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Introduction

In school, students learn how to reason and argue, and logic is the art of reasoning.
Aristotle, who first developed it, held it to be so, i.e., the foundation of all science.
But one certainly cannot impose on girls and boys an institutional course in logic
as a prerequisite to all other knowledge. Not even in high school, when the matu-
ration process of the students allows the teacher some more abstraction. In truth,
in the Archive of Public Education - Cultural, Educational and Professional Pro-
file of High Schools [129], it is stated that the logical-argumentative area assumes
a central role, because it contributes to the formation of a citizen who “supports
her/his own convictions, bringing adequate examples and counterexamples and us-
ing concatenations of statements; accepts to change her/his opinion by recognising
the logical consequences of a correct argumentation”. But education in logic must
be done prudently, in the right formative ways.

Some would argue that the practice of mathematics, often based on reasoning, in
particular the model of Euclidean geometry, is in itself a cue to progressively in-
sinuate logical mechanisms. Unfortunately, in recent times, however, Euclidean
geometry seems to be a subject in disgrace, often neglected or forgotten. Instead,
there are those who emphasise, in mathematics, the importance of intuition, dis-
covery, experience and error, contrasting it with the excessive rigour of too many
proofs. The purpose of this thesis is to propose various ideas that, within the fun-
damental programmes of high school, specifically of Italian Liceo Classico and Liceo
Scientifico, attempt to insinuate logic and accustom the students to logic in a way
that we hope is light, clear and pleasant. We therefore do not propose a systematic
treatment. We prefer to recall basic logic and then to give scattered ideas rather
than a structured and definitive theory. But, as mentioned, we are confident that
these hints can best prepare students of high school for logic.
Indeed we address ourselves primarily to teachers and we believe that their knowl-
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edge of logic is useful and indeed necessary. But through them we also wish to
address students.

The thesis is organised as follows.

The first chapter introduces and discusses the whole topic and explains why in our
opinion logic is important in high schools. We also discuss how and when to propose
it to students.
The next two chapters introduce basic logic to teachers and students. The second
illustrates the simplest logic, the Boolean one, recapitulating its essential points and
emphasising in particular the use of connectives. The third deals with first-order
logic, which we may consider the most classical of logics. Here we highlight in par-
ticular the function of quantifiers.
The following chapters propose several topics, belonging to logic or related to logic,
that seem very intriguing and could be considered in high school.
First, in chapter four, we treat Aristotelian syllogistics, which, even in recent times,
frequently appears in various access tests. We will present some amusing introduc-
tions to it, such as those of Lewis Carroll [25] or Pagnan-Rosolini [86].
Chapter five is dedicated to proofs without words. Relying on various examples
from geometry, number theory and combinatorial calculus, it illustrates how reason-
ing can sometimes be successfully expressed and developed through the images and
intuitions they suggest. In this chapter, we also discuss the logic of images proposed
by Leonardo in the Codex Atlanticus [73] to address and solve geometric questions
often linked to the Pythagorean theorem.
The sixth chapter is dedicated to what Henri Poincaré called the “mathematical
reasoning” par excellence, namely the principle of induction. This law governs nat-
ural numbers and is often used as a powerful demonstrative tool in various exercises.
However, students seldom learn it and above all understand it properly. Drawing
on the history of the principle of induction, from its primitive intuitions to its for-
malisation by Peano and Dedekind, we attempt to approach it in what we hope will
be a pleasant and appealing way, also o�ering a wide range of examples.
Logical paradoxes are another logical theme that is impossible to forget: mental
games that not only disorientate but also intrigue and amuse, which are the heart
of the seventh chapter.
To the classical logics considered at the beginning of the thesis, based on two truth
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values, yes or no, we then contrast multi-valued and fuzzy logics, which are better
suited to analysing situations of uncertainty. We link them, in chapter eight, to the
Rényi-Ulam game, which searches for truth in contexts in which the information
received may be lying and deceptive.
The final chapter takes up a basic topic of high school mathematics: equations.
Diophantine games show us how they can be an opportunity for challenge and fun,
as well as suggesting intriguing insights into fundamental themes of modern math-
ematics: not only number theory and algebra, but also game theory and the theory
of computability and computational complexity.

For a general and in-depth overview of mathematical logic, we refer to [10] and [114].
For the theory of computability and computational complexity we refer the reader
to [37] and [83], for number theory to [60].
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Chapter 1

Why Mathematical logic?

1.1 Some history of logic

There are at least three routes leading to Logic. Two are classical, thousands of
years old. The third is relatively more recent. First, there is the path of dialectics,
which studies the laws of reasoning in order to enable to use and abuse them in
public debates with opponents. Then there is the way of paradoxes (which can be
traced back to the sixth century BC). Reasoning sometimes leads to unpredictable
conclusions that clash with common experience, or even to antinomies, real puzzles
with no apparent way out. In such cases, analysis of reasoning can identify and
isolate errors, or confirm embarrassments. Finally, the third, and most recent, way
opens up the use of mathematical methods in logic, with its repertoire of arguments
and demonstrations. “Mathematical” logic, born essentially in the nineteenth cen-
tury, can today be considered a branch of modern mathematics.
One of the most important figures in this multi-millennial history, which for the
West leads from Greek civilisation to the present day, is Plato, who was the first
to identify certain key laws of logic, in particular the principle of non-contradiction,
according to which one cannot a�rm everything and the opposite of everything, i.e.
confirm and deny a proposition at the same time, as the Sophists or the dialecticians
did. He stated it in some way in Book IV of his famous dialogue Republic. Plato can
also be traced back to the first intuition of the set theory that he called the theory of
ideas, which was the first attempt to understand why a set of objects could be both
one and many at the same time. It is not by chance that some of the definitions
with which Cantor tried to determine the concept of a set make explicit reference
to Plato, for example to his dialogue Philebus [96]. However, the greatest logician
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CHAPTER 1. WHY MATHEMATICAL LOGIC?

of antiquity, and in many ways the father of logic as a science, or at least as the
basis of all science, was Aristotle, who mainly studied the reasoning scheme called
syllogism. A syllogism consists of an ordered triple of propositions in which we find
what in modern terms are called quantifiers: all, some, none. Aristotle a�rmed the
principle of non-contradiction, accompanying it with the principle of the excluded
middle, or excluded third (tertium non datur). As we saw before, the former states
that for no proposition A both A and its contrary can be a�rmed simultaneously.
The latter adds that, in any case, exactly one of the two alternatives applies, A or
not A, and there are no intermediate possibilities.
A complementary analysis to Aristotle’s was carried out by the Stoics, who were
interested in a “lower” level of analysis, that of connectives: negation, conjunction,
disjunction and implication. In the school of the Stoics, the name of Chrysippus is
fundamental, who in a huge series of works (about 700) defined precisely the con-
nectives and also studied the laws of reasoning of propositional logic, in particular
modus ponens and modus tollens. Among other things, Chrysippus also provided an
important contribution to mathematics, because he considered the one as a number.
Greek logic is thus based on these three cornerstones: Plato, Aristotle and Chrysip-
pus.
After the decline of the classical school, there was a period of disinterest for many
centuries, also due to the dark ages of the Middle Ages. But after the year 1000,
logic had its second youth, a rebirth that began with Peter Abelard and St Anselm.
Of course, the problems and the atmosphere were of a completely di�erent nature
from those of the Greek world: there were no longer dialectical discussions in pub-
lic squares and questions of a religious nature were mainly addressed. The idea of
Scholasticism was to arrive at a definition of divinity in logical terms and at one or
more demonstrations of the existence of God, obtained as if they were real theorems
of mathematics. This study, by the very way it was structured, required great di-
alectical and logical skill. Anselm of Aosta proposed the ontological proof of God’s
existence, while Abelard was interested in the question of universals and thus of
those general concepts that can be predicated of several individuals.
But to their names can be added that of William of Ockam, perhaps the greatest
exponent of medieval logic. Thomas Aquinas set out five arguments to prove the
existence of God. Peter of Spain (Petrus Hispanus), who was also pope, fixed the
syllogistic. He seems to have suggested the nomenclature and consequent classifi-
cation of syllogisms, still in use today, based on the vowels A, E, I, O (taken from
AdfIrmo and nEgO) and somehow linked to quantifiers. In extreme synthesis: A =
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1.1. SOME HISTORY OF LOGIC

all, E = none, I = some, O = not all.
Scholasticism was a rather long period, about three and a half centuries, and it also
allowed the rediscovery of those issues that had been on the agenda in the Greek
period, thanks to the recovery and study of the original texts. We refer in particular
to the works of Aristotle, which returned to Europe after having been preserved
and handed down by the Arabs, but also to the logic of the Stoics, which had been
removed and completely forgotten and which the Scholastics had to reinvent, redis-
cover and study again.
After this second youth, there was a new interlude of oblivion for logic, due partly
to the decline of interest and much to the degree of extreme sophistication that
Scholasticism had reached towards the end of the 14th century: the arguments had
become too complicated to be developed e�ectively within natural language.
New impulses came with Leibnitz a few centuries later, in the second half of the
1600s. They followed the revolutions that had taken place in the meantime in
other fields and in particular in mathematics and algebra. The studies of Viète and
Descartes had shown the need for a formal language in this field, which translated
the solution of equations into abstract formulas. Leibnitz thought that logic too
could be studied with abstract mathematical methods, translating it into calcula-
tions and equations, whose solution could settle any discussion on objective bases.
As a mathematician, Leibnitz wanted to be able to mechanise the reasoning: after
transcribing the data of the question, even the most common ones, into the appro-
priate language, he wanted to decide on their solution on the basis of appropriate
computations. It is in this sense that his famous exhortation “Calculemus!” should
be read.
Leibnitz’s utopia began to be realised only with the third youth of logic, whose be-
ginning can be o�cially established in 1847, and whose conclusion can perhaps be
fixed in 1936.
The first step, in 1847, was Boole’s discovery that the propositional logic of the
Stoics could be based on its own particular algebra. In the case of propositions
with two truth values, true or false, the latter can be represented by the numbers
1, 0 respectively and the truth of new propositions, formed with the connectives of
conjunction, disjunction and negation, correspond respectively to the operations of
multiplication, addition modulo 2 and subtraction from 1. New rules replaced the
classical algebraic rules: for example, repeating a proposition, i.e. joining it with
itself, does not alter its evaluation, whether true or false; like saying that the mul-
tiplication operation (if restricted to 0 and 1) is idempotent. In this way both the

6



CHAPTER 1. WHY MATHEMATICAL LOGIC?

principle of non-contradiction and the principle of the excluded third are accepted.
Boole’s algebra provided an early model of the calculus ratiocinator that Leibnitz
had envisioned, and showed how logical deduction could be treated as a branch of
mathematics.
After Boole, logic never stopped growing. In the decades that followed, Boole’s
model also became the basis for the design and operation of electronic circuits and
was used by computers to interpret and execute program instructions.
It was with Frege, the German philosopher, logician and mathematician of the late
1800s and early 1900s, that modern logic began to receive a precise axiomatic frame-
work. This is why he is considered the father of modern mathematical logic.
His very ambitious project (logicism) was indeed to prove that all mathematics
could be based on logic. During the 19th century, the German mathematician Karlo
Weierstrass (1815-1897) had achieved the so-called arithmetisation of analysis and
thus highlighted the role of natural numbers in the mathematical structure. For this
reason he was called the “father of modern analysis”. Frege then set out in search of
a logical system that would be the foundation of arithmetic and, through it, of the
other parts of mathematics. First he found an abstract language, inspired in some
way by Chinese ideography, with which to represent mathematical objects. Thus
was born the Begri�sschrift, the first example of an artificial formal language with
a set of rules to establish which sequences of symbols are acceptable and which are
not.
But Frege also managed to reconcile and extend both Aristotelian and Stoic proposi-
tional logic, emphasising the use of quantifiers and relations to construct the so-called
logic of predicates. He introduced the concept of a formal system. He provided log-
ical axioms of reasoning, to guide deductive calculus, and was also interested in the
concept of truth. In this way, he made an immense advance over previous logics,
including Boolean logic.
A complete and convincing definition of truth came (at least for first-order logic)
only in 1935 with Tarski. More or less contemporary was Gentzen’s proposal of an
appropriate system of axioms/rules of deduction for the syntax of logical calculus:
the so-called Natural Deduction, which actually avoids the use of axioms and em-
phasizes the role of rules - 15 in his case for first-order logic, 11 for propositional
logic.
There are also other equivalent systems of proof which reverse the axiom/rule rela-
tionship, giving more emphasis to the former. Moreover, Hilbert had already paid
great attention to the concept of proof, together with formalism, in the previous
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1.1. SOME HISTORY OF LOGIC

years.
In his project to base the whole of mathematics on logic, Frege could also rely on
the concept of set, which in the late nineteenth century was developed by Georg
Cantor to allow a rigorous mathematical approach to the study of infinity. Frege
believed that a foundation of sets could support arithmetic and thus, as mentioned,
all mathematics. He then introduced the concept of natural number in purely logical
terms, thanks to set theory. He then turned to find appropriate foundations for this
theory.
The Fregean system for sets had six logical principles but, of these, the two basic
ones were extensionality and comprehension. They can be formulated in a language
with individual variables for sets and with predicates for membership (œ) and, of
course, equality (=).
The principle of extensionality states that two sets are equal if and only if they have
the same elements; therefore sets are to be understood only by their elements, and
not by the description by which they are introduced.
The principle of comprehension states that given every property P (x) defines a set,
that is the set of elements that satisfy it. Note, however, the delicate role that
the concept of property plays in the statement - intuitive, and therefore to be fully
formalised.
But, in June 1902, a letter arrived to Frege from the young philosopher Bertrand
Russell that challenged the logicist program. In particular, Russell noted antinomies
within it, i.e. propositions that look correct, but instead leads to contradictions.
Russell’s letter made particular reference to the principle of comprehension and
pointed out its inconsistency. For if P (x) represents the property x /œ x, i.e. that x

does not belong to itself, then by the principle of comprehension one can define the
set of all x that do not belong to themselves, i.e. M = {x : x /œ x}. But then about
M one easily arrives at the contradiction

M œ M Ωæ M /œ M

which is equivalent to

(M œ M)·¬(M œ M).

In this consists Russell’s paradox, which shows that not every property determines
a set, and that not every collection of elements can be considered a set.
The contradictions that emerged from Russell’s studies at the beginning of the
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CHAPTER 1. WHY MATHEMATICAL LOGIC?

twentieth century touched and to some extent undermined the ambition to pro-
vide mathematics of the time with the appropriate foundations; they led to multiple
and opposing reactions among scholars. In fact, in contrast to those who, like Frege,
were shocked and discouraged, there were those, like David Hilbert, who felt that
Russell’s incident rea�rmed the importance of a serious, rigorous and well-founded
axiomatic method, immune to doubts and contradictions.
Hilbert was a German mathematician, one of the most eminent and influential of the
nineteenth and twentieth centuries, professor in the prestigious University of Göttin-
gen. He was particularly interested in algebraic number theory. One of his greatest
merits, in addition to providing modern physics with the appropriate mathematical
foundations, was to reorganise the foundations of geometry in the late 19th century.
But Hilbert also made significant contributions to the philosophy of mathematics
and logic.
He welcomed Cantor’s work on infinity and celebrated it with enthusiastic expres-
sions.
To defend Cantor from his numerous detractors, and to demonstrate that infinity
is an admissible theme in mathematics as well, Hilbert developed his own general
conception of mathematics, seen as a collection of hypothetical-deductive systems
concerning arithmetic, or analysis, or plane geometry, etc., including infinity, fully
free in their development, except for the respect of two fundamental rules:

• consistency, i.e. the absence of contradictions, the certainty that the proofs
arising from that system will never produce absurd and irreconcilable results;

• completeness, i.e. the capacity to exclude any ambiguity, to prove or dis-
prove any proposition that arises within the system, to prove in any case the
proposition itself or its negation.

Thus, for Hilbert, “good” mathematics is a repertoire of formal systems, each with
its axioms, rules and theorems, and each consistent and complete. In 1928 Hilbert
raised two problems within Frege’s first-order logic. First, completeness, specifically
the proof that this logic could prove by its rules of deduction all and only those
formulas which, seen from the outside, are accepted as valid. The second ques-
tion was the Entscheidungsproblem, or decision problem, and called for a method
which, given a formula of first-order logic, would determine in a finite number of
well-defined and e�ective steps whether or not it was provable.
Hilbert was also a representative of the reductionist approach. At the Second In-
ternational Congress of Mathematics in Paris in 1900, he gave a speech of historic
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1.1. SOME HISTORY OF LOGIC

significance [62], proposing a list of 23 open problems, which he considered to be the
challenge for mathematicians of the coming century. The nature of these problems
was varied and uneven: some were very specific and technically well delineated, oth-
ers were too general or too vague to admit an incontrovertible answer. Still others,
Problems 1, 2 and 10 (Continuum Hypothesis, Consistency of Arithmetic and Solv-
ing Diophantine Equations) have solutions that perhaps were unexpected to Hilbert:
they are also important because of their close connection with the foundations of
the Computability Theory, and thus with a formal framing of the foundations of
Computer Science.
Hilbert’s attempt at a complete foundation of mathematics was destined to fail: it
was in fact in 1930 that Gödel with his incompleteness theorems demonstrated how
a non-contradictory formal system, which includes at least arithmetic, cannot prove
its own consistency within its axioms.
The first incompleteness theorem states that in any formal system with the above
properties, propositions can be constructed that the system cannot decide: it can
neither prove nor reject them on the basis of its axioms and rules of deduction.
The second incompleteness theorem states that no formal system that includes el-
ementary number theory and is free of contradictions can (under appropriate ad-
ditional assumptions) self-certify its consistency, i.e. prove it internally as its own
theorem.
It was only after Gödel’s breakthrough, in 1936, that Church and Turing found a
solution to Hilbert’s second problem, that was just the Entscheidungsproblem. By
both resorting to the techniques first used by Gödel in his incompleteness theorem
for arithmetic, Church and Turing independently established that the decision prob-
lem is unsolvable. As a result, they proved what is now called the undecidability of
first-order logic.
1936 was therefore a year of innovation, not least because it was in the course of his
article [116] on the Entscheidungsproblem that Alan Turing

• defined computability in terms of Turing machines (TMs),

• formulated the halting problem for TMs and basically proved its insolubility,

• connected the halting and decision problems.

Before concluding this paragraph, we would like to underline once again how the
study and the progress of logic have allowed the development of modern computer
science together with its languages and programs: Leibniz’s dream of a universal
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CHAPTER 1. WHY MATHEMATICAL LOGIC?

logic, the fundamental works of Turing and Church, and the problems that in the
famous list of 23 mathematical questions proposed by Hilbert in 1900 occupy the
places 2 and 10, but also 1, have led scientific thought towards the conquest of an
explicit concept of “computability”, which preceded by some years the realisation of
the first modern computers.

1.2 Mathematics: intuition or rigour?

The debate on the role of intuition and rigour in mathematics education and re-
search is still very lively, but it has very ancient roots. In some sense, the issue
can be traced back to classical Greece and Euclid, for the geometry of the Elements
[44] was considered and even revered for centuries as a model of immaculate rigour.
Euclid, however, developed it on the basis of intuition, or in any case of perceptible
experience, taking care to provide explicit and accurate constructions of the geo-
metric objects he dealt with. Moreover, in the Elements, the rigour is not always
impeccable and the very first construction itself (that of an equilateral triangle with
an assigned side) contains a logical fallacy, albeit venial.
To tell the truth, the need for rigour, although intrinsically present in Euclid’s work,
did not fully emerge in mathematics until later, at the end of the nineteenth cen-
tury. In earlier periods of history, mathematics focused above all on solving problems
prompted by the physical analysis of the world. The 1800s, on the other hand, were
called “the century of rigour”, and indeed in that period mathematics addressed the
question of the relationship between intuition and experience and developed various
theories in this respect.
Felix Klein was one of the first to investigate what was meant by geometric intu-
ition. He was convinced that such intuition was something essentially imprecise: for
him the axiom was nothing more than the search for a precise statement in an im-
precise intuitive construction. Axioms, therefore, only secured a logical substratum
on which to base purely intuitive observations. It is therefore clear that Klein was
opposed to strictly axiomatic approaches. Regarding the true nature of geometric
intuition, he distinguished between naive and refined intuition. The intimate reason
for this distinction lies in the fact that the former is totally lacking in rigour while
the latter is not a true intuition, since it originates from the logical development of
perfectly rigorous axioms. Naive intuition is that which makes it possible to conceive
of a completely abstract mathematical entity by making it concrete, so that the re-
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sulting definitions are only rigorous in approximation. Klein rejects this intuition
that can be derived directly from the senses in favour of the refined intuition that
is obtained through a profound conceptual reworking of sensory data.
In this way, the basic question of whether mathematics should rely on intuition or
rigour, on experience or logic, on images or thoughts, is posed in a deeper form. For
example, in the case of geometry: can the research activity of homo mathematicus
(be it invention or discovery) be based only on names, signs or symbols, or must he
necessarily have recourse to drawings, figures, mental representations, schemes or
diagrams?
At the end of the nineteenth century, mathematics, within and outside of geome-
try, began to present itself as an eminently abstract and formalised discipline. In
this perspective, Euclid’s axiomatic method, already discussed in the previous para-
graph, was revised and perfected, and articulated in a ternary scheme that seemed
to create a sort of theoretical perpetuum mobile: axioms, definitions, theorems.
A theorem is nothing more than the last step in a finite chain of syntactically correct
propositions derived from axioms using «inference rules» accepted as valid by the
scientific community. This is the formalist conception of mathematics, the formula-
tion of which is due to Hilbert, who theorised it as a way out of the so-called “crisis
of the foundations”, as previously mentioned, in often polemical opposition with
mathematicians such as Luitzen Brouwer and Henri Poincaré.
In the formalist conception there is hardly any place for images. In his Grundlagen
der Geometrie of 1899 [63], for example, Hilbert settled Euclidean geometry defini-
tively with an axiomatization that eliminated all intuitive and visual suggestions
associated with terms such as point, line and plane.
In 1918, in an essay entitled Axiomatic Thinking [64], he expressed his conviction:
“I believe: everything that can be the object of scientific thought, as soon as it is ripe
for the formation of a theory, falls under the axiomatic method and through it under
mathematics.”
In a letter to Frege, Hilbert defends his approach as follows:
“If this is mathematics, a science of abstract words, naked and «as bare as a ghost to
whom one would like to lend a sheet», its practitioners would seem to be hopelessly
condemned to wander in an obscure labyrinth of purely syntactic concepts, a dense
network of hidden structures. Why, then, do we continue to draw triangles and cir-
cumferences on blackboards? Why do both research articles and textbook pages teem
with figures, diagrams, schemes and drawings? Why do mathematicians, in their
reasoning, not limit themselves to rattling o� syllogisms or performing calculation
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after calculation, but strive to visualise problems by resorting to images of all kinds?
Images that may be vague, confused, indistinct, or even unrepresentable, or even
unintelligible, but which nonetheless play an essential and not merely accessory role
in research work and the learning process.”
Poincaré, who was a mathematician as famous as Hilbert, and who certainly shared
Hilbert’s love of mathematics and research, took a completely di�erent view; both
believed in a “science for science’s sake”, so beautiful in itself. They then ex-
changed expressions of mutual esteem (in truth, more on Hilbert’s part, who was
also younger). On the previous subject, however, the visions of the two tended to
diverge.
Poincaré devoted very beautiful and compelling autobiographical pages to intuition
and he did not avoid heavy criticisms of Hilbert’s aristocratic geometry. A famous
example can be read in his treatise Science and Method [100], blaming the abstract
way in which the German mathematician approached certain fundamental objects
such as points, lines and planes, that is, as simple “things”:
“What on earth these things are”, Poincaré then comments, “we not only ignore, but
we should not even try to find out. We have no need of it, and even those who have
never seen points, lines or planes could do geometry no less well than we can”.
The criticism continues: “It is understood that in order to prove a theorem it is not
necessary, nor even useful, to know what it means. The geometer could very well
be replaced by Stanley Jevons’s “logical piano” - a machine of that era, nowadays
we could say a computer. And again: “or if you prefer, you could devise a machine
in which you introduce axioms at one end and collect theorems at the other end,
like the legendary Chicago machine in which pigs enter alive to come out at the end
transformed into ham and sausages. Like such machines, the mathematician has no
need to understand what he is doing”.
In short, Poincaré showed his impatience towards too many logical impositions.
Let’s read another passage from Science and Method [100]:
“For my part, I see nothing in logistics that hinders invention. It certainly does not
help to be more concise, quite the contrary; and if it takes 27 equations to prove that
1 is a number, how many will it take to prove a real theorem? [...] It may be safer,
but it certainly doesn’t go any faster. No, you don’t give us wings, you make us walk
with dandies.”
Henri Poincaré therefore preferred intuition to abstraction and rigour. For him,
intuition is the instrument of mathematical invention and plays a crucial role: it
allows one to choose which route to take in the search for scientific truth, to di-

13



1.2. MATHEMATICS: INTUITION OR RIGOUR?

rect subsequent logical developments. In fact, Poincaré stated: “logic, which can
only give certainty, is the instrument of demonstration; intuition, the instrument
of invention”. To use a Kantian expression: “logic without intuition is empty and
intuition without logic is blind”.
Poincaré did not fail to recognise, albeit reluctantly, the limits of pure intuition
which, when operating alone, cannot guarantee “rigour or even certainty” and often
generate misleading convictions. In Science and Hypothesis (1902) [101], Poincaré
anticipated Brouwer’s intuitionism, rejecting, among other things, the principle of
the excluded third, to which Hilbert accepted.
Returning to Hilbert, however, it is right to emphasise that in his view rigour is not
the “enemy of simplicity”, on the contrary, it helps and orients in the most rapid
and direct solutions. Rigour is not synonymous with rigidity. It is, rather, essen-
tiality, sobriety, austerity and should not be confused with obtuseness, the pretence
of absoluteness and closure, “it does not hold back like the dandies, on the contrary,
it helps to fly” (remember Poincaré’s phrase in [100]).
The “intuition or rigour” antithesis obviously also a�ects the issue of teaching and
learning and is still hotly debated today.
Nowadays, the question becomes: how to educate to reasoning? With regular and
insistent exercise, as in the past, or, as it is now preferred, with play, workshops,
discovery and the creative cooperation of students with teachers or professors?
Mathematical rigour, and particularly rigorous mathematical language, can seem
a bitter enemy of communication: it is well known that non-mathematicians are
frightened even to see a formula in a text. Among mathematics teachers, there is
a widespread idea that, even in teaching in primary school, a rigorous treatment of
mathematics should always be demanded; this demand often takes the form of an
exaggerated formalism or an antiquated and obsolete use of the language in which
mathematics is expressed. These teachers may believe that they have on their side
an authoritative figure, Giuseppe Peano, who indeed wrote: “the teaching of mathe-
matics must be rigorous at every school level; if a demonstration is done, it must be
rigorous; if it cannot be done because of the age or immaturity of the student, then
it should not be done”.
Actually, the first to “transgress” this sort of “didactic axiom” was Peano himself.
A genius of many interests, when he was asked to write notes on mathematical
exercises, especially arithmetic, for elementary school children, he had to realise,
probably “playing” as he used to do with children, that there is rigour and rigour.
In his famous and amusing booklet Giochi di aritmetica e problemi interessanti [90]
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he is engaged in a successful work of mathematical divulgation precisely because
he feels the futility of resorting to mathematical “rigour” in exchange for a greater
understanding and usability of the subject. Finally, Peano himself stated:
“Mathematical rigour is very simple. It consists in asserting all things that are true,
and in not asserting things that we know are not true. It does not lie in a�rming
all possible truths.”
In addition to Peano, other Italian mathematicians have dedicated pages of their
writings to the debate between intuition and rigour, including Francesco Severi and
Federigo Enriques. Their reflections can be defined as mathematical in their dryness
and measure, but are witty, lively and colourful in their form. Their studies concern
the didactic sphere, i.e. education to rationality. Both recommend the right balance
of logic and intuition, and suggest to privilege the latter and to be very cautious in
the use of the former.
Severi’s reflection [108] advises against the excessive use of logic in the teaching of
mathematics, which, if used in exaggerated doses, risks provoking, as he himself
states, “indigestion of the brain”, which is “forced to ingest food that is too heavy”.
On the contrary, “for the education of the intellect, intuition must first be devel-
oped”, which is a “creative faculty” and a “synthesis of sensations, observations and
experiences”.
Severi argues that, at least in the first years of schools, teaching should be “exclu-
sively intuitive” and abolish all formal definitions and all chains of logical deductions.
The imperative is to focus on ideas and not on rigour.
As for mathematical intuition, he recalls Poincaré in certain passages, especially
when he speaks of the sudden illumination that sheds “the brightest light” on a con-
cept that had previously appeared “obscure and abstruse”.
On the same subject, that of teaching, concerns similar to Severi’s are expressed by
another great Italian mathematician of the early 20th century, Federigo Enriques
[42].
He believes that, in education, intuition and logic are not “distinct faculties of intel-
ligence”, but “inseparable aspects of the same active process”. He then distinguished
“a logic in small and a logic in large”, that is, “the refined analysis of the process
of exact thought and, on the other hand, the study of the organic connections of the
system, that is, the macroscopic view of science”. But, he feared, in the concerns of
our mathematical educators, the former would prevail over the latter.
At the end of this brief account of an age-old debate on the relationship between
intuition and rigour, it seems that the prevailing suggestion is to reconcile the two
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extremes, in order to obtain for both the right use in teaching and research, without
ever exceeding in one or the other direction.

1.3 National indications for high schools

The history of logic, its recent confluence within mathematics, as well as the debate
on the role of intuition and rigour in the teaching and learning of mathematics,
suggest to consider an appropriate logical education for both students and future
teachers: not only for a technical knowledge of formulas and syllogisms, but for an
education in rationality and mathematical thinking.
Over the years, in fact, the role that mathematical logic plays in real life and in
cultural education has been highlighted: in the birth and development of computer
science for the architecture of calculations, programmes and algorithms; in the search
for mathematical and philosophical truth, but also in overcoming the classic oppo-
sition between true and false towards the elaboration of a logic of probability and
uncertainty; in the study of the delicate relationship between mathematical language
and common language, between abstract deduction and normal common sense.
It is, however, a fact that logic is never explicitly mentioned either in the Indicazioni
Nazionali (Italian National Indications) [128] of Mathematics for Licei Scientifici or
in those for Licei Classici.
In the general outlines and competences of both, we read:
“... the student will know the elementary concepts and methods of mathematics,
both internal to the discipline itself and relevant to the description and prediction of
phenomena, particularly of the physical world. They will be able to place the various
mathematical theories studied in the historical context in which they developed and
understand their conceptual meaning.
The student will have acquired a historical-critical view of the relationships between
the main themes of mathematical thought and the philosophical, scientific and tech-
nological context.
In particular, he/she will have acquired the sense and the scope of the three main
moments that characterize the formation of mathematical thought: mathematics in
Greek civilization, the infinitesimal calculus that was born with the scientific revolu-
tion of the seventeenth century and that led to the mathematization of the physical
world, the turning point that started from the Enlightenment rationalism and that led
to the formation of modern mathematics and to a new process of mathematization
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that invested new fields (technology, social sciences, economics, biology) and that
changed the face of scientific knowledge”.
For the individual classical high school, it is then recommended to devote “spe-
cial attention [...] to the relations between mathematical thought and philosophical
thought”.
Ultimately, it seems that logic is only hinted at between the lines: those who seek
it may find it, while others probably do not.
Some content of logic, if anything, can be found in the chapter on Philosophy, where
it is written that “thanks to the study of the various authors and the direct reading
of their texts, the student will be able to orient himself on the following fundamental
problems: ontology, ethics and the question of happiness, philosophy’s relationship
with religious traditions, the problem of knowledge, logical problems, the relation-
ship between philosophy and other forms of knowledge, especially science, the sense
of beauty, freedom and power in political thought, the latter node being linked to the
development of skills related to Citizenship and Constitution”.
Now, given that the indications emphasise the importance of interdisciplinarity as a
connection between the various sciences and the various cultural expressions, logic
being relevant to both Philosophy and Mathematics, it can be considered, at least
implicitly, an integral part not only of the former but also of the latter.
In the same vein, one might perhaps venture that the National Indications mean
logic as “pervasive” and take its learning for granted, as the result of the study of
various disciplines, including mathematics and philosophy. But in this way they risk
making it invisible to the learner and lead the teacher to undervalue it. And yet, as
already mentioned, the need to reason and argue is perfectly relevant.
In any case, the National Indications themselves require, as already noted, the de-
velopment of students’ communication and argumentation skills:
“In particular, mathematics (...) contributes to developing the ability to commu-
nicate and discuss, to argue correctly, to understand the views and arguments of
others.”
It is therefore wished the formation of an active and aware citizenship, in which
each person is willing to listen attentively and critically to the other and to compare
opinions in a solid and objective way.
Education in argumentation can be an antidote to the proliferation of false or un-
controlled information.
It is therefore no coincidence that the Directions insist on this.
In the Archive of Public Education - Cultural, educational and professional profile of
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Licei - Annex A [129] it is stated: “Liceal culture allows to deepen and develop knowl-
edge and skills, to mature competences and acquire tools in the five areas of study
common to all Liceal courses, and one of these is precisely the logical-argumentative
area”. It is therefore reiterated that the latter assumes a central role, precisely be-
cause it contributes to the formation of a citizen who “supports her/his own convic-
tions, giving appropriate examples and counterexamples and using concatenations of
statements; accepts to change her/his opinion by recognising the logical consequences
of a correct argumentation” ([128], p. 60).
So the previous recommendation, while leaving aside specific mathematical themes,
is repeated in its generality.
Logic is called upon to constitute a fundamental element of a students overall ed-
ucation: it gets students used to abstracting the appropriate theoretical “model”
from contingent situations and provides the indispensable tools for understanding
the world.
The related competences that pupils must acquire at the end of their high school
education are therefore described as follows (in the National Indications for High
Schools):

• Knowing how to support one’s own thesis and how to listen to and critically
evaluate the arguments of others.

• To acquire the habit of reasoning with logical rigour, to identify problems
and to identify possible solutions.

• To be able to read and critically interpret the contents of di�erent forms of
communication.

The study of logic is therefore naturally also part of the baggage of a mathematics
teacher who wants to o�er her/his subject and wants to stimulate her/his pupils in
every possible way, encouraging them to reason. The school is no longer a place
where notions are administered, but a creative laboratory, a workshop of ideas and
projects, with the explicit aim of educating rationality. With this in mind, it is
essential that the teacher, not only of mathematics, has a thorough knowledge of
the historical and epistemological aspects of her/his discipline, but also (especially
in mathematics) a familiarity with logic.
Mathematics at school cannot be reduced to theorems and applications alone, but
also to history, to didactic forms matured over the centuries, including logic, to
formal rules of reasoning as well as the question of foundations. Teachers who have
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not been able to deal with these issues during their degree course will certainly be
able to go into them in greater depth in post-graduate and refresher courses. In this
respect, the National Indications, despite their limitations, represent an important
stage of renewal in an Italian school that has been tied to the Gentile Reform model
for too long.
Specifically, a large part of high school has been completely renewed in its curricular
structure, methodology and content since the early 1990s, while another consider-
able part, however, is still unable to break away from the Gentile Reform approach
and its traditional views and methods.
This is also the case of Licei, which have courses that date back to the Gentile
Reform (traditional addresses) and at the same time, since the early 1990s, have
launched experimental courses, such as Piani di Studio Brocca, the Piano Nazionale
Informatica (PNI), more recently the Piano Lauree Scientifiche and, most recently,
the Licei Matematici project.
The latter could be a good place to introduce students to elements of logic in a
pleasant, humorous and non-professorial way.
At the same time, other types of schools, such as Technical and Professional Insti-
tutes, have also been experimenting with curricula (including the introduction of a
transversal logic curriculum which selects and explores in depth only certain points
of the standard curriculum) of increasing interest. Today, these institutes have rel-
atively new curricula.
A final reflection concerns Liceo Classico and all the reformed Licei and their re-
lationship with the university, as indicated in the general lines of the Physics ob-
jectives, where they require teachers to “promote collaboration between educational
institutions and universities, research bodies, science museums and the world of
work, especially for the benefit of students in the last two years”.
In recent years, in particular, the experience of the Piano Nazionale Lauree Scien-
tifiche (PLS) has established points of contact and ensured collaboration between
pupils and teachers at all levels to support the development and spread of a mathe-
matical culture among students, old and new teachers, more generally in the whole
modern society. The PLS can also be an opportunity to approach logic in an enjoy-
able and engaging way.
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1.4 Educational experiences

Our report has highlighted the value of reasoning as an indispensable condition for
learning, and the inevitable relationship between understanding, knowledge, skills
and behaviour.
Understanding is closely linked to reasoning about what is being learnt, whence the
need to develop students’ ability to reason in a declarative manner, which is con-
sidered a critical element by all teachers and acknowledged as a serious deficiency
by the results of the OECD-PISA (Programme for International Student Assess-
ment) survey [130], promoted to measure the skills of 15-year-olds in school. The
general aim of PISA is to ascertain whether, and to what extent, young people leav-
ing compulsory school have acquired certain skills considered essential for playing a
conscious and active role in society and for continuing “lifelong learning”.
PISA not only takes into account students’ school curricula and knowledge, but also
examines their ability to reflect on the same knowledge and experiences by applying
them to real-life situations. To indicate this set of knowledge and skills, the term
“literacy” was used as the process of acquiring a domain tool that goes beyond the
school concept of curriculum mastery. In particular, three areas of literacy have
been identified as indispensable in a lifelong learning perspective:

• reading literacy, meaning the ability to use and interpret written text by re-
flecting on it;

• mathematical literacy, meaning the functional use of mathematical knowledge
in various contexts;

• scientific literacy, as the ability to use scientific knowledge and to draw data-
based conclusions to understand and make decisions about the natural world.

