims at recreating
the Petri net from the event log it has generated.

In a nutshell, the α-algorithm analyzes the sequences of events composing
the log to find the order relations between tasks (e.g., if two tasks act in

1https://vaadin.com

https://bitbucket.org/proslabteam/guidedsimulator/
https://bitbucket.org/proslabteam/guidedsimulator/
https://bitbucket.org/proslabteam/guidedsimulator-builds/src/0.1/
https://bitbucket.org/proslabteam/guidedsimulator-builds/src/0.1/
https://vaadin.com

CHAPTER 6. PURPOSE PARAMETRIC LOG GENERATOR 107

A

D

B

C E

A B C D E
A # Ñ Ñ Ñ #
B Ð # || # Ñ

C Ð || # # Ñ

D Ð # # # Ñ

E # Ð Ð Ð #

Ñ: sequential, ||: parallel,
#: exclusive

(a) (b)

Figure 6.5: The input process model (a), and the related order relations
matrix (b).

parallel, or one after the other). These dependencies come from the order
relations between tasks [70, Definition 3.2] discovered in the log, and drive
the algorithm during the process reproduction. Therefore, the result of the
algorithm directly depends on the log quality, having, for instance, multiple
repetitions of the same trace is useless. Considering the example, the matrix
in Figure 6.5 (b) contains the order relations of the input process diagram
(e.g., cell (1,2) indicates that task A always precedes task B, AÑ B). Thus,
the simulation has to be guided, by means of delta, into the discovery of those
relations.

Figure 6.6: Available rediscoverability algorithms in PPLG.

The example is carried out step by step with the help of PPLG that al-
ready implements the rediscoverability purpose, Figure 6.6, for a class of min-
ing algorithms that exploit order relation between tasks, like the α-algorithm.
Moreover, PPLG is integrated with external software for applying the α-
algorithm (i.e., ProM) and converting Petri nets into BPMN diagrams.

108 CHAPTER 6. PURPOSE PARAMETRIC LOG GENERATOR

PPLG performs a looping routine, see Figure 6.7, that terminates once
the produced log acquires the desired characteristics. In the following, we
show each step performed by the tool to reach the goal imposed in the ex-
ample.

LOAD
DIAGRAM SIMULATE EVALUATE

RETURN
LOG

diagram par�al log final log

delta

Step (1) Step (2) Step (3) Step (4)

Figure 6.7: PPLG routine.

Step (1) consists in load of the input diagram and choose the mining
algorithm to use in the semantic engine. This creates a data structure con-
taining the diagram information, and provides to the simulator the method
for executing it. At this stage, PPLG is ready to simulate the model being
aware of the hints given by the evaluator, thus it starts to loop between steps
(2) and (3).

Step (2) invokes the simulator that does not receive any hint (i.e., an
empty delta). This leads to perform a random execution of the process
model. Listing 6.5 shows the trace resulting from the first simulation run of
the prototypical tool. In this case, the simulator performed tasks A, B, C
and E, one after the other.

<trace>
<s t r i n g key="concept:name" value="case_1"/>
<event>

<s t r i n g key="concept:name" value="A"/>
<date key="time:timestamp"

value="2020-02-20T16:54:30.825+01:00"/>
</event>
<event>

<s t r i n g key="concept:name" value="B"/>
<date key="time:timestamp"

value="2020-02-20T16:54:30.850+01:00"/>
</event>
<event>

<s t r i n g key="concept:name" value="C"/>
<date key="time:timestamp"

value="2020-02-20T16:54:30.856+01:00"/>
</event>
<event>

<s t r i n g key="concept:name" value="E"/>
<date key="time:timestamp"

value="2020-02-20T16:54:30.886+01:00"/>
</event>

</ t rac e>

Listing 6.5: First random trace.

Figure 6.8: First
resulting Petri net.

Step (3) is the evaluation of the current log according to the mining
purpose that is the discovery of a process model behaviorally equivalent to

CHAPTER 6. PURPOSE PARAMETRIC LOG GENERATOR 109

the original one. This requires mining the current log to calculate its order
relation matrix. The mining is done by means of the ProM tool implementa-
tion of the α-algorithm. Being present just one trace in the log Listing 6.5,
the result of the mining in ProM is straightforward, and it is the Petri net
depicted in Figure 6.8. Thus, the Petri net is transformed into a BPMN
diagram using the converter of ProM that follows the mapping described in
[25]. The order relations of the resulting model are calculated by PPLG,
and compared with the ones of the original process model. All those rela-
tions that are missing in the current mined log identify how far the tool is
from its goal. Moreover, the missing relations become the delta for the next
simulation steps.

In the example, the first round of simulation identifies three order rela-
tions that are A Ñ B, B Ñ C, and C Ñ E. The evaluator compares them
with the ones of Figure 6.5 (b), getting the missing ones: A Ñ C, A Ñ D,
B Ñ E , D Ñ E, and C Ñ B. These missing relations are then translated
into the sub-traces composing the delta.

Step (2) is performed again. The simulator gets a delta of this form:
txA,Cy, xA,Dy, xB,Ey, xD,Ey, xC,Byu. Delta is crucial to drive the simula-
tor during the search for additional traces containing the missing relations.
At this point, the simulator exploits the delta and the knowledge acquired
in the previous run. Indeed, it already discovered one of the possible pro-
cess executions. Figure 6.9 shows the labeled transition system generated
by the process model. The green states are the goal of the simulation, as
they generate the order relations. The ones filled in red are instead those
states previously discovered by the simulator. Finally, the violet and thicker
transitions represent the delta, the guide for the new simulation run.