These three areas of assessment are complemented by that of some transversal com-
petences, such as problem solving, understood as an individual’s ability to put in
place cognitive processes to face and solve real and interdisciplinary situations in
which the areas of competence are not within the single domains of mathematics,
science or reading.
Among the various strategies put in place to address the causes of the problematic
outcomes of the PISA survey is the Education to Rationality, Argumentation and
Logic Project [131], carried out within IRRE Liguria from 1999 to 2006, with the
scientific partnership of the Faculty of Mathematical, Physical and Natural Sciences
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of the University of Genoa and the Italian Association of Logic and its Applications
(AILA).
The interdisciplinary character of the project gave birth to a research and training
group and produced a wide range of activities for the development of education to
rationality in the second and in the third years of secondary school, organising mul-
tidisciplinary and transversal teaching modules.
The transversality of the approach is expressed by the fact that proposals are formu-
lated to improve or change the curricula of philosophy, physics, computer science,
Italian, Latin and mathematics in function of an education to rationality adapted
to today’s socio-cultural reality. The hinge of the proposal is the need to recover the
declarative, argumentative and demonstrative aspect of all the competences and, in
equal measure, to prepare young people for the cognitive management of a multiple
rationality typical of modern society.
Without familiarity with argumentation, one does not know how to demonstrate; in
particular, without the linguistic competence presupposed by the ability to argue,
one is not even able to understand the demonstrations set out by a text or by the
teacher.
Arguing helps the teacher to understand and interpret the pupils mistakes and
strengthens their knowledge of more specific aspects of content, which would oth-
erwise be quickly forgotten. Getting students used to giving definitions is therefore
fundamental to language education at all ages: a person who knows how to argue
and who knows how to evaluate the arguments of others is a stronger, less helpless
person. The first definitions are found in Primary School, where defining basically
means describing and where, consequently, they are often overabundant (e.g. a tri-
angle is called equilateral when its three sides are equal and when its three angles
are equal). Also in Secondary School, it is important that a student succeeds in
describing a figure or a situation in appropriate terms and with a certain linguis-
tic precision; it is not reasonable, on the other hand, for the teacher to pretend to
always be demanding; there are situations in which, especially in High School, it
may be appropriate to replace rigorous definitions with intuitive explanations (for
example when one speaks of an infinite set or of a function).
In the field of arguments that take logic into account, in a first approach free argu-
ments are advisable, meaning arguments that, although taking logic into account,
support relevant parts of the discourse with expressive resources of language that
are independent of logic. In a more restrictive approach, we have arguments that re-
spect the style of a proof, as scientifically meant: the language chosen is the one most
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suited to the disciplinary context and the addressees, the inferences proposed are
valid according to classical logic and formal fallacies (i.e. hidden errors in reasoning)
are not admitted. This twofold approach should avoid a too drastical distinction
and transfer from free to rigorous arguments in a somewhat continuous way.
To further confirm the importance of argumentation as a central competence for
the growth of the individual (also underlined by the new National Indications which
place its development among the fundamental goals of mathematics education) we
cite Claudio Bernardi’s contribution to the book [119].
It starts from the premise that arguing is a transversal competence, which is linked
to others, including linguistic ones. This correlation causes various di�culties, am-
plified by the fact that mathematical language has its own peculiarities. Bernardi
focuses his attention on the di�erence between the language of logic in mathematics
education and the natural everyday language, which is free of too many symbolisms.
Indeed in natural language, in our case Italian, there are words from everyday life
that are also used in mathematical language, but without the same meaning. This
gives rise to ambiguities that can generate misunderstandings and uncertainties in a
student for whom the meaning of everyday language obviously prevails over that of
mathematics. Moreover, while mathematical rigour demands precision, clarity and
unambiguousness, in everyday life we often use words with more than one meaning.
Take the term logic itself. Coming from the ancient Greek, it is full of meanings:
word, tale, discussion, reasoning.
On the other hand, for today’s students, the ability to express themselves in appro-
priate language and to reason correctly and logically is basic and is almost always
linked to their ability to understand and develop mathematics.
The use of specific, less ambiguous language is therefore indispensable. It is therefore
necessary to promote, in the appropriate forms and within the appropriate limits,
education in logical language: symbolic, precise, less expressive than natural lan-
guage, but with the advantages listed above.
Here are some examples of the inaccuracies and errors of a logical nature that are
found in the structure of sentences that recur frequently in everyday communication.
We draw them from the already mentioned Bernardi’s work [119].

• First of all, let us consider the language of advertising: a given cream makes
the face 75% brighter, or a given shampoo makes the hair 58% softer. It
is di�cult to believe that these numbers have a real exact scientific content
but the impression of people listening to the advertising is that the company
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producing the cream or shampoo has done precise research on the subject.

• On a packet of biscuits one reads produced with wholemeal flour (or with oat
wheat, etc.). If you read the list of ingredients, which is required by law to
appear on the packaging, you sometimes get a surprise: the biscuits do indeed
contain wholemeal or oat flour, but also normal wheat flour. Therefore the
initial sentence is not false, but can easily be interpreted as “made only with
wholemeal flour”.

Education to rationality and the ability to argue has been the specific theme of
various conferences, including recent ones: in Genoa in 2007, in Salerno in 2008, in
Verona in 2009, again in Salerno in 2010, in Sestri Levante in 2016 and in Turin in
2019. The meeting in Sestri Levante was dedicated to the memory of Paolo Gentilini,
who for years dealt with the topics described here with passion and depth. The book
[138], which follows on from the conference in Sestri Levante, 9-11 June 2016, and
was edited in 2019 by Francesca Morselli, Giuseppe Rosolini and Carlo To�alori,
contains testimonies and contributions from various experts and o�ers many points
for reflection on the value of argumentation, which is rea�rmed as a fundamental
skill for pupils and teachers alike.
In conclusion, to underline the value of the ability to understand and formulate
arguments (critical thinking as the Anglo-Saxons say) and its strong ethical and,
of course, cognitive value, let me quote Norberto Bobbio (an Italian philosopher,
jurist, historian and senator for life of the second half of the 20th century):
“The theory of argumentation is the study of the good reasons with which men speak
and discuss choices that imply reference to values when they have given up imposing
them by violence or wrenching them by psychological coercion, that is to say, by
oppression and indoctrination” (in the preface to [94]).

1.5 Access tests, and more besides

Biology, chemistry, physics, mathematics . . . But is it also necessary to study logic
for a test?
As well as being the first step in competition procedures and sometimes the only
one for selecting competitors, the test is now also used for university admission, not
only to mathematics and computer science and other exact science degree courses,
but also to medicine, social sciences, architecture and others.
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Among the most frequent and sometimes most important questions are undoubtedly
the questions on logic (in addition to those on general culture). Although not all
competitors agree with this method of selection, in competition procedures it is the
one preferred, because it is considered objective in the evaluation of candidates. It
is therefore used in the most important public competitions, for example in the tests
organised by RIPAM, the public administration requalification programme managed
by Formez PA - the service centre that operates on a national level and answers to
the Department of Public Administration of the Presidency of the Italian Council
of Ministers. But quizzes also appear in health competitions, in tests for access to
military careers and, as already mentioned, for university admission.
In general, questions are commonly referred to as logic or logical reasoning questions
because they do not depend on the cultural level of the subject to whom they
are administered and assess only mental flexibility and reasoning ability. In the
classification of questions, logic corresponds to di�erent types of questions. A first
standard classification distinguishes between:

• verbal logic questions,

• critical reasoning questions,

• questions of mathematical logic,

• questions on abstract reasoning and spatial reasoning, attention and accuracy.

Verbal logic questions assess the candidate’s verbal aptitude by testing her or his
linguistic competence, control of language and vocabulary. These questions, which
require a linguistic solving strategy, take a variety of forms but they are mainly
based on relationships and associations between words, identification of antonyms,
synonyms, anagrams, etc. Other verbal content questions, known as verbal-critical
reasoning questions, require understanding and interpreting the meaning of a text,
drawing conclusions from it or excluding implications from it.
Critical reasoning questions test the ability to think logically and deductively, i.e.
(again) to understand an argumentative text, to grasp its salient features, to de-
duce implications and draw conclusions and to recognise causal links between ele-
ments (critical thinking). Selection tests frequently ask questions concerning simple
deductions, syllogisms, necessary and su�cient conditions, negations and logical-
verbal problems in which logically necessary conclusions can be drawn from certain
premises. Problem-solving strategies for such questions focus on careful linguistic
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analysis, although logical-mathematical rules often facilitate resolution.
Mathematical logic questions assess reasoning ability, mental calculation skills and
mathematical and logical intuition. These quizzes often require simple mental calcu-
lation skills: basic mathematical knowledge and the ability to apply it directly and
immediately are su�cient to solve them. Selection tests consisting of mathematical
logic questions must be faced without the use of calculators. Quick calculation is
therefore one of the basic prerequisites for these tests. This ability, if not innate,
cannot even be taught and is the result of years of practice. It may be enhanced by
learning methods to speed up computations, the so-called tricks.
The area of logical-mathematical tests includes:

• questions of numerical logic or numerical reasoning in which the logical con-
nection between the numbers and/or letters in the series must be identified;

• numerical logic questions in graphical-geometric configurations, in which the
numbers or letters of a series are presented in various graphical forms;

• questions of interpretation of graphs and tables (in the latter case the questions
are said to deal with the critical numerical reasoning), which assess the ability
to process and extrapolate numerical information from the data presented in
these diagrams;

• questions requiring the application of calculation formulas: the most frequent
examples of this category are those quizzes in which one is asked to predict an
outcome through the expression of probability judgments or quizzes on space,
speed and time, which do not require particular solving strategies but, in
general, knowledge of the fundamental relations between these three quantities;

• mathematical problems focusing only on the calculation of values, where the
question is posed in the form of a mathematical text and the solution requires
the application of various formulas;

• logical-mathematical problems that can be solved using some elementary math-
ematical tool, i.e. with addition, multiplication, the use of first degree equa-
tions or systems of equations, as well as a minimum of logical reasoning to
understand the problem;

• logical-mathematical problems centred on problem solving, in which mathe-
matical calculation plays a secondary role to understanding the solving strat-
egy.
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A particular category of mathematical logic questions belongs to the area of numerical-
deductive reasoning questions concerning complicated numerical series: these are
generally administered by RIPAM.
Abstract reasoning questions are non-verbal measures of cognitive abilities that de-
tect whether and to what extent a subject is able to perform simple or complex
reasoning when faced with stimulus material, which may consist of geometric fig-
ures, drawings of di�erent shapes, di�erent spatial orientation, di�erent constituent
elements or other features that di�erentiate the various components.

Let us propose four examples of logic quizzes with their solutions: the last two
have been proposed in admission tests to the Faculty of Medicine. We take them
from the collection of logic tests edited by Davide Bondoni [132] at the beginning of
2020.

1. Of a group of people it is known that «all males are minors». It can be de-
duced that certainly, in the group:
A) all females are of age,
B) all underage persons are males,
C) all underage persons are females,
D) all females are minors,
E) all persons of legal age can only be females.

Solution. Some knowledge of first-order logic, which will be treated later in the
thesis, may be useful here. But even proceeding at an informal level, one can ob-
serve how the initial statement “every male is a minor” (within the considered
group) is also expressed, by switching to the negations, as “every adult is female”
(thus assuming “adult” and “female” as negations of “minor” and “male” respec-
tively). This leads to answer E).

2. If TAP means (single) digits divisible by 5, TUP means (single) digits divisi-
ble by 3 and TOP means (single) digits divisible by 2, then by which script can the
number 92 be expressed?
A) TOP TAP,
B) TUP TOP,
C) TUP TAP,
D) TUP TUP,
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E) TOP TUP.

Solution. The right answer is B), i.e. TUP TOP because 9 is divisible by 3 and not
by 2 and 5, while 2 is divisible by 2 and not by 3 and 5. After that, it should be
noted, regardless of the exercise, that on the basis of the assumptions made other
numbers such as 34 and 32 would be TUP TOP.

3. (Medical test 2012) Mario is the second son of a couple with two children, and
his wife is an only child. One of Mario’s son’s grandparents has a daughter named
Francesca, who is two years younger than Mario. Given these premises, who is
Francesca?
A) Mario’s wife.
B) Mario’s sister.
C) An aunt of Mario.
D) A daughter of Mario.
E) Mario’s mother.

Solution. Mario is married to a woman who is an only child and is the second
son of a couple with two children. One of the grandparents of Mario’s son, i.e. one
of the parents of Mario or his wife, has a daughter named Francesca. Then Francesca
can either be Mario’s wife or his sister; she cannot be his sister since she is younger
than Mario and Mario is the second son. Therefore, she is his wife. Answer A) is
therefore the right one.

4. (Medical test 2018) «Every time I get out of bed I feel dizzy». If the previ-
ous statement is FALSE, which of the following is certainly true?
A) At least once I got out of bed without feeling dizzy.
B) When I get out of bed, I never feel dizzy.
C) Every morning I feel dizzy.
D) At least once I have got out of bed and felt very dizzy.
E) When I do not get out of bed, I do not feel dizzy.

Solution. Again, the answer would benefit from knowledge of a minimum of propo-
sitional logic and first-order logic. Using intuition, however, one arrives at the
negation “there is at least one time when I get out of bed and do not feel dizzy”,
which is answer A).
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Apart from the admission quizzes, however, one can agree with what we have al-
ready repeated several times, namely that logic can be a prerequisite also for degree
courses other than those that are declaredly scientific, such as mathematics and
computer science. For example in economics. Let us cite in this regard the text [53],
which involves logic in the above-mentioned field. In economics, politics and social
life, logic serves both to formalise the context and to suggest a rigorous approach to
the problem of making the most appropriate choices.
In this connection, let us recall Arrow’s impossibility theorem, which deals with the
problem of identifying the most equitable and representative system of government.
The relevant theory was developed by Kenneth Arrow (US economist, winner of the
Nobel Prize for Economics in 1972) and described in Social Choices and Individual
Values [8]. It singles out and formulates, in precise mathematical language, a series
of conditions that seem inescapable in any good democracy: «universality», «non-
imposition», «non-dictatorship», «monotonicity» and «independence from irrelevant
alternatives». We limit ourselves to this list of them, without going into too much
detail. Let us simply add, for example, some words about the third assumption,
«non-dictatorship», which excludes that in politics to decide is the title of only one
person – an obvious and unavoidable premise.
Anyway Arrow’s theorem excludes that such a system exists, and that all these rea-
sonable assumptions can live together. As if to say that perfect democracy does not
exist.
In this and other works, Arrow contributed significantly to the evolution of political
economy during the 20th century in the direction of greater mathematical rigour; his
is one of the first approaches to the social sciences through mathematical formalism.
To understand Arrow’s logical predisposition and his recourse to mathematical meth-
ods and approaches, one can retrieve an interview he gave on one of his annual trips
to Italy to the newspaper Repubblica. It is entitled “The Arrow Earthquake”. As
well as explaining his passion for mathematics and statistics and their connection
with economics, he recounts his youthful encounter with the great Polish logician
Alfred Tarski, whose logic course he took in New York in the early 1940s, and the
influence those studies had on his theorem.
“Even today”, reads the interview, “I don’t see how you can discuss choices, social
or individual, without using the concepts of the theory of relations”: this is what the
economist said.
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Chapter 2

Logic at School

2.1 What is logic?

In the previous chapter, we briefly described logic, its history and the reasons for
proposing it to teachers and also to high school students. The time has then come to
briefly recall the basic elements of logic. Ideally, we address here primarily teachers
who are unfamiliar with it but also, why not?, students.

Some ideas for introducing logic and allowing an initial, soft and possibly play-
ful encounter with students come from the works of Raymond Smullyan, starting
with the famous What is the name of this book? [109] (in Italian Qual è il titolo di
questo libro?) and continuing with the other books of the same tenor that followed
it. Smullyan was a mathematician and philosopher of science of the last century,
with a variety of other interests - writer, then pianist and magician. His approach to
logic in the books mentioned above is amusing, but far from trivial and indeed, be-
yond appearance, profound. In [109], in particular, he imagines an ideal and surreal
island whose inhabitants are divided into two categories:

• gentlemen who always tell the truth,

• villains who always tell lies.

There is no other way to tell them apart. A traveller arrives on this island and,
meeting its inhabitants A, B, C, ..., tries to tell whether they are gentlemen or
villains.

Example 1. Suppose A says: “I am a gentleman”. What can be inferred about
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A? Is he a gentleman or a villain?

Let us discuss the two possible cases:

• A is a gentleman: then he would tell the truth and, in the present case, claim
to be a gentleman.

• A is a villain: then he would always tell lies and, in this case, claim to be the
opposite of what he is, thus again a gentleman.

The conclusion is that A claims to be a gentleman in any case, so this statement
reveals nothing definite about his nature.

Example 2. Let us now admit that A states instead: “I am a villain”. The
question is the same: What is A?

Let us again discuss the two new possible cases:

• A is a gentleman: then he would tell the truth and therefore could not claim
to be a villain.

• A is a villain: then he would always tell lies and could not admit to being
what he is, i.e. a villain.

Thus the proposed situation is impossible: A does not exist or, if you prefer, the
villain is the one who imagined the story. Note that the example reproduces exactly
on the island of Smullyan the so-called “paradox of the liar”, or of Epimenides, one
of the most famous labyrinths of ancient logic: he who says «I am lying» is lying if
and only if he is telling the truth.

Example 3. Imagine now that you meet two inhabitants of the island, A and
B, and A says: “at least one of us is a villain”. What are A and B, gentlemen or
villains?

It is worth reflecting for a moment on A’s statement, that is basically saying:
“either A is a villain, or B is (but possibly both)”. Let us underline in particular the
key role played in A’s statement by the conjunction “or”. Its intervention makes
it possible for A’s sentence to be considered true when one of the two eventualities
proposed, namely “A is a villain”, “B is a villain”, is correct. On the contrary, the

30



CHAPTER 2. LOGIC AT SCHOOL

sentence is false if neither of its two statements is true, i.e. if both A and B are
gentlemen.

To illustrate the situation even better, we can rely on other examples, borrowed
from the times of the coronavirus: a communication such as “tomorrow masks will be
distributed free of charge to women or the elderly” applies to those who are women
(also young), or elderly (also men), possibly to women who are also elderly, and
excludes men who are also young.

But back to the island of Smullyan. This time the two possible cases for A are:

• A is a gentleman: then he tells the truth and therefore, in this case, since he
is not a villain, he says that B is.

• A is a villain: then he would have to tell a lie while, by confessing that between
A and B there is at least one villain, he ends up telling the truth.

This second eventuality is therefore impracticable. The first remains. Thus A

is a gentleman and B is a villain.

Example 4. Finally suppose that A declares “I am a villain and B is not”. What
are A and B?

The example looks similar to the previous example, in which the sentence also
opens with “A is a villain” but then continues with “or”. This time, however, the
sentence continues with the conjunction “and” : A’s sentence joins two statements
and is therefore true if and only if both are true, false if and only if one of them
is false. As if to say, going back to the masks: the notice that “tomorrow morning
they will be distributed to elderly women” (i.e. women who are also elderly) applies
only to the latter, and excludes those who are male (even if elderly), or young (even
if female). But let us come to Smullyan. The two new possible cases for A are now
as follows.

• A is a gentleman: but this is impossible, because in such a case the first half
of his statement and, consequently, the statement as a whole are false.

• So A is a villain, and is lying. In other words, at least one half of his statement
must be false; the first half can no longer be false, because this time A is a
villain, and therefore the second half must be false. In other words, B is also
a villain.
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The conclusion is that A and B are villains.

Apart from the Smullyan Island scenario, the previous examples introduce some
general considerations, which may justify subsequent developments.

• First of all, we are faced, albeit for fun, with the need to check the truth of
certain statements.

• The four examples have shown us how a case-by-case analysis – by brute force,
as we say in computer science today – can be useful in the absence of more
brilliant strategies. Better get used to considering it. And (let us quote Robert
Musil from his essay The Mathematical Man1) “mathematics can be defined as
a marvellous spiritual apparatus made for thinking in advance of all possible
cases”.

• The statements we encountered in the third and fourth examples are structured
by joining (... and...), disjoining (... or...), negating (not...) more elementary
propositions P , Q, ... . In particular, the statement “A is a villain” can be
considered as the negation, of the other “A is a gentleman”.

However it is worth noting the di�erence, also with regard to the use of “and”, “or”,
“not”, between the mathematical and logical language, which tends to be rigorous,
precise, at the limit fussy, and the common language, which is certainly more open
to a variety of nuances. This distinction does not only concern words, but also the
concepts they are intended to express.

Let us comment this point and start with “not”. It is not always easy to estab-
lish and apply the criteria with which to deny a given statement. Even a lucid
thinker, as Voltaire certainly was, can be surprisingly unaware of this, as the follow-
ing episode testifies.

Blaise Pascal had observed in his work [87], that if a proposition seems incom-
prehensible to us, but its negation turns out to be false, then the proposition can be
accepted without any problem – a statement in favour of demonstrations by contra-
diction.

1This can be found on pages 39-43 of [81].
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But Voltaire, in the 25th and last of his Philosophical Letters [121], which is gen-
erally dedicated to a punctilious and often exaggerated criticism of Pascal’s theses,
also dwells on the previous observation and points out that sometimes opposites
can be equally false, and cites in this regard the case of the two statements “an
ox flies south with wings”, “an ox flies north without wings”. Yet today it is easy
to see that the latter is not at all the negation of the former, which in detail says
“there is an ox that flies, and it does so heading south, and it does so with wings”,
and thus is negated by claiming that any ox either does not fly, or if it does fly it
does not do so heading south, or if it does fly south it does not do so with wings.
This second statement is true, for the simple reason that no ox flies. Voltaire was
probably unaware of the logical rules of negation – De Morgan’s laws – which we
shall soon see and which, although known since antiquity, were revived mainly in
the nineteenth century.

Let us turn to the ambiguities of “and” and “or”. Their use in common language
is more casual and less precise. Consider for example the following statements,
apparently similar and both subject to the conjunction “and” :

• «Charles and Camilla are English»,

• «Charles and Camilla are married».

In the first sentence, however, it is asserted that Charles is an Englishman and
Camilla also an Englishwoman, one independently of the other, because the relation
“to be English” is 1-ary and, even in front of the registry o�ce, one is English on
her or his own. The second sentence can instead be interpreted (at least in the most
common sense) as the statement that Charles and Camilla are husband and wife.
The relation “to be married” is in fact binary and one marries in two – unless one
interprets the previous assertion as “Charles is married and Camilla is married”,
each on his or her own. But such a situation existed even before they divorced their
previous spouses and formed a family together.
Note that situations of this kind also occur in mathematics. Consider for example

• «3 and 7 are prime» (in the sense that 3 is a prime number and 7 is a prime
number),
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• «3 and 7 are coprime» (in the sense that their greatest common divisor is 1,
a binary relation).

Sometimes “and” and “or” are confused with each other in usage. For example, one
sometimes hears sentences such as «I like reading detective books and science fiction
books», with a somewhat natural use of “and”, but from a logical point of view “or”
would be more appropriate.
Similar situations can also be observed in algebra.

• One may hear, or even read in books, «The solutions of the equation x2 ≠3x+
2 = 0 are x = 1 and x = 2» (although it would be more correct to use “or”).

• On the contrary, the sentence «the inequality x2 ≠3x+2 ”= 0 is valid for x ”= 1
and x ”= 2» (which, by the way, is equivalent to the previous one, turning the
two extremes to the negative) makes appropriate use of “and”.

There are also di�erent nuances concerning the meaning of the conjunction “or”.
They were well distinguished, for example, in Latin, but have sometimes been lost
in modern languages.

• The Latin “vel” corresponds to sentences like (in Covid times) «masks will be
distributed to women or the elderly» (in this case, to have the mask, it will be
the women, or the elderly, possibly elderly women, but men and young people
will be excluded).

• The Latin “aut” has a di�erent meaning, as exemplified by «either you eat the
soup or you jump out of the window» (of the two options, one excludes the
other, but this time eating and jumping makes no sense, while neither eating
nor jumping is clearly forbidden).

• Moreover there is the pure incompatibility, evidenced by certain labels on bot-
tles of alcoholic beverages: «either drink or drive» (this time drinking and
driving are not allowed, but abstaining from both, i.e. neither drinking nor
driving, respects the indication).
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After warning against these dangers of conjunction, disjunction and negation, let
us hazard a strict definition of “logic”, based also on our experience on Smullyan
Island. In order to introduce it let us underline the following facts.

• First of all, the sentences we considered are formal statements about the inhab-
itants of the island and their nature, sometimes simple like “A is a gentleman”,
sometimes more elaborate, when “and”, “or”, “not” intervene.

• There is a visitor aiming to understand the truth about the nature of the
people he meets.

• He does so according to certain rules, namely the premise that villains always
lie, but gentlemen never do.

Abstractly, we can assume a logic to be a tern as follows.

• First of all, there is an alphabet consisting of the symbols that one wants to
use, and the formulas that are made up of them, as suitable words of that
alphabet, i.e. finite ordered strings of its symbols.

• Then there are valuations, that decide the truth of these formulas.

• They do so on the basis of pre-established criteria, according to a relationship
of truth between formulas and valuations.

It is then desirable that this relation of truth be accompanied by a notion of prov-

ability of formulas, whereby, for example, a formula is accepted as true by any
valuation if and only if it is provable, i.e. there is an proof that supports it.

To provide in detail such a definition is by no means simple. But to illustrate
it, let us provide a simple example, that is Boolean logic. We have already outlined
its history in the first chapter. It is time to describe it carefully.

2.2 Boolean logic

As we have just seen, the sentences stated during the meetings on the Smullyan
Island have proposed
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• simpler statements, P , Q, R and so on (such as “A is a gentleman”)

• which are then possibly combined to construct more complicated ones thanks
to the use of the so-called connectives “not”, “and”, “or”.

In detail:

• the negation “not”, which we indicate in the abstract with ¬, from every single
statement F produces “not F”, ¬F ;

• the conjunction“and”, denoted by ·, starts from every ordered pair of state-
ments F and G and produces “F and G”, F ·G ;

• the disjunction “or”, ‚, moves from any ordered pair of statements F and G

and produces “F or G”, F ‚G.

Of course · and ‚ can be applied to statements that are already complicated in
themselves, in order to generate, for example, P ·(Q ·R) or P ‚(Q‚R) – the con-
junction or disjunction of 3 or more formulas, which we have already encountered in
the case of Voltaire’s oxen. In these cases the use of parentheses should be envisaged
in order to establish some precedence.

It seems right to ask whether the connectives allowed up to now, i.e. ¬, ·, ‚
are su�cient, or whether it is necessary to add others. In fact there is one that is
sometimes met in common language and often in mathematical language, when the-
ses and hypotheses are used and expressions such as “if F then G” are formulated.
An example: “if it rains I’ll take an umbrella”.
Modern computer science also includes “if... then...” in the instructions of its pro-
grams.
Let us then admit a new connective, namely the implication “if... then...”, usually
denoted æ, which is able to constitute from two statements F and G a new one “if
F then G”, F æ G.
But be careful to distinguish the various components of the proposition thus gener-
ated:

• F is the premise, or the hypothesis,

• G is the conclusion or thesis,
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• F æ G is the actual implication.

The position of F and G is important, in contrast to F ·G and F ‚G. In the latter
cases, it seems irrelevant which of F and G is first and which second, the meaning
does not change.
On the other hand, it is not the same thing to say “if it rains I take the umbrella”
and “if I take the umbrella it rains” : in the first case we speak of a natural action,
in the second of an almost magical power.

Here is another example, suggested by arithmetic. Let’s talk about Mersenne primes.
Let us recall that, for every integer n > 1, the n-th Mersenne number has the form
2n ≠1. So the succession of Mersenne numbers consists, at least initially, of:

• 22 ≠1 = 3, which is prime number (as well as the exponent 2 is a prime number),

• 23 ≠1 = 7, still a prime number (and also the exponent 3 is a prime number),

• 24 ≠1 = 15, a composite number (and now the exponent 4 is also composite),

• 25 ≠1 = 31, this time a prime number (and the exponent 5 is also prime),

• 26 ≠1 = 63, a composite number (corresponding to a composite exponent 6),

• 27 ≠1 = 127, a prime number (and the exponent 7 is prime),

• but 211 ≠1 = 2047 = 23 ·89 is composite even though the exponent 11 is prime.

In fact, let n > 1 be an integer.

• It is true that «if 2n ≠1 is a prime number, so is n». As if to say that «if n is
a composite number also 2n ≠ 1 is composite». Suppose in fact n = a · b with
a,b integers, 1 < a,b < n. Then 2n ≠ 1 = 2a·b ≠ 1 = (2a)b ≠ 1b = (2a ≠ 1) · . . .,
where 1 < 2a ≠1 < 2n ≠1 because 1 < a < n.

• On the other hand, it is false that «if N is a prime number also 2N ≠ 1 is
a prime number» (the statement that swaps hypothesis and thesis). This is
witnessed, for example, by N = 11, which is a prime number unlike 211 ≠1.
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Therefore let us (at least momentarily) agree that the alphabet of Boolean logic
consists of

• propositional variables P , Q, R, . . . (for elementary statements like “t’s rain-
ing”),

• the connectives ¬, ·, ‚, æ,

• the parentheses (,).

We then define the formulas of Boolean logic as follows:

• propositional variables are formulas;

• if F and G are formulas, so are (with the possible use of parentheses) ¬F ,
F · G, F ‚G, F æ G;

• it is not possible to construct other formulas than those just listed.

However, it is permissible to form formulas such as ((P ·¬Q) ‚R) æ ¬ P .

Let us now establish who and how establishes the truth of a formula.

It seems reasonable to admit that the opinion on variables P , Q, R, . . . is com-
pletely free. Whether it rains or not is established day by day and place by place,
it may be that today it is sunny in Naples and it is raining in Camerino.
But when one moves on to more complicated statements like ¬F , F · G, F ‚ G

and F æ G, the opinion is manifestly bounded by the opinion one has previously
formed about F and G. In fact, it seems evident that:

• if we believe F , we cannot simultaneously accept ¬F (if it is raining, we cannot
say that it is not raining);

• we cannot believe F · G, i.e. admit both F and G, if we do not preliminarily
and separately accept both F and G (masks reserved for old women are only
distributed to women who are old);

• we cannot believe in F ‚ G, i.e. admit at least one of P and Q, if we do not
preliminarily accept either F or G (to receive masks reserved for women or
old people, one must be a woman or an old person);
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• the discussion of F æ G requires more care and will be taken up later.

Consequently we define in abstract valuation a function v that assigns to each
propositional variable P the value 1 or 0 (meaning “true” or “false”, “yes” or “no”
respectively).

Two formulas F and G are said to be logically equivalent, or, simply, equivalent,
if for every valuation v, v(F ) = v(G).

Common sense rules then suggest how to extend v to all formulas. Assuming we
already know, for F and G formulas, v(F ) and v(G), we put

• v (¬F ) = 1≠v (F ) =

Y
_]

_[

1 if v (F ) = 0,

0 if v (F ) = 1,

• v (F ·G) = v (F ) ·v (G) =

Y
_]

_[

1 if v (F ) = v (G) = 1,

0 if v (F ) = 0 or v (G) = 0,

• v (F ‚G) = v (F )+v (G)≠v (F ) ·v (G) =

Y
_]

_[

1 if v (F ) = 1 or v (G) = 1,

0 if v (F ) = v (G) = 0,

• v (F æ G) =

Y
_]

_[

1 if v (F ) = 0 or v (F ) = v (G) = 1,

0 if v (F ) = 1 and v (G) = 0.

It should be noted that, at least in the first three cases, the rules stated correspond
to elementary operations on 0, 1 (subtraction from 1, product, sum minus product
respectively). This was Boole’s intuition. In this extended setting, it is understood
that a formula F is true for a valuation v if v(F ) = 1, and false otherwise.
These are thus the conventions of Boolean logic: not absolute laws or dogmas,
but options justified by the arguments we have tried to propose (the “common
sense”) and which we will continue to propose in the most controversial case of the
implication. Alternative options and related logics are certainly possible, though
perhaps less convincing.
One way to fix and clarify the above rules in a very expressive form is to resort to
tables (“truth tables”) organised as follows. One is prepared for each of the four
connectives:
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• in the column on the left, or in the columns on the left, we list line by line the
possible truth values, 1 or 0, of the starting statements (only F in the case of
negation, F and G for conjunction, disjunction and implication);

• in correspondence to each of the listed cases, the truth value of the new state-
ment, the one constructed with the use of the connective, is indicated in the
final column.

The connective ¬

F ¬F

1 0
0 1

The connective ·

F G F ·G

1 1 1
1 0 0
0 1 0
0 0 0

The connective ‚

F G F ‚G

1 1 1
1 0 1
0 1 1
0 0 0

The connective æ

F G F æ G

1 1 1
1 0 0
0 1 1
0 0 1
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Here are few comments on this last table, and thus on the truth values of an impli-
cation.

• It is quite reasonable to agree that, if F and G are taken to be true, then
F æ G can also be taken to be true (line 1 ). Indeed, the alternative would
be to consider false an implication whose hypothesis and thesis are assumed
to be true (an option that is certainly less convincing).

• Moreover, it is evident that, if F is considered true and G false, then also
F æ G must be false (line 2 ); in fact a correct implication, starting from a
true premise, cannot lead to a false consequence.

Thus the two cases in which F is true (the first two lines) are settled. There remains,
however, the problem of establishing which truth value to assign to F æ G when F
is false (the last two lines). The rule that Boolean logic establishes in this regard is
the following:

an implication that moves from a false premise is true.

In other words, from a false hypothesis one can deduce anything one wants, and the
corresponding implication is correct. It is advisable to repeat this and keep it in
mind:
the only case in which the implication F æ G receives the value 0 is the one in which
F is 1 (it is true) and G is 0 (it is false).
In all other situations, in particular in the two lines where F has value 0, F æ G

receives value 1.
Note also that, for a valuation v such that v(F ) = 1 and v(G) = 0, v(F æ G) = 0
and v(G æ F ) = 1. Therefore F æ G and G æ F are not equivalent.
The convention adopted for false F is debatable and anything but intuitive, and
may generate some understandable doubts. Not for nothing it has been discussed
since ancient times. Callimachus, a librarian in Alexandria in the 5th century BC,
is credited with an epigram “Even the crows on the roofs caw about the nature of
the conditional”, which testifies to the passion with which the subject was treated
in his times [20]. Even today, the rule is summarised by the Latin expression «ex

falso quod libet» (from a false premise it is correct to deduce what one likes).

Let us try to o�er some examples in support of this point of view.
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Example 1. The implication “if 2 + 2 is 5, then 2 + 3 is 6” starts from a false
premise, because 2 + 2 is not 5, and leads to an equally false consequence, because
2 + 3 is not 6. It is however correct, because if we accept that 2 + 2 is 5, then
2 + 3, which comes immediately after 2 + 2, can only be 6. On the other hand,
the implication “if 2 + 2 is 5, then 2 + 2 is greater than 3” starts from the same
false premise as before, but this time it produces a true consequence, because 2 + 2
is greater than 3; on the other hand it is in itself correct, because 5 is greater than 3.

Example 2. Let us tell an anecdote about Bertrand Russell, whom we already
know as a logician, philosopher of mathematics and influential thinker of the 20th
century, in whose civic life he actively participated, asserting very liberal views on
morals and highly criticizing Catholic Church, Christianity and more generally all
religions (he was a declared atheist). It is said that during a lecture in which he
explained the rule «ex falso quod libet», he received some objections. A listener,
unconvinced and mindful of his religious views, tried to tickle him: “But then, if 2
+ 2 is 5, could you prove to me that you are the pope?”
Russell replied imperturbably: “Let us assume that 2 + 2 is 5. Subtracting 2 from
both sides, we get that 2 equals 3. Subtracting 1 again, we deduce that 2 is equal to
1. Now the pope and I are 2. But if 2 is equal to 1, then we are 1: therefore I am
the pope”. An unquestionable demonstration of the implication that from the false
premise of 2 + 2 leads to the equally unlikely identification of Russell with the pope.

Example 3. Henri Poincaré was not a fan of logic and logicians, to whom he
reserved heated and often humorous criticism in his writings. Poincarè, however,
subscribed to the rule «ex falso quod libet». In his eyes, it is supported by the
experience that professors and students sometimes have during a mathematics task,
when an initial error alters all the subsequent steps but can sometimes lead, per-
haps because of other subsequent errors, to the correct solution. In such cases, the
teacher is obliged to assign a negative mark, but it is not easy to respond to the boys’
protests (“the result is right, so I did well”). Here, however, is Poincaré’s comment,
which can be read in his book Science and Method: “Russell comes to the conclu-
sion that any false proposition implies all other propositions, whether true or false.
[...] It is enough to have corrected a bad mathematics paper to realise at once that
Russell is perfectly right. The candidate often has to go to a great deal of trouble to
deduce the first equation, which is false: but once he has deduced this, it becomes easy
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for him to accumulate the most amazing results, some of which may even be correct”.

Wason’s test. This experiment was devised by Peter Wason [124], a cognitive
psychologist, who in 1966 subjected 128 university students to it in order to exam-
ine their reasoning skills. We use it as a starting point for further exercises on the
principle «ex falso quod libet».
Let us suppose that we are given a pack of cards, showing a letter on one side and
a number on the other, according to the following principle: the back of a vowel
is an even number. The following four cards are presented:

D A 4 9

We are asked how many and which cards need to be turned over to confirm the
hypothesis in bold.
(Hint: as we have repeatedly pointed out, only a card with a vowel and an odd
number can disprove the conjecture “vowel æ even”. Thus, cards A and 9 should
be checked, not others. The former might have an odd remainder, the latter a back
with a vowel).

Let us now deal with the same problem when the initial conjecture is that, con-
versely, the back of an even number is a vowel, i.e. “even æ vowel”. Suppose
we have in front of us

A K 2 7

The question is the same as before: how many and which cards need to be turned
over to confirm the conjecture.

(Hint: as before, a card with an even number and a consonant may disprove the
conjecture, so it is su�cient to turn over the cards K and 2).

It may be interesting to add some details about the outcome of Wason’s original test:

«You are shown a set of four cards placed on a table, each of which has a num-
ber on one side and a colored patch on the other side. The visible faces of the cards
show 3, 8, red and brown. Which card(s) must you turn over in order to test the
truth of the proposition that if a card shows an even number on one face, then its
opposite face is red? »
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So the principle to be respected is this time “even æ red” and to disprove it you
need a card with an even letter and a brown colour. In this case the two cards with
8 and brown must be checked on the other side.
In Wason’s study, less than 10 % of the subjects found the correct solution.

2.3 More on truth tables

On the basis of the laws regarding connectives, a truth table can be calculated for
every possible formula. The following examples explain how, but at the same time
introduce and try to clarify other remarkable aspects of Boolean logic.

Let us first clarify the context. So, imagine a formula constructed from the variables
P ,Q,R, . . ., for instance of the form

• ¬P

• or ¬(P ·Q)

• or ((P ·¬Q) ‚R) æ ¬ P .

Or, more generally, imagine to have formulas F ,G,H, . . . (not just variables) and to
build a new one such as

• ¬F

• or ¬(F ·G)

• or ((F ·¬G) ‚H) æ ¬ H.

In both cases, one lists the possible values that a valuation assigns to the starting
formulas, so to the variables P ,Q,R, . . . or more generally F ,G,H, . . . and then, by
the truth table, one deduces the value of the resulting formula.

The first di�culty is to actually list all the possible cases. One would wish a proce-
dure that providing them automatically. Here is a possible strategy.

• In the case of a single variable, or a single starting formula, there are only two
possible cases 1, 0, which are listed in the column alternating 1 and 0.
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• For two variables, or two starting formulas, the possible cases become 4 =
22 (two values for the first formula and, independently, two values for the
second), in full (1, 1), (1, 0), (0, 1), (0, 0), that can be listed mechanically
by alternating 1 and 0 in blocks of two bits in the first column (1, 1, 0, 0)
and of a unique bit in the second (1, 0, 1, 0).

• For three variables, or three starting formulas, the possible cases are 8 = 23 and
correspond to the ordered triads of 0 and 1. They are obtained by alternating
1 and 0 in the first column in blocks of four bits (1, 1, 1, 1, 0, 0, 0, 0), in
the second in blocks of two (1, 1, 0, 0, 1, 1, 0, 0) and in the third in blocks
of one (1, 0, 1, 0, 1, 0, 1, 0).

The procedure is easily extended to the case of several variables, or several starting
formulas. The following examples also serve to illustrate it in specific cases. How-
ever, they are devoted more generally to show how the tables calculate the truth
values of a given formula.

Examples. Let us begin by examining the possible variants of the conjunction
“or”. The one expressed by the connective ‚ corresponds to “vel” and we have al-
ready seen the table representing it.

The connective corresponding to the incompatibility condition in «either drink or
drive» is called She�er’s and denoted by |. For F , G formulas, F |G stands for
¬(F ·G). Its truth table is then as follows:

F G F ·G F |G

1 1 1 0
1 0 0 1
0 1 0 1
0 0 0 1

Instead “aut” produces from F and G the formula (F ‚ G) · ¬(F · G). The corre-
sponding table is then
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F G F ‚G F ·G ¬(F ·G) (F ‚G)·¬(F ·G)

1 1 1 1 0 0
1 0 1 0 1 1
0 1 1 0 1 1
0 0 0 0 1 0

Another example (frequently used in mathematics): “if and only if”. It
often happens that mathematical statements include the expression “if and only
if ”, which may appear redundant. But we have already observed how, for F , G

formulas, F æ G and G æ F have di�erent meanings and are not equivalent. This
is confirmed by a comparison of the respective columns in the truth tables, which
we find below. Well: F ¡ G (F “if and only if” G) means exactly the conjunction
(F æ G)· (G æ F ). The truth table of this formula is as follows.

F G F æ G G æ F (F æ G)· (G æ F )

1 1 1 1 1
1 0 0 1 0
0 1 1 0 0
0 0 1 1 1

A further possible support to the truth table of æ. It can be intuitively
agreed that

F æ G is equivalent to ¬F ‚G.

The first formula can in fact be interpreted, at least intuitively, as “either ¬F or (if
therefore F holds), then G”. Let us compare the truth tables of these two formulas.
We obtain respectively
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F G F æ G

1 1 1
1 0 0
0 1 1
0 0 1

F G ¬F ¬F ‚G

1 1 0 1
1 0 0 0
0 1 1 1
0 0 1 1

In this way the logical equivalence, for every possible choice of F and G, of the
formulas ¬F ‚ G and F æ G is confirmed. Comparing their tables, we find that
they share the same truth values for each possible valuation, i.e. the same column,
and therefore they are equivalent, in the sense that they admit the same meaning.

De Morgan’s laws of negation. Augustus De Morgan was a 19th century
English logician, a contemporary of Boole, but the laws ascribed to him were in fact
already centuries old. They govern the negation of a formula.

• First of all we have that every formula F is logically equivalent to its double
negation ¬¬F , in the sense that it has the same column in the truth table. So
we can say that, at least in Boolean logic, double negation a�rms (but note
how common language is, again, more nuanced: for example, an answer like
“I am not unavailable” is less condescending than “I am available”).

F ¬F ¬¬F

1 0 1
0 1 0

• Next, the negation of a conjunction is the disjunction of negations, and the
negation of a disjunction is the conjunction of negations. In other words, for
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each choice of formulae F and G, ¬(F ·G) is logically equivalent to ¬F ‚¬G,
and ¬(F ‚ G) to ¬F · ¬G. Returning to the example of the masks, we can
observe how, if we restrict their distribution to those who are female and
elderly (a conjunction of conditions), then we prohibit it for those who are not
female or elderly (the disjunction of negations). Or, if one limits distribution
to those who are women or elderly (the disjunction of conjunctions), one denies
it to those who are not women and not elderly, and therefore to young men
(the conjunction of negations). Truth tables confirm also these De Morgan’s
laws. In both cases we observe the same column of values, both for ¬(F · G)
and ¬F ‚¬G and for ¬(F ‚G) and ¬F ·¬G.

F G F ·G ¬(F ·G) ¬F ¬G ¬F ‚¬G

1 1 1 0 0 0 0
1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 0 1 1 1 1

F G F ‚G ¬(F ‚G) ¬F ¬G ¬F ·¬G

1 1 1 0 0 0 0
1 0 1 0 0 1 0
0 1 1 0 1 0 0
0 0 0 1 1 1 1

2.4 Connectives

The connectives in the alphabet of Boolean logic have been introduced quite freely,
on the basis of a few examples. It is then fair to ask

• are they su�cient? Or do we need more?

• And, if the answer to the first of the above questions is yes, are all the con-
nectives already adopted necessary?
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To the second question we can answer no: we have already seen that, according to
the truth tables, for each choice of formulas F ,G,

• F æ G is equivalent to ¬F ‚ G (i.e. it has the same meaning for each valua-
tion),

• (De Morgan’s laws) F ‚G is equivalent to ¬(¬F ·¬G) and F ·G to ¬(¬F ‚
¬G).

So, if we wanted, ¬, · or ¬, ‚ would be enough, because the other connectives
selected so far can be recovered from them. However, in order to clarify the second
question, and more generally to settle the whole problem well, we must establish
what is meant by a connective.
Intuitively, a connective (e.g. ·) is a construction which, starting from certain
formulas (F ,G in our case), defines a new formula (F ·G, precisely). On the other
hand, what is important about the new formula is not so much its representation
(F ·G could also be written F ıG or as one prefers), as the meaning that is given to
it, and therefore when it is considered true, in relation of course to the truth values
assigned to the formulas that define it.
Thus, in the specific case of ·, for each valuation v,

v(F ·G) = 1 if and only if v(F ) = v(G) = 1.

In this sense · is naturally identified with the function f of {0,1}2 in{0,1} such
that

f ((0,0)) = f ((0,1)) = f ((1,0)) = 0, f ((1,1)) = 1.

In the case of negation ¬, for each valuation v,

v(F ) = 1 if and only if v(¬F ) = 0.

In this sense ¬ is naturally identified with the function f of {0,1} in {0,1} such
that

f (0) = 0 , f (1) = 1.
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These considerations suggest the following:

Definition. Let n be a positive integer. An n-ary connective is a function of
{0,1}n in {0,1} .

The following is an immediate consequence.

Remark. For each positive integer n, there exist 22n
n-ary connectives (in par-

ticular 16 = 222 binary connectives and 4 = 2211-ary connectives). In fact, there
are as many functions from a set with 2n elements, such as {0,1}n, in a set with 2
elements, such as {0,1} .

So the possible connectives are much more than the 4 we agreed to use. How-
ever, it should be noted that, for example, She�er’s connective | (one of the 16
binary connectives) can still be introduced by relying on the 4 starting ones. In fact
F |G stands for ¬(F · G). Note that in this sense | is naturally identified with the
function f of {0,1}2 in{0,1} such that

f ((0,0)) = f ((0,1)) = f ((1,0)) = 1, f ((1,1)) = 0.

This function is obtained by composition from those corresponding to the connec-
tives ¬ and · . She�er’s connective |, although formally new, can nevertheless be
obtained by combining the starting connectives, and is therefore not indispensable.
More generally, let F be a formula of Boolean logic (as we mean it so far), and sup-
pose that the propositional variables occurring in F are among p0, . . . ,pn≠1. Then F

defines the following n -ary connective fn
F : for each choice of x0, . . . ,xn≠1 œ {0,1},

fn
F (x0, . . . ,xn≠1) = v (F )

where v is a valuation such that v (pi) = xi for every i < n. Therefore fn
F determines

a connective which, basically, from n given formulas builds a new one, whose truth
values are derived from those of p0, . . . ,pn≠1 according to the definition just given.
The new formula is then obtained from the n given formulas in the same way as F

is constructed from p0, . . . ,pn≠1. So this new connective is generated (like She�er’s)
from the connectives we initially fixed ¬ , ·, ‚ and æ or, if we want, from the
first three, or even the first two. We claim that in this way we obtain all possible
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connectives, i.e. all 22n
n-ary connectives for every positive integer n. As if to say

that the connectives ¬ , ·, ‚ and æ are more than enough. The proof is, at least
in the initial idea, very simple: we count the distinct n-ary connectives generated
by ¬ , · and ‚ and, with the help of combinatorial calculus, we see that they are
at least 22n

, thus exhausting all possible cases.

Theorem. Let n be a positive integer and g an n-ary connective. Then there exists
a formula F with propositional variables among p0, . . . ,pn≠1 such fn

F = g. Further-
more, F can be chosen as a disjunction of conjunctions of propositional variables or
negations of propositional variables.

Proof.
If g is the null function, it su�ces to choose F = p0 ·¬p0 ; in fact for each evaluation
v, v(F ) = 0, so that if x̄ = (x0, . . . ,xn≠1) œ {0,1}n,

fn
F (x̄) = 0 = g (x̄) .

So in this case fn
F = g. There remain 22n ≠ 1 non-zero n-ary connectives, so we

have to determine 22n ≠ 1 formulas F of the type promised in the statement of the
theorem, such that the connectives fn

F are all satisfiable (i.e. have some non-zero
valuation) and pairwise non-equivalent (i.e. with distinct valuations).
Consider the set A of the formulas pÁ0

0 · . . .·p
Án≠1
n≠1 where Á0, . . . ,Án≠1 œ {+1,≠1} and

p+1
j = pj , p≠1

j = ¬pj for every integer j with 0 Æ j Æ n≠1.

We have |A| = 2n. Let D be the set of all possible disjunctions of a finite and non-
empty set of formulas of A. It results that |D| = |˝(A)≠{„}| = 22n ≠1.

Let then F œ D and let H : pÁ0
0 · . . . · p

Án≠1
n≠1 be a formula of A occurring in the

disjunction of F.

If v is a valuation such that v
1
p

Áj
j

2
= 1 for every integer j with 0 Æ j Æ n ≠ 1, then

v(H) = 1, so v(F ) = 1. Therefore F is satisfiable. It remains to prove that if F and
G are two distinct formulas in D, then F and G are not equivalent, in the sense
that they di�er by at least one valuation. In fact, there exists a formula H œ A that
occurs in F and not in G (or vice versa). Let H : pÁ0

0 · . . . · p
Án≠1
n≠1 , as already seen

if we set v
1
p

Áj
j

2
= 1 for every integer j such that 0 Æ j Æ n≠1, then v(F ) = 1.

But for every (÷0, . . . ,÷n≠1) œ {+1,≠1}n with (÷0, . . . ,÷n≠1) ”= (Á0, . . . ,Án≠1) there ex-
ists a non-negative integer j < n such that v

1
p

÷j
j

2
= 0,so that v( p÷0

0 · . . .·p
÷n≠1
n≠1 ) =

0. It follows that v(G) = 0.

In particular, F and G are not logically equivalent. ⇤
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Some exercises (taken mainly from competition quizzes).

1. “It is wrong to deny that it is false that the picture was not painted by Cimabue”
is tantamount to stating:
a) The picture was not painted by Cimabue.
b) The picture was painted by an unknown painter.
c) The painting was painted by Cimabue.
d) Cimabue was not a painter.

2. A secretary position requires women with previous work experience. There-
fore, the following are excluded:
a) All and only men with previous work experience.
b) All and only men with no previous work experience.
c) Women only, but those with previous work experience.
d) Men or women with no previous work experience.

3. The negation of a = b = 0 is
a) a = b and b is di�erent from 0,
b) a is di�erent from b and both are di�erent from 0,
c) a is di�erent from 0 or b is di�erent from 0,
d) a is di�erent from b and b is di�erent from 0.

Answers

1. The correct answer is c). Let us not be disoriented by the many negations in
the original sentence. Let us count them: there are four, one after the other. But a
fourfold negation ¬¬¬¬ a�rms.

2. The correct answer is d). In fact, the negation of the condition “to be a woman
with previous work experience”, which is a conjunction, becomes the disjunction of
negations, “not to be a woman or not to have previous work experience” therefore
“to be a man or without previous work experience”.

3. The correct answer is c). In fact a=b=0 is equivalent to the conjunction of
a = 0 and b = 0. Its negation is equivalent to the disjunction of negations, thus
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a ”= 0 or b ”= 0.

2.5 The problem of satisfiability

We say that a formula F is

• valid if for any valuation v we have v(F ) = 1,

• not valid otherwise, if therefore for some valuation v we have v(F ) = 0.

Furthermore we say that F is

• satisfiable if there exists a valuation v for which v(F ) = 1,

• unsatisfiable otherwise, if therefore for any valuation v we have v(F ) = 0.

Consequently, F is satisfiable if and only if there exists a valuation v for which
v(¬F ) = 0, i.e. if and only if ¬F is not valid. Turning to negations, F is unsatisfi-
able if and only if ¬F is valid.

We would now like a (possibly e�cient) algorithm to decide whether a given formula
F is valid or not, or satisfiable or not. The previous remark enables us to focus on
the second question.

SAT satisfiability problem. Determine a procedure that, for each formula F ,
decides whether F is satisfiable or not.

The acronym SAT is derived from the English word satisfiability.

We already know an algorithm as required: the truth tables. In fact, a formula
F is satisfiable if and only if its column in its truth table (with respect to the
propositional variables in it) contains at least one 1. For example, the formula
F = ((P · ¬Q) ‚ R) æ ¬ P in the three propositional variables P , Q and R has
the following truth table, and consequently is satisfiable, because it is accepted by
the valuations corresponding to the second row and the last four rows.
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P Q R ¬Q P ·¬Q (P ·¬Q)‚R ¬P ¬F ‚G

1 1 1 0 0 1 0 0
1 1 0 0 0 0 0 1
1 0 1 1 1 1 0 0
1 0 0 1 1 1 0 0
0 1 1 0 0 1 1 1
0 1 0 0 0 0 1 1
0 0 1 1 0 1 1 1
0 0 0 1 0 0 1 1

However, we easily realise the practical di�culty of implementing the method. Al-
ready 3 variables require 8 = 23 rows (as many as the possible ordered triads of 0,1,
that is, as many as the possible ordered triads of values that a valuation assigns to
P,Q,R). In general, for the same reason, n propositional variables require 2n rows:
too many, because the number of these rows grows exponentially with respect to the
number of variables. For example, with n = 64 propositional variables, the number
of rows required is 264, which is a number larger than ten billion billion.
The truth table algorithm therefore takes too much space, and also too much time.
Even assuming that each row of a table is explored in 1 second, we can assume 2n

seconds to complete the column of truth values of a formula at least in the worst
cases. For example, with n = 64 it would take more than ten billion billion seconds
or about six hundred billion years.
It is true that if the formula to be checked is satisfiable and the 1 that confirms it
occurs in the first line, there is no need to develop the subsequent lines. But this 1
could also intervene at the end of the procedure, in the last line. Moreover, when
the formula is not satisfiable, then one has to fill in all the 2n rows of its column to
check in each of them the value 0.

One can then ask whether there is a “fast” way to solve the problem.
In modern computational complexity theory – a branch that connects mathematics
and theoretical computer science – the acronym P is used to denote the class of
problems (which can be formalised with natural numbers) that are fast to solve.
Here P stands for polynomial.
In fact it is assumed that a procedure works in fast time if and only if it performs
computations of length that is bounded with respect to the length of the input by
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a polynomial function n æ nk (for some positive integer k as exponent).
Recall that the exponential function n æ 2n asymptotically outperforms any poly-
nomial function n æ nk because

lim
næ+Œ

2n

nk = +Œ,

in other words the exponential function grows to +Œ faster as n increases. At this
point our question can be reformulated by saying: does SAT belong to P?
Certainly not for the truth table algorithm, as we have observed. But in fact no
algorithms are presently known that deal with SAT in at most polynomial time.
We note, however, that if a formula F is satisfiable (i.e., if there is at least one row
with 1 in the column of F , i.e., if there is an valuation that assigns F the value 1),
then it su�ces that that row or that valuation is suggested (a piece of information
that is quick to provide) to check it and find (quickly) the desired value 1.
Problems that are in the same condition constitute the so-called class NP . We do
not pause to explain the reason behind the letter N (for non-deterministic. But
let us underline that NP -problems are those for which a positive answer can be
verified quickly on the basis of a suggestion quick to be obtained. We might say,
in crude terms, that NP -problems are those that are quick to solve with a little
help. On the basis of this intuitive characterisation and the comparison with that
of P one easily deduce P ™ NP . Whether the two classes coincide or not, is one
of the deepest and most complicated questions in theoretical computer science and
modern mathematics, included in 2000 among the 7 so-called millennium problems
(the main open questions in mathematics today). It is in fact related to network
security protocols.
Obviously, if P = NP , then SAT belongs to P . On the other hand in NP there are
many other problems, combinatorial, algebraic and so on. But a theorem of Cook
in 1970 states that if there is a fast algorithm for SAT, then P = NP. All problems
in NP reduce in fast time to SAT, so that a fast algorithm for SAT generates a fast
algorithm for each of them (combined with the reduction algorithm). Thus SAT,
apparently just an elementary topic of Bolean logic, is the cornerstone of the whole
P = NP problem and shares its relevance and its di�culty.

2.6 Natural deduction

Let F be a formula, G a set of formulas (which we assume for simplicity to be finite).
In Boolean logic we say that F is a logical consequence of G and we write G |= F if
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every valuation that satisfies all the formulas of G also satisfies F.

Establishing this requires at least in principle a systematic check of all evaluations
and a comparison between the values they assign to the formulas of G and to F .
This can be done (at least for finite G) with truth tables. For example, we saw
earlier in this way that F æ G e ¬F ‚G are the logical consequences of each other
for every choice of formulas F and G.
But generally in mathematics, and also in common life, one follows a completely
di�erent approach to persuade oneself that F follows from G: one “proves” F from
G, i.e. one starts from the formulas of G as “hypotheses” and tries to develop a
reasoning that leads to F as “thesis”.
This reasoning consists of a finite sequence of formulas (i.e. statements) F0,F1, . . . ,Fm

ending with Fm = F and in which, for each i Æ m,Fi

• is in G (i.e. it is a hypothesis),

• or it is an “axiom” (it is so self-evident that no doubt arises),

• or it is obtained from previous formulas F0, . . . , Fi≠1 by some convincing “rule
of deduction”.

The following question then arises: is it possible to work out in propositional logic
“axioms” and “rules of deduction” in such a way that

• for each G, do the formulas which are proved by G with their help in the way
just described coincide with those which are a logical consequence of G?

• in particular, for G = ÿ, do the formulas which are proved in the way described
without hypotheses coincide with those which are true for each valuation, i.e.
valid?

The answer is positive. There are various systems of axioms and rules of deduction
that validate it.

The simplest and most accessible is called natural deduction: it consists of

• no axioms,

• 11 rules of deduction.

It is able to demonstrate all and only “logical” truth, in the sense that, for any G, the
formulas obtained by natural deduction from G are exactly the logical consequences
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of G. This is the content of a fundamental result of logic, which has the name of
Theorem of Completeness (in this case, of natural deduction in Boolean logic). Let
us add that these ideas can be attributed to the German mathematicians David
Hilbert (for the concept of proof) and Gerhard Gentzen (for natural deduction).

Let us move on to present natural deduction in more detail, with its 11 deduc-
tion rules of deduction. The attribute of naturalness refers precisely to the absence
of axioms (which could be regarded as dogmas or forcings).

The first three deduction rules propose obvious prescriptions, also suggested by
common sense.

Rule 1. It is allowed (and indeed recommended) to use hypotheses (i.e. the formu-
las of G) in a deduction.

Comment. The rule seems evident.

Rule 2. It is allowed to discuss various possible alternative cases separately, using
in each of them the general conclusions obtained previously.

Comment. We have applied this suggestion implicitly since the first examples
on Smullyan Island. It is clear that the results obtained in a single case cannot
be generalised (e.g., the conclusions obtained when interlocutor A is assumed to
be a gentleman cannot be applied when interlocutor A is assumed to be a villan).
But the analysis of a particular case nevertheless helps to clarify the general picture.

Rule 3. It is right to make use of the reasonings already carried out.

Comment. In other words, if we have already deduced from certain premises
that “A is a gentleman”, we can use this result for further developments every time
we start from those same premises, without repeating how and why.

Eight rules remain. There is a very simple way to remember them. In fact, they
correspond to the four connectives ¬, ·, ‚ and æ, two for each connective: specif-
ically, one explains how to introduce it, one how to eliminate it. Case by case it is
easy to understand in which sense the connective is introduced or eliminated. In the
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statement of the various rules we indicate in the abstract with F , G, H, . . . single
formulas.

Rule 4 (Elimination of ·). From F ·G we can deduce F (as well as G).

Comment. If we assume F and G at the same time, then we believe each of
them in particular.

Rule 5 (Introduction of ·). From F and G (together) we can deduce F ·G.

Comment. Again, the principle seems obvious, and any comment is superfluous.

Rule 6 (Elimination of ‚). From F ‚G and ¬F we can deduce G.

Comment. If we know that we have open at least one of two possible ways out, F

or G, but we see that the first is unfeasible, then we can rely on the second.

Rule 7 (Introduction of ‚). From F (as well as from G) we can deduce F ‚G.

Comment. This is a principle we have already encountered: if F is valid, we
can deduce a fortiori the validity of the alternative between F and any other option.

Rule 8 (Elimination of ¬). If by exploring the particular case ¬F we arrive
at a contradiction, then we can deduce in general F .

Comment. We refer to rule 2. If the case of ¬F turns out to be unacceptable, then
we can assume F . At the beginning of this chapter, in the examples on Smullyan
Island, we have already experienced a similar reasoning: if a case turns out to be
inconsistent, we can accept its opposite (Voltaire permitting).

Rule 9 (Introduction of ¬). If by exploring the particular case F we arrive
at a contradiction, then we can deduce in general ¬F.

Comment. Same situation as in the previous rule, only the role of ¬ changes.

Rule 10 (Elimination of æ). From F and from F æ G we can deduce G.
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Comment. This is a famous rule, known since antiquity as modus ponens. In
more modern times it has been called cut elimination. We will deal with it shortly
later.

Rule 11 (Introduction of æ). If by examining the particular case F we can
deduce G, then we can state in general F æ G.

Comment. This is a simple and easy principle, still based on rule 2.

Let us consider now, as promised, the rule of natural deduction that is perhaps
the most famous and delicate: modus ponens. Let us recall that it states that,
for F ,G formulas,

from F and F æ G one can deduce G.

Example 1. We should be very careful in applying it appropriately without con-
fusing the roles of the premise F and the conclusion G in the implication F æ G.

The rule does not say that

from G and from F æ G one can deduce F.

Otherwise, from the premises

• I take the umbrella (G),

• if it rains I’ll take my umbrella (F æ G)

we would come to the conclusion

• it rains (F ).

Instead, it is correct to deduce G (I take the umbrella) from F (it rains) and F æ G.

Example 2. It is correct, on the basis of modus ponens, from

• I don’t take the umbrella (¬G),

• if it rains I’ll take my umbrella (F æ G)

deducing

59



2.6. NATURAL DEDUCTION

• it doesn’t rain (¬F ).

That is, the following principle (which is called modus tollens) applies:

from F æ G and from ¬G one can to deduce ¬F

(but not vice versa).

To recapitulate:

• (modus ponens) from F and from F æ G it is right to deduce G,

• (modus tollens) from F æ G and from ¬G it is right to deduce ¬F,

• there are no rules that apply to F æ G and G to deduce F , and to F æ G

and ¬F to deduce ¬G.

Example 3. The following case can be found somewhere on the internet. The
premises are:

• forks have 4 teeth,

• my grandfather has 4 teeth.

We wonder whether it is correct to deduce that

• my grandfather is a fork.

Evidently not. For F = being a fork and G = having four teeth, from F æ G and
from G it is not possible to deduce F .

Three more exercises: the logical adventures of Sherlock Holmes

1. Sherlock Holmes and Dr Watson are trapped: their deadly enemy, Professor
Moriarty, has lured them in a locked room, closed on all sides. The professor’s voice
reaches them from outside: “There are two pitfalls in this room: the first opens the
floor and makes you fall into a pool of sharks, the second releases a poisonous gas
from the ceiling. But I want to leave you the pleasure of choice. The first thing
Holmes tells me, if it’s a lie, I’ll throw you to the sharks and if it’s the truth, I’ll
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poison you with gas”.
How do Holmes and Watson save themselves?

(Hint: think back to the paradox of the liar, the answer that guarantees salva-
tion is “now we will be thrown to the sharks”).

2. Holmes and Dr Watson are at Baskerville Castle. In the ancient hall of arms
the suspects in the murder of the old owner of the castle are gathered: his wife, the
butler, the maid and the mathematics professor. Holmes knows that:

• the guilty always lies,

• the innocent never lies,

• there was an accomplice to the crime, and the latter can tell the truth or lie,
depending on the moment.

The butler reveals: “I am colour blind”.
The lady comments: “Too bad! Red is a colour of the rainbow”.
The butler protests: “And in any case, I am not the accomplice”.
The maths teacher also proclaims: “I am innocent”.
The maid admits: “Yes, I am the guilty one”.
Who is the guilty party? Who is his or her accomplice? Is the butler really colour
blind?
(A few hints: as the second example on Smullyan Island has already illustrated,
a guilty person who always lies and an innocent person who always tells the truth
cannot claim to be the guilty one. It follows that the maid is neither guilty nor
innocent, so she is the accomplice and, when she accuses herself, she lies. Then the
butler is telling the truth when he excludes being the accomplice, so he is innocent
(and colour-blind). Similarly, the lady is innocent because her statement about the
rainbow is correct. Conclusion: the murderer is, of course, the mathematics profes-
sor).

3. Sherlock Holmes has to unmask the murderer of the lord of Baskerville. The
suspects are: the butler, the lady of the castle, the mathematics professor and the
doctor. Holmes knows that one and only one of them is lying. The four declare the
following.
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The butler: “It wasn’t me!”
The lady: “It was the doctor.”
The professor: “It was the lady.”
The doctor: “The professor is lying.”

Who is the liar? And who is the murderer?

(Hint: you can try first to discuss which of the four is lying.

• Not the butler, because otherwise the doctor does too (claiming that the pro-
fessor lies too), and only one is a liar.

• Not the lady, for the same reason.

• Not the doctor, otherwise the lady and the professor are telling the truth and
contradicting themselves.

The remaining possibility is that the professor is the liar, in which case the doctor
is telling the truth when he denounces him, the lady is not guilty, and the butler is
also reliable when he claims not to be the murderer. Finally, the lady is also telling
the truth, so the doctor is guilty.
A di�erent approach could identify the murderer first and then the liar).
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Chapter 3

First-order logic

3.1 Introduction

Boolean logic has obvious limitations in fineness and expressiveness, as the following
examples show.

Example 1. Let us consider the world of Genoese football, which we recall as
divided between two opposing fans, supporting respectively the teams of Genoa and
Sampdoria (listed in alphabetical order). Statements such as “every Genoese is
Genoan”, “some Genoese are Genoan” or “the chief of the Genoa police is Sampdo-
rian” clearly have di�erent meanings. And yet Boolean logic formalizes them in the
same way, by resorting to a propositional variable P - unless in the first case a very
long conjunction is risked, extended to all the single statements “A is Genoan” as
A varies among the citizens of Genoa, each represented by an appropriate proposi-
tional variable. Ditto in the second case, which requires a similar disjunction.

Example 2. Let us turn to arithmetic and the statement “every prime number
is greater than 1”. The context is di�erent, but Boolean logic formalizes this state-
ment again with a propositional variable P. This time, however, the alternative of a
conjunction asserting for each specific prime number that it is greater than 1 makes
little sense, because prime numbers are infinitely many. Note then that the state-
ment “2 is prime”, which is simpler than the previous one, is also formalized in the
same way, by means of a single propositional variable.

A more powerful logic is therefore to be sought, one that is able to distinguish
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in some way:

• the di�erent complexity of the two statements in example 2,

• the di�erent context of the two examples.

The first requirement is satisfied by allowing the use of quantifiers:

• ’ x for “for every x”,

• ÷ x for “there exists x”.

which operate on variables x of elements (the Genoese, or the natural numbers).

To satisfy the second requirement, appropriate symbols may be allowed on a case-
by-case basis:

• symbols of 1-ary relations G, S respectively for being Genoan, being Sampdo-
rian in example 1,

• the usual symbols +,≠, ·,=,Ø of arithmetic in example 2.

The idea is to allow formulas such as G(x) to mean that x is Genoan, or

x Ø 2·’u’w(x = u ·w æ x = u‚x = w)

to define prime numbers. The logic derived from this is called first-order logic (there
are other, higher-order logic, which we will not go into here). In order to introduce
it correctly, we proceed according to the scheme already followed for Boolean logic,
defining in order the alphabet and the formulas, then the valuations and finally
the truth relation.

3.2 Alphabet, Formulas, Structures, Truth

Let us begin by introducing the alphabet of first-order logic. In addition to the
connectives ¬, ·, ‚, æ and the parentheses (,) it consists of:

• individual variables x, y, z, . . .

• quantifiers ’,÷
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and an infinite number of

• symbols for operations of any number of places f ,g, . . .

• symbols for relations of any number of places R,S, . . .

• symbols for privileged elements (constants) c,d, . . .

Among the symbols of this second set we choose those that make up the language

we intend to use:
Ó

G,S
Ô

for Genoese,
Ó
+, ·,=,Ø,0,1

Ô
for natural numbers. So a

language is a set of operation, relation and constant symbols.

Let us turn to the formulas of first-order logic. In order to obtain those of a given
language L we first construct the terms of L:

• the individual variables x,y,z, . . . ,

• the constants c,d, . . . in L,

• for t1, . . . , tn terms of L and f an operation symbol with n places in L,
f(t1, . . . , tn),

• nothing else.

In the case of Genoese, the terms are reduced to individual variables. In the case of
numbers they also include 0,1 and then x + y, x + 1, x · y, y · (x + 1), 1 + 1, . . . (by
the way: we abbreviate for simplicity 1+1 with 2,(1+1)+1 with 3, etc.).

The formulas of L consist of the following:

(i) the so-called atomic formulas, of the form R(t1, . . . , tn) for R a relation
symbol with n places of L and t1, . . . , tn terms of L,

(ii) negations, conjunctions, disjunctions and implications of formulas of L,

(iii) for F formula of L and x individual variable, ’ x F and ÷ x F ,

(iv) nothing else.

In the case of the Genoese,
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(i) G(x) or S(x),

(ii) (G(x) æ ¬ S(x)), . . .

(iii) ’ x (G(x)‚S(x)), ÷ x G(x), . . .

In the case of the numbers,

(i) x+2 = y, x≠1 Ø z, . . .

(ii) x+2 = y ·x+1 Ø z, . . .

(iii) ’ x ÷ y ÷ z (x+2 = y ·x+1 Ø z), . . .

Next let us introduce the valuations of first-order logic. For each language L they are
mainly constituted by the structures in which we first fix the context - a non-empty
set U :

• the set of Genoese,

• the set of natural numbers

and then in this context an interpretation is given for all the symbols of L

• an n-ary operation on U for each n-ary operation symbol placed in L,

• an n-ary relation on U for each n-ary relation symbol in L,

• an element of U for every constant in U .

It is then understood that the variables of individuals concern elements of U .

For example

• between the Genoese G,S are interpreted respectively in the sets of Genoans
and Sampdorians,

• among numbers the various symbols +, ·,=,Ø,0,1 are interpreted in the obvi-
ous way.
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However, there can be quite di�erent structures for the same language, for example,
in the case of Genoese,
(a) U = set of natural numbers, with G, S interpreted as the sets of odd and even
numbers,
(b) U = again the set of natural numbers, with G, S interpreted this time as the
sets of even and prime numbers respectively.

Finally, the concept of truth: in the context of first-order logic, it is rigorously
defined by following intuition somehow. It was formulated (together with the pre-
vious steps) by the Polish logician Alfred Tarski in 1933 in [112] (firstly published
in Polish and then translated in German and English).

For example, in the language of the Genoese the formula ÷ x (¬G(x) · ¬S(x))
is

• true among the Genoese, among whom presumably there are fans of teams
other than Genoa and Sampdoria, or people who are wisely uninterested in
football,

• false in (a), because among the natural numbers there is none that is neither
even nor odd,

• again true in (b), because among the natural numbers there are some that are
neither even nor prime, e.g. 15.

Instead ’ x (G(x) æ ¬S(x)) is

• true among the Genoese, among whom presumably no Genoan is also a Sam-
pdorian,

• true in (a), where no even is odd,

• false in (b), because 2 is even and prime.

Remark 1. The two quantifiers ’ and ÷ play di�erent and almost antithetical roles:

• one thing is to state ’ x G(x), which within the first structure means “in
Genoa everybody is a Genoan”,
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• another thing is to state ÷ x G(x), which within the first structure means “in
Genoa there are some Genoans”

Remark 2. Here is a little story that illustrates the dangers of confusing the
two quantifiers ’ and ÷. An engineer, a mathematician and a logician are in the
compartment of a train travelling through the Scottish countryside to Edinburgh.
From the window the travellers observe a grazing cow with a black and white coat.

• In Scotland cows are black and white, - says the engineer.

• No, - objects the mathematician, - we can only say that in Scotland there is a
cow with a black and white coat.

• No, - the logician corrects them both, - in Scotland there is a cow whose coat
is black and white on at least one side.

Beyond the nitpicking, the three statements are clearly di�erent, and only the last
one is really correct. In fact, the engineer states that “every Scottish cow has either
a black or a white coat”, thus involving the quantifier ’ - but he does so incorrectly,
because the example of the one cow observed from the train does not entitle him to
generalise. So the mathematician is much more precise when he replaces ’ with ÷
to claim that “there is a Scottish cow that has a black or white coat”. The logician
then refines the argument by noting that the cow only showed one side, and could
have a di�erent coat on the other side.

Remark 3. We must also pay much attention to the order in which the quan-
tifiers ’ and ÷ follow each other in a discourse. Often, permuting them may alter
the meaning of a sentence. Let us consider, for example, the case of fathers and
sons. Let us then choose a language with a binary relation symbol P (y,x) that is
interpreted in the model constituted by the universe of human beings in the pater-
nity relation: “to be father of”. So P (y,x) stands for “y is father of x”. Let us then
compare the two statements that follow and that are obtained from each other by
exchanging the quantifiers of the premise.

• ’ x ÷ y P (y,x) tells us that every human being has a father (and it fits),

• ÷ y ’ x P (y,x), on the other hand, that there is a common father for all: a
disturbing statement, unless one refers to a heavenly Father with a capital F .
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Remark 4. Precise rules clarify how quantifiers behave when they are subject to a
negation.

• The opposite of “they are all Genoans” is that “there is someone who is not”,

• the opposite of “there are some Sampdorians” is that “no one is” (like saying
that “they are all non-Genoans”).

In general, for each formula F ,

• the negation of ’ x F is ÷ x ¬ F ,

• the negation of ÷ x F is ’ x ¬ F .

(Hint: compare with De Morgan’s laws for conjunction and disjunction).