ε A

ε

ε

D

ε

ε

ε

B

C

C

B

ε

ε

ε

E ε

Figure 6.9: Discovered process behavior.

Starting from the already known states in the transition system, the simu-
lator executes new traces following the transitions highlighted by delta. This
run produces the new traces xA,C,B,Ey and xA,D,Ey, as showed in List-
ing 6.6. These trace are finally joined with the one previously discovered,
and the entire log is passed again to the evaluator.

110 CHAPTER 6. PURPOSE PARAMETRIC LOG GENERATOR

Step (3) again requires to mine the received log. The resulting Petri net
is the one in Figure 6.10, and its order relations matrix in this case, is exactly
the same as the one generated with the original process model. Therefore,
the tool can terminate the looping routine.

<trace>
<s t r i n g key="concept:name" value="case_2"/>
<event>

<s t r i n g key="concept:name" value="A"/>
<date key="time:timestamp"

value="2020-02-20T16:54:30.887+01:00"/>
</event>
<event>

<s t r i n g key="concept:name" value="C"/>
<date key="time:timestamp"

value="2020-02-20T16:54:30.903+01:00"/>
</event>
<event>

<s t r i n g key="concept:name" value="B"/>
<date key="time:timestamp"

value="2020-02-20T16:54:30.905+01:00"/>
</event>
<event>

<s t r i n g key="concept:name" value="E"/>
<date key="time:timestamp"

value="2020-02-20T16:54:30.913+01:00"/>
</event>

</ t rac e>
<trace>

<s t r i n g key="concept:name" value="case_3"/>
<event>

<s t r i n g key="concept:name" value="A"/>
<date key="time:timestamp"

value="2020-02-20T16:54:30.943+01:00"/>
</event>
<event>

<s t r i n g key="concept:name" value="D"/>
<date key="time:timestamp"

value="2020-02-20T16:54:30.950+01:00"/>
</event>
<event>

<s t r i n g key="concept:name" value="E"/>
<date key="time:timestamp"

value="2020-02-20T16:54:30.957+01:00"/>
</event>

</ t rac e>

Listing 6.6: Second random trace.

Figure 6.10: Final
resulting Petri net.

Step (4) produces as output the .xes file, Figure 6.11 containing the
simulated log. It contains the only traces, with no repetition, required by
the purpose.

To better highlight the advantage of the methodology, we presents a com-
parison testing the ridescoverability purpose in PPLG against other log gen-
erators (i.e., PLG22 and BIMP3). We took a set of ten BPMN process models
used as input, half of the diagrams are artificial process models generated by
PLG2, while the others comes from the literature. The comparison consists
in checking the quality of the event logs generated by the three tools with
respect to the activity relations matrix of the input process model. More in
detail, we calculate the percentage of activity relations in the matrix that
are also present in the log.

2https://plg.processmining.it/
3https://bimp.cs.ut.ee/

https://plg.processmining.it/
https://bimp.cs.ut.ee/

CHAPTER 6. PURPOSE PARAMETRIC LOG GENERATOR 111

Figure 6.11: Event log serialization.

Being that the generation of logs in PLG2 and BIMP does not depend
on any purpose, these tools ask for a number of traces to simulate. Differ-
ently, PPLG autonomously evaluates whether the produced log satisfies the
purpose and stops the simulation. Thus, we firstly ran the generation of logs
with PPLG in order to fix the number of traces to be simulated.

Then, we ran the simulation also in PLG2 and BIMP asking for the same
number of traces. As result, for each of the tested process model we obtained
three event logs, one from each tool, and we compared them with respect to
the relations matrix.

Model Elements Traces PLG2 BIMP PPLG
p0 10 3 100% 66% 100%
p1 11 3 66% 66% 100%
p2 12 5 100% 83% 100%
p3 17 5 90% 90% 100%
p4 21 10 62% 44% 100%
p5 27 10 95% 79% 100%
p6 34 14 68% 52% 100%
p7 40 76 66% 37% 100%
p8 49 226 14% 7% 100%
p9 53 41 51% 41% 100%

Table 6.1: Rediscoverability results.

Table 6.1 resumes the results of this comparison. The first two columns,
Model and Elements, contain respectively the name of the process model and
the number of its elements. Column Traces provides the number of traces
generated by PPLG to cover all the activity relations and used as reference

112 CHAPTER 6. PURPOSE PARAMETRIC LOG GENERATOR

for the other tools. The last three columns show the percentage of activity
relations covered respectively by PPLG, BIMP, and PPLG.

Being guided by the evaluator, PPLG covered entirely the relations ma-
trix for each of the tested process models. While the other tools show worse
results especially in case of bigger models. Consequently, applying the α-
algorithm on the event logs generated by PLG2 and BIMP will produce
models very different from the original, while the logs of PPLG can produce
exactly the same model.

6.4 Comparing with other Approaches

The literature provides several works concerning the generation of artificial
event logs through the simulation of business models. Alves and Günter [22]
tackle the generation of event logs from CP-nets [37]. This work highlights
the issues that may arise when using real-life event logs to fine tune mining
algorithms. The presence of noise or the incompleteness of an event log can
indeed compromise the evaluation of an algorithm. The solution proposed by
the authors is developed on top of the CPN tool [38] for what concerns the
model simulation, and is coupled with the ProM framework for generating the
logs. The major drawbacks of this work regard the generated logs themselves.
Their generation cannot be tuned to produce different results according to
the usage. Moreover this work uses the MXML [72] format for exporting
the logs, because it precedes the development of the XES standard, causing
problems of incompatibility with several mining algorithms.