The above examples underline how even for quantifiers mathematical logic turns
out to be much more schematic than common language: it adopts in fact a single
symbol ’ “for every” to translate what is usually expressed by resorting to a great
variety of nuances, everybody, anyone, everyone etc., and in the same way a single
symbol ÷ “exists” for somebody, at least one . . .

Many proverbs deriving from popular wisdom, besides reiterating the latter ob-
servation, provide excellent examples of the use of quantifiers, in particular of ’ in
first-order logic. We list some of them, which we then discuss individually.

(a) “A barking dog doesn’t bite”.

(b) “He who never tries never succeeds”.

(c) “You snooze, you lose”.

(d) “He who does not drink in company is a thief or a spy”.

(e) “He who is the cause of his own evil, let him weep for himself”.

Discussion

(a) To put it in a more involuted way, better corresponding to the setting of
logic: “For every dog, if it barks, then it does not bite”. For an even more
formal translation within first-order logic, we rely on a language with two 1-
ary relation symbols Ba and Bi for “barking” and “biting” respectively. The
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proverb is then expressed in the form of the utterance ’ x (Ba(x) æ ¬Bi(x)).
The negation is: “there is a dog that barks and bites”, ÷ x (Ba(x)·Bi(x)).

(b) This time it is asserted: “for each person, if he does not try then he does not
succeed”. The structure is analogous to before. We still need two symbols of
1-ary relations T , S for “to try”, “to succeed” respectively. The proverb is
expressed by the statement ’ x (¬T (x) æ ¬S(x)). The negation is: “there is
one who does not try and succeed”, ÷ x (¬T (x)·S(x)).

(c) In this case the proverb can be stated (in a form analogous to the two previous
cases) as “for each person, if he sleeps then he catches no fish”. Thus, using the
1-ary relation symbols S, CF for “sleeping” and “catching fish” respectively,
the statement is expressed by the statement ’ x (S(x) æ ¬CF (x)). The
negation is: “there is one who sleeps and catches fish”, ÷ x (S(x)·CF (x)).

(d) This proverb is more articulated: “for each person, if he does not drink in
company (a negation), then he is either a thief or a spy (a disjunction)”. By
using 1-air relation symbols D, T , S for “drinking in company”, “being a thief”,
“being a spy” respectively we get ’ x (¬D(x) æ (T (x) ‚ S(x)). The negation
is “there is someone who does not drink in company and is neither a thief nor
a spy”, ÷ x (¬D(x)·¬T (x)·¬S(x)).

(e) We return to the structure of the first examples: “for each person, if that
person is the cause of his illness, let him weep for himself”. So using the 1-
ary relation symbols C,W for “to be the cause of one’s own illness” and “to
weep for oneself” respectively, the statement is expressed by the statement ’
x (C(x) æ W (x)). The negation is: “there is one who is the cause of his own
illness and does not mourn himself”, ÷ x (C(x)·¬W (x)).

Let us consider the example just concluded. In the formula C(x)·¬W (x) the vari-
able x does not appear under the scope of a quantifier, ’ x or ÷ x, which concerns
it: it is then said to be free, or rather to have a free occurrence.
Its condition obviously changes if we consider ÷ x (C(x) · ¬W (x)). In this case we
say that x is bounded.
A sentence is a formula that has no free occurrences of variables: this is the case,
for example, of ÷ x (C(x) · ¬W (x)). It is then convenient to write a formula F

in the form F (x0,x1, . . . ,xn) when one wants to underline that the variables that
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appear in it free at least once are among x0,x1, . . . ,xn.

Some exercises

1. Let us consider yet another proverb: «Beer drinkers live one hundred years»
(to be understood: «live at least one hundred years»).
In order to prove that it is wrong, and therefore to deny it, we need to find someone
who:
(a) did not drink beer but died before turning 100,
(b) drank beer but died before reaching 100 years of age,
(c) did not drink beer and is already 100 years old,
(d) drank beer and is already 100 years old.

2. Assume it is true that «he who catches the flu has a fever». It can then be
deduced that:
(a) if Peter does not have the flu then he does not have a fever,
(b) if Peter does not have a fever, then he does not have the flu,
(c) everyone who has a fever has the flu,
(d) none of those who have a fever have the flu.

(In both cases, the correct answer is (b)).

3. «Every time I get out of bed I feel dizzy»: Assume this statement to be false.
Which of the following is then certainly true?
(a) At least once I got out of bed without feeling dizzy.
(b) When I get out of bed, I never feel dizzy.
(c) Every morning I feel dizzy.
(d) When I do not get out of bed, I do not feel dizzy.
(e) At least once I got out of bed and felt dizzy.

(This time the correct answer is (a)).
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3.3 Completeness Theorem and Natural Deduc-
tion

Also in first-order logic we introduce two operators that connect sets G of sentences
of a language L and single sentences F of L

one |= of logical consequence,

one „ of provability.

The former is defined by placing G |= F (F is a logical consequence of G) if
and only if every structure that satisfies all the statements of G also satisfies F , thus
proceeding formally as in propositional logic. The same happens for the second. We
agree in fact G „ F (F is provable by G) if and only if there is a proof of F by G,
that is an ordered finite sequence F0,F1, . . . ,Fn of sentences of L (with n natural
number) such that

• Fn is F ,

• for each i Æ n, Fi is in G, or it is an “axiom”, or it is obtained from previous
sentences (among F1,F2, . . . ,Fi≠1) by a “deduction rule”.

The key point is, again, how to define axioms and deduction rules in such a way
that the two operators |= and „ coincide.
The completeness theorem proved by Gödel in 1930 ensures that this can be
done: one can actually determine a system of axioms and deduction rules such that,
for each choice of a language L, a set G of sentences of L and a sentence F of L,

G |= F if and only if G „ F.

A possible choice for this system is still the natural deduction, which extends
that of the propositional case, still avoiding any axiom and adding four rules of
introduction and elimination of the quantifiers ’ and ÷. Indeed these procedures
are much more subtle and intricate than those on connectives. Let us try to outline
them anyway.

(1) Elimination of ’

The basic idea, seemingly obvious but naive, is as follows: if v is a variable and
–(v) is a formula (which really contains v as a free variable), then from ’ v –(v) we
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deduce that – is satisfied by every element that goes to interpret v.

Useful notation: for t a term of the language L, –(t) denotes the formula that is
obtained from – by replacing v by t in each of its free occurrences.

Example. Let –(v) be the formula ÷ w ¬ (v = w). Then

• if t is a constant c of L, then –(c) is ÷ w ¬ (c = w),

• if t is the same variable v, then –(v) remains ÷ w ¬ (v = w), i.e. –,

• if t is the variable w, then –(w) is ÷ w ¬ (w = w),

• if t is a variable u other than v,w, then –(u) is ÷ w ¬ (u = w),

• if t is F (u) for F 1-air operation symbol of L, then –(F (u)) is ÷ w ¬ (F (u) = w).

This first rough version of the ’ elimination rule could then be expressed as follows:
for each formula –(v) of L,

’v–(v)
–(t)

But such a rule is not always correct.

Example. Let –(v) be the formula ÷ w ¬(v = w), so that ’ v –(v) becomes ’
v ÷ w ¬(v = w). Note that this last statement is true in any structure of the lan-
guage L that contains at least 2 elements. On the other hand:

• if t is a constant c of L, then –(c) i.e. ÷ w ¬ (c = w) remains true in every
structure of L that contains at least 2 elements, i.e. at least one in addition
to the interpretation of c;

• if t is a variable u di�erent from w, then –(u), i.e. ÷ w ¬ (u = w), remains
true in every structure of L that admits at least 2 elements, independently
from the valuation of u;

• but if t coincides precisely with w then –(w) becomes ÷ w ¬ (w = w), and
is evidently false in any structure, so it cannot be reasonably deduced in any
way from ’ v –(v).

The defect in the last example: the variable v appears in – under the influence
of a quantifier ÷ w that applies to the variable w that will then replace it.
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If t is a term of L, we then say that the variable v is free for t in a formula – if
v does not appear in – under the influence of a quantifier ’ or ÷ that applies to
variables occurring in t.

We note that, in the absence of quantifiers ’ v or ÷ v inside – (not out as in ’
v –(v)) v is certainly free for itself in –.
On the basis of the previous definition we can finally propose the correct version of
the rule (1): for each formula – of a language L and for each term t of L,

’v–(v)
–(t)

provided that v is free for t in –.

Note in fact that, in the previous example, v is not free for w in –.

(2) Introduction of ÷

The rough idea is the same as before, but adapted to the new context: it seems
reasonable that, in the presence of an element that explicitly satisfies –(v), one can
deduce ÷ v –(v).
Specifically, it seems that, for each formula –(v) of a language L and for each term
t of L, we can establish the rule of deduction

–(t)
÷v –(v)

Again, however, a clarification is necessary - actually the same as in (1).

Example. Let – (v) be the formula ’ w (v = w). Then ÷ v –(v) i.e. ÷ v ’ w

(v = w) is true in all structures of the language L that contain exactly one ele-
ment. However, let us replace v by the term w. We obtain as –(w) the formula
’ w (w = w), which is obviously true in every structure of L. Consequently, we
cannot expect –(w) (true in every structure) to imply ÷ v ’ w (v = w) (true only in
structures of cardinality 1). It can be noted, however, that in this case, as before, v

is not free for w in –(v). This is therefore the condition that must be excluded.
In fact the correct rule is: for every formula –(v) of a language L and for every term
t of L,

–(t)
÷v–(v)
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provided that v is free for t in –.

Then there are the last two rules

• elimination of ÷,

• introduction of ’

which, however, require even more subtle precautions. We omit the details.

3.4 The satisfiability problem

As in Boolean logic, so in first-order logic we meet the satisfiability problem. We
say that a sentence F of a language L is satisfiable if it is true in some structure of
L (which is then called a model of F ).

Satisfiability problem for a language L. Determine an algorithm to decide,
for each sentence F of L, whether F is satisfiable or not.

As in the propositional case, so we see that such an algorithm, if it exists, makes it
easy to obtain procedures for deciding, for F , F Õ sentences of L and G finite sets of
sentences of L:

• whether F is valid (i.e. true in every structure) or not;

• whether F is a consequence of G (G |= F ) or not.

Then the following fundamental theorem applies (but we do not have time to dwell
on it for too long).

Compactness theorem. Let G be a set of statements of L, F an utterance of
L. Then G |= F if and only if there exists a finite subset G0 of G such that G0 |= F .

Note, however, that the same property for the operator „ of provability (equiva-
lent to the operator |= of logical consequence because of the completeness theorem)
becomes trivial: for G a set of utterances of L and F a sentence of L, it is clear that
G „ F if and only if there exists a finite subset G0 of G such that G0 „ F . In fact,
every proof of F by G is, by its very definition, a finite sequence of sentences.

75



3.4. THE SATISFIABILITY PROBLEM

But let us return to a possible algorithm for the satisfiability problem. We quickly
present a possible approach, articulated in three steps.

The first step reduces the sentence F under consideration to the so-called uni-
versal form.

Definition. A sentence F of L is said to be universal if and only if F is of
the form

’v0 . . .’vn –(v0, . . . ,vn)

where –(v0, . . . ,vn) is a formula without quantifiers in the (free!) variables v0, . . . ,vn

(so it is obtained from atomic formulas with the only use of connectives, and has
an architecture analogous to that of propositional formulas, except that the atomic
formulas replace the propositional variables).

An appropriate procedure then translates a generic statement F into one (in a
possibly wider language) that

• is satisfiable if and only if F is,

• is in universal form.

The second step tries to further reduce the problem from universal sentences to
sentences without quantifiers.
In this respect it is not restrictive to assume that L contains at least one constant,
which otherwise is added, as the satisfiability or unsatisfiability of sentences is ob-
viously preserved.

Definition. Let – (v0, . . . , vn) be a quantifier-free formula, such as the one ob-
tained at the end of the first step. We call an instance of substitution of – every
statement –(t0, . . . , tn) with t0, . . . , tn constants of L or, more generally, terms of L

without variables.

There is then the

Herbrand Theorem. A universal statement ’v0 . . .’vn –(v0, . . . ,vn) is satisfiable
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if and only if every finite conjunction of substitution instances of –(v0, . . . ,vn) is
satisfiable.

We note that each of these substitution instances (as well as a finite conjunction of
them) is an sentence without quantifiers.

But the reduction guaranteed by Herbrand’s theorem is not always feasible.

If in fact the language L contains only a finite number of constants and no operation
symbols, then it admits only a finite number of variable-free terms and consequently
allows to construct only a finite number of substitution instances of –(v0, . . . ,vn), so
that the universal statement ’v0 . . .’vn –(v0, . . . ,vn) is satisfiable if and only if the
(finite!) conjunction of these instances is.

But otherwise, when L has an infinity of constants or even just one operation symbol
(conditions that generate an infinity of variable-free terms), then it also admits an in-
finity of substitution instances (and consequently an infinity of conjunctions). There-
fore the satisfiability check of a single universal sentence ’v0 . . .’vn –(v0, . . . ,vn) re-
duces to that of infinitely many sentences without quantifiers, and so cannot be done
in practice, except in the negative case. In fact ’v0 . . .’vn –(v0, . . . , vn) is unsatisfi-
able if and only if there exists a finite conjunction of substitution instances that is
unsatisfiable: so a unique conjunction (but the problem is to find it).

The third step (in cases where the second is successful) deals with sentences
without quantifiers - a context which, as already pointed out, recalls that of propo-
sitional logic, except that the old propositional variables are replaced by the new
atomic formulas. Appropriate algorithms adapt those of the propositional case and
apply to this extended domain: a theorem by J. A. Robinson explains how to pro-
ceed.

The di�culties of the second step remain. In fact, as a consequence of Gödel’s
incompleteness theorems we have that, for a language L with two binary operation
symbols +,◊, the problem of satisfiability does not admit any possible algorithm.
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Chapter 4

Syllogisms

4.1 Introduction

Syllogistics was invented by Aristotle, thus dating back to the 4th century BC. It
was later deepened by medieval logicians. In many respects it is now outdated,
being largely included in first-order logic.
However, it is still relevant today, as it often appears in competition quizzes. It is
therefore worth mentioning the basics.
Essentially, a syllogism consists of a series of propositions. In its simplest form, it
leads to the deduction of one conclusion from two premises, thus involving three
statements.
Moreover, the very etymology of the word “syllogism” reveals its literal meaning,
which is “concatenation of reasonings”, derived from the combination of the words
s‘n, with, and logismÏc, calculation.
For Aristotle, the syllogism was one of the main tools with which to exercise and
develop the logical faculty of reasoning. The theory of the syllogism he developed
can be found in his two works On Interpretation [4] and Prior Analytics [5].
Let us begin by describing the propositions that make up a syllogism as premises or
conclusions. Those considered by Aristotle are distinguished between:

• iuniversal or particular, the former expressed by the quantifier “every” or “for
all” and the latter by “some” or “there is”;

• a�rmative or negative.

Combined, they give rise to four main patterns:
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• A. universal a�rmative (e.g. “all professors are boring”);

• I. particular a�rmative (“some professors are boring”);

• E. universal negative (“no professor is boring”);

• O. particular negative (“some professors are not boring”).

The use of the letters A, I, E, O to distinguish the four models comes after Aristotle
and goes back to the medieval logicians: the vowels A and I derive from the Latin
“a�rmo” while E and O from “nego”.

It can be observed that the four di�erent schemes share a common structure that
identifies:

• a subject (“the professors”, all or some);

• an a�rmed or negated verb (“they are” or “they are not”);

• a complement (“boring”).

In [4] we read: “...it is necessary to establish what is noun and what is verb, what is
negation, a�rmation, judgement and discourse”.

Let us observe that A expresses exactly the negation of O and E that of I: in
fact to exclude that all or some professors are boring is equivalent to admitting that
at least one is not or that none is. For this reason these propositions, A and O, I

and E, are called “contradictory” two by two.
On the other hand, A and E are called “contrary” because they represent the anti-
thetical poles (“all/no-one”) of the same proposition; similarly, I and O are called
“subcontrary”, corresponding to the two options “someone is” and “someone is not”.
But be careful to distinguish “contrary” and “subcontrary” from “contradictory”.
Finally, I and O are called “subordinate” to A and E respectively, because they
somehow weaken them, going from “all yes” to “some yes” in the case of A and I,
and from “all no” to “some no” in the case of E and O.

Medieval logicians also devised a graphic representation to schematise the Aris-
totelian configuration of the syllogism: the logical square (or Aristotle’s square).
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Figure 4.1

A classic example of a syllogism is as follows: from the premises

• all thieves are guilty,

• all guilty people go to jail,

one arrives at the conclusion

• all thieves go to jail.

Three di�erent categories (or terms) are recognised, namely

• the guilty ones who appear only in the premises,

• then the thieves, and finally those who go to jail (both appearing once in the
introduction and once in the conclusion).

This structuring applies in general.Thus all syllogisms are assumed to involve pre-
cisely three terms denoted S, M and P and named as follows:

• P is the major term;

• S is the minor term;

• M is the middle term.

The middle term is required to appear in the premises, once together with P (major
premise) and once together with S (minor premise).
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The conclusion of the syllogism will be “S is (or is not) P” in the four variants A,
I, E, O seen earlier.
In the previous example, M corresponds to the guilty, S to the thieves, P to those
who go to jail.
In general, depending on the position of M in the two premises, we distinguish four
figures of syllogism:
1) “M is P”, “S is M”;
2) “P is M”, “S is M”;
3) “M is P”, “M is S”;
4) “P is M”, “M is S”.
Since there are 4 figures of a syllogism and 4 possible forms A, I, E, O of both
the premises and the conclusion, the total number of distinct modes (models) of
syllogisms is 4◊4◊4◊4 = 44 = 256.
However, it is shown that most of these modes are fallacious, i.e. they lead to wrong
conclusions. For example, a syllogism of the form

• all murderers are colour-blind;

• the professor is not colour-blind;

therefore

• the professor is the murderer

is wrong and not acceptable.
Its structure corresponds to the previous description, in particular the middle term
M coincides with the class of the colour-blind, S with that of the professor alone,
P with that of the murderers. And yet, the reasoning clearly does not add up.

4.2 How to recognise valid syllogisms

It is therefore necessary to identify among the 256 models of syllogism the valid
ones, which turn out to be “only” 24. Medieval logicians devised mnemonic rules
to distinguish fallacious modes from valid ones. These rules can be found as a sort
of joke in a poem attributed to Peter of Spain, who was a 13th century Portoguese
philosopher, physician and sage, who also became pope under the name of John XXI,
and earned Dante’s praise in Canto XII of Paradise [2]. The above-mentioned rhyme
(found in the work Summulae Logicales [95]) recalls the 24 valid syllogisms thanks
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to as many key words such as Barbara, Barbari, Darii and Ferison. The vowels of
the words describe in order the form (A, I, E, O) of the major premise, the minor
premise and the conclusion respectively. Let us describe some of these valid patterns.

Barbara is a syllogism of the first figure, so the middle term is first in the ma-
jor premise and second in the minor premise. The three A vowels of the syllogism
Barbara indicate that the three propositions composing the syllogism are all univer-
sal a�rmative. The example already proposed about thieves, but also the following,
falls into this scheme:

• all chimpanzees are apes;

• all apes are nice;

therefore:

• all chimpanzees are nice.

In this case, the middle term corresponds to apes, the lower term to chimpanzees
and the higher term to those who are nice.
Barbari, on the other hand, has the same figure as Barbara but changes the vowel
of the conclusion, i.e. “i”, so the conclusion is particular a�rmative. The following
example falls into this pattern:

• all chimpanzees are apes;

• all apes are nice;

therefore:

• there is a chimpanzee that is nice.

Although the premises are the same as Barbara’s, in this case the conclusion has
been weakened as it is subordinate.

Darii is also a syllogism of the first figure but only the major premise remains
universal a�rmative A while the minor premise and the conclusion are particular
a�rmatives I. Consider for example:

• all chimpanzees are nice;
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• there are some Juventus fans even among chimpanzees;

therefore:

• there are some Juventus fans who are nice.

Finally, Ferison belongs to the class of the third figure, so the middle term appears
in the first place in both premises. Of these, the major one is universal negative E,
the minor one is particular a�rmative I while the conclusion is particular negative
O. The following syllogism falls into this pattern:

• no cannibals are vegetarians;

• some cannibals are murderers;

ergo:

• there are murderers who are not vegetarians.

The validity or fallacy of a syllogism depends only on its mode and not on the terms
in it. So whether it speaks of thieves or monkeys, the Barbara model, for example,
retains its validity as such, indepentently of the terms that comprise it.

In order to guarantee the validity of a good syllogism it is also appropriate, if not
necessary, to assume that the terms constituting it are not empty. Consider the
following further example of the Barbari scheme, this time pertaining to the world
of crime:

• all ghosts are murderers;

• all murderers go to jail;

Therefore:

• there are ghosts who go to jail.

The conclusion “there are ghosts that go to jail” evidently presupposes that ghosts
exist.
This is assumed in every syllogism. Such an assumption is called an Aristotelian
axiom.
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As already pointed out, modern logic has evolved a great deal since the time of Aris-
totle (from Boolean logic to first-order logic), so it is not surprising that syllogisms
present some inadequacies when compared to these new horizons.

The use of the connectives ¬, ·, ‚, æ of propositional logic and the quantifiers
followed by a variable x, ’ x and ÷ x, of first-order logic ensures a more agile and
immediate notation.
Thus, a syllogism like the previous Ferison example, with the further introduction
of the three symbols C, V , A to denote cannibals, vegetarians and murderers re-
spectively, translates into:

• ’ x (C(x) æ ¬ V (x)) “no cannibal is a vegetarian”;

• ÷ x (C(x)·A(x)) “there are murderous cannibals”;

therefore

• ÷ x (A(x)·¬ V (x)) “there are murderers who are not vegetarians”.

The syllogistic lends itself to other perplexities.

• The conclusion of the previous example Darii leads to consider the intersec-
tion of the two categories of chimpanzees and Juventus fans, i.e. the class
of chimpanzees who are also Juventus fans. But this resulting category does
not seem to be represented in reality, unlike the two that determine it as an
intersection.

• The syllogistic approach applies to 1-ary relations (such as “being a chim-
panzee” or “being a thief”). But common language and mathematics also
use binary or even more complicated relations. In mathematics, a relation
of equivalence, or order, is binary, i.e. it involves two objects and not just
one. The British logician Augustus De Morgan proposed a famous example
in common language. Consider the simple reasoning: “all horses are animals;
therefore all horse heads are animal heads”. In it the relation “being the head
of” does not concern a single object but a pair. So the deduction, although
elementary, escapes any syllogistic scheme.

• There are some very famous examples of statements that are considered syl-
logisms even if, to be nitpicky, they do not exactly correspond to the relevant
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prescriptions; among them there is also the one (attributed to Aristotle him-
self) that “all men are mortal; Socrates is a man; therefore Socrates is mortal”.
In order for the reasoning to be correct, it is necessary to think of Socrates as
a category formed only by Socrates himself and thus to state “all Socrateses
are mortal”. Note that the same consideration applies to the other example,
given earlier, about the colour-blind professor.

4.3 Diagrams and graphs

In the centuries following the Middle Ages, other more intuitive and accessible al-
gorithms were devised to recognise correct syllogisms. Among them is the method
proposed by Euler in his Letters to a German Princess [47] of 1761 (letters 102 to
108). Basically, it consists of what today are called Euler-Venn diagrams and are
often taught in primary and secondary schools. Their name derives from the fact
that they were also drawn by John Venn in 1880. In reality, it seems that they were
used also by Leibniz and probably others before him. The basic idea is to interpret
each property, i.e. each term of a syllogism, as the set of elements satisfying it and
to represent them respectively as:

• a kind of enclosure surrounded by a closed curved line;

• the collection of points that lie within it.
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Figure 4.2

In this way, the four types of statements in the Aristotelian quadrilateral correspond
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to the same number of diagrams. The diagrams of A and E transpose the concept of
inclusion and disjunction between sets. Those of I and O di�er only for the position
of the arrow in the previous figure: the aim of I is in fact to underline the existence
of common elements for the two premises S and P , that of O, instead, is to underline
the presence of elements in S outside P .
We can reinterpret some syllogisms among those analysed to test the visual power of
the Euler-Venn diagrams. Let us start from that Barbara, for which “all chimpanzees
are monkeys; all monkeys are nice; therefore all chimpanzees are nice”.

Figure 4.3

The same diagram describes the Barbari syllogism (as can be trivially verified). On
the other hand, from Darii one deduces, from the premises that all chimpanzees are
nice and there are chimpanzees who are fans of Juventus, the existence of nice fans
of Juventus.

Figure 4.4

87



4.3. DIAGRAMS AND GRAPHS

As for Ferison’s case (in which, if no cannibal is a vegetarian but some cannibal
is a murderer, then there is some murderer who is not a vegetarian) the diagram
describing it is as follows:

Figure 4.5

Note that this diagram fails to clarify whether the area of the murderers intersects
that of the vegetarians. A dotted line has been used to underline this. A playful
and light-hearted alternative to the Euler-Venn method is that proposed by Lewis
Carroll in his two works The Game of Logic [23] and Symbolic Logic [24]. In general,
all of Carroll’s books, even those less “serious” than those already mentioned, are
full of word games and logical tricks. Many of these are inevitably lost in the Italian
translation because a joke that works in English, once translated into Italian, does
not necessarily retain its subtext.

Consider also the paradoxical “syllogism” in chapter 4 of Through the Looking Glass
[26]: “. . . if it was so, it might be; and if it were so, it would be; but as it isn’t, it
ain’t. That’s logic”. Another very famous but less surreal example is suggested by
Alice in Wonderland, Chapter 6 [25]:

• every cat that grins is Cheshire;

• all the cats Alice has met are grinning;

therefore

• all cats Alice has met are Cheshire.
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In Carroll’s vision, syllogisms are seen as a sort of board game, with a board con-
sisting of a square panel divided into 23 = 8 portions related to the 3 terms S, M

and P , that are determined by 3 filters that screen the light in three di�erent ways:
one blue, one striped and one grey, as shown in the figure.

Figure 4.6

However, each filter only screens part of the light, so when the light is screen simul-
taneously by two filters, e.g. blue and grey, 4 distinct zones are determined (left
image); whereas with all three filters together, 8 zones in total are singled out (right
image).

Figure 4.7

The eight di�erent zones are characterized by the presence and absence of each filter
and can be summarised in the following table:

Table 4.1
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Now let us try to analyse the syllogism involving Alice and cats by imagining that
each filter on the board represents one of the characteristics of the cats in Wonder-
land: grey for the grinning cats, blue for the Cheshires and striped for the cats Alice
met. Suppose that the whole square identifies all the cats in Wonderland.
The major premise is that “every cat that grins is a Cheshire”. It only involves the
blue and grey filters, so the square remains divided into only four zones. Moreover
there is no cat in Wonderland that has the grey feature but not the blue as the
previous premise is universal a�rmative. To transcribe this information onto the
square, we delete the area of these cats (grey but not blue) in Wonderland.

Figure 4.8

The minor premise on the other hand states that “all the cats Alice has met grin ”.
After inserting the striped filter and removing the blue one, we move on to trace
the information that the premise contains: now that part of the square representing
the striped cats that are not grey must be deleted.

Figure 4.9

At this point the blue filter is inserted again and the grey is removed to see if there
is any information linking the two characteristics blue and striped.
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Figure 4.10

The only illuminated and not obliterated area is screened by both the blue and
striped filters, leading to the conclusion “all the cats Alice has met are Cheshire”.

There are other more complex situations that can be analysed with this method;
take an example inspired by [23]:

• no sweet cake is inedible;

• some fresh cakes are inedible;

therefore

• some fresh cakes are not sweet .

In this case the blue filter corresponds to inedible cakes, the grey filter to sweet
cakes and finally the striped filter to fresh cakes. Unlike the previous case, the
minor premise is not universal but particular. If the major premise determines an
entire area to be deleted, the minor premise indicates that a certain area is occupied
by at least “an individual” and this area is obviously the one illuminated by the
striped and blue filters. To indicate this, a dot is inserted in the aforementioned
zone, paying attention to the fact that part of the zone in which we insert it cannot
be occupied.
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Figure 4.11

The conclusion can be seen by removing the blue filter and inserting the grey one,
i.e. “some fresh cakes are not sweet ”.

Another easy and witty method for solving syllogisms is the one devised by Ruggero
Pagnan and Pino Rosolini in [86]: the four forms A, E, I, O are represented by four
oriented graphs.

• universal a�rmative A.

• particular a�rmative I.

• universal negative E.

• particular negative O.
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The steps of the algorithm for solving syllogisms are as follows:

1) determine the types of the major and minor premises and translate them into the
language of graphs

where X and Y are two of the possible graphs listed above;

2) the graphs are rewritten by superimposing the mean term M ;

3) if the arrows passing through the information common to the two premises have
the same direction, they are joined to form a single arrow;

4) if possible, read the statement that corresponds to the graph obtained.

For example take the syllogism from Alice and the Cats in Wonderland:

• every cat that grins is Cheshire;

• every cat Alice has met grins ;

therefore

• all cats Alice has met are Cheshire.

By denoting by the initial letter each involved characteristic and applying the algo-
rithm, we obtain:

1) each S is C and each I is S ;

2) the corresponding graphs are;
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3) the arrows that pass through S go in the same direction and we obtain

4) the degree corresponds to the statement “every I is C”.

Other more complex examples are given by the following syllogisms.

1) Consider the syllogism

• cakes are sweet;

• pies are not sweet;

therefore

• pies are not cakes.

2) Let us deal with:

• no sweet cake is inedible;

• some fresh cakes are inedible;

therefore

• some fresh cakes are not sweet .
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3) Finally

• inedible cakes are sweet;

• no fresh cakes are sour;

therefore . . .

In case 3) the method fails because the graph obtained does not fall into the expected
types. In fact step 3 did not produce any arrows.

4.4 First-order monadic logic

The part of first-order logic that considers only 1-ary relations and thus includes
syllogistics is called “monadic”. We have already dealt with one statement that is
overseen by this type of logic, that of the cannibals and vegetarians of the Ferison
model:

(’x (C (x) æ ¬ V (x))·÷x (C (x)·A(x))) æ ÷x (A(x)·¬ V (x)) ,

in which quantifiers, variables of individuals, and symbols for 1-ary relations were
used to rewrite the syllogism “no cannibals are vegetarians; some cannibals are mur-
derers; ergo, there are murderers who are not vegetarians”.

Monadic logic, however, transcends syllogisms because it deals with cases in which
the intervening 1-ary relations are not just 3, for S, M and P , but extend to ar-
bitrary values. For example, it considers extended sequences of syllogisms - those
that are called sorites (or polysyllogisms).
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Actually, the term sorites, coined in the 4th century AD by the Roman rhetorician
Gaius Marius Victorinus, traditionally refers to two di�erent questions. Etimologi-
cally it derives from the Greek swrÏc, i.e. “heap”. It thus attests the large number
of propositions that form a polysyllogism – the topic we are interested in. But it also
recalls a famous paradox that dates back to the 4th century BC and is attributed
to the philosopher Eubulides of Miletus. We will tell it later.
Anyway, just to avoid any misunderstanding, let us underline that a sorites is not
contradictory per se, even if, as in the case of syllogisms, it may sometimes be fal-
lacious. The point is, again, to distinguish right from wrong polysyllogisms.

When the number of original propositions of a sorites far exceeds that of a clas-
sical syllogism, it becomes much more di�cult to organise them in order to direct
them to the conclusion. Carroll was also interested in this problem, and in [23], [24]
and [25] proposed some explanatory examples.
The first is taken from the dialogue between the protagonist and the Cheshire Cat in
the sixth chapter of [25]. In response to the child’s worried reaction to the prospect
of meeting two madmen like the Hatter and the March Hare, the Cat declares that
he and Alice are mad too, and goes on to explain why. To prove his own madness,
he states that no dog is mad. Then he goes on to say that a dog growles when it
is angry and wags its tail when it is pleased, whereas he, on the contrary, growles
when he is pleased and wags his tail when he is angry: therefore he is mad.
This argument is obviously incorrect, and provides an example of fallacious sorites.
It develops in fact from the 3 premises of the Cat:

• no dog is mad;

• all dogs growl when they are angry and wag their tails when they are pleased;

• I growl when I am pleased and wag my tail when I am angry;

to deduce

• I am mad.

But to arrive at this conclusion he would need, if anything, as a first premise “who
is not a dog is mad”, instead of “who is a dog is not mad”.

A further example, taken from the second part of [24], which was never published,
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takes up a classic argument attributed to the Stoics and which in turn repurposes the
famous antinomy of the liar. In ancient Egypt, on the banks of the Nile, a crocodile
kidnaps a child. The mother begs him to return it safe and sound. The mother and
the crocodile agree on the following: the woman must predict whether or not the
crocodile will devour the child; if she guesses right, the child will be returned to her,
and if she fails, it will be devoured.
The mother then guesses that the child will be devoured. It remains to be seen what
the crocodile will do, about which it is stated that he will be true to his word. On
the other hand,

• if the woman tells the truth, then the crocodile renders her the child and thus
makes her tell a falsehood;

• on the other hand, if the woman speaks falsely, the crocodile devours the baby
and thus attests that she is telling the truth.

Carroll examines the situation and points out, precisely, how the problem is mis-
placed.

From these two examples, it is clear that the general and abstract problem of solving
a sorites, i.e. understanding whether it is true or false, is not at all trivial when
the number of its premises begins to increase. Obviously, exploring one by one the
possible concatenations of deductions in order to find a correct one that confirms
the reasoning is not the right way to go, nor would it make sense to try to guess a
correct one, if it exists. Nor does it make sense to resort again to aids such as Peter
of Spain’s poems, Euler-Venn’s diagrams or Pagnan-Rosolini’s graphs. As we said,
a sorites can include an enormous number - therefore a heap - of statements, among
which it is di�cult to orient oneself.

And here it is the case that, taking a cue also from the embarrassments of the
crocodile tale, we recall the above-mentioned paradox of Eubulides.
One considers a heap of sand: a single grain of sand is not enough to make it up, be-
cause one grain is not a heap, and neither are two, or three, or four, or one hundred
grains. But at a certain point the heap begins to be a heap, and so the question is:
when does this happen? Eubulides’ argument confirms how delicate and insidious
the concept of truth is and what risks are run by rigidly limiting it to only two an-
tagonistic alternatives, heap yes or heap no, as is done in classical logic, neglecting
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intermediate nuances.
Returning to polysyllogisms, the question posed by the philosopher from Miletus
could raise a similar problem, about the maximal number of statements in a poly-
syllogism that still allow to manage and master it, and to exclude any possible
failure. Indeed it seems necessary to develop a sort of rapid calculation of syllogisms
and polysyllogisms, and thus to provide a repertoire of algorithms, no matter how
refined, but solid and e�ective, to resolve the question.

In this perspective it can be very useful to see sorites and syllogisms within first-
order logic. We have already seen with an example how all these arguments can be
translated into a sentence of this logic, which uses only symbols for 1-ary relations.
An algorithm for the satisfiability problem could check the validity of these sen-
tences. On the other hand we know that this algorithm does not exist for the whole
first-order logic, or at least for some of its languages (for example, that with two
binary operation symbols). But now we are only interested in monadic first-order
logic, which restricts its languages to 1-ary relations. This narrower scope might
allow the development of specific algorithms.
Let us recall that in the case of syllogisms there are three relations involved, but in
sorites this number could be extended to an arbitrary value N with the correspond-
ing 1-ary relation symbols, say R1, . . . ,RN . We would then like a procedure capable
of establishing, for each sentence E that can be written with 1-ary relation symbols,
whether E is valid or fallacious. As we know, it is equivalent to deciding for every
E whether it is satisfiable or not. The example of cannibals and vegetarians we
have already dealt with, slightly changed according to the notation we have just
established, uses three symbols of 1-way relations R1,R2,R3, and writes:

(’x (R1 (x) æ ¬ R2 (x))·÷x (R1 (x)·R3 (x))) æ ÷x (R3 (x)·¬ R2 (x)) .

However, our algorithm should apply to every E and therefore to every N . We
should then recall that the validity of E is independent of the meaning that one
intends to assign to R1, . . . ,RN and therefore of their interpretation (as already seen
for classical syllogisms), but refers only to the way in which these symbols are com-
bined. Thus E is to be understood as valid if all interpretations confirm it, and
fallacious if at least one contradicts it.

Logical research reached an important milestone when, in 1915, German mathemati-
cian Leopold Löwenheim proved in an important theorem that first-order monadic
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logic is decidable: in other words, the sought-after algorithm exists.
The reason is as follows. Let us assume that the sentence E contains precisely N

symbols of 1-ary relations, then let Q be its quantifier rank (a number that somehow
notices the presence of the occurrences of the quantifiers ÷ and ’ within E). It is
then shown that E is valid if confirmed by all its interpretations in finite universes
of at most Q ◊ 2N elements, while it is fallacious if denied by at least one of them.
This significantly improves our setting, passing from arbitrary universes to some of
finite and limited cardinality.
In the specific case of polysyllogisms, the threshold can even be lowered to 2N

elements. Then the following decision algorithm applies: given a sentence E of
first-order monadic logic,

• N and possibly Q are determined;

• all the interpretations R1, . . . ,RN are listed in universes of dimension at most
Q◊2N or even 2N if one considers the restricted scope of the sorites;

• it is observed that these universes, unless isomorphisms, are at most finitely
many and can be completely classified;

• one checks for each of them whether E is satisfied or not;

• If the answer is always yes, one concludes that E is valid, while if it is some-
times no, then E is fallacious.

Not that this gets around all di�culties. In fact the number of these universes to
be checked, despite being finite, can be very big in practice.
For example, in the case of syllogisms, there are three 1-ary relations present and
therefore N = 3 and consequently, if we neglect Q, we have universes with 8 = 23

elements to examine. But cataloguing the ways in which three 1-ary relations, i.e.
three subsets, are arranged in a world of 8 objects is a combinatorial problem which
is not easy, and almost more complicated than counting the 256 syllogistic ways.
Obviously, as N increases, things get even worse, both because of the exponential
trend of 2N and because of the successive steps of the algorithm. These di�culties
are confirmed by the scientific investigation of that branch of modern theoretical
computer science that goes by the name of computational complexity. It turns out
in fact that each algorithm for the satisfiability of monadic first-order logic, not
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only the one identified by Löwenheim but also any alternative procedure, comes to
employ working times exponential with respect to the length of E, that is, to the
number of symbols that appear in it and therefore, in a broad sense, to the number
N of the relations that intervene in it.
It might be possible to weaken the initial demands, by fixing in advance a maximum
number N0 of relations for which the algorithm is to be used. In such hypotheses the
situation certainly improves, but not so much as to allow us to successfully tackle the
problem of satisfiability for first-order monadic logic. In the most obstinate cases,
the best solving procedures are likely to take even longer to solve the problem than
the already long time taken by the logic of connectives.
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Chapter 5

Mathematics through images

5.1 Proofs without words: an introduction

Two possible logical formalisations of mathematical reasoning have already been
given, the Boolean and the first-order. In each of them, an abstract concept of
proof, inspired by Hilbert, has been introduced and discussed. A proof is viewed
as a finite ordered sequence of formulas, which evolves according to precise rules of
deduction. A theorem is then the last step of a proof, i.e. the last formula of the
sequence.
This vision, useful in theory, and moreover anticipating the ideas of computation
and programme in modern theoretical computer science, is however fatally limited.
It is di�cult to reduce a proof to a mere combinatorial calculation of successive
formulas, and a theorem to its final stage. There are beautiful and fascinating the-
orems, as well as other more grey and dull theorems. Similarly, the same theorem
may admit brilliant, concise and elegant proofs as well as slow, dry, uninformative
proofs.
A current in the philosophy of mathematics, the so-called mathematical Platonism,
believes that a theorem somehow pre-exists in a world of ideas and that the human
mind can only rediscover it. The same can be said of a proof. This vision is clearly
linked to Plato and his conception of mathematics. For example, in Book VII of his
dialogue Republic [97], the philosopher writes that “[...] geometry is the science of
what always is, and not of what at one moment is generated and at another moment
perishes”. Logicians such as Frege, Cantor, Russell and Gödel can be considered
Platonists, albeit with a variety of nuances.
Of course, someone prefers the opposite view, namely that mathematics, with its
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theorems and relative proofs, is the fruit of the human mind, that generates and
elaborates it, inspired by the world around us, by the study of nature and the uni-
verse, by the other less exact sciences.
Anyhow, whatever way mathematics is conceived, as the discovery of eternal ideas
or the autonomous construction of the intellect guided by the analysis of reality,
mathematics cannot be reduced to aseptic calculations, but lives also as emotion
and lightning.
Reasoning and intuition thus seem to coexist in mathematical research. But it is
legitimate to ask what role sensations, particularly visual ones, can play in all this.
Are mathematics and images antithetical?
In Plato the former is the antechamber to the fullness of knowledge of the world
and of oneself, while the latter is only the first step of this process. On the other
hand, Plato appreciates art, and in particular painting, only when it avoids any emo-
tion and contributes to the formation of the soul. Therefore a contrast emerges in
Plato’s thought between these two poles, mathematics and image, and consequently
between mathematics and art, at least if we understand the latter as the creation of
images – in the broadest sense.
Today, on the contrary, the image seems to play a predominant role in education,
nor can it be denied that mental activity also relies on imaginative thought and that
its models are also rooted in the concreteness of perceptual processes.
If we accept the idea that “perceiving” is actually “thinking”, or at least contributes
to it in a decisive way, we can assume that our brain is already in its perceptive phase
a sort of biological simulator capable of predicting behaviour, drawing on memory
and formulating hypotheses: perceiving an object is to imagine the actions implied
by its use, and it is also to abstract, select particular traits and ignore others.
The relationship and the fracture between the abstract of cognitive capacities dear
to mathematicians and the concrete of the senses that inspire the creation of im-
ages were considered in the last century with a very modern spirit by the German
psychologist of perception and art, Rudolph Arnheim (1904-2007). However, his
analysis did not stop at the specific field of the arts, but extended to all fields of
knowledge.
According to Arnheim, in didactic practice learning towards perceptual abstraction
should be guided by means of appropriate illustrations, trying to maintain a rich
concrete context: “in the perception of form lies the germ of the formation of con-
cepts”, as we read in his 1969 work Visual Thinking [7].
In an attempt to guide the student to perceptual abstractions, simplified constructs
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are used, summarising reality. Often, however, such a scientific concretisation fatally
ends up providing, almost by definition, only a modified and reduced case, which
fails to give even a glimmer of the situation itself and risks being a false facilitation.
The phenomenon is taken out of context, as if it were an independent event, and
exhibited “against an empty background that eliminates the granular and noisy part
of the concrete situation”. But, on the contrary, according to Arnheim, science edu-
cation works best if it embraces the whole process from direct, empirical perception
to formalised constructions, and if it ensures a continuous exchange between them.
George Polya (1887-1985), a Hungarian mathematician, who is considered a precur-
sor, if not the father, of the conception of mathematics known as quasi-empiricism,
also contributed to analysing even more directly and with extreme finesse the com-
bination of the concrete and the abstract in mathematics. For him, mathematical
reasoning is “secure, beyond dispute”, but not a guarantee. In his fundamental work
Mathematics of Plausible Reasoning [102], he writes:

“Mathematics is regarded as a demonstrative science. Yet this is only one of its
aspects. [...] You have to guess a mathematical theorem before you prove it; you
have to guess the idea of the proof before you carry through the details. You have
to combine observations and follow analogies; you have to try and try again. The
result of the mathematician’s creative work is demonstrative reasoning, a proof; but
the proof is discovered by plausible reasoning, by guessing”.

But there is more: according to the new empiricism and Polya, mathematics has
developed and continues to develop throughout history, in the same way as the other
natural sciences and in particular the physical sciences, without escaping a kind of
“observational reporting”, albeit transformed into calculations, hence mental exper-
iments and approximations.
An example in which physical and sensory instruments intervene to support math-
ematical results is that of geometric figure drawing, which is carried out in the first
years of school, for example (real) constructions with ruler and compasses. It is
in this context that the concept of “proof without words” was born, proposed by
the American mathematician Roger B. Nelsen in his book of the same title in 1993
[82]. These are proposals for proofs, even outside geometry, which are reduced to
the name of the theorem or the algebraic formula to be proved, and then to one or
more related figures, to very few textual indications and to the request to construct
the entire argument from these indications. They, as the introduction to Nelsen’s
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text states, “are pictures or diagrams that help the observer see why a particular
statement may be true, and also to see how one might begin to go about proving it
true”. The proofs without words are thus a kind of visual thinking, or rather visual
education in thinking, an introduction to logic through images, and thus constitute
a source from which to draw extensively for teaching. They provide an opportunity
to encourage reflection and comparisons between di�erent types of demonstrations
of the same result, so that students become accustomed to not being tied to a sin-
gle demonstrative procedure, but to discover connections between di�erent parts of
mathematics. In addition, they make it possible:

• to underline how the use of the language of figures is useful for discovering and
clarifying the logical path of certain demonstrative procedures;

• to consolidate the ability to formalise and express in a rigorous language the
intuitions obtained from geometric analysis;

• to check how the students have internalised and are able to use the knowledge
they have already acquired in new problem situations.

Although the term was coined recently (the first proofs without words appeared in
Mathematics Magazine during 1975 and then ten years later in The College Math-
ematics Journal, both published by the Mathematical Association of America), the
first proofs involving only a figure constructed with a ruler and compasses date back
to ancient Greece and Pythagoras himself (c. 600 BC) but also Euclid (c. 300 BC)
in his Elements. Other testimonies from the ancient world date back to imperial
China and are contained in the millenary text Zhou Bi Suan Jing (200 BC) [133]
and finally to the Indian mathematician and astronomer Bhaskara (c. 200 AD), as
we will see in later examples.
Their relevance is sealed by the interest they have always aroused in teachers, who
appreciate their pedagogical intent to replace the classical (and sometimes pedantic)
“textbook proofs”.
Let us propose an example of this kind of proof, planning to analyse it later from
the point of view of proofs without words. Consider the theorem according to which
the sum of the first n natural numbers (the n-th triangular number) is Tn = n(n+1)

2 .
A well-known proof applies the principle of mathematical induction to n.

• The basic step concerns n = 0 and observes that T0 = 0 = 0·1
2 = 0.
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• Let us then assume the thesis to be true for some n, so that Tn = n(n+1)
2 , and

prove it for n+1. In fact

Tn+1 = Tn +(n+1) = n(n+1)
2 +(n+1) =

= n(n+1)+2(n+1)
2 = (n+1)[(n+1)+1]

2 =

= (n+1)(n+2)
2

as claimed.

Far more direct, persuasive and intuitive is, as we shall see, the wordless approach.
It is therefore time to give a few examples to highlight its power and e�ectiveness.
We will focus on 3 main arguments, also external to geometry, among the many that
are already considered in Nelsen’s books, and then in the literature that followed
them:

1) the Pythagorean theorem and the Pythagorean triples;
2) the combinatorial calculus;
3) sums of convergent series.

5.2 The Pythagorean theorem and the Pythagorean
terns

As a first example, let us consider one of the milestones of mathematics, one of
its most famous theorems, with a lot of alternative demonstrations: Pythagoras’
theorem, according to which “in a right triangle, the square constructed on the
hypotenuse is equivalent to the sum of the squares constructed on the catheti”.
If therefore a, b, c denote respectively the lengths of the two catheti and the hy-
potenuse, the equality a2 + b2 = c2 is valid.
Pythagoras’ theorem also admits several proofs without words. In this sense we
may also partly view the one Euclid proposes in proposition 47 of the first book of
Elements [44]. Let us recall it.
We refer to the following figure. In it we recognise the starting point of the theorem,
i.e. the right triangle ABC with hypotenuse AB and catheti AC and BC, and the
squares constructed on the three segments ABED, ACGF , BCMK respectively.
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Figure 5.1

Let CL be the segment fromt C parallel to AD, so orthogonal to AB. The triangles
FAB and CAD are congruent because of the first criterion of congruence of trian-
gles: they have in fact AB = AD because they are sides of the same square ABDE;
moreover AF = AC, because they are sides of the same square ACGF ; finally the
angles FÂB and CÂD have the same amplitude because they are the sum of a right
angle and of a common angle that is CÂB.
Furthermore, the triangles CAD and AHD have the same base AD and the same
height AH, and are therefore equivalent. Thus they both have, CAD and AHD,
half the area of the rectangle ADLH. On the other hand, the triangles FAB and
FAC also have the same base AF and the same height AC, so they are equivalent,
and both have an area equal to half that of the square ACGF .
The rectangle ADLH is therefore equivalent to the square ACGF .
Similarly, the rectangle BELH is equivalent to the square BKMC.
So, in the end, the square ABED on the hypotenuse AB, which is the sum of the
rectangles ADLH and BELH, is equivalent to the sum of the squares ACGF and
BCMK on AC and BC.

A more properly “proof without words” is the one that can be deduced from the
above-mentioned Chinese text Zhou Bi Suan Jing [133], dating back to 200 B.C. It
makes use of the following figure:
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Figure 5.2

We recognise the right-angled triangle ABC of catheti a, b and hypotenuse c. The
square whose side is the sum of the catheti, therefore measuring a + b, can be de-
composed in two ways:

• on the left as the sum of the two squares constructed on the catheti and in
the 4 triangles equal to the initial one,

• on the right as the sum of the square constructed on the hypotenuse and again
of four triangles equal to the original one.

Both on the left and on the right, the right-angled triangles are coloured in green,
and the rest of the figure in light blue. By comparing these parts in light blue, the
thesis is easily obtained.

Indeed certain non-marginal properties need to be checked for correctness, namely
that the 4 triangles on the left and right are all equal to each other (and to the
starting triangle), and that the quadrilateral on the right is really a square, in par-
ticular it has 4 right angles. But all of this can be easily verified, and indeed may
provide the cue to invite students to complete the demonstration in these details.

A proof two millennia later, but similar in some respects, was obtained by the British
astronomer George B. Airy (1801-1892) [135]. It is accompanied and explained by
the following verses:

I am, as you can see,
a2 + b2 ≠ab.

When two triangles on me stand,
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square of hypothenuse is plann’d
but if I stand on them instead

the square of both sides are read.

The proof is based on the following figure:

Figure 5.3

The right-angled triangle referred to is the purple one at the bottom left, which is
however equal to the other purple right-angled triangle at the right, and to the two
light blue right-angled triangles at the top. The part in white and light blue corre-
sponds to the square constructed on the hypotenuse, the part in white and purple
to the sum of the squares constructed on the catheti. The purple and light blue
parts are obviously equal, since they are made up of two of the four original right-
angled triangles. The white part then measures a2 + b2 ≠ ab, which is the quantity
mentioned in the poem.

Another proof without words of the theorem is provided by the 20th US President
James A. Garfield (1831-1881) [54]. In it, no squares appear, but a right-angled
trapezoid, together with two copies of the right triangle under consideration. The
lengths of the catheti and hypotenuse are denoted here by x, y, z. The triangles are
in light green, ABC and CED respectively, while the trapezoid also adds the white
part to them, thus coinciding with ABED.
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Figure 5.4

Note that the white triangle at the centre of the figure is right in C and is also
isosceles, since the two side angles are complementary, in fact they correspond to
the acute angles of the right triangle.
The trapezoid ABED has height x + y and bases x and y respectively, so area
S = (x+y)(x+y)

2 = (x2+y2)
2 + xy. But the same area is obtained as the sum of those

of the three right triangles, two with catheti x and y, the other one with two equal
catheti of measure z, so it is: S = xy

2 + xy
2 + z2

2 = xy + z2
2 Comparing the two expres-

sions we obtain the thesis of the theorem.

A further proof, less recent than the previous ones, is attributed to the Arab math-
ematician Thabit Ibn Qurra (826-901) [135], known in the Western world as The-
bizius; it relies on the following figure:

Figure 5.5

The right triangle under consideration is the one in green ABC. One can recog-
nise quite well both the squares constructed on the catheti, respectively ACHL and
CBED, and the square constructed on the hypotenuse, namely ABFI. In order to
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complete the overall polygon ABDGL we need:
- in the first case, in addition to the squares on the catheti, the rectangle CHGE
(which is composed of two triangles equal to the initial triangle, CGH and CGE),
- in the second case, the two rectangle triangles IGF and CBD, which are again
both equal to the starting triangle.

About a millennium later, in 1873, Henry Perigal (1801-1898) [137], a stockbroker
with a passion for mathematics, proposed another brilliant proof of the theorem,
based on the following figure:

Figure 5.6

The right triangle is the orange one ABC, and the squares on the catheti AC and
AB are one in blue and the other in yellow. The latter is divided by two lines passing
through its centre (i.e. the point where the diagonals meet) and orthogonal to each
other, one perpendicular and one parallel to the hypotenuse BC.
The square on BC is divided into five parts, corresponding to the blue square and
the four parts of the yellow square. In doing so, Perigal demonstrated the equiva-
lence of the sum of the two yellow and blue squares with the one constructed on the
hypotenuse.

The last proposed version is due to the Prussian mathematician Georg F. von Tem-
pleho� (1737-1807) [113], who developed it in 1769 on the basis of the following
figure:

110



CHAPTER 5. MATHEMATICS THROUGH IMAGES

Figure 5.7

The right triangle is the orange one ABC, the squares to be compared (on the
catheti AC and CB and on the hypotenuse AB respectively) are the green one
ACHI, the blue one BCGF and the yellow one ABED. To the latter we add the
right triangle EDL, which is equivalent to the initial triangle. G and H are then
joined, obtaining a right triangle CHG, which is still equivalent to the original one.
It is proved that the quadrilaterals FGHI, ABFI, ADLC and BCLE are equiv-
alent. The hexagon ABFGHI is therefore equivalent to the hexagon ADLEBC.
But if we remove from the two hexagons the common triangle ABC and the equal
triangles CGH and DLE, the remaining parts, namely the sum of the squares of
the catheti and the square of the hypotenuse, are equivalent, whence the thesis of
the theorem.

Closely related to the Pythagorean theorem is the concept of the Pythagorean triple.
This is an ordered triple of positive integers (a,b,c) that constitute the measures of
the two catheti and the hypotenuse of a right triangle, and therefore satisfy the
Pythagorean equation a2 + b2 = c2. Of course the roles of a,b can be interchanged.
However, we can fix, for example, a < b.
The equation in question is homogeneous of the second degree, so if a triple (a,b,c)
satisfies it, so does every triple (ka,kb,kc) for every positive integer k. For example,
the Pythagorean triple (3,4,5) generates (6,8,10),(9,12,15),(12,16,20) etc. in this
way. A Pythagorean triple (a,b,c) whose components a,b,c are coprime (and there-
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fore pairwise coprime) is called primitive. An example is (3,4,5). Each Pythagorean
triple is obtained from a primitive, which is found by dividing the 3 components by
their greatest common divisor. The Pythagorean triple is then obtained from the
primitive thus generated by multiplying its components by that greatest common
divisor.
The problem arises of classifying all Pythagorean triples, and therefore all primi-
tive Pythagorean triples. A proof without words of the infinity of these primitive
Pythagorean triples was proposed in 1987 by Charles Vanden Eynden in his text
Elementary Number Theory [49]:

Figure 5.8

Let us consider any positive integer that is an odd square, and thus expressible
as both h2 and 2k + 1, for h and k appropriate positive integers. Then k2 + h2 =
k2 + (2k + 1) = (k + 1)2 and we obtain a Pythagorean triple (h,k,k + 1) which is
certainly primitive because k,k +1 are coprime. The preceding figure illustrates the
construction: the inner square contains k2 dots, the outer one (k+1)2, the di�erence
is given by the k +k +1 = 2k +1 dots on the edges. If their number is also a square,
a primitive Pythagorean triple is determined. For example, from 9 = 32 = 2 · 4 + 1,
then for h = 3 and k = 4, we obtain the primitive triple (3,4,5).

Euclid proposes a more extensive and powerful method for generating arbitrary
Pythagorean triples. He does so in Lemma 1 to Proposition 29 of the tenth book
of Elements [44]. Translated into modern terms, his strategy consists of taking two
positive integers m > n and calculate:
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Y
_____]

_____[

a = m2 ≠n2 (the di�erence of the squares)

b = 2mn (the double product)

c = m2 +n2 (the sum of squares).

For example, for m = 2 and n = 1 we obtain by this way again (3,4,5). But not
every Pythagorean triple can be obtained in this way: not for example (9,12,15)
because it is easy to see that 15 cannot be represented as the sum of two squares.
But all the primitive triples can be obtained in this way, provided that we take m,n

coprime and with opposite parity. We will deepen this topic later, in Chapter 9.
The verification that a triple as before is Pythagorean can be done with an algebraic
calculation that is neither di�cult nor fascinating:

(m2 ≠n2)2 +(2mn)2 = m4 +n4 ≠4m2n2 +2m2n2 = m4 +n4 +2m2n2 = (m2 +n2)2.

But one may prefer the following (vaguely without words) argument, devised in 1994
by David Houston [66]. We refer to the right triangle of catheti m and n, and hence
of (possibly irrational) hypotenuse

Ô
m2 +n2. Let ◊ be the acute angle opposite the

cathetus of measure n.

Figure 5.9

The trigonometric functions of ◊ are given by:

Y
_]

_[

cos◊ = mÔ
m2+n2

sin◊ = nÔ
m2+n2

.

Turning to the double angle 2◊ and using the trigonometric formulas of duplication
we have Y

_]

_[

cos(2◊) = (cos◊)2 ≠ (sin◊)2 = m2≠n2

m2+n2

sin(2◊) = 2sin◊ · cos◊ = 2mn
m2+n2

.
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Thus we have a right triangle whose catheti are cos(2◊), sin(2◊) and hypotenuse 1.
Multiplying by m2 +n2 we obtain the given Pythagorean triple

(a,b,c) =
1
m2 ≠n2,2mn,m2 +n22

.

5.3 Applications to combinatorics

Several famous properties of natural numbers, and hence various laws of arithmetic,
can be demonstrated without words. The basic idea is to represent every unity as a
point, and thus every natural number n as n points, suitably arranged.

This also leads to the law (already considered and proved by induction) that the sum
of the first n natural numbers is given by Tn = n(n+1)

2 , so 1+2+ . . .+(n≠1)+ n =
n(n+1)

2 .

This is the rule that the young Gauss would have derived at the age of 9. Carl
Friedrich Gauss (Braunschweig 1777-Göttingen 1855) was one of the greatest math-
ematicians who ever lived. His contributions to science ranged from analysis to num-
ber theory, from statistics to di�erential geometry. According to his 1862 biography,
Memoir of Gauss [123], by his colleague Wolfgang von Waltershausen (1809-1876),
when Gauss was still a very young pupil, his teacher set him and his class the task
of calculating the sum of the first 100 numbers, to try to keep the pupils, especially
the more restless ones, occupied for a while. But Gauss solved the exercise in a
few minutes, observing that the numbers in question, from 1 to 100, are divided
(first to last, second to last but one, etc.) into 50 pairs with the constant sum
101 = 1+100 = 2+99 = 3+98, etc. Thus the result is 50 ·101, i.e. 100·101

2 . Thus, in
abstract mathematical symbols, we derive the formula already mentioned:

Tn =
nÿ

i=1
i = 1+2+ . . .+n = n(n+1)

2 .

A first proof without words of the law in question dates back to ancient Greece and
is as follows:
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Figure 5.10

On the left the sum 1+2+ · · ·+n is represented through the distribution of addends
in n rows. On the right the sum is doubled, resulting in a rectangular distribution of
points over n rows and n+1 columns. This results in n(n+1) points. In conclusion
1+2+ . . .+n = n(n+1)

2 .
A second proof without words of the same property makes use of more sophisticated
and recent tools, namely combinatorial calculus. Let us recall that, for n > k positive
integers, the binomial coe�cient

1
n
k

2
represents the number of possible ways in which

it is possible to arrange the n elements (in this case points) in “slots”, i.e. sets, of
k elements.
Furthermore A

n

k

B

= n!
(n+k)! ·k! .

Let us now consider the figure: The addends of our sum are represented by n rows,

Figure 5.11

which in general form an equilateral triangle.
We add an additional red line, corresponding to n + 1. Each unit of the addends
from 1 to n (the “dot” in blue) is perfectly determined by a pair of dots in the red
line, those that are reached by proceeding diagonally to the right or left. So the
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dots in the first n rows are just
1

n+1
2

2
and the sum is

A
n+1

2

B

= (n+1)!
(n+1≠2)! ·2! = (n+1) ·n · (n≠1)!

(n≠1)! ·2 = n(n+1)
2 .

Another famous sum of arithmetic is that of the first n odd numbers, which coincides
with the square of n, that is:

n≠1ÿ

i=0
(2i+1) = 1+3+5+ . . .+(2n≠1) = n2.

The equality is proved without words by the following figure. On the left is repre-
sented the sum of the odd numbers from 1 to (2n ≠ 1), each on a single line (of n

total lines). On the right, the same points that were previously in the rows fill a
square of side n: they are therefore n2.

Figure 5.12

The sums 1 + 2 + · · · + n when n ranges over positive integers are called triangular
numbers (as we already said, precisely because they can be represented as a triangle,
in the way described above). Then Tn = 1 + 2 + . . . + n. Two laws that govern the
sequence of Tn explaining recursively how each of its even or odd terms is derived
from the preceding ones are the following:

a) 3T n +Tn≠1 = T2n ;

b) 3T n +Tn+1 = T2n+1.

Here is a proof without words of both.
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Figure 5.13

Triangular numbers are indispensable for the understanding of a fundamental result
of number theory, the Nicomachus theorem, which owes its name to the ancient
Greek mathematician Nicomachus of Jerash (ca. 60 - ca. 120), who was also the
originator of the previous proof on the sum of the first n odd numbers. The theorem
states that “the sum of the cubes of the first n natural numbers is equal to the square
of the n-th triangular number”, that is:

nÿ

i=1
i3 = T 2

n =
A nÿ

i=1
i

B2
thus 13 +23 + . . .+n3 = (1+2+ . . .+n)2 .

This proof becomes evident if we consider the following figure:

Figure 5.14

The di�erently coloured areas (dark blue, light blue, dark green, light green) that
fill the square of side n (in the specific case 10) correspond to a number of squares
that is given by the successive cubes 1,8,27,64. But along the edge, for example
vertically, there are 1,2,3,4, the sum of which is precisely the triangular number
10 = Tn = 1+2+3+4. So the same square is filled with 100 = 102 squares.
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Another famous arithmetic sequence is the Fibonacci sequence, proposed by the
Pisan mathematician Leonardo Fibonacci (c. 1770-1242) in his Liber Abaci [134].
Its terms Fn are defined again by recurrence, with respect to a positive integer n,
in the following way: Y

_____]

_____[

F1 = 1

F2 = 1

Fn = Fn≠1 +Fn≠2 , ’n Ø 3.

Thus we obtain the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . . Fibonacci’s number
theory has been extensively studied. There are various laws, some surprising, that
link them. Among them is the rule that states that the sum of the squares of the
first n Fibonacci numbers is equal to the product of the last of them and the one
immediately following it:

nÿ

i=1
F 2

i = Fn ·Fn+1 .

This can be demonstrated numerically, by induction. Or one can consider the follow-
ing figure, which represents the squares of the Fibonacci numbers 1, 1, 4, 9, 25, 64,

169, . . . according to the definition of the numbers themselves. The rectangle that
is progressively formed has the sides Fn (in this case 13) and Fn+1 (i.e. 21). This
leads to the following figure, which proves the equality mentioned above:

Figure 5.15

Another identity about Fibonacci numbers is the following, valid for any integer
n > 2:

F 2
n+1 = 4F 2

n ≠4Fn≠2 ·Fn≠1 ≠3F 2
n≠2.
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Here is a proof without words of it.

Figure 5.16

The large square in the figure has side Fn+1, so Fn + Fn≠1. But in turn Fn is
expressed as Fn≠2 +Fn≠1. Thus the big square is made up of

• 4 small squares in pale pink, of side Fn≠1,

• the central square in red, of side Fn≠2,

• 4 rectangles in brighter pink, of sides Fn≠1 and Fn≠2.

It can also be seen as the sum of 4 squares of side Fn from which, however, must be
subtracted

• the 4 bright pink rectangles,

• 3 times the central red square (which in the above sum occurs 4 times).

Thus we arrive at the identity stated above for every integer n > 2:

F 2
n+1 = 4F 2

n ≠4Fn≠2 ·Fn≠1 ≠3F 2
n≠2.

5.4 Sums of convergent series

Mathematics, but also physics with the study of phenomena, is often faced with
additions of an (e.g. countable) infinity of addends. One might expect that, if the
addends are all positive, the sum is also infinite. But one realises that, surprisingly,
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this sum sometimes has a finite value.
Let us consider, for example, the case of the so-called geometric series of ratio 1/2,
i.e.

Œÿ

n=1

31
2

4n

=
Œÿ

n=1

1
2n = 1

2 + 1
4 + 1

8 + 1
16 + . . .

This is connected with the first of Zeno’s paradoxes, the one, called “of the di-
chotomy”, in which, having to travel a certain distance (let’s say of length 1), one
has to reach first half, then half of the remaining half, and so on. But the sum of
the lengths of the infinite number of stages to be reached in this way (hence the
result of the previous addition) is finite, and indeed equal to 1.
A demonstration without words can start from a square of side 1 and therefore also
area 1. Let us divide it in half, as in the figure:

Figure 5.17

Each half will then have area 1/2 but can be divided in half. The procedure can be
repeated indefinitely, as shown below:

Figure 5.18

120



CHAPTER 5. MATHEMATICS THROUGH IMAGES

The sum of all these areas cannot exceed 1, since they are all contained in the
starting square. In addition, each portion of the square will be involved sooner or
later, so that we can conclude

Œÿ

n=1

31
2

4n

=1 .

This proof was proposed in 1981 by the American mathematician Warren Page [85].

The fact that a geometric series of positive ratio r

Œÿ

n=1
rn

converges, i.e. has a finite sum, is true not only for r = 1/2 but also for any r < 1.
Here is a wordless proof for r = 1/3, then for

Œÿ

n=1

31
3

4n

=
Œÿ

n=1

1
3n = 1

3 + 1
9 + 1

27 + 1
81 + . . .

The figure referred to is:

Figure 5.19
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In detail
- again, consider a square of side 1 and so area 1;
- first divide it into 3 parts (corresponding to the 3 vertical stripes in the figure);
- colour the left strip (one third of the square) and the upper square of the central
strip red, and the right strip and the lower square in the central strip green;
- repeat the colouring in the central square (one third of the central strip), but re-
versing the order of the colours;
- iterate the procedure.
It is clear that in the end the part coloured in red is half the square. But it is also
made up of the sum of a third of the square, then a third of a third (i.e. a ninth),
and so on. In conclusion:

Œÿ

n=1

31
3

4n

=1
2 .

Let us now turn to the geometric series of ratio r = 1/4, thus to:

Œÿ

n=1

31
4

4n

=
Œÿ

n=1

1
4n = 1

4 + 1
16 + 1

64 + 1
256 + . . .

One can proceed in a completely analogous way to the two previous examples start-
ing from a square of side and area 1, as proposed by the American mathematician
Sunday A. Ajose [1], namely:

Figure 5.20

It can be seen that the total sum (corresponding to the green portion of the square)
is 1/3 (the third part of the square, together with the other two red and blue parts).
Or alternatively, consider an equilateral triangle of area 1 and proceed as follows:

- divide it into 4 equilateral pairwise congruent triangles;
- colour with di�erent colours (red, green and blue) only 3 triangles and thus three
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quarters of the starting triangle;
- divide the one triangle left blank into four more equilateral triangles;
- repeat the colouring in a similar manner;
- iterate the procedure.

It is clear that in the end the coloured parts are the third part of the starting
triangle. But it is also made up of the sum of a quarter of the triangle, then a
quarter of a quarter (i.e. a sixteenth) and so on. In conclusion:

Œÿ

n=1

31
4

4n

= 1
3

All this is illustrated by the following pictures:

Figure 5.21

There is a law that generalises the 3 previous examples, valid for every ratio r with
0 < r < 1. It states that the relevant series always converges to the sum that follows:

Œÿ

n=0
rn = 1

1≠ r
.

Warning: this time we start from n = 0, so the series considered in the previous
examples must be premised with an addend r0 = 1, so that their results (increased
by 1) become respectively 2, 3

2 , 4
3 .

To show this more general result “without words”, we start by drawing all the
segments of length r0 = 1, r1, r2, and so on, as in the next figure. On the segment
r0 = 1 we construct a square of side r0 = 1. Draw a segment from the upper left
vertex amnd this square and the right endpoint of the n-th segment of length rn,
again as in the figure below. conceived by the English mathematician John H. Webb
and proposed in 1987 [125]. Suppose now n goes to +Œ.
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Figure 5.22

The diagonal segment determines two similar right triangles: the former is the one
at the top with catheti 1 and 1≠ r; the latter is the one at the bottom with catheti
1 and qŒ

n=0 rn (assuming that the geometric series converges). Then the following
proportion holds:

(1≠ r) : 1 = 1 :
Œÿ

n=0
rn

from which it follows that qŒ
n=0 rn = 1

1≠r .

Let us consider an analogous series,

Œÿ

n=1
nrn

It can also be written through a double summation:

Œÿ

n=1
nrn =

Œÿ

n=1

Œÿ

i=n

ri

Its convergence for 0 < r < 1 is deduced from that of the previous series:

Œÿ

n=1

Œÿ

i=n

ri =
Œÿ

n=1
rn · 1

1≠ r
= 1

1≠ r

A Œÿ

n=0
rn ≠1

B

= r

(r ≠1)2 .

A visualisation of this result, and a proof without words of it, is provided by the
following figure, devised by the US mathematician Stuart Swain in 1984 and called
“Gabriel’s staircase”. The reference is probably to the French architect Ange-Jacques
Gabriel and a wing of the Palace of Versailles that he designed. The addend corre-
sponding to n = 0 is also considered, but its role is completely irrelevant, because
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its value is 0 · r0, i.e. 0.

Figure 5.23

Let us comment on this proof without words. On the left we see the surface com-
posed of the sum of rectangles of base rn (always smaller for 0 < r < 1) and height
n, therefore of area nrn. The total area of this figure is therefore given by the sum
of the series under examination. But the same surface can be subdivided as on the
right, into “horizontal” rectangles with the same height, and with base that:

- at the bottom is r + r2 + r3 + . . . so 1
1≠r ≠1 = 1≠(1≠r)

1≠r = r
1≠r ;

- followed in the same way by r2
1≠r , r3

1≠r , . . . etc.

The area is then obtained as r+r2+r3+...
1≠r = r

(1≠r)2 , as indicated.

5.5 Logic and geometry in Leonardo da Vinci’s
imaginary

Leonardo da Vinci (1452-1519) also anticipated proofs without words in some sense.
His approach to mathematics is in fact mainly visual, geometric and intuitive, and
yet it succeeds in being e�ective and convincing, even from a didactic perspective.
We find it developed in many of the figures (and their captions) in one of his most
famous written works, Codex Atlanticus (Atlantic Codex) [73].
The first person to notice and emphasise in Leonardo these characteristics of a
thought that is based and evolves on a logic of images was the French poet Paul
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Valéry (1871-1945). Valéry, not unfamiliar with mathematical knowledge, dedicated
an essay to the subject in 1894 entitled Introduction to Leonardo da Vinci’s method
[118]. In it he states, speaking of Leonardo:

“analogy is precisely the faculty of varying images, of combining them, of making
the part of one coexist with the part of the other, and of discovering, voluntarily
or involuntarily, the relations of their structures. This makes the intellect, which
is their place, indescribable. There, words lose their virtue. They are formed, they
leap before his eyes; it is he who describes the words to us. [...] For it is from there
that amazing decisions, perspectives, dazzling intuitions, exact judgements, illumi-
nations, and even stupidities, spring forth. [...] As I stated above, the phenomena
of mental image production are very little studied. I remain firm in my convic-
tion of their importance. I maintain, in fact, that certain laws, peculiar to these
phenomena, are essential and, moreover, endowed with an extraordinary generality;
and that the variations of the images, the restrictions imposed on these variations,
the spontaneous productions of image-response or of complementary images, make
it possible to reach worlds as absolutely distinct as those of dreams, states of ecstasy,
and deduction by analogy”.

Let us therefore delve into this lesser-known dimension of Leonardo’s work, both
because it exemplifies the potential of an approach to mathematics based on geo-
metric intuition, and because it is rich in ideas and suggestions for good mathematics
teaching.
In the Codex Atlanticus, Leonardo describes his project, presenting it as a sort of
game, but demonstrating that he was well aware of the classic problem of squaring
curved figures (i.e. constructing an equivalent square, perhaps with the tools of the
rule and compasses).
We read in fact in folio 272 versus of a “ludo geometrico” (geometric game) “in which
the process of squaring surfaces of curved sides is given infinitely many times”. And
immediately afterwards: “[...] The square is the end of all the labour of geometric
surfaces. Every surface awaits its quadrature”, which is “the end of geometric sci-
ence”.

Leonardo drew curvilinear or mixtilinear figures within a circle, colouring them
or deleting them – thus highlighting them to underline his interest.
A caption indicates the procedure needed to obtain an equivalent square. The
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pages of the Codex Atlanticus illustrate in a very comprehensible way the argu-
ments Leonardo used to square his figures. At the base there are procedures for
the duplication of geometric figures or, more generally, for constructing multiple
figures with respect to one considered at the outset, all based on the Pythagorean
theorem. Leonardo’s intelligence was evidently struck by this theorem, whose intel-
lectual beauty he probably admired, but also its fertility, i.e. its ability to combine
meanings and images to generate new meanings and images. In this way, apparently
di�cult problems find an immediate solution.
Let us illustrate this by starting with perhaps the simplest and best known case:
that of the duplication of an assigned square, i.e. the construction of a square with
an area twice its own.

Figure 5.24

The drawings in the Codex deal with this problem, which is a simple application
of Pythagoras’ theorem to the case of the isosceles right triangle and is also the
subject of a famous scene in Plato’s dialogue Meno [98]. From the figure drawn by
Leonardo, it is easy to understand that the square constructed on the hypotenuse
contains four whole copies of the original triangle, which is contained twice in each
of the two squares constructed on the catheti. There are no calculations or formulas,
but the message is nevertheless very clear.
From the preceding drawing, another geometric property of great interest is also
derived: if one wants to obtain an area twice that of an assigned square, one need
only construct the square whose side is the diagonal of that square (regardless of
the size of the side of the starting square).
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Figure 5.25

Leonardo then asks himself how to obtain a square that is any multiple of the original
square. By using the previous construction, he manages to construct squares of triple
area, quadruple area and so on. Each time, it is su�cient for him to consider a right
triangle whose catheti measure respectively as

• the side of the initial square (say 1),

• the side of the square just constructed (therefore of area n).