Burattin overcomes this limitation proposing in [10] a tool called Process
Log Generator (PLG2). The tool allows to generate event logs from the
simulation of BPMN processes according to desired characteristics, or loaded
by the user. PLG2 simulates BPMN processes with a core set of elements
(e.g., tasks, parallel/exclusive gateways), and produces event logs in the XES
format. This work considers data objects, that can store variables (and
their relative values). During the simulation, tasks linked to a data object
produce an event log enriched with the data object variable. Moreover,
PLG2 considers time elapsed for executing tasks that can be set by the user
by means of a script. Hence, the logs present two events (begin and end) for
the same activity.

Similarly, Kataeva and Kalenkova present in [39] a tool for generating
just well-structured BPMN diagrams through context-free grammars. The
models can be simulated to generate event logs.

Mitsyuk et al. face in [50] the problem of defining and generating logs
from collaborative processes including data flow and time. They formalize
an executable BPMN semantics by which they simulate collaborative mod-
els. The proposed semantics support a subset of the BPMN elements such

CHAPTER 6. PURPOSE PARAMETRIC LOG GENERATOR 113

as tasks (also send/receive), sub-processes, parallel and exclusive gateways
and cancellation events. Data objects store single data values used for driv-
ing exclusive choices, anyway messages cannot carry data. The simulation
produces event logs for training mining algorithms. It is noteworthy that in
case of multiple actions enabled in the model, the proposed simulator firstly
enacts gateways and then randomly chooses a task. This is to simulate the
atomicity of the gateways execution. Anyway, tasks are chosen randomly
from among the different processes, each of them having the same probabil-
ity to be run.

Stocker and Accorsi introduce in [63] an approach for generating event
logs, focusing on a precise business scenario. Indeed, they present a simulator
called SecSy to generate logs for training the modeling of security oriented
systems.

Summing up, differently form the presented methodology, these works
mainly focus on generating event logs without a specific mining purpose.
Moreover, there is lack in managing other model languages and intricate
aspects, such as multiple instances, data, and messages.

[22] [10] [39] [50] [63] Us
Input language CPN BPMN BPMN BPMN BPMN any
Collaborations 7 7 7 3 7 3

Multi-instance 7 7 7 7 7 3

Data 7 3 7 3 3 3

Output format MXML XES XES XES XES XES
Purpose aware 7 7 7 7 7 3

3: fully, 7: not supported

Table 6.2: Literature comparison.

In table 6.2 we summarize the key features of the tools presented in the
literature review and the ones expected in our prototypical tool. In detail, we
compare the the following capabilities: the language of the input model; the
possibility to manage collaborative, multi-instance, and data-aware models;
the file format of the generated log; and the ability to tune the simulation
due a specific mining purpose.

PART IV

CONCLUSIONS AND FUTURE WORK

CHAPTER 7

CONCLUSION AND FUTURE
WORK

The goal of the research presented in this thesis is twofold. On the one hand,
it formalizes an extensive part of the BPMN notation; on the other hand,
it exploits this formal semantics for the development of animation and sim-
ulation tools. This thesis presents in Chapter 3 a direct formal semantics
in the operational style for an extensive set of BPMN elements. Being close
to the standard, the semantics enables to catch the language peculiarities
such as multiple instances, communication, and data. The formalization is
supported by a running example. In particular, it makes use of the Review-
ing Procedure collaboration to show the textual notation, and explain the
operational semantics.

Beside this formalization, it is also made possible to animate collabora-
tions. Chapter 4 introduces MIDA, an animator that turns out to be an
effective supporting tool for enhancing the understanding of BPMN collab-
orations, and debugging errors that can easily arise when modeling them.
Chapter 5 furthermore exploits animation through UBBA. It enables the
representation, as well the animation, of collaboration diagrams as 3D vir-
tual worlds. The proposed BPMN semantics is partially implemented also in
UBBA to guarantee a proper animation of the model. Chapter 6 provides
instead use of the formal semantics in the field of process mining. It presents
a log generation methodology parametric to the model’s language and to the
mining purpose.

The following sections conclude the thesis by discussing results of the
work, and the assumptions and limitations of the given approach, also touch-
ing upon directions for future work.

118 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.1 Thesis Results

This thesis contributes to the definition of a direct BPMN operational se-
mantics, providing a uniform formal framework to exploit for animation and
simulation purposes. The operational semantics clarify the interplay be-
tween control features, data, message exchanges and multiple instances in
the BPMN models. The framework can manage BPMN elements with com-
plex semantics like the OR-Join gateway and the multi-instance elements. In
particular, besides multi-instance pools, the semantics support multi-instance
tasks with different execution modalities, resulting from the combination of
parameters concerning atomicity, concurrency and sequentialization/paral-
lelization of task instances. Moreover, it includes all kinds of data elements
provided by BPMN: data objects and data collections, which are local to
process instances, and data stores, persistently storing data shared among
different instances.

Besides being useful per se, as it provides a precise understanding of am-
biguous and loose points of the standard, a main benefit of this formalization
is that it paves the way for the development of supporting tools. Indeed, ani-
mation tools based on the given formal semantics are proposed. They provide
the visualization of the behavior of a collaboration both in 2D and 3D. It
is indeed well recognized that process animators play an important role in
enhancing the understanding of business processes behavior and that, to this
aim, a faithful correspondence with the semantics is essential, although this
is not always supported.