Then the square on the hypotenuse of this rectangle triangle will have area n + 1.
In this way Leonardo obtains beautiful spirals that convey a sense of dynamism
and at the same time aesthetic beauty thanks to the various aspects of regularity
they possess (the search for regularity in a world with mostly irregularities was also
a theme dear to Leonardo who was fascinated and almost obsessed by the golden
ratio and its visual applications). In this setting, his drawing recalls an illustrious
classical precedent, namely Theodore’s spiral, on the right in the figure below.

Figure 5.26

Examination of the Code also reveals a desire to determine a system for duplicating,
in addition to squares, other figures such as circles or parts thereof. For these pur-
poses it was evidently decisive for Leonardo to use a variant of Pythagoras’ theorem
valid for circles inscribed with squares constructed on the sides of a right triangle:
in this case the diameters of the three circles are respectively equal to the sides of
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the squares.

Figure 5.27

The circle whose diameter is the hypotenuse of a right triangle increases its area
as the area of any one of the two circles constructed on the cathetus increases. It
can also be seen that, similarly to what happens with squares, when the triangle
becomes isosceles, the circle whose diameter is the hypotenuse is twice as large as
the one whose diameter is one of the two catheti.

Figure 5.28

A simple reasoning confirms the property. We know in fact that the square con-
structed on the hypotenuse has double area than the one constructed on a cathetus.
On the other hand, the area of the respective circles is obtained by halving the
diameter, that is the side of the square, so that the area is divided by 4, and then
multiplying by fi. This is true for the hypotenuse as well as for any of the catheti.
Thus the relation between the areas of the circles (one twice as large as the other)
is preserved. In the following figure i, c denote the hypotenuse and the cathetus,
respectively, and R,r the radii of the corresponding circles (equal respectively to
half of i, c).
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Figure 5.29

If the construction is iterated, it is possible to obtain, analogously to what happens
with squares, a circle whose area is any multiple of that of the starting circle.

Something analogous still holds when we consider mixtilinear surfaces, for exam-
ples parts of circles: it is possible to construct others similar to them that have
an area multiple of the original one. If in fact, observing the preceding figure, one
subtracts the circle of greater area from the square in which it is inscribed and anal-
ogously for the circle of smaller area, one will see that the area of the mistilinear
figure thus obtained in the first case is double that corresponding to the second.
The mistilinear figures thus obtained are called interstices, and are represented by
the letters A,a in the following figure.
The same obviously applies to the circular segments indicated in the figure by the
letters B,b. Leonardo called them portions.

Figure 5.30

We also obtain results analogous to the Pythagorean theorem, but applied to inter-
stices and portions.
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Figure 5.31

And again: by iterating the procedure, it is possible to construct spirals that have,
at each step, interstices and portions of double the area of the figures obtained at
the previous step.

Figure 5.32

Thus, considering any square, the area of each of its interstices is double the area of
an interstice belonging to the preceding square, and so on backwards. The same re-
lation applies to portions and can be represented by the following graphic succession
of “sums”:

Figure 5.33

The relationship between similar figures inspired Leonardo to create many of the
drawings found in the Codex. In particular, there is a mixtilinear figure that appears
almost obsessively in the manuscript, the lunula. This was one of the first figures
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that could be squared with a ruler and compasses, constructing the side of a square
with the same area. The result is attributed to Hippocrates of Chios (ca. 470-410
BC), a follower of Pythagoras.

Figure 5.34

Let us first recall the context. Two secant circumferences are given, as in the fol-
lowing figure:

• the first (on the right) has centre P and radius PR = PQ,

• the second (left) has centre O and radius OR = OQ.

Therefore the points of incidence are R and Q.

The curvilinear surface that is obtained as the di�erence between the two circum-
ferences consists of two parts, which are called lunulae.
To square, for example, the left one, let us consider the isosceles triangle PQR,
which is rectangular, with P vertex of the right angle, because it is inscribed in
the right semicircumference of the second circumference, that is the smallest in the
figure. Then

• the right semicircle of the smallest circle is composed of the lunula and then
of the circular segment of the greater circle denoted by B;

• the left semicircle, which has the same area, is composed of the triangle PQR

and the two circular segments denoted b.

From Pythagoras’ theorem for circular segments, we deduce that the two ones cor-
responding to b have together the same area as those of B. Moving on to the
di�erences, we see that the lunula has the same area as the isosceles right triangle
PQR and, through it, can be squared.
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Figure 5.35

The equivalences highlighted by Leonardo’s figures have a pedagogical value that
can be defined as great. Consider the one we have just seen between the lunula and
the triangle. This is a very simple example to understand but at the same time
extremely formative in relation to the perceptual di�culties typically encountered
in learning plane geometry.

In addition to all this, once again applying qualitative but rigorous arguments, it is
even possible to make a comparison between the perimeters of the lunula and the
diameter. It is enough to remember that the shortest path between two points is the
rectilinear one to understand that the perimeter of the triangle will be surely smaller
than the perimeter of the lunula. In fact RQ, as the chord of the greater circle, is
smaller than the corresponding arc from R to Q. In the same way, with reference to
the smaller circle, the chords PQ = PR are smaller than the corresponding arc, that
is of a quarter of the circumference, so that their sum is smaller than the semicircle
from R to Q.

Examples of this kind help at least to reduce if not to eliminate the confusion
that arises between the concepts of equality, equivalence and isoperimetry.

Figure 5.36
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Leonardo himself illustrates the geometric transformations he performs in order to
highlight the equivalences sought in the captions beneath the figures in the Codex.
Exploring the meaning of these phrases provides interesting didactic ideas aimed at
bringing to light the relationship between geometric design and logical deduction.
Promoting these intuitive solutions makes it possible to solve problems that would
otherwise require a considerable number of calculations di�cult to manage.
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Chapter 6

History and education of
mathematical induction

6.1 Introduction

In the previous chapter we outlined a beautiful and elegant way to perform proofs
of mathematical statements, without spending words or number, but just observ-
ing images that explain themselves. But often the mathematical reasoning relies
on more articulated and rigorous tools, as in the case of the induction principle,
already exemplified at the end of Section 5.1. The induction principle is powerful,
sophisticated and sometimes brilliant, but not always easy for students to under-
stand and apply. Proofs using it do require words, and even heavy calculations. But
its foundation is still the son of intuition.

In fact, the idea that natural numbers follow one another from 1 (or 0, if you prefer)
by adding each time 1 to the previous number, is relatively simple to conceive. It
is another matter, however, to formalize this intuition in the principle of induction
and especially to recognize it as the very foundation of natural numbers, as such
a powerful tool for demonstrations concerning them. This did not happen until
between 1888 and 1889, thanks to Dedekind and Peano. Nevertheless, pretty much
consistent, and progressively more and more refined anticipations of it have been
detected since antiquity.

The intent of this chapter is to review some of these foreshadowings, which on the
one hand significantly intersect the history of science, philosophy and even litera-
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ture, and on the other hand inspire exercises on induction itself, simple enough to
propose in classrooms. We believe that these references can facilitate the under-
standing of the principle among students. Indeed the Italian Indicazioni Nazionali
([128], pp. 241 and 337) also underline its importance.
First let us recall here the assertion of the principle of mathematical induction. For
simplicity, in this chapter we mean as natural numbers the numbers 1,2,3, . . . ,0 ex-
cluded - thus the positive integers. In this context the principle is formulated as
follows:

a set of natural numbers which:

• contains 1,

• for any natural number n, if it includes n it also includes its successor n+1,

contains all natural numbers.

The principle of induction is then useful for introducing new concepts about natural
numbers. We limit ourselves to the simple example of the factorial. For an arbitrary
natural number N , N factorial, denoted N !, can be presented as the product of all
natural numbers Æ N , therefore

N ! = N · (N ≠1) · . . . ·2 ·1.

But another way of defining it is to specify

• its value for N = 1,

• how to get the value for N = n+1 from that for N = n, for any n.

Then one puts:

• 1!=1,

• for each natural number n, (n + 1)! = n! · (n + 1) (in fact the product of the
first n + 1 natural numbers is obtained by multiplying that of the first n by
the new factor n+1).

Therefore 2! = 1! ·2 = 2, 3! = 2! ·3 = 6, 4! = 3! ·4 = 24, 5! = 4! ·5 = 120 and so on.

The induction principle assures us that in this way the totality of natural numbers
N is involved. Moreover on its basis one proves that there exists a unique function
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defined by the previous conditions. We speak then, in this case and in all analo-
gous ones, of definition by induction. In the case of the factorial this approach
sounds more elaborate than the former, but less vague, since it avoids the ellipsis,
and, above all, more e�ective in the progressive computation of the factorial values.

The principle of induction is also very useful for proving statements about natural
numbers. In fact, assume to have to prove a certain property for the totality of these
numbers. It is enough:

(i) to obtain it first for n = 1,

(ii) then deduce it from a generic n to the next n+1.

In this way the property is transmitted from 1 to 2, from 2 to 3, from 3 to 4 and so
on. Such a procedure is called proof by induction. We will see several examples
of this in the chapter. It does not exhaust the possible strategies to solve questions
concerning natural numbers, because mathematics is open to the imagination; how-
ever, it proves to be an incisive and e�cient tool. In it we distinguish two distinct
moments: the basic step (i) and then the inductive step (ii). Both compose it, and
both are indispensable for its success, even the basic one: if we did not know that
the property holds for 1, we could not, with the sole use of (ii), extend it to 2, 3,
etc.
The structure of a proof by induction is suitable for possible variations, depending on
the case. For example, if one wants to prove a property of natural numbers greater
than 1, one proves it for n = 2 (the basic step) and then transfers it from n to n+1
for every n > 1 (the inductive step). One may also prefer, in the inductive step, to
move from n ≠ 1 to n rather than from n to n + 1. Unfortunately these operations,
if carried out too casually, can cause some bewilderment in the students.
In fact, there are many objective di�culties that students encounter in understand-
ing the logical subtleties of the principle of induction, definitions by induction and
proofs by induction, and which have already been extensively analyzed in the litera-
ture on mathematics education. Among these factors that disorient or lead to error,
let us mention in the very statement of the principle

• the intrigue of “if” and “for each” overlapping in it ([50], [120], [16], [33]),

• the use of abstract variables,

and in proofs
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• the apparent indeterminacy, already mentioned, with which the inductive step
is formulated, sometimes from n to n + 1 and sometimes from n ≠ 1 to n (are
the two procedures equivalent?),

• the similar mutability of the basic step of the procedure, which is sometimes
1, sometimes, depending on the property to be proved, becomes 0, or 2, if not
a more generic n0 [43],

• an underestimation of this basic step, often and wrongly considered a pure
formality [11], and the consequent incorrect identification between the proof
by induction and its inductive step, which instead is one of its components.

The list does not end here, but we will discuss further reasons for confusion later.

One can trust, however, that the historical account of the ways through which the
principle has gradually matured over the centuries, sometimes naive and imperfect,
often lucid and ingenious, will simplify their understanding and instill in students
the perception that mathematical laws, induction and not only, are never aprioristic
and predetermined, but emerge and become clearer with time and reflection.

The precise and refined statement of the principle, its very naming (induction)
and the rigorous formulation of the initial intuition are improved only with time,
just as the awareness of its power develops as a reliable method of mathematical
demonstration. Regardind the understanding of its key role in the definition of nat-
ural numbers, it emerges, as already mentioned, only in the late nineteenth century
with Dedekind and Peano. A slow, almost millennial progress. Knowing it can only
increase confidence with the principle and understanding of its many nuances.

This historical approach is not entirely new. We find traces of it, for example,
within [41]. Here, however, we seek to pursue it systematically, addressing it to high
schools teachers and, through them, to students: the hope is to inspire workshops,
term papers and other activities on this sensitive topic. The most suitable year for
the conduct of such initiatives seems to us to be the last one, when one can assume
in students a greater maturity, a better predisposition to an overall view, the posses-
sion of a broader and more balanced knowledge of philosophy, history, and literature.

The plan of the chapter is, then, easy to sketch: from the perspective just described
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we investigate insights of mathematical induction, in order, in Plato, Euclid, Dante,
Maurolico, Pascal, Wallis and Jacob Bernoulli, Euler, Gershon, Gauss, Bossut and
Lalande, De Morgan, the Grassmanns and Peirce and, finally, Dedekind and Peano.
We then take a similar but shorter route regarding the method of infinite descent,
which is connected to induction. This time we go from the Pythagoreans again to
Euclid, then to Campanus of Novara and finally to Fermat. After that, we briefly
discuss the connection between the two principles, induction and infinite descent.
Before we begin our exposition, we point out two classic, brief and clear references
on the history of mathematical induction: [17] and [19], both of which can be found
on the net.

6.2 Plato, and a first easy case

An early, simple trace of induction mathematics is discerned in a passage from [99].
The overall argument is as abstract as ever, as it examines and compares the concepts
of “one” and “multiple”. But within the dialogue, the main interlocutor, that is, the
philosopher Parmenides, proposes the case of a series of objects contiguous, such as
the squares arranged side by side in Figure 6.1. The purpose is to count their sides
of contact.

Figure 6.1

Let us then follow Parmenides’ argument, according to [99], [136] (we follow here
the latter reference).

- Two things, then, at the least are necessary to make contact possible?
- They are.
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- And if to the two a third be added in due order, the number of terms will be three,
and the contacts two?
- Yes.
- And every additional term makes one additional contact, whence it follows that the
contacts are one less in number than the terms; the first two terms exceeded

the number of contacts by one, and the whole number of terms ex-

ceeds the whole number of contacts by one in like manner; and for

every one which is afterwards added to the number of terms, one con-

tact is added to the contacts.
- True.
- Whatever is the whole number of things, the contacts will be always one less.
- True.
- But if there be only one, and not two, there will be no contact.

So, with today’s eyes, we could say that Parmenides proves by induction that n

squares imply n≠1 contact sides. The basic step n = 1 is treated in the punchline,
the inductive one from n to n + 1 in the previous passage, highlighted in boldface.
Rearranging the details should be a simple exercise.

6.3 Euclid and prime numbers

Some commentators also detect some germ of induction in Euclid’s famous proof of
the infinity of primes: proposition 20 of the ninth book of [44]. Euclid lived a few
decades after Plato. The proposition in question is rightly considered a milestone
in the history of mathematical thought. As such, we feel it is fair to mention it to
students. The way Euclid enunciates it is as follows:

Prime numbers are more than any assigned multiplicity of primes.

We could then rephrase it this way, without alterating its spirit too much:

For every positive integer n, there exist at least n prime number.

Euclid’s argument can then been easily readjusted in terms of a proof by induction.
The base case: if n = 1, we need only to observe that there exists at least one prime
number, say 2.
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The inductive step: let us assume the statement true for some positive integer n and
prove it for n + 1. Suppose then that we have n distinct prime numbers, we must
construct at least one new one. Let p1,p2, . . . ,pn be these primes, multiply them and
add 1, obtaining Q = p1 · p2 · . . . · pn + 1. Clearly Q > 1, so Q possesses at least one
prime factor q. This q cannot coincide with any of p1,p2, . . . ,pn, otherwise it divides
their product and consequently the di�erence between Q and this product, i.e. 1,
which is impossible. So q is the new prime sought.

In truth, Euclid in [44], while using in substance the previous argument, limits
it only to the case of 3 prime numbers, thus to n = 3. Whether this already fore-
shadows the procedure of induction is a highly debatable question, to which we shall
return. However, it may be useful to propose a few examples, perhaps precisely in
the case n = 3, to illustrate that procedure.

• Applied to 2,3,5 it yields 2 ·3 ·5+1 = 31, which is prime.

• Applied to 3,5,7 it yields 3 · 5 · 7 + 1 = 106, which is not prime, but it de-
composes into prime factors as 106 = 2 · 53 and admits as divisors the prime
numbers 2,53 which are di�erent from the starting ones.

• Applied to 2,7,11 it yields 2 ·7 ·11+1 = 155, which is not prime but decomposes
into prime factors as 155 = 5 · 31 and admits as divisors the prime numbers
5,31 which are di�erent from the starting ones.

6.4 A literary interlude: Dante

A hint, actually somewhat faint, of the principle of induction is also attributed to
Dante Alighieri in the Divine Comedy, in relation to verses 55-57 of Canto XV of
Paradise [2]:

Tu credi che a me tuo pensier mei
da quel ch’è primo, sì come raia

da l’un, se si conosce, il cinque e ’l sei.

Here is a translation in English:

Thou thinkest that to me thy thought doth pass
From Him who is the first, as from the unit,

If that be known, ray out the five and six.
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The encounter between Dante and his ancestor Cacciaguida is recounted there. The
latter, being among the blessed in Paradise, has the power to read the thoughts
of others without the need to hear them. In fact, he can contemplate them in
God, in whom they are perpetually present and from whom they are reflected.
Similarly, Dante writes, relying on an arithmetical simile, all numbers, 5 and 6 in
particular, are generated by 1. His verses thus manifest that intuition mentioned at
the beginning of the note, about how natural numbers succeed each other starting
from 1. The mathematical property intervenes, however, only as a poetic tool,
without any didactic pretension: Dante does not intend to teach anything, but relies
on this comparison to explain himself. Moreover, elsewhere in the Poem, Dante also
employs mathematics as allegory. Anyway it cannot fail to strike one that even in
the reading of the Comedy (which Italian students meet extensively in their high
school years) one perceives some trace of induction.

6.5 Maurolico and odd numbers

Francesco Maurolico was a Sicilian mathematician and lived from 1494 to 1575. In
his treatise Arithmeticorum libri duo of 1557 [78] he says that he wants to pursue new
paths for the study of mathematics. Among them there is precisely the principle
of induction. One of its applications, presented in [78], concerns the connection
between odd numbers and squares - already noted in ancient times by Nicomachus
of Jerash. Maurolico first observes:

Every square added with the odd number that follows produces the next square
[proposition 13].

In modern notation: for every natural number n, the following holds

n2 +(2n+1) = (n+1)2.

This is precisely the property that progressive di�erences between two consecutive
squares correspond to odd numbers: in detail

12 ≠02 = 1≠0 = 1, 22 ≠12 = 4≠1 = 3, 32 ≠22 = 9≠4 = 5,

42 ≠32 = 16≠9 = 7, 52 ≠42 = 25≠16 = 9, 62 ≠52 = 36≠25 = 11

and so on. Thanks to this, Maurolico deduces that:
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From the sum of the odd numbers taken successively in order from unity, square
numbers are constructed from unity, corresponding to the same odd numbers

[proposition 15].

To put it again in today’s way, for each natural number n it holds

1+3+ . . .+(2n≠1) = n2 :

the sum of the first n odd numbers coincides with the square of n, as is still confirmed
by the examples: 1 = 1, 1+3 = 4,1+3+5 = 9, 1+3+5+7 = 11 and so on. This is the
same result proved by Figure 5.12 in Section 5.3 without words involving triangular
numbers. Here is how Maurolico deduces this statement from the previous one,
using induction and not any figure.

In fact, by the previous proposition [the 13], to begin, the unit with the following
odd makes the following square, that is, 4. And the same 4, the second square, with

the third odd, that is, 5, makes the third square, that is, 9. Likewise 9, the third
square, with the fourth odd, that is, 7, makes the fourth square, that is, 16. And

so to infinity, we prove the objective by repeating the use of proposition 13.

So Maurolico examines odd numbers up to 7 and squares up to 16, and there he stops.
However, the final expression «And so to infinity» («Et sic deinceps in infinitum» in
the original Latin text) foreshadows subsequent behavior and insinuates applications
that go well beyond 7 and 16. A rigorous mathematician of our times would prefer
more general, abstract and conclusive arguments. However, the germ of the idea is
very present.
The topic can certainly be proposed to students, perhaps with a form similar to
Plato’s one.

6.6 Pascal and the arithmetic triangle

Blaise Pascal was not only a mathematician and physicist, but also, in his own
way, a computer engineer (inventor and promoter of the calculating machine named
in his honour Pascalina), and moreover a philosopher, mystic and writer. In his
Traité du triangle arithmétique of 1657, he describes the construction that in Italy
is called Tartaglia’s triangle, but in France is attributed to him (Pascal’s treatise on
the arithmetic triangle can be found, in the original French language, in [88]). It
is therefore referred to as Pascal’s triangle. However, to avoid any controversy over
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its presumed paternity, we shall call it the arithmetic triangle. Here it is in its most
familiar version (Figure 6.2).

Figure 6.2

The image that Pascal proposes in his treatise is essentially the same, except that
the lines in the previous diagram become the diagonals running from left to right
and from bottom to top (Figure 6.3).

Figure 6.3
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Pascal then lists various propositions (he calls them “consequences”) about the el-
ements of this triangle. The twelfth, translated into modern terms and referring to
Figure 6.2, thus not Pascal’s one, states: within the arithmetic triangle

the ratio between two consecutive elements that meet going from left to right
along a line

equals

that which exists between the order numbers of the diagonal from the right in
which the first element stands and that coming from the left in which the second

element stands.

This is a di�cult statement to read and understand, but we will try to explain it
with a few examples.

• If we consider the elements 6,4 of the fifth line, we can note that the first one
is in the third diagonal from the right, the second one in the second diagonal
from the left, and in fact the proportion 6: 4 = 3: 2 applies.

• Similarly, if we take the elements 20,15 of the seventh line, we can note that
the first one is in the fourth diagonal from the right, the second in the third
from the left, and in e�ect we have 20: 15 = 4: 3.

Pascal asserts that this law applies in all generality. However, what is important
for us is not the combinatorial result he wants to achieve (worthy of attention, but
perhaps too di�cult for high school students), but the way he organises his proof.
Here is what he says on the subject - we adapt his original text slightly to Figure 6.2
to make it easier to read.

Although this proposition [the property that is to be proved] has an infinity of
cases, a very short demonstration of it will be given, assuming two lemmas.

The first one, which is self-evident: that this proportion is found in the second line
[whose elements are 1,1 and are respectively in the first diagonal from the right

and the first diagonal from the left, so that the proportion to be satisfied is
1 : 1 = 1 : 1, which is trivially true].
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The second one, that if this proportion is found in any line, it is necessarily found
in the following line. From which we see that it is necessarily in all the lines; for it
is in the second line for the first lemma; and then for the second it is in the third

line, then in the fourth, and infinitely.

So, we would say today, Pascal fully describes the structure of a proof by induction,
both the basic and the inductive steps, to apply it to the lines of the triangle in
Figure 6.2, starting with the latter as the initial case.
Let us add that, with regard to this strategy of induction, Pascal makes no mention
whatsoever in his treatise of Francesco Maurolico, who preceded him by more than a
century. However, he shows elsewhere that he is familiar with his work [78] - we shall
see later why - so much so that he mentions it in the famous letter he sends under
the pseudonym of Dettonville to his mathematician colleague Pierre de Carcavi, the
main subject being the cycloid [89].

6.7 John Wallis and pyramidal numbers

One of the first exercises proposed to students in order to accustom them to the
use of induction concerns the value of the sum of the first n natural numbers,
1+2+ . . .+n = Tn, as n varies, hence the so-called n-th triangular number (already
encountered in Section 5.3). The famous case of n = 100, for which we obtain

1+2+ . . .+100 = 5050 ,

as announced at the beginning of Section 5.3, is the result that Gauss (is said to
have) arrived at in a few minutes at the age of nine. We also saw that the conclusion
extends to every possible n, in the form:

1+2+ . . .+n = n · (n+1)
2 .

In Section 5.3 we proposed the Gauss demonstration as an example of proof without
words. In Section 5.1 we gave the proof by induction, indeed less direct and brilliant,
and more laborious. Anyway it is advisable to present and compare the two methods
in classroom, also to lead students to reflect on the variety of possible solution
approaches to mathematical problems. We will return to this topic in the section
on Poincaré. Here we can add that Gauss’s strategy was probably already known
to the ancient Greeks and had also been employed by Maurolico in proposition 7 of
the first book of [78]. The Sicilian mathematician formulated the result in this way:
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each natural number n, multiplied by the next, gives as a product twice the
corresponding triangular number.

In modern terms, n · (n+1) = 2 · (1 + 2 + . . . + n). Maurolico, instead of n = 100,
had examined the easier case n = 4, for which 4 · 5 = 20 and 1 + 2 + 3 + 4 = 10.
He had observed that by successively adding the four addends 1,2,3,4 with them-
selves, but in the opposite order, i.e. with 4,3,2,1 respectively, the common sum
5 = 1+4 = 2+3 = 3+2 = 4+1 was obtained four times, so that the overall sum was
20 = 4 ·5.
It is precisely this proposition of Maurolico that Pascal mentions in his letter to
Carcavi, enunciating it and then attributing its demonstration to the Italian math-
ematician [89], p. 16.

Let us now consider a similar question: to calculate for each positive integer n

the sum of the first n squares, i.e. the so-called n-th pyramidal number. Another
classical application of induction, more challenging than the previous one, proves
that

12 +22 + . . .+n2 = n · (n+1) · (2n+1)
6 = n3

3 + n2

2 + n

6 (ú).

Thus the sum of the first 100 squares is 100·101·201
6 = 50 · 101 · 67 = 338350. If this

example seems too complicated, here are a couple of simpler ones.

• For n = 3, 12 +22 +32 = 1+4+9 = 14 and in fact 3·4·7
6 = 14.

• For n = 4,12 +22 +32 +42 = 1+4+9+16 = 30 and in fact 4·5·9
6 = 30.

However one may reasonably wonder how these example can lead to devise the gen-
eral law (ú), which is certainly more elaborate and less intuitive than the previous
one on triangular numbers.
The question about pyramidal numbers was considered by the English mathemati-
cian John Wallis (1616-1703) in proposition XIX of his 1656 treatise Arithmetica
Infinitorum [122], p. 15. To be precise, Wallis compared the sum of the first n

squares with the product n2(n+1), trying to evaluate their ratio

12 +22 + . . .+n2

n2 (n+1) .

Observe how for triangular numbers a similar comparison between the sum 1 + 2 +
. . .+n and the product n(n+1) leads to the constant ratio 1+2+...+n

n(n+1) = 1
2 .
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Wallis explicitly calculated the above fraction for values of n from 1 to 6. If with a
little patience we perform the same computations, we obtain respectively:

• for n = 1, 1
1·2 = 1

2 = 3
6 = 3

6 = 2
6 + 1

6 = 1
3 + 1

6 = 1
3 + 1

6·1 ,

• for n = 2, 1+4
4·2 = 5

12 = 4
12 + 1

12 = 1
3 + 1

12 = 1
3 + 1

6·2 ,

• for n = 3, 1+4+9
9·4 = 14

36 = 7
18 = 6

18 + 1
18 = 1

3 + 1
18 = 1

3 + 1
6·3 ,

• for n = 4, 1+4+9+16
16·5 = 30

30 = 3
8 = 9

24 = 8
24 + 1

24 = 1
3 + 1

24 = 1
3 + 1

6·4 ,

• for n = 5, 1+4+9+16+25
25·6 = 55

25·6 = 11
5·6 = 11

30 = 10
30 + 1

30 = 1
3 + 1

30 = 1
3 + 1

6·5 ,

• for n = 6, 1+4+9+25+36
36·7 = 91

36·7 = 13
36 = 12

36 + 1
36 = 1

3 + 1
36 = 1

3 + 1
6·6 .

Wallis found that, at least in these first six cases, the ratio is greater than 1
3 but

gets closer and closer to it, because the di�erence corresponds to 1
6n . From this

examination he thought he could deduce, as indeed he did, that as n increases, the
di�erence tends to 0 and so the ratio tends to 1

3 .
He might even have conjectured that, for every positive integer n,

12 +22 + . . .+n2

n2 (n+1) = 1
3 + 1

6n
,

or
12 +22 + . . .+n2 = n2 (n+1)

3 + n(n+1)
6 ,

an identity which corresponds perfectly to (*): in fact it is easy to see that

n2 (n+1)
3 + n(n+1)

6 = 2n2 (n+1)+n(n+1)
6 =

= (n+1)(2n2 +n)
6 = n(n+1)(2n+1)

6 .

But Wallis’s story interests us not so much for these calculations (avoidable in the
classroom), but for another reason. «Fiat investigatio per modum inductionis», he
writes at the beginning of his exposition. On this occasion, therefore, he explicitly
uses the term induction. However, one may ask: is it reasonable to stop, as he
does, at the first six natural numbers in order to deduce a property valid for every
natural? Is his procedure the same one we have called “proof by induction”? Or
isn’t it rather a generalization suggested by a few examples, by some insistent basic
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steps, but without a serious inductive step and therefore somewhat rash? It is true
that after proposing his six examples, Wallis adds «et sic deinceps», i.e. «and so
on». But it is not easy to see how his calculations generalise in infinitum. Euclid
also stops at case 3, and Maurolico at the value 4, of which 16 is the square. But
their reasoning suggests how to proceed in general. The computations of Wallis, no.

His approach thus appears unjustified at least in our eyes, and in truth not only
in ours: he received various criticisms on these grounds from great mathematicians
of his time and shortly thereafter, including those of Jacob Bernoulli (1655-1705),
who disapproved of him both in a 1686 note in the Acta Eruditorum and in his
work (published posthumously in 1713) Ars Conjectandi. Both can be found on
archive.org: the page to refer to is, in the former case, 282 in volume 1 of the 1744
edition of the works [12] and in the latter, page 95 of the original 1713 edition [13].

Bernoulli reproached Wallis for having limited his investigation to checking a few
examples, without developing it with generality and rigour, proving for each n the
transition from n to n+1.
As for the other question raised - are there alternative proofs of the identity (ú),
more brilliant and convincing, as is the case with triangular numbers? - the answer
is yes. We cite in this respect the wordless proof independently devised by Martin
Gardner and Dan Kalman and referred to in [82] at page 78: certainly more elabo-
rate than the triangular numbers, but e�ective and ingenious.

Let us add that the law (ú) was already known to the ancient Greeks. Archimedes
enunciates it and then adopts it in his treatise On conoids and spheroids (lemma at
proposition 2, p. 107 ≠ 109 in [3]); the argument he follows in his proof, however,
does not seem to contain a trace of induction.

6.8 Euler

To underline the naivety of Wallis’ approach, we turn to Leonhard Euler (1707-1783),
one of the greatest mathematicians in history. We consider in particular a short letter
addressed to a Bernoulli and numbered E461 in the index of Eulerian works edited
by the Swedish mathematician Gustav Eneström [47]. Who the addressee Bernoulli
is, the text does not make clear, but he can probably be identified with Johann
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III, grandson of the first and more famous Johann. The letter presumably dates
from 1772. In the final lines, Euler points out the singular case of the polynomial
x2 ≠ x + 41, emphasising that, for every integer n from 1 to 40, the corresponding
value n2 ≠n+41 is prime. For example

• 12 ≠1+41 = 41 is prime,

• 22 ≠2+41 = 43 is prime,

• 32 ≠3+41 = 47 is prime,

and so on, until 402 ≠40+41 = 1601.

Students can check the intermediate values with the help of a calculator. However,
we anticipate the answer: the numbers that are obtained, all of them prime, are in
the order 41,43,47,53,61,71,83,97, 113,131,151,173,197,223,251,281,313,347,383,
421,461,503,547,593,641,691,743,797,853,911,971,1033,1097,1163,1231,1301,1373,
1447,1523,1601.
However, are these 40 a�rmative examples (a far larger sample than the 6 consid-
ered by Wallis) su�cient to conclude that for every natural number n, n2 ≠ n + 41
is prime? Certainly not, because at the very next step we encounter

412 ≠41+41 = 412

which is obviously a composite number. Remember that verifying an even large
number of examples, is completely di�erent from finding a general proof valid for
every n : 40 is a relatively large threshold, certainly greater than 6, but natural
numbers are infinitely many.

Let us add three curiosities about Euler’s observation.

1. First, there are other primes of the form n2 ≠ n + 41 for values of n > 41, e.g.
already 432 ≠43+41 = 1847.

2. One may ask what happens if one inserts another positive integer N instead of
41 : to what extent does the sequence of values of the polynomial x2 ≠x +N ,
when x varies between the natural numbers, consist of only prime numbers?
The question can be posed to the students for their consideration.
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We note however that for x = 1 we have 12 ≠1+N = N , from which we deduce
that we must restrict the analysis to N = 1 or N prime, otherwise the initial
value of the sequence is already composite.
Furthermore, for N = 1 the next values obtained are 1,3,4,. . . and thus already
at the third step include composite numbers.
Let us assume then that N is prime. We observe that, as for 41, for x = N we
obtain

N2 ≠N +N = N2

which is evidently composite. It then remains to consider the intermediate
values from 1 up to N ≠ 1. The prime numbers N for which, in the same
way as for 41, all values of n2 ≠ n + N for 1 Æ n < N are primes are called
lucky Euler primes. However, there are very few of them, just six, namely
2,3,5,11,17 and 41 : a result that is by no means simple to prove.

3. Some people attribute to Euler the examination of the polynomial x2 +x+41
instead of x2 ≠x+41, which thus di�ers in the sign of x. Concerning this new
polynomial, we observe that, this time, for 0 Æ n < 40 we obtain prime values
of n2 +n+41, while

402 +40+41 = 40 · (40+1)+41 = 40 ·41+41 = 41 ·41 = 412

is composite. Actually, the example is essentially the same as the previous one,
because the second polynomial can be obtained from the first by changing the
variable from x to x+1 : in detail

(x+1)2 ≠ (x+1)+41 = x2 +2x+1≠x≠1+41 = x2 +x+41.

Thus, the two polynomials assume the same images, except that the value of
the indeterminate x in the second case is decreased by 1.

6.9 Levi ben Gershon, cubes and permutations

Let us go back in time, to Dante’s epoch to be precise. Levi ben Gershon - also
known by his Graecised name Gersonides - lived at that time from 1288 to 1344,
worked in southern France, was a major exponent of medieval Jewish thought, a
philosopher, theologian, astronomer and also mathematician.
His treatise Maasei Hoshev is dated 1321, the same year as Dante’s death. The title
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comes from the Bible, Exodus, 26, 1, specifically from the passage in which God
instructs Moses on how to build his sanctuary, recommending an «artist’s work»:
such is the translation of Maasei Hoshev according to the Jerusalem Bible, but the
expression can also be rendered in a more mathematical way, as «the art of the
calculator».
The book consists of 68 propositions and then the discussion of various problems.
The contribution to the history of mathematical induction is conspicuous, as the
article [104] points out. Gershon calls the procedure “growing step by step”. He uses
it to solve some questions, including the following two, which again could reasonably
be proposed as exercises to nowadays students. However, they seem less elementary
than many dealt with so far, which is why they have been postponed to now. They
are respectively: the sum of cubes and the number of permutations.
We have already considered triangular numbers (the sums of the first natural num-
bers) and pyramidal numbers (the sums of their squares). The next step is to deal
with sums of cubes. The following identity, valid for every natural number n applies
to them (generally known as Nicomachus theorem, as pointed out in Section 5.3,
whose proof without words is proposed in Figure 5.14, such as those presented on
pages 84-89 of [82]; this time they seem more elaborate and less intuitive, only
because of the greater di�culty of the situation to be faced):

13 +23 + . . .+n3 = (1+2+ . . .+n)2 (úú) .

Therefore the sum in question coincides with the square of the n-th triangular num-
ber, and thus also with n2·(n+1)2

4 .

Proposition 41 of Maasei Hoshev considers precisely this argument. It focuses on
the square of the sum of the first n natural numbers. It proves that, for n > 1, the
di�erence between this square and the previous one, relating to the sum of the first
n≠1 numbers, is equal to the cube of n. Thus in modern notation

(1+2+ . . .+(n≠1)+n)2 ≠ (1+2+ . . .+(n≠1))2 = n3.

For example

• (1+2)2 ≠12 = 9≠1 = 8 = 23,

• (1+2+3)2 ≠ (1+2)2 = 36≠9 = 27 = 33,

• (1+2+3+4)2 ≠ (1+2+3)2 = 100≠36 = 64 = 43,
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• (1+2+3+4+5)2 ≠ (1+2+3+4)2 = 225≠100 = 125 = 53

and so on.

From this, Gershon deduces that the square of the sum of the first n natural numbers
coincides precisely with the sum of their cubes, as we already know:

(1+2+ . . .+n)2 = 13 +23 + . . .+n3

for every positive integer n. In fact, the square in question di�ers by n3 from the
one relating to n≠1, which in turn di�ers by (n≠1)3 from the previous one, and so
on, up to the base case n = 1, for which 12 = 1 = 13 obviously applies. It is therefore
su�cient to add member by member the equalities obtained above on the individual
cubes, from 1 up to n.

This is therefore the same reasoning as Maurolico’s one for the sum of the first
n odd numbers. In fact, Maurolico also deals with the question of cubes in proposi-
tions 57 and 58 of [78]. It should be noted, however, that Gershon limits his “proof
by induction” to n = 5, thus making use of precisely the equalities explicitly given
above as an example. On the other hand, his procedure is clearly generalisable and
well outlined. In the case of 5, one can easily check that:

(1+2+3+4+5)2 = 152 = 125 = 1+8+27+64+125 = 13 +23 +33 +43 +53.

Let us add that an inductive approach to the proof of identity (úú) was pursued,
before Gershon, by the Persian mathematician Al-Karaji (953-1029), who deduced
it for n = 10. Gershon’s treatment, however, seems more mature and conscious.

The other classic question considered by Gershon concerns combinatorial calculus,
and specifically the number of possible permutations on n objects, for integer n > 1.
In his proposition 63, he proves that by increasing the number of objects by 1, thus
from n to n+1, the number of permutations is obtained by multiplying the previous
value by n+1. In other words, if for every integer n > 1 we denote by Pn the number
of permutations on n objects, then we have for every such n:

Pn+1 = (n+1) ·Pn.

Starting from this consideration and from the easy observation that the permutations
on 2 objects are 2, i.e. P2 = 2, Gershon deduces that, for each n > 1, the number
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of permutations on n objects is given by the product of all integers from n up to 1,
that is, n!; thus

Pn = n! = n · (n≠1) · . . . ·2 ·1 (úúú).

In detail, Gershon firstly observes that P2 = 2 = 2!, from which he then deduces that
P3 = 3 ·P2 = 3 ·2! = 3!, and so on for higher values of n. Actually, he stops at n = 5
also this time, but it is clear that the procedure extends to the higher integers “ad
infinitum”.
Moving on to today’s students: the proposal of a few initial examples, which also
clarify the non-trivial concept of permutation, can inspire them with the general
law, which, following Gershon’s approach, they can prove by induction.
However, even in this case it will be useful to compare this possible strategy with the
following one, which avoids the use of induction. It can be seen (perhaps starting
from small values of n = 2,3, . . . ) that every permutation of n objects remains
perfectly determined

• by the value it associates with the first, and which it can choose in n distinct
ways,

• then by the value it associates with the second and which can choose in n≠1
distinct ways, those remaining after the choice of the first,

• then again by the value it associates with the third and which it chooses in
n≠2 distinct ways, those remaining after the choice of the first two,

and so on, until the image associated with the last object, which will obligatorily
coincide with the only one left available.
Thus, there are altogether n! possibilities of choice, and consequently as many per-
mutations.
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6.10 Gauss

We have already recounted Gauss’ feat as a schoolboy on triangular numbers. A
few years later, in 1796, he obtained the proof of one of his most famous theorems,
a property of prime numbers (to be precise, of pairs of distinct odd prime numbers)
that is called law of quadratic reciprocity: too complicated to be referred to here.
Let us simply say that Gauss himself celebrated it as the «gem of higher arithmetic».
He showed it when he was still very young: when, after months of work, he com-
pleted his first proof, he was not yet nineteen years old, in fact he noted that he had
completed it on the 8th April of that year 1796, while he would have celebrated his
birthday on the 30th of the same month. From then and 1818 he obtained 5 more
di�erent proofs of the same law, and 2 more were found after his death and appear
in his posthumous writings.

The law of quadratic reciprocity is set out and discussed in full in section 4 of the
famous treatise Disquisitiones Arithmeticae, which Gauss composed in 1801 [55]. It
is stated in article (as if said paragraph) 131 of this work, after which the following
articles present the above proof, which uses precisely a method of induction. In
fact, Gauss first face and positively solves the “simplest” cases, those involving the
smallest odd primes, and then goes on to write in article 136 more or less like this:
let us assume that the law is not valid in general, then it would be valid for pairs
of primes less than or equal to a certain positive integer n, and no longer for pairs
of primes less than or equal to n+1. Gauss then continues his argument, deducing
a contradiction from these premises. He thus proves how the law is transmitted, in
the sense just described, from n to n+1.

Impossible to go into detail here, as already mentioned. In any case, the fact that
such an illustrious mathematician used the method of induction in one of his most
celebrated theorems undoubtedly impressed his colleagues, increasing their interest
in that principle.
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6.11 Bossut, Lalande and the powers of a bino-
mial

However, we read in [19] that even at the beginning of the 19th century, the term
“induction” was used in the mathematical sphere in a vague and undefined way,
meaning both the more naive way in which Wallis understood it and the more ma-
ture way of Bernoulli. To confirm this ambiguity, we cite the names of Charles
Bossut (1730-1814) and Joseph Jérôme Lalande (1732-1807), who were respectively
a mathematician and abbot, and an astronomer and freemason, and both cooper-
ated in Diderot and D’Alembert’s encyclopaedic project. Among the entries in the
Encyclopédie méthodique [40] there is one dedicated to induction, on page 207 of
the second volume. Bossut and Lalande are said to have compiled it. In their com-
mentary, however, they restrict themselves to one example, although famous: the
binomial theorem, i.e. the formula that expresses the powers of a binomial (x+a)m

(with m being a positive integer) as the sum of monomials in the decreasing powers
of x and increasing powers of a. For example:

(x+a)1 = x+a,

(x+a)2 = x2 +2ax+a2,

(x+a)3 = x3 +3ax2 +3a2x+a3,

and so on. Already for these initial exponents m = 1,2,3 it can be observed how
the coe�cients on the right correspond to the first, second and third rows of the
arithmetic triangle in Figure 6.2. The binomial theorem confirms this impression
for each exponent m. The proof can be obtained by induction on m - in the way we
understand induction today, i.e. by checking the initial exponent 1 and then going
from a generic m to the next m + 1 for each m. All this at the cost of some some-
what intricate combinatorial calculations, which we would not recommend for the
students we are addressing. However, we are interested in the way the Encyclopédie
describes induction, which is still far from the modern view. Here is in fact what
we read about it:

whoever, without knowing the exact and general way of proving this formula, would
nevertheless conclude it by having verified it for m = 1,2,3 etc., would judge by in-
duction. Therefore, one must not use this method unless there is no more exact one,
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but even in this case one must use it only with great circumspection; for sometimes
one might arrive at false conclusions.

Therefore induction is still conceived in the way of Wallis and criticised in the way
of Bernoulli.

6.12 De Morgan and Ru�ni’s theorem

The one who finally managed to describe the connotations of induction, as we un-
derstand it nowadays, was, a few decades later, Augustus De Morgan. He even
collaborated in an encyclopaedia, the Penny Cyclopaedia, a kind of popular dictio-
nary, comparable to today’s Wikipedia. For it he compiled 106 entries, including
one concerning induction itself, which can be found on pages 465-466 of volume
XIV, published in 1838 [138].
De Morgan explains the principle of induction in terms that are familiar to us. He
states: suppose we have a property of natural numbers and we succeed in proving
that if it holds for three consecutive of them n,n+1,n+2, then it also holds for the
next n+3; well, under this hypothesis, that property

• if holds for 1,2,3, it transfers to 4,

• from 2,3,4 it then transfers to 5,

• from 3,4,5 it transfers again to 6

and so on «ad infinitum», so that it holds for every number.

It will be objected that the argument, referring to triads rather than to single natu-
ral numbers, is fatally complicated. But, the adaptation to a single n is soon done:
it is su�cient to prove that the property is preserved by going from an arbitrary n

to n+1.
Whether the premises are three or one, De Morgan emphasises the benefit of this.
In the simplest case of 1-ary properties, there is no need to prove an infinity of
deductions, from 1 to 2, 2 to 3, and so on, but it su�ces to show a single condition
from n to n+1 for every n, then combine it with the proof of the base case n = 1.
Returning to the entry in the Penny Cyclopaedia: De Morgan is the first to clearly
name this procedure induction, and not its more or less ambiguous variants. To be
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precise, he first calls it «successive induction» but then, at the end of his script,
«mathematical induction».
De Morgan proposes two examples of it. The first is the same as Maurolico’s one.
The second concerns the divisibility of polynomials and therefore, in some way, their
decomposition into irreducible factors. It is in fact a matter of proving that

for each positive integer n and for each parameter a,
xn ≠an is divisible by x≠a.

The question can be reasonably proposed to students as an exercise in the use of
induction, but also for better familiarisation with polynomials, Ru�ni’s theorem,
etc. De Morgan already provides the answer, pointing out that for every positive
integer n (in particular > 1)

xn ≠an = xn ≠an≠1x+an≠1x≠an = x
1
xn≠1 ≠an≠12

+an≠1 (x≠a)

so that xn ≠ an is divisible by x ≠ a if and only if xn≠1 ≠ an≠1 is also divisible by
x ≠ a. The previous consideration can then be applied: the required property, that
xn ≠an is divisible by x≠a, is trivially true for the exponent n = 1 and from this it
then transfers to n = 2,n = 3, «ad infinitum».
If anything, it can be noted that De Morgan sets the inductive step from n ≠ 1 to
n and not from n to n + 1. But it should be apparent by now that the di�erence
is not relevant: he could have similarly concluded that xn+1 ≠ an+1 is divisible by
x≠a if and only if xn ≠an is.

6.13 The Grassmans, Peirce et al.

It was towards the end of the 19th century that a general need began to be felt to
provide mathematics and its main concepts with a clear and rigorous physiognomy
and firm foundations. The need then matures to define exactly what numbers are,
from naturals to integers, to rationals, to reals and beyond. Often the goal is
achieved by defining a new class of numbers with reference to another. Thus the
integers are formally introduced as “di�erences” of natural numbers, the rationals as
“fractions” of integers, the reals as “sections” of rationals. But the natural numbers
are the fundamental ones, the first that come to mind and that we learn as children,
“the only ones created by God” - as Kronecker would have said. To introduce them,
it is necessary either
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• to define them with reference to other concepts even more general than num-
bers, for example to sets, or

• to axiomatize them as is done in geometry when dealing with a point, a straight
line or a plane.

In this context, the principle of induction finally acquires a definite form and reveals
its crucial role.
Various mathematicians contribute to this reflection. We quote here among others

• the two Grassmann brothers, German, first and foremost Hermann (1809-1877)
but also Robert (1815-1901), less famous;

• or Charles Sanders Peirce (1839-1914), an American logician and mathemati-
cian.

By Hermann Grassmann we remember the 1861 textbook of arithmetic, Lehrbuck
der Arithmetik [58], by Peirce the 1881 article On the logic of numbers [92].
In these references, in particular in the second one, and in others by the Grassmanns,
the definition of the operations of addition and multiplication of natural numbers is
proposed precisely in terms of recursion: for each pair of positive integers m,n, we
define the sum of m with n

• first for n = 1

• and then for n+1 from that for n,

and the same is done for the product. The basic idea is

• in the case of addition, to add 1 to m as many times as n,

• in that of multiplication, to add m to itself as many times as n.

Induction allows this intuition to be formalised in the best possible way. For addition

Y
_]

_[

m+1 = the least greater element of m, i.e. its successor,

m+(n+1) = successor of m+n ,

while for multiplication we rely on the addition just defined and establish
Y
_]

_[

m ·1 = m,

m · (n+1) = m ·n+m.
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To understand: a sum such as 5+3 = 8 is obtained by adding 1 to 5+2 = 7, which
in turn is obtained by adding 1 to 5+1 = 6, which is finally obtained by adding 1 to
5. Similarly, a product such as 5 ·3 = 15 is obtained by adding 5 to 5 ·2 = 10, which
in turn is obtained by adding 5 to 5 · 1 = 5. These procedures are not certainly
the most e�cient for calculating the two operations. They, however, provide an
adequate definition - the same one that we will later find in Peano.
Again, with the help of the principle of induction, various elementary properties of
addition and multiplication are then proved.
A curiosity: Peirce’s 1881 article includes, in the final lines, the famous syllogism
about Texans - people who, according to the western epic, do not hesitate to carry
a revolver and use it. Peirce’s argument is then as follows:

• every Texan kills a Texan,

• no one is killed by more than one person,

• therefore, every Texan is killed by a Texan.

The conclusion is valid assuming that Texans are a finite number. It does not
involve the principle of induction, but lends itself to some discussion with students
as a non-trivial exercise in logic.

6.14 Peano and Dedekind

Let us turn to 1889, the year in which the book by the Italian mathematician
Giuseppe Peano (1858-1932) Arithmetices principia, nova methodo exposita, or The
Principles of Arithmetic Proposed by a New Method [91], appeared. Written in Latin,
it pursues and achieves the aims of rigour, clarity and simplicity that inspired its
author. It presents the famous axiomatisation of natural numbers that we commonly
adopt today. It is based on three basic concepts: the one (1), successor and equality.
The axioms proposed on the opening page are in fact nine, but of these there are
four, from the second to the fifth included, that concern the relation of equality, of
which they postulate in particular the reflexive, symmetric and transitive properties:
thus it constitutes a relation of equivalence. But the ones that interest us are the
others, that is, the first and the last four, which state that:

• 1 is a natural number,
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• the successor n æ n + 1 is a function that constructs new natural numbers
from natural numbers

and later that

• two natural numbers with equal successors are equal,

• 1 is not the successor of any natural number

• and finally, the principle of induction, expressed in the way we know it: a set
of natural numbers that contains 1 and is preserved under successor includes
all natural numbers.

The principle of induction is thus taken as the fundamental axiom for determining
natural numbers. Indeed, it can be shown that, with reference to the basic con-
cepts of 1 and successor and in conjunction with Peano’s other postulates, it defines
them “up to isomorphism”: a technical expression which, translated in rough terms,
means this, that a mathematical structure that obeys these axioms is nothing more
than a superficial repainting of the natural numbers, of which it retains in essence
the exact same architecture.

Peano’s approach was prepared and largely anticipated not only by the Grassmanns
and Peirce, but also and above all by the German mathematician Richard Dedekind
(1831-1916). In his 1888 short essay Was sind und was sollen die Zahlen?, in English
What are numbers and what are they for? [36], even Dedekind introduces natural
numbers, but he seems more interested in defining them rather than axiomatising
them, and in proving rather than postulating the principle of induction - unlike
Peano. His approach then serves to implicitly prove the property mentioned above,
i.e. that the conditions stated by Peano characterise the natural numbers “up to
isomorphism”.
The comparison between Peano and Dedekind can be an opportunity to insinuate
the role of axioms in mathematics in the classroom.

6.15 Poincaré, chess and physics

The history of the advent of mathematical induction could be concluded here, with
Peano and 1889. However, we would like to add something about Henri Poincaré.
He dedicates very beautiful pages to induction in his most famous essay [101]. We
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find them in Chapter 1, especially paragraphs IV to V I included.
Poincaré actually prefers the term recurrence, récurrence in French, to induction.
However, he describes the procedure of a proof by induction in the way that is now
familiar to us, albeit starting from n≠1 to n:
«A theorem is first established for n = 1; then it is proved that, if it is true for n≠1,
it is also true for n, and it is concluded that it is true for all the integers» (here
integer means what in this chapter is called natural number).
Poincaré then reiterates the main characteristic of induction: replacing an infinite
sequence of syllogisms with a single proposition. Thus, instead of proving a theorem
about natural numbers

• first for 1,

• then for 2, transferring it from 1 to 2,

• then for 3, transferring it from 2 to 3,

and so on for infinite steps that it is impossible to go through in reality; one ver-
ifies it again for the base case 1 and then prove the inductive step from n ≠ 1 to
n. Poincaré then praises recurrence as «the mathematical reasoning par excellence»,
capable of going from the finite to the infinite.

He takes the cue from this to emphasise the di�erence between mathematics and the
game of chess, to which it is often compared. In fact, he notes how a chess player
can combine at most four or five moves in advance, and still foresee a finite number
of them; the mathematician, on the other hand, goes further thanks to induction,
because the gaze of his mind becomes so sharp that it embraces an infinite number.
Poincaré also distinguishes mathematical induction from the other induction proce-
dure, which is applied in physics and the natural sciences. Same name, but distinctly
di�erent meanings. In the second case, the idea of a universal law underlying these
phenomena arises from the observation of reality and the observation of events that
are repeated or preserved there. This law, based on belief in a general order of
things, is accepted because it is suggested by a myriad of examples - a myriad, but
still a finite quantity. For example, Newton induces from the apple falling on his
head and from similar experiences the law of universal gravitation.
In the same way, one might remark, Wallis deduces the formula for the sum of cubes
from the examination of a few particular cases. But, Poincaré observes, in the field
of arithmetic, the exploration of a finite number of examples is not su�cient to
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produce a valid proof for the whole infinity of integers (far more than a myriad).
Mathematical induction does not stop at an investigation of a few values, but goes
beyond them, because it is based not on an examination of nature, but on the ca-
pacities of the mind - and thanks to them it «necessarily imposes itself ».
Unfortunately, this dual meaning of the word induction, the mathematical one and,
shall we say, the physical one, can be a reason for further uncertainty and misun-
derstanding among students: a reason to pause with them to clarify and distinguish
the two concepts.

The comparison with the inductive procedure of physics is, moreover, an oppor-
tunity to resume and deepen the discourse already insinuated when speaking of
the identities relating to triangular numbers (ú), sums of cubes (úú) and permu-
tations (ú ú ú). In these cases, we gave proofs based on the principle of induction
as well as other arguments that disregard it and sometimes prove to be more il-
luminating. Indeed mathematical induction constitutes, as Poincaré reiterates, a
formidable demonstrative tool, but only after the property to be proved has already
been intuited in another way. At that point it can exert all its proven power. But
when one has to discover that property, to glimpse it even vaguely, then induction
does not help.
Gila Hanna distinguishes in her classic article [59] between mathematical proofs that
explain and illuminate and mathematical proofs that merely prove. The method of
induction, although subtle and e�ective, seems to correspond more to the second
identikit. This characteristic is reiterated in [11]. Even [61] warns against the risk
that the induction procedure, even when perfectly acquired and well mastered, is
reduced to a recipe for mechanically solving problems without understanding them.
From this point of view, a preliminary approach à la Wallis, i.e. the analysis of a few
initial cases, may be useful to instil a first impression, a working hypothesis. This is
recommended by [33] and [41]. The same is true for the proof of the inductive step,
for which [9] suggests to start again from the proofs of the simplest cases, from 1 to
2, from 2 to 3 etc., in order to extend it with greater awareness from a generic n to
n+1 - as Maurolico, Gershon and others did.
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6.16 An appendix: the method of infinite descent

Poincaré [101] states that in reasoning by induction, or récurrence as it may be,
a single statement succeeds in concentrating infinite syllogisms, which derive «cas-
cading» from it. This expression «cascading» recalls a law of natural numbers that
goes hand in hand with induction: the so-called principle of the minimum, which is
the basis of the method named, precisely, the infinite cascade, or Fermat’s infinite
descent.
Let us recall that the principle of the minimum, referring to the usual relation of
order of the natural numbers, states in that context that:

every non-empty set of natural numbers admits a minimum

i.e. a first element. As a result, no strictly infinite descending sequence can exist
among natural numbers, which would constitute a non-empty set with no minimum.
We call this prohibition the principle of infinite descent.
The statement thus expresses, like induction, an intuitive property of natural num-
bers that is easy to perceive. It was clarified and perfected by Pierre de Fermat
in the 17th century. It admits, however, like induction, illustrious precursors. We
present some of them. A simple and clear, but much more extensive treatment can
be found in [139].
We will clarify the connection of this principle of the minimum with that of induction
at the end of the chapter.

6.17 The Pythagoreans and the square root of 2

Let us go back in time, to the beginning of the history of mathematics. Among the
most disruptive discoveries of the Pythagoreans is that of mutually incommensu-
rable quantities, i.e., speaking in modern arithmetic terms, irrational real numbers:
a sensitive subject for high school mathematics. The most famous example of incom-
mensurable segments relates to the side and diagonal of a square, that is the cathetus
and hypotenuse of an isosceles right triangle corresponding to half a square. Various
arguments prove them to be so. One, generally attributed to the Pythagoreans, is
as follows.

Let us start with the square ABCD in Figure 6.4. Let us assume that side AB

and diagonal AC are commensurable. Then there are two positive integers l,d that
represent their measure with respect to an appropriate common subsegment, which
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Figure 6.4

then enters exactly l times AB and d times AC.
Clearly l < d < 2l, because the side AB is less than the diagonal AC, which in turn
is less than the sum of the two sides AB and BC. Then 2l ≠d,d≠ l are still positive
integers. Let us put for simplicity lÕ = d≠ l.
We now draw the circle of centre C and radius CB and denote by E the point where
it intersects the diagonal AC. For E we draw the perpendicular to AC, which is
also the tangent to the circle at E. Let F be the point at which it intersects the
side AB. Since the angle AEF is right and the angle EAF is half of a right angle,
the triangle AEB is still half of a square. The side of this square is AE and the
diagonal is AF . Furthermore, AE has the same length as EF , and both equal FB,
because EF and FB represent the tangents to the circle exiting from point F . Let
us observe now that:

• the measure of AE with respect to the initial sub-segment is evidently d≠ l = lÕ,

• that of AF (the di�erence between AB and FB) is l ≠ lÕ = l ≠ (d≠ l) = 2l ≠d.

Therefore AE and AF are also commensurable, having measures lÕ < 2l ≠ d with
respect to the fixed sub-segment. Furthermore lÕ < l because d < 2l. The starting
situation is transmitted from the square of side AB to the square of side AE, which
is smaller but still of integer length.
The process can be repeated, each time generating smaller and smaller natural
numbers and ultimately a strictly decreasing infinite succession of natural numbers,
l > lÕ > · · · , which is impossible.
In arithmetical terms, it has been proved that the ratio of the lengths of the diagonal
and side of a square, i.e.

Ô
2, is not a rational number, i.e. it is not a fraction of

(positive) integers.
Similar constructions also prove the irrationality of the golden number 1+

Ô
5

2 , as
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the ratio between the lengths of the diagonal and the side of a regular pentagon -
segments that are also incommensurable.
Returning to the square: the previous proof, based on the method of infinite descent,
can be reformulated in purely algebraic terms to prove that

Ô
2 is an irrational

number, as follows. Let us assume by contradiction that
Ô

2 is rational, then

Ô
2 = d

l

with d, l positive integers. Then l is a positive integer for which
Ô

2 l, equalling d,
is still a positive integer.

Consider again lÕ = d≠ l = l
Ô

2≠ l = l
1Ô

2≠1
2
. It is still an integer. Furthermore

• 0 < lÕ < l because 1 <
Ô

2 < 2 and therefore 0 <
Ô

2≠1 < 1;

• its product with
Ô

2, lÕ
Ô

2 coincides with l
1
2≠

Ô
2

2
= 2l ≠ l

Ô
2 = 2l ≠d and is

itself an integer, positive because 2 >
Ô

2.

We have therefore found a positive integer lÕ < l that has the same property as l,
in the sense that its product with

Ô
2 is still a positive integer. The procedure

can be iterated, generating smaller and smaller positive integers, but with the same
behaviour, thus contradicting the impossibility of producing a strictly decreasing
infinite subsequence of naturals.

6.18 Euclid again

The procedure of successive reduction to “smaller” cases that we have seen for the
square root of 2 was called by Aristotle antanairesis and applied by Euclid in his
famous algorithm for calculating the greatest common divisor, still widely used
today for its acknowledged e�ciency. Euclid expounds it in his own way, identifying
natural numbers with measures of segments, in propositions 1 and 2 of Book VII of
the [44] - the first that he dedicates to arithmetic. The antanairesis or, if we prefer,
the method of infinite descent appears in particular in proposition 1. Adapted in
modern terms it proceeds as follows. Given two positive integers m > n,

• one divides m by n obtaining the remainder r < n. If this remainder is 0, then
n divides m and the greatest common divisor is precisely n.
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• Otherwise, one divides n by r, obtaining the remainder rÕ < r.

• The procedure is iterated but must be interrupted after a finite number of
steps, when the remainder becomes 0.

The last non-zero remainder is the greatest common divisor of the last two numbers
involved, but it is also the greatest common divisor sought for m and n. In fact, it
is easy to observe that the common divisors of m,n are the same as those of n,r as
well as of r,rÕ, up to the last pair considered.
An example: the greatest common divisor of 72 and 15 is 3 because

• 72 divided by 15 gives quotient 2 and remainder 12;

• 15 divided by 12 gives quotient 1 and remainder 3;

• 12 divided by 3 gives quotient 4 and remainder 0.

So, the last non-zero remainder is 3.

In truth, the reference to the method of infinite descent is not so explicit in Eu-
clid’s original text, which, moreover, ends his discourse after reaching the third
remainder. However, proposition 31 of the same Book VII of [44] is also often cited
as even more convincing evidence of its use. Expressed in modern terms, it states:

every composite number admits a prime factor.

Here is its proof according to Euclid, still slightly adapted to today’s terminology.
Let n be a composite number, then n has at least one non-trivial factor nÕ, i.e. such
that 1 < nÕ < n. If this is prime, we are fine; if it is composite, the reasoning on
n applies to it again. But this process must stop within a finite number of steps
producing a prime number, otherwise it violates the principle of infinite descent.

6.19 Campanus of Novara

Johannes Campanus of Novara (1220-1296) was a mathematician, astronomer and
astrologer, as well as chaplain to three popes, including Boniface VIII. He is regarded
as one of the greatest mathematicians of his time. He translated from Arabic and
commented on Euclid’s Elements: 15 volumes later printed in Venice in 1482 [45].
Book VII opens with some of his statements on natural numbers (on pp. 105-106).
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Among the postulates concerning them is «no number can be diminished to infinity»,
which is precisely the principle of infinite descent.

6.20 Fermat and the Last Theorem

We finally arrive at Pierre de Fermat (1607-1665), French, magistrate by profession,
mathematician (brilliant) for pleasure. He studied the theory of natural numbers in
depth but left no articles or essays on the subject. However, his son Samuel collected
the annotations he wrote in the margins of a copy of the treatise Arithmetica by the
ancient Alexandrian mathematician Diophanthus [39]. His Observation 45 provides
evidence for the following statement:

the area of a right-angled triangle whose sides have integer numbers for lengths
cannot be a square of an integer.

For example

1. the area of the right-angled triangle whose sides have for lengths the natural
numbers of the Pythagorean tern 3,4,5 measures 6, which is not a square;

2. similarly, the area of the right-angled triangle whose sides have for lengths the
natural numbers of the other Pythagorean tern 5,12,13 measures 30, which is
not a square.

The result was used by Fermat to show the n = 4 case of his famous and enigmatic
Last Theorem, i.e. to exclude the existence of (non-zero!) natural numbers a,b,c

for which a4 + b4 = c4 (thus of triples that for exponent 4 correspond to those that
for n = 2 are called Pythagorean triples). To prove this premise on areas, Fermat
elaborates and then applies precisely the procedure of infinite descent, on which
other famous successive proofs of the Last Theorem for exponent 4 are based.
Fermat considers this method of his susceptible to extraordinary developments in
number theory. He notes on the edge of Diophantine’s page that he has found a
proof of the corresponding principle, but that the margin on which he is writing his
commentary is too small to contain the details - just as with his other more famous
observation on the Last Theorem.

Elsewhere in his writings Fermat reiterates that he has obtained this proof of the
principle of infinite descent, and describes the procedure in the following terms: if
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we have a certain property of the natural numbers to prove, and suppose towards
a contradiction that it admits of a counterexample, and then prove that this first
counterexample yields a second smaller one, and this in turn a third still smaller
one, and so on ad infinitum, then it can be deduced that no counterexample exists
and ultimately that all natural numbers satisfy that property.

6.21 Induction and infinite descent

Let us conclude by briefly examining, as promised, the relationship between the
two principles of induction and of the minimum. Both manifest, as we have said,
properties that are easy to recognise among natural numbers. Therefore, both of
them can be considered in some sense the flip side of the coin with respect to the
other: in fact, induction traverses the positive integers upwards starting from 1 and
continuing to infinity, whereas the cascade method traverses them downwards, and
after a finite number of steps must stop.
However, the two statements are not equivalent to each other: the principle of
induction implies that of the minimum, but not vice versa. Let us see why. The
relevant considerations can perhaps be proposed to students and discussed with
them. Let us first prove:

the principle of the minimum is a consequence of the principle of induction.

Let S be a set of naturals with no minimum. We want to prove that S is empty. Let
us form the set X of the natural numbers n for which none among 1,2, . . . ,n ≠ 1,n

stands in S. Then:

• 1 stands in X, otherwise 1 stands in S and so, since there are no natural
numbers < 1, it is the minimum of S;

• if a natural number n is in X,n + 1 is also in X. Otherwise, since none of
1, . . . ,n stands in S (since n is in X), it follows that n + 1 stands in S, and
indeed is the minimum of S.

By the principle of induction X coincides with the set of all the naturals. Therefore
S is empty.

However, the principle of the minimum is more general than the principle of induc-
tion, because it continues to hold in worlds other than (or, rather, not isomorphic
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to) that of the naturals with 1 and successor.
Consider, for example, instead of N with 1 and the successor function, a structure
in which the underlying set consists of two copies of N, one red and one green, with
no common elements. The overall 1 is the red 1, while the overall successor function
acts as its red and green correspondents respectively on the copy of the same colour.
The resulting order relation extends the red and green ones, assuming in addition
that the red elements precede the green ones. Figure 6.5 illustrates the structure
built in this way (with the order from left to right):

Figure 6.5

The minimum principle is satisfied, because it is so in both its red and green parts:
a non-empty subset of this universe

• or contains only green elements, and therefore has its own green minimum,

• or also contains red elements, and therefore has its own red minimum (the
minimum of the red elements, which precede all the greens).

On the other hand, the principle of induction, which would apply individually in
the red and green worlds, no longer works in general: for example, the set X of red
elements

• contains the red 1 (which is the overall minimum),

• is preserved for the successor function (which sends red elements into red
elements),

but excludes all green elements, and thus does not exhaust the whole set.

This concludes the example. If wished, one could add that, assuming the Zer-
melo well order theorem, any set can be well ordered, thus endowed with a ordering
relation that satisfies the principle of the minimum - but not necessarily induction.
However, in all honesty, these developments in set theory, and the hints they imply
about the axiom of choice, seem to us entirely premature in a high school classroom.
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In any case, we refer to [75] for a popular treatment of them.

To sum up: the principles of induction and of the minimum represent properties
of the natural numbers that matured progressively and, we might say, simultane-
ously, but independently, at least until both were precisely stated. At that point, the
problem of their relationship arose with all likelihood, which however led to some
divergence of opinion. There were those who considered them equivalent, with some
reasons that are di�cult to argue against: see the fine and detailed analysis by [84].
But in the end, it must be recognised that the connection between the two principles
is the one we have described above. We can recall, though, that the principle of the
minimum is equivalent to the principle of complete induction which, in the context
of totally ordered sets (A,Æ), is stated as follows:

a property of (A,Æ) that, for every element x of A, if it is satisfied by every element
y < x of A is also transmitted to x, consequently holds for all elements of A.

The minimum principle, expressed in the same context, becomes

every non-empty subset of (A,Æ) admits minimum,

and implies that of complete induction, and vice versa. Proving this is not di�cult
but, again, seems too abstract as an exercise for high school students.
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Chapter 7

Paradoxes

7.1 Introduction

Etymologically, the word “paradox” is derived from the Greek parà (“parà”, over,
against) and dÏxa (“doxa”, opinion). In fact, following the definition given in 1988
by the English philosopher Mark Sainsbury in his book Paradoxes [107], a paradox
can be defined as “an apparently unacceptable conclusion derived by apparently ac-
ceptable reasoning from apparently acceptable premises”.

A paradox, therefore, is a proposition, a result, which by its content or the way
it is expressed, appears contrary to current opinion and predictions, and is therefore
surprising and incredible.

Paradox, thus, recalls the concept of contradiction – but in its case inescapable,
at least apparently inexplicable. There is, however, a real theory of paradoxes,
which tries to classify them. One can for instance distinguish among:

1) logical or negative paradoxes that break down points of view that have not been
explored in depth enough, and lead to rethinking them,

2) rhetorical or null paradoxes, which are real exercises in subtle reasoning, aimed
at proving everything and the opposite of everything,

3) ontological or positive paradoxes, such as proofs by contradiction which, by show-
ing how certain premises lead to absurds, prove the validity of the opposite point of
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view.

There is also a history of paradoxes, which has gone through at least three periods
of great interest: in the Greek period, in the Middle Ages and at the turn of the
19th and the 20th century. The di�erent names by which paradoxes were called in
the three periods reflect the di�erent attitudes towards them. For the Greeks they
were paralogisms, literally “beyond logic”; for the medievals insolubilia, or “insol-
uble problems”; for modern people antinomies, “against the rules” or, indeed, just
paradoxes, that is “beyond common opinion”. There is, thus, a progressive change
of perspective: from pure and simple errors in reasoning, paradoxes were first reval-
ued as inexplicable dilemmas, and then regarded as indications of common-sense
problems, beyond the dimension of a simple intellectual pastime.

The attitude of those who study and cultivate them also varies and goes from the
tragic to the humorous, from the sympathetic to the reluctant. Aristotle held them
in high regard, trying to suggest almost convincing and useful solutions. Before him,
Zeno put them at the basis of a particular conception of knowledge and reality.

But paradoxes are not limited to the philosophical sphere, and they also appear
in literature: Pirandello built his literary works on whirlwinds of almost paradoxical
situations and beyond; Beckett used paradox to create absurd, impossible situations,
capable of well representing a human condition devoid of meaning and references.

Turning to art, Dalì and Magritte painted a surreal world in their works, celebrating
a dreamlike and paradoxical vision of reality.

Even in physics, Schrödinger and Einstein relied on paradox in the theory of rela-
tivity; Olbers, with his paradox of the “dark night” (according to which “how is it
possible that the sky is dark at night despite the infinity of stars in it?”) was able to
undermine an entire cosmological system.

Finally, Russell and others used these dilemmas to test the emerging set theory
and to contribute to the clarification of its foundations. To this topic, we will de-
vote the next paragraphs, the third one in particular.

How to overcome a paradox? The strategies for succeeding in it depend on the
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nature of the paradox. For example, when faced with a positive paradox, the most
reasonable reaction is to acknowledge it. Otherwise, one tries to challenge either its
premises or the thread of its reasoning. Logic certainly helps.

However, we would like to emphasise how paradoxes, or at least some of them, can
be presented to secondary school students, both because they amaze and sometimes
amuse, and because they lead to reflections on the nature and history of science. Let
us highlight the initiatives that have been taking place in recent years in this regard
and mention the internet site https://sites.google.com/view/pensareperparadossi .

7.2 Zeno’s paradoxes

The most known paradoxes are probably those developed by Zeno of Elea, a Greek
philosopher who lived in the fifth century BC. His teacher Parmenides theorised that
reality was uncreated and indestructible, unchanging and indivisible, and therefore
also immobile. He expounded his convictions in a poem On Nature [30], declaring
that “whatever is, is (being), and cannot ever not be; whatever is not (nonbeing),
is not, and cannot ever be”. Zeno composed his four most famous paradoxes (the
dichotomy, Achilles and the tortoise, the arrow and the stadium, respectively) in
support of these theses, thus also contesting the mere possibility of movement. To
present the paradoxes we draw on Aristotle’s Physics [6], historically among the
first ones to mention them (but not the first to mention Zeno, who already appears
among the characters in Plato’s dialogue Parmenides [99]). We focus here on the
first two paradoxes, which are also the most famous.

1) The paradox of the dichotomy or of the motion. Aristotle says: “Zeno’s ar-
guments about motion, which cause so much trouble to those who try to answer
them, are four in number. The first asserts the non-existence of motion on the
ground that which is in motion must arrive at the half-way stage before it arrives at
the goal”. To put it in full: a runner who wants to reach a finishing line from the
starting point must first reach the halfway point, and before that the halfway point
of the halfway point, and so on. Ultimately, he does not even move. A di�erent
version, which can also be deduced from Aristotle’s words, assumes in some sense
the opposite perspective and points out that the runner, moving towards the goal,
must arrive at halfway, and then at half of the remaining half (3/4 of the total),
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followed by 7/8, so that, in conclusion, he never reaches the end.
2) The paradox of Achilles (and the tortoise): “The second is the so-called Achilles,
and it amounts to this, that in a race the quickest runner can never overtake the
slowest, since the pursuer must first reach the point whence the pursued started, so
that the slower must always hold a lead”. Note that Aristotle speaks of Achilles but
not of the tortoise. For the record, the animal seems to appear in the version of the
paradox given by Simplicius, written many centuries after Aristotle.

There have been many attempts since antiquity to explain these and other para-
doxes. Aristotle refutes Zeno by introducing in some way the theme of continuity,
and implicitly also that of infinitesimals. We know how the ancient philosopher
distinguished between potential and actual infinity. To be clear: a segment can
stretch indefinitely without ever widening to an infinite straight line; it can increase
in power but is forbidden to reach the dimension of an actual, concrete infinity.
According to Aristotle, however, time and space flow in the manner of the dimen-
sionless points of a segment, with continuity, and do not split up schematically as
Zeno would like. Or, rather, they can do so as many times as one wishes, but not
to arrive at an infinite division into portions of finite length.

A version of the paradox, which introduces its most recurrent mathematical ex-
planation, is presented by the Argentine writer Borges in his famous essay The
Perpetual Race of Achilles and the Tortoise, dating from 1932 [15]:

“Achilles, symbol of speed, has to catch up with the tortoise, symbol of slowness.
Achilles runs ten times faster than the tortoise and so gives him a ten-meter advan-
tage. Achilles runs those ten meters, the tortoise runs one; Achilles runs that meter,
the tortoise runs a decimeter; Achilles runs that decimeter, the tortoise runs a cen-
timeter; Achilles runs that centimeter, the tortoise runs a millimeter; Achilles the
millimeter, the tortoise a tenth of the millimeter, and ad infinitum, so that Achilles
can run forever without catching up”.

Following the reading of the Borges text, we finally arrive at the mathematical
explanation of the paradox already announced:

“Achilles’ speed need only be set at a second per meter to determine the time needed:
10 + 1 + 1

10 + 1
100 + 1

1000 + 1
10000+ . . . The limit of the sum of this infinite geometric
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progression is twelve (more exactly eleven and one-fifth; more exactly eleven times
three twenty fifths), but it is never reached. That is, the hero’s course will be infinite
and he will run forever, but he will give up before twelve meters, and his eternity
will not see the end of twelve seconds. That methodical dissolution, that boundless
descent into more and more minute precipices, is not really hostile to the problem;
it is just to imagine it in the right way”.

As we shall see, the result does not exactly coincide with 12, as Borges seems to
a�rm, that approximates it only by excess. But, beyond these details, the possibil-
ity of a finite sum, 12 or less than 12, for an addition of infinite terms, all positive,
may certainly strike those less familiar with mathematics. Even more surprising,
on reflection, is the idea of being able to dominate an infinite sum. However, we
have already discussed this in Chapter 5 on proofs without words, in particular in
Paragraph 4. Let us recall that for every real number r with 0 < r < 1 we have that
the sum of the infinite powers of r with natural exponent is finite,

Œÿ

n=0
rn = 1

1≠ r
.