In detail, through a running example, it has been shown that MIDA
supports model designers in achieving a priori knowledge of collaboration
behavior, in terms of executed activities, exchanged messages, and evolu-
tion of data values for each active instance. This allows designers to debug
their collaboration models. In this way, they can detect, and hence prevent,
undesired executions, where, e.g., a control flow is blocked or an erroneous
interaction arises. Designers can deduce the cause beyond them by checking
the evolution of token distribution and of involved data. MIDA animation
features result helpful both in educational contexts, for explaining the be-
havior of BPMN elements, and in practical modeling activity. Notably, in
addition to the Paper Reviewing collaboration, the MIDA web page makes
available a collection of BPMNmodels referring to different scenarios ready to
be animated (e.g., travel booking, smart home heating system management,
procedures for student internship and exam registration)1. Each example
is provided in different variants, to show to the user how MIDA can spot
different execution issues. UBBA fosters the visualization of collaboration

1These BPMN models are available at: https://bitbucket.org/proslabteam/
mida/src/36a18b195b5a/assets/examples/.

https://bitbucket.org/proslabteam/mida/src/36a18b195b5a/assets/examples/
https://bitbucket.org/proslabteam/mida/src/36a18b195b5a/assets/examples/

CHAPTER 7. CONCLUSION AND FUTURE WORK 119

diagrams moving the animation into 3D virtual worlds. It results in an im-
proved communication between business analysts and stakeholders. Indeed,
UBBA can effectively help people in sharing business knowledge. In addi-
tion to animation, the provided operational semantics permits to simulate
BPMN diagrams. This technique has been widely exploited to generate ar-
tificial event logs just for a generic mining purpose. The methodology, and
the prototypical tool PPLG presented in this thesis push forward this limit,
being parametric in the modeling language and in the mining purpose.

7.2 Assumptions and Limitations

For what concerns the formal semantics, it focuses on the communication
mechanisms of collaborative systems, where multiple participants cooperate
and share information. Thus, we left out those features of BPMN whose for-
mal treatment is orthogonal to the addressed problem, such as timed events
and error handling. Moreover, to keep the proposed formalization more man-
ageable, sub-processes are left out as well, despite the fact that they can be
relevant for multi-instance collaborations. Introducing sub-processes in the
formalization cannot be done by including it as a mere macro. In fact, in
general, simply flattening a process by replacing its sub-process elements by
their expanded processes results in a model with different behavior. This is
because a sub-process, for example, delimits the scope of the enclosed data
objects and confines the effect of termination events. Therefore, it would be
necessary to explicitly deal with the resulting multi-layer perspective, which
adds complexity to the formal treatment. The formalization would become
even more complex if considering multi-instance sub-processes, which would
require an extension of the correlation mechanism.

Considering the animation, MIDA has a good level of maturity, it has
been used from 7 countries all over the world to animate more than 100
models per month. Its main limitation is the development platform. Indeed,
even if Javascript applications are light and flexible, they are not suitable for
tasks with heavy calculations like simulation. Differently, UBBA is a more
recent tool that shows some defects. It focuses on just a core set of BPMN
elements that is clearly less expressive than the one of MIDA. However, the
rendering of several concepts in 3D is not so easy (e.g., multiple instances
and data).

About simulation finally, the level of maturity of the log generation
methodology is still growing, the work is currently under development and
needs validation. For what concerns PPLG, it presents several components
already implemented that permit to instantiate the rediscoverability pur-
pose. However, other purposes and additional modelling languages are still
missing.

120 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.3 Future Work

We plan to continue this work to effectively support modeling, animation,
and simulation of BPMN multi-instance collaborations, by overcoming the
above limitations. In particular, we intend to extend the treatment of the
data perspective, by considering more sophisticated definitions of the internal
structure of data elements (e.g., based on UML [66]) with respect to the
generic record structure considered here. In addition, we plan to investigate
other expression languages operating on data (e.g., the language FEEL [54,
Ch. 10]). Moreover, we plan to extend the work, both from the formal
and practical perspective. To this aim, we intend to first define a symbolic
formal semantics, like that in [7], and then to extend the implementation
of the semantics accordingly. The use of SMT solvers will be considered
to deal with the constraints generated by the symbolic semantics. We also
plan to exploit the formal semantics, and its implementation, to enable the
verification of properties using, e.g., model checking techniques.

About MIDA, we plan to add new functionalities to further help designers
in debugging their models. In this regard, we would like to decouple the
semantics from MIDA, and implement it server side (exploiting the Java
implementation showed in Chapter 6). This would enable the possibility to
perform tasks heavier than animation, like formal verification of behavioral
properties (e.g., soundness, safeness [19]). Moreover, we also want to foster
the modeling and the animation introducing new features. One could be
backward animation, to track back model execution. This, in conjunction
with the possibility to make run-time changes on the model should speed up
model debugging.

With respect to UBBA, several further developments can be carried out.
By now, we plan to increase the core set of BPMN elements number and the
set of possible customizations, allowing the user to associate 3D graphics also
to sequence/message flows, message tokens, ans pools. Finally, in order to
assess the potential and the scalability of the approach, We plan to conduct
a validation with groups of business process designers, composed by: stu-
dents with an academic knowledge of BPMN; designers from industry that
have more practical skills; and stakeholders that are domain expert. The
validation should provide feedback both on the usability of UBBA and on
the quality and the benefits of the produced 3D animation.

Considering the log generation methodology, there are plenty of possible
further developments. Firstly, we plan to finalize the development of the
prototypical tool, and to define new case studies for different mining purposes
to get insights on the validity of the methodology. Moreover, to foster the
prototype extension, we will use wrappers to integrate external tools. For
instance, we would like to integrate formal environments, like Maude [14],

CHAPTER 7. CONCLUSION AND FUTURE WORK 121

to easily increment the number of managed modeling languages, but also
process mining tools, like Disco [29], to help the definition of new evaluation
functions, hence the handling of new mining purposes.

BIBLIOGRAPHY

[1] Thomas Allweyer and Stefan Schweitzer. A tool for animating BPMN
token flow. In BPMN Workshop, volume 125 of LNBIP, pages 98–106.
Springer, 2012.

[2] Banu Aysolmaz. PRIME Process Animation. http://prime.cs.
vu.nl/.

[3] Banu Aysolmaz and Hajo Reijers. Towards an integrated framework
for invigorating process models: A research agenda. In Business Pro-
cess Management Workshops, volume 256 of LNBIP, pages 552–558.
Springer, 2016.

[4] Jörg Becker, Martin Kugeler, and Michael Rosemann. Process manage-
ment: a guide for the design of business processes. Springer Science &
Business Media, 2013.

[5] Jörg Becker, Martin Kugeler, and Michael Rosemann. Process manage-
ment: a guide for the design of business processes. Springer Science &
Business Media, 2013.

[6] Stefanie Betz, Daniel Eichhorn, Susan Hickl, Stefan Klink, Agnes
Koschmider, Yu Li, Andreas Oberweis, and Ralf Trunko. 3D Repre-
sentation of Business Process Models. MobIS, 8:73–87, 2008.

[7] Michele Boreale and Rocco De Nicola. A symbolic semantics for the
pi-calculus. Inf. Comput., 126(1):34–52, 1996.

[8] Egon Börger and Bernhard Thalheim. A Method for Verifiable and
Validatable Business Process Modeling. In Advances in Software Engi-
neering, volume 5316 of LNCS, pages 59–115. Springer, 2008.

http://prime.cs.vu.nl/
http://prime.cs.vu.nl/

124 BIBLIOGRAPHY

[9] Ross Brown. Conceptual Modelling in 3D Virtual Worlds for Process
Communication. In Asia-Pacific Conference on Conceptual Modelling,
volume 110, pages 25–32. Australian Computer Society, Inc., 2010.

[10] Andrea Burattin. PLG2: multiperspective process randomization with
online and offline simulations. In Proceedings of the Dissertation Award,
Demonstration, and Industrial Track at BPM 2016, volume 1789 of
CEUR Workshop Proceedings, pages 1–6. CEUR-WS.org, 2016.

[11] Diego Calvanese, Giuseppe De Giacomo, and Marco Montali. Founda-
tions of Data-aware Process Analysis: A Database Theory Perspective.
In Proceedings of the 32td ACM Symposium on Principles of Database
Systems, pages 1–12. ACM, 2013.

[12] David Raymond Christiansen, Marco Carbone, and Thomas Hilde-
brandt. Formal Semantics and Implementation of BPMN 2.0 Inclusive
Gateways. In Web Services and Formal Methods, volume 6551 of LNCS,
pages 146–160. Springer, 2011.

[13] Krzysztof Cios, Witold Pedrycz, Roman Swiniarski, and Lukasz Andrzej
Kurgan. Data mining: a knowledge discovery approach. Springer, 2007.

[14] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Nar-
ciso Martí-Oliet, José Meseguer, and Carolyn Talcott. The maude 2.0
system. In International Conference on Rewriting Techniques and Ap-
plications, volume 2706 of LNCS, pages 76–87. Springer, 2003.

[15] Flavio Corradini, Alessio Ferrari, Fabrizio Fornari, Stefania Gnesi, An-
drea Polini, Barbara Re, and Giorgio O. Spagnolo. A Guidelines Frame-
work for Understandable BPMN Models. Data & Knowledge Engineer-
ing, 2017.

[16] Flavio Corradini, Fabrizio Fornari, Andrea Polini, Barbara Re, and
Francesco Tiezzi. A formal approach to modeling and verification of
business process collaborations. Sci. Comput. Program., 166:35–70,
2018.

[17] Flavio Corradini, Chiara Muzi, Barbara Re, Lorenzo Rossi, and
Francesco Tiezzi. Animating Multiple Instances in BPMN Collabora-
tions: From Formal Semantics to Tool Support. In Business Process
Management, volume 11080 of LNCS, pages 83–101. Springer, 2018.

[18] Flavio Corradini, Chiara Muzi, Barbara Re, Lorenzo Rossi, and
Francesco Tiezzi. Global vs. local semantics of BPMN 2.0 or-join. In
SOFSEM, volume 10706 of LNCS, pages 321–336. Springer, 2018.

BIBLIOGRAPHY 125

[19] Flavio Corradini, Chiara Muzi, Barbara Re, and Francesco Tiezzi. A
classification of BPMN collaborations based on safeness and soundness
notions. CoRR, abs/1809.06178, 2018.

[20] Flavio Corradini, Chiara Muzi, Barbara Re, Francesco Tiezzi, and
Lorenzo Rossi. MIDA: multiple instances and data animator. In Proceed-
ings of the Dissertation Award, Demonstration, and Industrial Track at
BPM 2018, volume 2196 of CEUR Workshop Proceedings, pages 86–90.
CEUR-WS.org, 2018.

[21] Flavio Corradini, Andrea Polini, Barbara Re, and Francesco Tiezzi. An
Operational Semantics of BPMN Collaboration. In FACS, volume 9539
of LNCS, pages 161 – 180. Springer, 2015.

[22] Ana De Medeiros and Christian Günther. Process Mining: Using CPN
Tools to Create Test Logs for Mining Algorithms, pages 177–190. DAIMI.
University of Aarhus, 2005.

[23] Gero Decker, Remco Dijkman, Marlon Dumas, and Luciano García-
Bañuelos. Transforming BPMN diagrams into YAWL nets. In Business
Process Management, volume 5240 of LNCS, pages 386–389. Springer,
2008.

[24] Jörg Desel. Teaching system modeling, simulation and validation. In
Winter Simulation Conference Proceedings, volume 2, pages 1669–1675.
IEEE, 2000.

[25] Remco Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and
analysis of business process models in BPMN. Information and Software
Technology, 50(12):1281–1294, 2008.

[26] Marlon Dumas, Alexander Grosskopf, Thomas Hettel, and Moe Wynn.
Semantics of standard process models with OR-joins. In On the Move
to Meaningful Internet Systems, volume 4803 of LNCS, pages 41–58.
Springer, 2007.

[27] Nissreen El-Saber. CMMI-CM compliance checking of formal BPMN
models using Maude. PhD thesis, Department of Computer Science,
University of Leicester, 2015.

[28] María Teresa Gómez-López, José Miguel Pérez-Álvarez, Angel Jesús
Varela-Vaca, and Rafael Gasca. Guiding the creation of choreographed
processes with multiple instances based on data models. In Business
Process Management Workshops, volume 281 of LNBIP, pages 239–251,
2016.

126 BIBLIOGRAPHY

[29] Christian Günther and Anne Rozinat. DISCO: Discover your processes.
In Proceedings of the Dissertation Award, Demonstration, and Industrial
Track at BPM 2018, volume 940 of CEUR Workshop Proceedings, pages
40–44. CEUR-WS.org, 2012.

[30] Hanwen Guo, Ross Brown, and Rune Rasmussen. Virtual worlds as a
model-view approach to the communication of business processes mod-
els. In Proceedings of the CAiSE’12 Forum, volume 855 of CEUR Work-
shop Proceedings, pages 66–73. CEUR-WS.org, 2012.

[31] Hanwen Guo, Ross Brown, and Rune Rasmussen. Human resource be-
haviour simulation in business processes. In Information Systems De-
velopment, pages 167–178. Springer, 2013.

[32] Michael Hahn, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann.
Modeling and execution of data-aware choreographies: an overview.
Computer Science-Research and Development, 33:1–12, 2017.

[33] Andreas Hermann, Hendrik Scholta, Sebastian Bräuer, and Jörg Becker.
Collaborative business process management - a literature-based analysis
of methods for supporting model understandability. In Wirtschaftsin-
formatik, 2017.

[34] Richard Hull, Jianwen Su, and Roman Vaculin. Data management per-
spectives on business process management: Tutorial overview. In Pro-
ceedings of the 2013 ACM SIGMOD International Conference on Man-
agement of Data, page 943–948. Association for Computing Machinery,
2013.

[35] IBM. IBM Innov8 2.0. http://www-01.ibm.com/software/
solutions/soa/innov8/full.html.

[36] IEEE. Standard for eXtensible Event Stream (XES) for Achieving In-
teroperability in Event Logs and Event Streams - IEEE Standard, 2016.

[37] Kurt Jensen. A brief introduction to coloured petri nets. In
Ed Brinksma, editor, Tools and Algorithms for the Construction and
Analysis of Systems, pages 203–208. Springer, 1997.

[38] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured Petri
Nets and CPN Tools for modelling and validation of concurrent sys-
tems. International Journal on Software Tools for Technology Transfer,
9(3):213–254, 2007.

[39] Valeriia Kataeva and Anna Kalenkova. Applying graph grammars for
the generation of process models and their logs. 8, 2014.

http://www-01.ibm.com/software/solutions/soa/innov8/full.html
http://www-01.ibm.com/software/solutions/soa/innov8/full.html

BIBLIOGRAPHY 127

[40] Robert M. Keller. Formal verification of parallel programs. Communi-
cations of the ACM, 19(7):371–384, 1976.

[41] Ahmed Kheldoun, Kamel Barkaoui, and Malika Ioualalen. Formal ver-
ification of complex business processes based on high-level Petri nets.
Information Sciences, 385:39–54, 2017.

[42] David Knuplesch, Rüdiger Pryss, and Manfred Reichert. Data-aware
interaction in distributed and collaborative workflows: Modeling, se-
mantics, correctness. In 8th International Conference on Collaborative
Computing: Networking, Applications and Worksharing, pages 223–232.
IEEE, 2012.

[43] Marcello La Rosa, Hajo Reijers, Wil van der Aalst, Remco Dijkman,
Jan Mendling, Marlon Dumas, and Luciano GarcíA-BañUelos. APRO-
MORE: An Advanced PROcess MOdel REpository. Expert Systems with
Applications, 38(6):7029–7040, 2011.

[44] Ann Lindsay, Denise Downs, and Ken Lunn. Business processes at-
tempts to find a definition. Information and Software Technology,
45(15):1015–1019, December 2003.

[45] Felix Mannhardt. Multi-perspective process mining. In Proceedings of
the Dissertation Award, Demonstration, and Industrial Track at BPM
2018, volume 2196 of CEUR Workshop Proceedings, pages 41–45. CEUR-
WS.org, 2018.

[46] Jan Mendling, Hajo A. Reijers, and Wil van der Aalst. Seven pro-
cess modeling guidelines (7pmg). Information and Software Technology,
52(2):127–136, 2010.

[47] Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske. Mod-
eling and Enacting Complex Data Dependencies in Business Processes.
In Business Process Management, volume 8094 of LNCS, pages 171–186.
Springer, 2013.

[48] Andreas Meyer and Mathias Weske. Activity-centric and artifact-centric
process model roundtrip. In Business Process Management Workshops,
volume 171 of LNBIP, pages 167–181. Springer, 2014.

[49] Andreas Meyer et al. Data perspective in process choreographies: mod-
eling and execution. In Techn. Ber. BPM Center Report BPM-13-29,
2013.

[50] Alexey Mitsyuk, Ivan Shugurov, Anna Kalenkova, and Wil van der
Aalst. Generating event logs for high-level process models. Simulation
Modelling Practice and Theory, 74:1–16, May 2017.

128 BIBLIOGRAPHY

[51] Rocco De Nicola. A gentle introduction to process algebras, 2013.

[52] OASIS. Web Services Business Process Execution Language Version
2.0, April 2007.

[53] OMG. Business Process Model and Notation (BPMN V 2.0), 2011.

[54] OMG. Decision Model and Notation (DMN V. 1.1), 2016.

[55] Philipp Fromme and Sebastian Warnke and Patrick Dehn. bpmn-
js Token Simulation, 2017. https://github.com/bpmn-io/
bpmn-js-token-simulation.

[56] Thomas Prinz and Wolfram Amme. A Complete and the Most Liberal
Semantics for Converging OR Gateways in Sound Processes. Complex
Systems Informatics and Modeling Quarterly, 1(4):32–49, 2015.

[57] Rosario Pugliese and Francesco Tiezzi. A calculus for orchestration of
web services. Journal of Applied Logic, 10(1):2–31, March 2012.

[58] Manfred Reichert and Barbara Weber. Enabling flexibility in process-
aware information systems: challenges, methods, technologies. Springer
Science & Business Media, 2012.

[59] Hajo Reijers, Irene Vanderfeesten, Marijn Plomp, Pieter van Gorp, Dirk
Fahland, Wim van der Crommert, and H. Daniel Diaz Garcia. Evaluat-
ing data-centric process approaches: Does the human factor factor in?
Software & Systems Modeling, 16(3):649–662, 2017.

[60] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan.
Introduction to information retrieval, volume 39. Cambridge University
Press, 2008.

[61] Signavio GmbH. Signavio, 2018. http://www.signavio.com/.

[62] Sebastian Stamm. Creating a 3D renderer for BPMN,
2018. https://blog.camunda.com/post/2018/02/
creating-a-3d-renderer.

[63] Thomas Stocker and Rafael Accorsi. SecSy: Security-aware synthesis of
process event logs. InWorkshop on enterprise modelling and information
systems architectures, pages 71–84. Citeseer, 2013.

[64] Anna Suchenia, Tomasz Potempa, Antoni Ligęza, Krystian Jobczyk,
and Krzysztof Kluza. Selected Approaches Towards Taxonomy of Busi-
ness Process Anomalies. In Advances in Business ICT: New Ideas from
Ongoing Research, pages 65–85. Springer, 2017.

https://github.com/bpmn-io/bpmn-js-token-simulation
https://github.com/bpmn-io/bpmn-js-token-simulation
http://www.signavio.com/
https://blog.camunda.com/post/2018/02/creating-a-3d-renderer
https://blog.camunda.com/post/2018/02/creating-a-3d-renderer

BIBLIOGRAPHY 129

[65] Bernhard Thalheim, Ove Sorensen, and Egon Börger. On Defining the
Behavior of OR-joins in Business Process Models. Journal of Universal
Computer Science, 15(1):3 – 32, 2009.

[66] OMG UML. Unified modeling language. Object Management Group,
page 105, 2001.

[67] Wil van der Aalst. Process mining. Communications of the ACM,
55(8):76–83, 2012.

[68] Wil van der Aalst, Arya Adriansyah, Ana De Medeiros, Franco Arcieri,
Thomas Baier, Tobias Blickle, Jagadeesh Chandra Bose, Peter Van
Den Brand, Ronald Brandtjen, Joos Buijs, et al. Process mining man-
ifesto. In International Conference on Business Process Management,
pages 169–194. Springer, 2011.

[69] Wil van der Aalst and Arthur ter Hofstede. YAWL: yet another workflow
language. Information systems, 30(4):245–275, 2005.

[70] Wil van der Aalst, Ton Weijters, and Laura Maruster. Workflow min-
ing: Discovering process models from event logs. IEEE Transactions on
Knowledge and Data Engineering, 16(9):1128–1142, 2004.

[71] Boudewijn van Dongen, Ana De Medeiros, and Lijie Wen. Process min-
ing: Overview and outlook of petri net discovery algorithms. In Trans-
actions on Petri Nets and Other Models of Concurrency II, LNCS, pages
225–242. Springer, 2009.

[72] Boudewijn van Dongen andWil van der Aalst. A Meta Model for Process
Mining Data. EMOI-INTEROP, 160:30, 2005.

[73] Pieter van Gorp and Remco Dijkman. A visual token-based formaliza-
tion of BPMN 2.0 based on in-place transformations. Information and
Software Technology, 55(2):365–394, 2013.

[74] Kees van Hee and Zheng Liu. Generating benchmarks by random step-
wise refinement of petri nets. In ACSD/Petri Nets Workshops, 2010.

[75] Visual Paradigm. Business Process Design with Powerful BPMN
Software. https://www.visual-paradigm.com/features/
bpmn-diagram-and-tools/.

[76] Hagen Völzer. A new semantics for the inclusive converging gateway in
safe processes. In Business Process Management, volume 6336 of LNCS,
pages 294–309. Springer, 2010.

https://www.visual-paradigm.com/features/bpmn-diagram-and-tools/
https://www.visual-paradigm.com/features/bpmn-diagram-and-tools/

[77] Hagen Völzer. Faster Or-Join Enactment for BPMN 2.0. In Business
Process Model and Notation, volume 95 of LNCS, pages 31–43. Springer,
2011.

[78] Colin Ware and Glenn Franck. Viewing a Graph in a Virtual Reality
Display is Three Times as Good as 2D Diagram. In IEEE Symposium
on Visual Languages, pages 182–183, 1994.

[79] Mathias Weske. Business Process Management. Springer, 2012.

[80] Petia Wohed, Wil van der Aalst, Marlon Dumas, Arthur ter Hofstede,
and Nick Russell. Pattern-based analysis of UML activity diagrams.
Beta, Research School for Operations Management and Logistics, Eind-
hoven, 2004.

[81] Peter Wong and Jeremy Gibbons. A Process Semantics for BPMN. In
Formal Methods and Software Engineering, volume 5256 of LNCS, pages
355–374. Springer, 2008.

[82] Moe Wynn, Eric Poppe, Jingxin Xu, Arthur ter Hofstede, Ross Brown,
Azzurra Pini, and Wil van der Aalst. ProcessProfiler3D: A visualisa-
tion framework for log-based process performance comparison. Decision
Support Systems, 100:93–108, 2017.

[83] Moe Wynn, Eric Verbeek, Wil van der Aalst, Arthur ter Hofstede, and
David Edmond. Business process verification-finally a reality! Business
Process Management Journal, 15(1):74–92, 2009.

[84] Hanna Yang, Minjeong Park, Minsu Cho, Minseok Song, and Seongjoo
Kim. A system architecture for manufacturing process analysis based
on big data and process mining techniques. In 2014 IEEE International
Conference on Big Data, pages 1024–1029, 2014.

Acknowledgments

A long time ago in Camerino ... I started a tortuous journey full of obstacles but
personally rewarding. Everything was supposed to end three years ago getting the
degree. I was almost ready to leave Camerino when, right at the end, someone
suggested me to raise the bar even further and try to do the PhD. Do or do not,
there is no try. The PhD was certainly not my plan for a variety of reasons which
today seem frankly very stupid. Me doing the PhD? It just doesn’t exist, it’s not
for me, and sincerely it seems a trap. At that moment, I was so scared because I
knew that I would be dealing with the biggest obstacle: myself. I was frightened of
having to attend international conferences and talk about my research in front of
respected professors.

Anyway, the PhD has not only a dark side, and step by step I started getting
more and more involved in doing research. I loved the opportunity to build my
projects, to work with colleagues who have taught me a lot, and to listen to very
inspiring talks made by relevant professors. I met a lot of people and I had the
opportunity to visit many places. The PhD allowed me to learn a lot of new things,
the most important to me is the scientific method by which now I can see the world
from a more pragmatic perspective.

Now that I have reached the finish line, I end up with this thesis. It is the proof
of work of this hard but wonderful journey. Thus, I have to thank a lot of people,
starting with the professors who helped me in different ways.

First of all, I want to thank Prof. Barbara Re and Prof. Francesco Tiezzi for
believing in me from the very beginning, they are great supervisors as well as
endless sources of hope.

A very special thank you goes also to Prof. Flavio Corradini for the lot of effort
he spent in keeping our university alive, even after a terrifying earthquake.

Another special thank you goes to Prof. Andrea Burattin, who hosted me during
the visiting period at DTU University. He inspired me a lot and made me feel at
home also in a place where the native call pasta alla carbonara a strange sauce

with mushrooms and cream.
Clearly, I want to mention the members of the committee, Prof. Maurice ter

Beek and Prof. Pascal Poizat, the suggestions and the comments they gave me
reviewing this thesis have been very useful for finalizing it and for planning future
activities.

As results become better if one works with colleagues, I want to give a huge
thank you to all the members of the ProsLab team. A special mention goes to
Fabrizio, Chiara, and Andrea who were also my best office mates.

Obviously, I want to say thank you to my parents and my sister that always
stand by me, even if I hardly spread my doubts and my problems with them.

Last but first, since she was also mentioned in the dedication, I thank the love
of my life Chi for keeping our relationship still synallagmatic as it was in that little
room overlooking the mountains.

	Abstract of the Dissertation
	List of Publications
	List of Figures
	List of Tables
	I Introduction and Background
	Introduction
	Motivations
	Research Objectives
	Thesis Structure

	Background
	Business Process Management
	Process Animation
	Process Mining

	Business Process Model and Notation 2.0
	BPMN Notation
	Running Example
	BPMN XML Representation

	Operational Semantics

	II BPMN 2.0 Formal Framework
	Formalization of BPMN Collaborations
	Multiple Instances, Messages and Data in a Nutshell
	Textual Notation of BPMN Collaborations
	Semantics of BPMN Collaborations
	Process Configuration
	Process Semantics
	Collaboration Configuration
	Collaboration Semantics

	Lessons Learned
	Comparing with other Approaches
	On Formalizing Multiple Instances and Data
	On Formalizing the OR-Join Gateway

	III Formalization at Work
	MIDA: Multiple Instances and Data Animator
	MIDA Overview
	MIDA in Action: Modeling
	MIDA in Action: Animation and Debugging
	Comparing with other Approaches

	UBBA: Unity Based BPMN Animator
	UBBA Overview
	UBBA in Action
	Comparing with other Approaches

	PPLG: Purpose Parametric Log Generator
	Motivations
	Event Logs Generation Methodology
	Rediscoverability Example in PPLG
	Comparing with other Approaches

	IV Conclusions and Future Work
	Conclusion and Future Work
	Thesis Results
	Assumptions and Limitations
	Future Work

	Bibliography