Applying this general result to the case r = 1/10 we obtain
Œÿ

n=0

1
10n = 1

1≠ 1
10

= 10
9 .

This will be the space covered by the tortoise after these infinite displacements.
That of Achilles will be instead, in the same way, 10+10/9 = 100/9 . The di�erence
is just the initial distance between them, that is 10. So, we could say, when the
tortoise has run 10/9 of a metre, Achilles reaches it. In fact, the rejoining happens
after a time of 10/9 of a second if we assume that Achilles runs at the constant
speed of 1 metre per second, and the turtle runs 1 decimetre per second.
For r = 1/2 (the case we have already examined in Chapter 5) we then have a similar
explanation for the dichotomy paradox. In fact

Œÿ

n=1

1
2n = 1 .

The endless stages that the runner covers, each time half of the previous one, allow
him to complete the path. Strictly speaking, however, if we interpret Aristotle’s
account in the other possible sense, i.e., if we think that the runner, in order to
arrive at the finishing line, must reach halfway, and before that half of the half,
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and then half of the half of the half, and so on, then not the distance covered, but
the distance to be covered increases progressively to 1. We are therefore led to the
conclusion that the runner does not even move: he stands still because he stands
still, which is somewhat what Zeno states.

Archimedes is credited with the awareness that a series of this kind can have a
finite sum, precisely only for 0 < r < 1; however, it was only in the nineteenth cen-
tury, with Gauss and then especially with Augustin-Louis Cauchy (1789-1857) and
Karl Weierstrass (1815-1897), that the theory of numerical series took on its own
form and consistency. The sum of infinite addends is then understood as the limit,
if it exists, finite or infinite, of the succession of partial sums. Consequently, in the
case of the geometric series, the preceding results can be confirmed and clarified in
the following way (which specifies in theory what has already been anticipated by
the proofs without words in Chapter 5). We start from the equality, valid for any r

and for any n, easy to verify:

(1≠ r) ·
1
1+ r + r2 + . . .+ rn

2
= 1+r +r2 +r3 + . . .+rn ≠r ≠r2 ≠r3 ≠ . . .≠rn ≠rn+1

= 1≠ rn+1 .

Whereby the n≠ th partial sum for r ”= 1 takes the expression:

1+ r + r2 + . . .+ rn = 1≠ rn+1

1≠ r
.

Now, for |r| < 1 (possibly for negative r), as n increases, the power rn+1 tends to 0
and so the series converges to the finite value 1

1≠r .
Instead, for r Ø 1, the series “diverges” and has sum +Œ. According to Cauchy’s
theory, then, for r Æ ≠1 the series has no limit, and the sum remains undefined.

Indeed, as Borges again points out, Zeno’s paradoxes evoke and call on the fas-
cinating and insidious theme of infinity. Let us quote two famous passages from the
Argentinean writer:

• the first, again from [15], describes infinity as a “worrisome word (and then a
concept) we have engendered fearlessly and that, once it besets our thinking,
explodes and annihilates it” ;

• the second, taken from Metempsychosis of the Tortoise (1984) mentions “a
concept that corrupts and makes others mad”, and makes it clear that it is not
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the Evil “whose limited empire is ethics”, but “infinity”. We did not find any
translation of this essay in English. The original text in Spanish Avatares de
la toruga can be found in [14], Discusión, p. 254.

Another mathematical explanation of Zeno’s paradoxes is discussed by Bertrand
Russell in Mathematics and the Metaphysicians (1901), one of the essays in Mys-
ticism and Logic [106]. He points out how the philosopher from Elea insinuates
the “three most abstract problems of motion” : not only infinity, but also, in or-
der, infinitesimals and continuity. It is then observed that time and space are not
the discrete succession of disjointed intervals, but flow with continuity, as Aristotle
believed. A segment, however small, is not a point. It is enough to visually compare

• a segment

• and a finite or numerable succession of its points, which then divide it into
separate intervals,

to see the di�erence between the fluidity of one and the fragmentation of the other.
Segments and seconds can be measured by natural numbers and calculations re-
lating to them, but to formalise points and instants we need real analysis with its
instruments, hence the di�erential calculus. Space and time are continua of points
or instants, not discrete and fragmented sequences. Russell then celebrates the role
of Karl Weierstrass (with Dedekind and Cantor) in the rigorous introduction of
the real numbers and the consequent clarification of the concept of continuity. To
Weierstrass we owe, as already mentioned, the development among the reals of a
rigorous and convincing approach to infinitesimal calculus. The axiom of continuity,
conceived by Dedekind and Cantor, accredits the real numbers as the appropriate
abscissae for the points of a segment or for the instants of a time interval.
Russell then mentions in his essay Georg Cantor and the birth due to him of the
mathematics of infinity, in which the classical Euclidean principle that “the whole
is greater than its parts” falls away. Often in fact, at infinity, the whole has as
many elements as one of its parts, adding or removing a point no longer makes a
di�erence. This is not the case in the finite worlds, where, if we add or subtract
1 to 4 elements, we obtain 5 and 3 respectively, and there is no longer any way of
establishing a 1-1 correspondence between the resulting sets and the original one.
At infinity the matter changes.
If, going back to Zeno’s second paradox, we denote by 0 and 1 respectively the initial
positions of Achilles and the tortoise and then by 2, 3, 4, . . . the subsequent ones
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(so that the hero and the animal arrive simultaneously at 1 and 2, then at 2 and 3,
and so on), then at each stage of the run-up, the tortoise is ahead. For the reunion
to occur, Achilles would have to count on an extra step. But in Cantor’s theory
the culmination (i.e., the infinite cardinality ›0 of the set of naturals) of the two
sequences:

• those 0,1,2, . . . of natural numbers,

• the other one 1,2,3, . . . of their subsequent,

is the same: ›0 +1 = ›0, as if to say that the two sets are in 1-1 correspondence with
each other precisely by means of the function that to each natural n associates n+1.

The same happens in the scenario of that continuum where, according to Russell,
the chase actually takes place. Times and spaces of the chase are now viewed as
intervals of real numbers: for example, that ]0,1[ between 0 and 1 excluded. Here
then is how to establish a 1-1 correspondence with ]0,1], 1 included. We fix in ]0,1[
a sequence, for example the one strictly decreasing and convergent to 0 formed by
powers of 1

2 , so:
1
2 ,

1
4 ,

1
8 , . . . ,

1
2n , . . .

with n varying between positive integers (we exclude 1
20 = 1 because it is outside

the starting interval). We then define a function f of ]0,1] in ]0,1[ by posing:

• f (1) = 1
2 , f

1
1
2

2
= 1

4 , f(1
4) = 1

8 and in general f (2n) = 1
2n+1 for each n,

• f(x) = x for every other x of ]0,1], so for x other than 1 and outside the
sequence.

Figure 7.1

It is easy to check that f is the required bijection.
Furthermore, the argument somehow echoes the paradox of the dichotomy, with the
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successive steps that, by means of f , 1 takes in order to get closer to 0; or, as already
mentioned, that of Achilles’ run-up, which at each step reaches f(n), the n≠ th po-
sition of the tortoise, which in the meantime has run away in f(n + 1). Ultimately,
and in extreme synthesis, according to Russell the paradoxes are solved by noting
with Cantor that for two infinite sets their “equinumerosity” does not prevent the
fact that one is larger than the other.

Coming back to logic, a famous transposition of the Achilles and the tortoise ar-
gument was proposed by Lewis Carroll. We know that he was a surreal spirit, an
imaginative and fantastic creator of stories and logic puzzles. It is not surprising
then that he turned his attention also to the subject of Zeno. This time, how-
ever, the path to be taken is a syllogism: the starting point is its premise and the
unattainable end point its conclusion. Carroll’s story, entitled What the Tortoise
Said to Achilles, dates back to 1895, i.e., to the last years of its author’s life, and was
published in Mind (the most important British philosophical magazine) [27]. The
author imagines that Achilles and the tortoise, having abandoned their inconclusive
chase, begin to discuss the first proposition of Euclid’s Elements [44], namely the
construction of an equilateral triangle with an assigned side AB. Let us briefly recall
how it is obtained:

• draw the circumferences with radius AB and centre in A and B respectively;

• consider one of the points of intersection (which we call C);

• note that AC is the radius of the first circumference, and is therefore equal to
AB, and that BC is the radius of the second circumference, and is therefore
still equal to AB;

• conclude that AC and BC, since they are both equal to AB, are equal to each
other.

Carroll imagines Achilles and the tortoise debating the last syllogism:

a) two things equal to a third are equal to each other;
b) the two segments AC and BC are equal to AB;
z) the two segments AC and BC are equal to each other.

The tortoise accepts premises a) and b), but denies that they alone justify con-
clusion z). It notes the need to interpose a further assumption c):
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Figure 7.2

a) two things equal to a third are equal to each other;
b) the two segments AC and BC are equal to AB;
c) if a) and b) are valid, z) is valid;
z) the two segments AC and BC are equal to each other.

Achilles agrees. But at this point the turtle declares that it accepts the validity
of a), b) and c), but not of z), and induces Achilles to a further interpolation:

d) if a), b) and c), are valid, z) is valid.

The game continues without end. Indeed, “some months afterwards [...] Achilles
was still seated on the back of the much-enduring Tortoise, and was writing in his
note-book, which appeared to be nearly full” : this is the epilogue of the story.

From the point of view of logical reasoning, Carroll’s argument highlights the impor-
tance of previously agreeing, in the use of syllogisms and more generally in deductive
calculus, on specific rules that oversee and direct demonstrations, rather like the pro-
gramming of modern computers. In this specific case, the one that leads from a)
and b) to z) without further ado. But beyond the theoretical details, the story, and
the adaptation of Zeno’s paradox to the logical mechanisms of the mind, testify to
the happy creativity of its author.

Recently, Zeno’s paradoxes have even a�ected computer science: a non-trivial ap-
plication, and indeed an intriguing one that stimulates reflection on history, powers
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and limits of computers. We recall that the birth of computers is generally related
to Alan Turing and his 1936 article [116], where the modern concepts of:

• program (the Turing machine),

• software, i.e. repertoire of programmes (the universal Turing machine)

take shape. Among the reasons that motivated Turing in his research were Gödel’s
incompleteness theorems and the ascertained impossibility for the human mind to
completely supervise the natural numbers and their usual operations of addition and
multiplication. The question then arose: what can, or cannot, be calculated in N?
And what does it mean to calculate? The answer was given by the concept of Turing
machine and then by the Church-Turing thesis, already discussed in Chapter 1,
which accredited Turing machine as the adequate answer to the previous questions.
That is, one argued that a problem involving natural numbers, or which can be
reduced to natural numbers by encoding their data, admits an algorithm of solution
if and only if there is a Turing machine that provides the intent, and therefore, in
the absence of such a machine, it remains devoid of any answering procedure. On
this basis, one finds problems on the natural numbers that Turing machines cannot
solve and that therefore escape any solution.
A further embarrassment arises, even in favourable cases, about the duration of
computations, i.e., the e�ciency of a programme. Sometimes the calculations of a
Turing machine, even if in theory they guarantee a good result, i.e., an answer, in
practice are too long, beyond any foreseeable limit of reasonable expectation. This
arouses the desire for more powerful machines, both in terms of the field in which
they operate and the time at which they work. New horizons are then spreading in
computer science, or it is hoped that they will spread, capable of meeting these needs:
the so-called hyper-computation, which in recent years has inspired the enthusiasm
of some and the uncompromising criticism of others.
Among the hyper-computational models there is also a so-called Zeno’s machine,
which can certainly be presented to the students, if only as a curiosity.
This question was suggested by a great mathematician of the 20th century, Hermann
Weyl (1885-1955), who in 1927 [126] wondered whether, from a physical or rather
kinematic point of view, the idea of an automaton performing calculations of infinite
length in a finite amount of time was plausible, and even feasible. A Zeno machine,
to be precise, which might take up to half an hour to perform its first step, but then
speeds up, reducing the internal working time each time by half: thus, the second
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step takes a quarter of an hour, the third seven and a half minutes, and in general
the n-th step the 2n-th portion of an hour. In this way even complex conjectures
would be solved in 60 minutes. It is true, in fact, that the natural numbers are
infinite, but the n-th between them would be checked in the interval 2n, and we
know that:

1
2 + 1

4 + 1
8 + . . .+ 1

2n + . . . = 1 .

Let us conclude by observing that, despite the various mathematical explanations,
the paradoxes still seem to arouse lively interest today and maintain their philo-
sophical and existential relevance, perhaps because they are figures of the human
parable, which is itself unfinished, unfulfilled and indecipherable. The literary quo-
tations concerning them are innumerable, even in modern times. We have already
mentioned Borges. We could add, among the writers whose work recalls Zeno and
his paradoxes almost explicitly, Kafka first of all, for one of his most famous novels,
The Castle [69], or for the short stories Before the Law [70] (which later merged into
the other masterpiece The Trial [71]) and An Imperial Message [72] - Borges even
maintains that “Achilles is among the first Kafkaesque characters in literature”. Or,
limiting ourselves to Italian literature, we could think of Italo Calvino and the “de-
ductive” stories of the Cosmicomiche [21], brought together in Ti con zero [22], or
Dino Buzzati (1906-1972) and his short story I sette messaggeri [18].

7.3 Paradoxes of truth

According to some, what is nowadays commonly referred to as paradox originated
with Epimenides of Crete (6th century BC). He was the first to enunciate the so-
called paradox of the liar, which is reputed to be historically the first example of this
kind of puzzle and is consequently also called Epimenides’ paradox. The intrigue
concerns the sentence “All Cretans are liars”. If it is Epinomides himself, who is a
Cretan, who states it, then it also refers to him, and is therefore a lie. Even Saint
Paul testifies to the paradox in his letter to Titus: he reformulates it by speaking
of the Cretans, “eternal liars”, “as one of their own prophets admitted” - here Epi-
menides himself is alluded to and it is concluded that “his testimony is true”. It is
not clear whether in this way Paul shows that he has not understood the underlying
contradiction, or whether he is exercising some kind of irony.
In fact, in the form in which it is stated by Epimenides the paradox leaves some
way out: what does it mean to “be a liar”? To lie always, or most of the time? In
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the second sense, Epimenides may be a liar by habit, like all his countrymen, but
as honest as he admits it.
A more incisive and convincing version of the paradox, which puts him beyond these
doubts, is attributed to Eubulides of Miletus, a Greek philosopher of the second half
of the 4th century BC. In this new formulation, one imagines that someone says “I
am lying”, and one recognises that such a person is lying if and only if he is telling
the truth.
The liar’s paradox has inspired a wealth of philosophical, literary and even mathe-
matical adaptations. A famous judicial version can be found in the Noctes Atticae
[56] by the Latin writer Aulus Gellius (125-180). It tells of the lawsuit brought by
the Greek philosopher Protagoras, “the sharpest of the sophists”, against his disciple
Euathlus on the following grounds.
Euathlus had enrolled in Protagoras’ school to learn the art of law, agreeing to pay
his fee in two halves, one at the beginning of his studies and the other on completion,
when he would defend his first case and win it. But Euathlus lingered in his studies
without completing his “training”.
So, his teacher, annoyed at the lack of income, decided to take him to court. He
felt that this way, whatever the judges’ verdict, Euathlus would have to compensate
him in any case:

• because of the judgement, if it had been in favour of Protagoras,

• but, if not, precisely because he would have successfully defended his first case.

The young Euathlus retorted that he had no obligation to the master, regardless of
the outcome of the case:

• if winner, because supported by the court,

• if defeated, because the clause with the master would have lapsed.

Aulus Gellius tells that the judges, unfamiliar with too many logical subtleties, de-
cided to postpone the case to a distant date, so that Euathlus had nothing to pay
and in essence won the case.

Many centuries after Aulus Gellius, the paradox can be found in a passage from
Jacques the Fatalist and his Master [38], written in 1775 by Denis Diderot (1713-
1784). It deals with the protagonist Jacques who decides to visit an acquaintance,
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a certain Gousse, who is in prison. He finds him calm and serene and asks him the
reasons for his imprisonment. But Gousse replies in a surreal way: he has denounced
himself (over women’s issues) and won the case, then lost it and was consequently
imprisoned.

An even more explicit reference to the paradox of the liar can be found in the
pages of Cervantes’ Don Quixote [28], specifically in the second part of Chapter 52,
where the author tells of a colossal hoax played on Sancho Panza, who is made to
believe that he has been appointed governor of an island, named Barattaria. In this
new guise, he is presented with the following case. On the island there is a bridge
and on that bridge a court and a gallow. Whoever crosses the bridge is obliged to
explain the reason to the judges: if he tells the truth, he is let through, but if he
tells a lie, he is immediately hanged. But a passer-by has arrived on the bridge and
has declared that he wants to cross in order to be hanged. At this point the judges
do not know what to do:

(a) if they hang him, they recognise that he has told the truth and therefore cannot
execute him;
(b) if they let him pass freely, they recognise that he has told a lie and therefore
must put him to death.

Sancho at first advises solomonically (or rather, with an explicit reminiscence of
Solomon and his famous verdict on the child disputed by two supposed mothers) to
divide the traveller in half, freeing one and hanging the other; but then he proposes
a more tolerant and wise sentence, that is, to send the traveller free in his entirety,
since in controversial cases it is always better to be lenient (in dubio pro reo).

A similar dilemma is encountered in The Lady, or the Tiger? [111], a late 19th
century tale by American writer Frank Stockton, which tells of a semi-barbaric king
who administers justice in a very bizarre way: anyone suspected of a serious crime
is ushered into an amphitheatre, where two closed doors await him, behind which
are hidden a ferocious tiger and a beautiful woman. Depending on which door he
chooses to open, the suspect will find himself either mauled by the tiger as he is
found guilty, or married to the woman, and thus rewarded as he is found innocent.
In that kingdom, however, it happens that the king’s beloved daughter takes to
flirting with a young courtier, that the king learns of the a�air, dislikes it and conse-
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quently condemns the unfaithful subject to place himself before the bloodiest tiger
or the most charming girl known to man. The princess, however, knows in advance
which door hides the beast and which the woman, and so a glance of understanding
from the tribune to the arena would be enough to save her lover. But the woman
knows that she will lose him in any case: either because he is attacked by the tiger
or because he is married to her rival, so she decides to keep silent. The young man
then unsuspectingly opens a door, but the tale ends without revealing which one.

A famous mathematical variant of this argument is the already mentioned paradox
that Russell proposed in a 1902 letter to Gottlob Frege. We have already mentioned
this in the first chapter. The paradox concerns the then nascent set theory, to which
Frege had given an initial attempt at axiomatization, relying in particular on the
axiom of comprehension according to which each “property” defines a set, that of
the elements that satisfy it. An assertion that seems easy to accept and agree with
yet turns out to be extremely insidious. Russell in fact referred it to the following
property of sets X:

“X does not belong to X”,“X /œ X”.

Using the principle of comprehension, Russell formed the set U of sets X that satisfy
that property, i.e., do not belong to themselves. Then he asked whether that set U

belongs to itself or not. He concluded:

U œ U if and only if U /œ U,

which is evidently a contradictory and unacceptable statement.

A lighter arrangement of the paradox, aimed at those not too familiar with set
abstractions, was proposed, or at least picked up, by Russell himself in 1918. It is
called the barber’s paradox. It supposes that in a village there is only one “barber”,
who is to be understood as the one who shaves all the men who do not shave them-
selves. It specifies that he himself is a carefully shaved man. It asks who shaves the
barber. It concludes that the barber shaves himself if and only if he does not shave
himself.

A new formulation of the liar’s paradox was provided in 1913 by the British lo-
gician Philip Jourdain. In it he imagines a card, in which on one side is written
the proposition: “The sentence on the other side of this card is true” and on the
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other side: “The sentence on the other side of this card is false”. Thus, the two
statements refer to each other and contradict each other endlessly.

A further variation on the theme is the one theorised by the German philosophers
and logicians Grelling and Nelson in 1908, concerning adjectives unable to define
themselves. In the English language, there are some adjectives that describe them-
selves as they are: “short” is short, “pentasyllabic” (i.e., composed of five syllables)
is pentasyllabic, “English” is english. Others, however, do not possess the same char-
acteristic: for example, “long” is not long, “eptasyllabic” (i.e. composed of seven
syllables) is not eptasyllabic, “red” is not red and so on. We call “heterological” an
adjective that does not describe itself. Thus:

(a) “short”, “pentasyllabic”, “English” are not heterological,
(b) “long”, “eptasyllabic”, “red” are.

The question: is “heterological” heterological or not?
The answer: “heterological” describes itself if and only if it does not . . . it is het-
erological if and only if it is not.

Another version of the liar’s paradox, developed by Ferdinand Gonseth in 1936,
assumes the existence of a huge, potentially endless, library. A clerk who wants to
put things in order draws up catalogues of all the books in the library, subdividing
them according to every possible criterion of distinction. So, he writes catalogues of
all the books, of those written in English, of those dealing with logic, and so on. But
the catalogues thus composed are so numerous that the clerk finds himself compelled
to write the catalogues of the catalogues too, again organising them according to
every possible heading. He completes then:

(a) a catalogue of all catalogues (which therefore cites itself);
(b) or the catalogue of catalogues of books of literature (which does not cite itself
because it is not a catalogue of books of literature).

Among the various criteria for distinguishing among catalogues is whether or not a
catalogue cites itself. Let us consider the catalogue that performs this second task,
i.e. lists the catalogues that are not cited. To the question of whether or not this
catalogue should be cited within it, the answer is: the catalogue is cited if and only
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if it is not cited.

How to overcome the paradox of the liar, and all these variants? Let us avoid
considering them simply in the rhetorical or the null sense, i.e., as exhibitions of
logical subtlety for its own sake.
In some cases, as in Russell’s antinomy, we can interpret them in a positive sense:
in the specific case, we acknowledge that Frege’s approach to sets is ill-founded and
needs to be revised, avoiding the principle of comprehension, and we look for new
axiomatic perspectives. The concept of sets is delicate and needs to be approached
with care.
Barber’s version is slightly di�erent, unless we intend to overcome it by rejecting its
premises. But we can perhaps grasp the ambiguity of the situation, and take note
that the alternative “shave yourself ”, “get shaved by the barber” is not so absolute.
The paradox of Epimenides (at least in the version where the protagonist says “I am
lying”) and the other variants of Jourdain, Grelling-Nelson and Gonseth are another
matter.
However, an attempt explanation was proposed in 1933 by Tarski in [112]. The Pol-
ish mathematician observed that, when speaking of language, one must distinguish
between two levels: the language itself, with its statements, and the metalanguage
that discusses it (and in any case expresses itself through language).
According to this subdivision, the liar is certainly free to tell a falsehood, employing
normal language. But when he goes on to a�rm “I am lying”, then he encroaches
on metalanguage, that is, he judges the truth or falsity of his assertion. According
to Tarski, it is precisely from this ambiguity that the paradox of the liar arises, with
the variants listed above.
As for the distinction between language and metalanguage, Tarski illustrates it with
a famous example. In it he observes how the statement “snow is white” is true if and
only if the snow is white. On one hand we have a formal proposition with its terms
“snow” and “whiteness”. On the other hand we have their interpretation in nature,
i.e., the snow (as an atmospheric phenomenon) and the white (as a colour). If the
abstract words “snow” and “whiteness” are understood as snow falling from the sky
and as the colour white, then the statement is true. But if by “snow” is meant the
sea, and by “white” the colour red, then the statement is false, because the sea is
not red. In the paradox of the liar, however, the two dimensions are confused and
superimposed.
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7.4 Paradoxes of the heap

Also attributed to Eubulides is the well-known sorites paradox (from the Greek
swrÏc (“sorÏs”) meaning “heap”), which can be expressed as follows. A heap of
sand is given. If we remove a grain from it, we will still have a heap. We then re-
move another grain: it is still a heap. If we remove another grain, and then another
grain, the pile will become smaller and smaller, until there is only one grain of sand
left, which is no longer a heap. But at what step in the process does the heap cease
to be a heap?

Or viceversa, by gradually adding to the remaining grain the others previously
removed, at what step of the process does the heap become a heap again?

Because of the principle of induction, one could say: never.

Theorem 6.1. No collection of grains of sand is a heap.

Proof. The following statements are universally accepted as valid:

(a) a collection of only one grain is not a heap;

(b) if a collection of grains is not a heap, it does not become one by adding another
grain.

From (a) and (b) the thesis follows, precisely because of the principle of induc-
tion.

A similar paradox is that of the “bald man”, according to which no man is bald, or
all men are bald. In fact, a man with a lot of hair is certainly not bald, nor does he
become bald if a hair falls out. But if he keeps losing hair, he becomes bald. But
when does the transition take place?

Otherwise, let’s consider a man without hair. It is not enough to transplant just one
to remove his baldness. In general, a bald man does not cease to be bald because
he acquires an extra hair. Is the di�erence between bald and non-bald a single hair?
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Again disrupting the principle of induction, we deduce:

Theorem 6.2. All men are bald.

Proof. It is su�cient to observe that:

(a) a man without hair is bald,

(b) if men with n hairs are bald, so are those with n+1.

From the principle of induction: men of any number of hairs are bald.

In truth, the transition from baldness to abundance of hair occurs gradually, and
cannot be resolved in a manichean alternative, yes or no. The quality of being bald
or not cannot be measured in this way by the quantity of hair, by setting a precise
threshold for which one passes from one condition to another. Idem for the heap.
The approach of classical logic, with the alternative true or false, is not very subtle.
This subject will be discussed in more detail in the next chapter.

Speaking of induction, another one of its apparent consequence (this time, how-
ever, not paradoxical, but erroneous and subtly misleading) is the one that deduces
that all apples are red (or similar statements).
Let us recall it. Since there is at least one red apple, it is su�cient to show that
the apples of any finite set have all the same colour. We proceed by induction on
the number n of apples in this set. If n = 1, the thesis is obvious. Let us assume it
is true for n and let us prove it for n+1. Let’s consider n+1 apples: removing the
first one we obtain n, that therefore, for the inductive hypothesis, have all the same
colour; removing the last one we obtain again n, still all of the same colour. So, all
the n+1 apples have the same colour.
The error, or if you prefer the cheat, is that the previous reasoning does not work
when there are 2 apples (i.e., n = 1 and n+1 = 2). In fact, in this case, when one is
removed, the other retains its colour, without being forced to share the colour of the
removed one. For this to work, there must be at least a third apple, which remains
whether we remove the first or the last.
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7.5 Other logical paradoxes

Let us now return to the truth value of an implication, then to the evaluation of the
connective “if... then” and to the rule expressed by the Latin locution ex falso quod
libet.
We have already commented on it. It does not represent a paradox itself, but it is
certainly far from being intuitive and easy to share. Here we would like to underline
some consequences that are just as surprising, but not unacceptable - they need at
most some patient explanation.

Among these, one of the most compelling is certainly that recounted by Raymond
Smullyan in [109]: the drinker’s paradox, or to use the author’s words, the drinking
principle.

Here is how Smullyan proposes it: “A man was at a bar. He suddenly slammed
down his fist and said, «Gimme a drink, and give everyone else a drink, cause when
I drink, everybody drinks!» So, drinks were happily passed around the house. Some
time later, the man said, «Gimme another drink, and give everyone else another
drink, cause when I take another drink, everyone takes another drink!» So, second
drinks were happily passed around the house. Soon after, the man slammed some
money on the counter and said, «And when I pay, everybody pays!»”.

The assertion to be discussed is then the following: in every pub there is a cus-
tomer x such that, if he drinks, then everyone else drinks.
The assertion is certainly astonishing, yet it is true. The argument proceeds by
distinguishing two cases:

• either everyone drinks, and then any customer is fine as x;

• or there is someone who does not drink, but then one can take this very patron
as x. In fact, in doing so, the proposition “if x drinks everyone drinks” has a
false antecedent and thus since ex falso quod libet is true.

Smullyan then goes on to relate two other variants of the paradox: a more dramatic
one claims the existence on earth of a woman who, if she becomes sterile, condemns
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the entire human race to extinction. The other is instead a “dual” version of the
drinker principle and states that there is at least one person who drinks if someone
drinks.

The reasoning behind them proceeds in the same way as for the drinker. In the
first case, either all women become sterile, and so each among them satisfies the
claim; or not all become sterile, and so one who remains fertile attests to the claim.

In the other case, either there is at least one person who drinks or there is not.
If there is none, i.e., no one drinks, then anyone can make the assertion true: since
it is false that anyone drinks, it follows from ex falso quod libet that if anyone drinks,
then the chosen person drinks. On the other hand, if there are some who drinks, let
us choose one among them and call him x. The conditional sentence “if someone
drinks, x drinks” has both the antecedent and the consequent true, so by the truth
rules of implication it is true.
Curry’s paradox concerns a further bizarre consequence of the truth rules of impli-
cation, that raises some further minimal doubts about them. Haskell Curry was a
twentieth century logician who described his argument in a 1942 article (The In-
consistency of Certain Formal Logics [32]). His is a further variant of the ancient
paradox of the liar. In this case we consider the sentence “if this statement is true,
then Russell is the Pope”, but if you wish, the resulting statement can be replaced
by any other extravagance.
Here is the proof: let us assume that the statement in italics, i.e., the implication, is
false; for this reason, the antecedent statement, i.e., the implication itself, must be
true and the consequent statement false, so that we should recognise that Russell is
not the Pope. But this is a contradiction: the implication cannot be true because
it is false. So, we must reject the original assumption by assuming that the impli-
cation is true. Now there are two possible cases, the antecedent statement is false,
or it is true. The first case does not exist, because the antecedent statement is the
implication itself, which we are assuming to be true. The second case exists because
of the hypothesis we are assuming and necessarily leads to the conclusion that the
consequent statement is true, that is, Russell is the Pope.
In order to understand such a surreal deduction, it is worth noting that the sentence
“if this statement is true, then . . . ” is self-referential, that is, it speaks of itself by
confusing the subject it deals with and the reflection on the subject itself. It is this
ambiguity that allows the kind of sleight of hand (based on the di�erence between
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language and metalanguage) we have illustrated.

Another rule of the implication is that it remains true when the hypotheses are
strengthened: in other words, if the implication F æ G holds, then, whatever H is,
the implication (H · F ) æ G also holds.

A check of the truth tables is su�cient to confirm this:

F G H F æ G H ·F (H ·F ) æ G

1 1 1 1 1 1
1 1 0 1 0 1
1 0 1 0 1 0
1 0 0 0 0 1
0 1 1 1 0 1
0 1 0 1 0 1
0 0 1 1 0 1
0 0 0 1 0 1

Notice how, in the rows where the column of F æ G contains the truth value 1, so
does (H · F ) æ G (which then adds a 1 also in the fourth row, corresponding to
the 0 of F æ G).

But let us consider the clearly true statement “if I jump o� the roof of a skyscraper,
then I kill myself” and take as H “I put on a parachute”. We get the implication “if
I put on a parachute and jump o� the roof of a skyscraper, then I will kill myself ”,
whose truth is no longer so obvious, if the parachute works and opens at the right
moment.
Otherwise, appropriately contextualised, an atmospheric prediction such as “if it
rains, then it doesn’t rain hard” can be considered reasonable; but passing to the
negations of antecedent and consequent, and in full respect of the laws of logic, it
leads to the statement “if it rains hard, then it doesn’t rain” which, in the same
context that ensures the reasonableness of the first implication, can very likely turn
out to be false.
In order to explain the last two “paradoxes”, one can observe how the multiform
causal connections that link antecedent and consequent in everyday speech some-
times escape mathematical modelling, which is too rigid and incapable of grasping
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all their nuances.

7.6 More about bald men

As already mentioned, a fuzzy approach provides a more convincing explanation of
paradoxes such as those of the heap or the bald man. We find it for example in [57].
We expose it in the case of the bald man. We denote, for every natural number
n, with B(n) the proposition “every man with n hair is bald”. In classical logic we
accept the following propositions as true, therefore with a Boolean truth value of 1:

• B(0),

• B(n) æ B(n+1) for every natural n.

The induction principle then leads us to the paradoxical conclusion

B(n) for every n,

therefore that all men are bald regardless of how much hair they have, even if one
believes that the maximum number of hairs on the head is 140,000 and consequently
it is di�cult to claim B(140,000), that is, that a man with 140,000 hairs is bald.
Anyway

• from B(0), B(0) æ B(1) we can deduce by modus ponens B(1), which there-
fore has truth value 1 (in fact a valuation assigns to the conjunction of B(0)
and B(0) æ B(1) the product 1 · 1 = 1, which is transmitted a fortiori to the
consequence B(1)),

• from B(1), B(1) æ B(2) we deduce by modus ponens B(2), which therefore has
truth value 1 (in fact a valuation assigns to the conjunction of B(1) and B(1) æ
B(2) the product 1 ·1 = 1, which is transmitted a fortiori to consequence B(2)),

etc. etc.

But now let’s assume from the fuzzy point of view that

• B(0) has truth value 1 (how can you doubt it?),

• but B(n) æ B(n+1) has, for each n, a truth value just below 1, say 1≠‘ with
real positive ‘ small at will, for example truth value 99/100 = 1≠1/100.
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Proceeding as above, this time we have:

• the conjunction of B(0) and B(0) æ B(1) has the truth value corresponding
to the product 1 ·99/100 = 99/100, which then is the least possible truth value
of B(1),

• the conjunction of B(1) and B(1) æ B(2) has a truth value Ø (99/100)2, which
is transmitted a fortiori to consequence B(2),

etcetera etcetera, so that for every n the truth value of B(n) is Ø (99/100)n, which
becomes smaller and smaller and indeed tends to 0 when n increases and goes to
infinity. In particular, B(140,000) has a truth value Ø (99/100)140,000, which is very
close to 0.
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Chapter 8

Logic in uncertainty situations

8.1 The game of Rényi – Ulam

Every day, we are protagonists of situations that want us to make choices such as
“on/o�”, “yes/no”, “true/false”, or “in/out”, to the point where we sometimes apply
this secular logical antithesis even to non-properly technological domains, for which
there are more than two possible answers.
Nowadays, we also witness the temptation and often the practice of fake news. In
these cases, the alternative is no longer “yes/no”, but “yes/no/maybe”, with many
possible gradations of “maybe”, depending on the reliability of the speaker.
From these observations, the need for a logical approach arises, in which the truth
values are not just two, true or false, but include intermediate levels. We need,
therefore, the development of a logic of uncertainty.
On the other hand, this term “uncertainty” also takes on di�erent meanings depend-
ing on the context in which it is used, and it extends far beyond logic, involving
information technology, philosophy, psychology, legal argumentation, medical diag-
nosis, not to mention mathematics itself.

Here we present and analyze some simple models of uncertainty situations. We
believe that they can be proposed without problems to high school students, to
stimulate their curiosity and their attention on some notable aspects:
1) firstly the fact that not always the cases of ordinary life can be approached, exam-
ined and decided according to classical logic and its only two values of truth (“yes”
or “no”) and that on the contrary they often require a less rigid and more varied
treatment;
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2) but also the development of a logic and an algebra that take these needs into
account, appropriately adapting the classical model.

As a starting example, consider a guy who is sometimes liar. Suppose he is playing
with a friend, who has been asked to guess the value of a number that the liar
imagined. The interlocutor is allowed to ask him questions, to which he answers,
sometimes lying. Let us also suppose that only “yes/no” questions are allowed in
the game. So one can ask if the number is 112, but not the value of the number.

Or, to make the situation even more exciting, let us place it in a courtroom, when
what has to be guessed is not properly a number, but the culprit. Suppose that the
first character is a witness, and the one who interrogates him is the defense attorney,
for example Mickey Haller, the “Lincoln lawyer”, the character in various Michael
Connelly detective stories [29]. Indeed the number to guess might could correspond
to who, among many possible suspects (say N suspects), is the real culprit. There-
fore the defense attorney, in order to prove the innocence of his client, has to induce
the main prosecution witness, who is answering his questioning and knows the real
murderer, to finally point him out to the court without a shadow of a doubt. But
this interlocutor could be recalcitrant, or even in bad faith, and so answers mono-
syllabically, saying only yes or no, and could sometimes lie. Finally, Haller should
formulate as few questions as possible, so as not to prolong the interrogation too
much and annoy the judge.
If we want to translate this setting in mathematical terms, we can identify the
suspects with the first N positive integers, and hence the space of the possible hy-
potheses with the set � = {1,2, ...,N}: the murderer will then correspond to an
element x ‘ �.
Expressed in this numerical way, the situation that arises in both these examples
is the one formulated by the Polish mathematician Stanis≥aw Ulam in the following
terms in his book Adventures of a Mathematician in 1976 [117]:

“Someone thinks of a number between one and one million (which is just less than
220). Another person is allowed to ask up to twenty questions, to each of which the
first person is supposed to answer only yes or no”.

In our case, as said, the questioner is Haller, the answerer the witness. In truth, the

197



8.1. THE GAME OF RÉNYI – ULAM

value of one million is unrealistic and excessive when referring to murder suspects.
Anyway it is reasonable to fix a maximal number of questions that the latter person,
i.e., the lawyer, can ask the former to force him to unmask the guilty party. In the
Ulam scenary, 20 questions are enough when N = 1000000, because N equals just
less than 220. Indeed log21000000 is approximately 19.9. Let us explain why 20
questions with answer “yes/no” are then su�cient to find the mysterious value x

when each answer is right and there is no lie. In fact, Haller could use the following
strategy:

• ask the witness whether the number x is between one and five hundred thou-
sand, to reduce the cardinality of the search space by half i.e., from just below
220 to just below 219,

• then continue in the same way, halving each time the solution interval, passing
question after question from 219 possible options to less, that is 218, from 217

to 216 and so on,

• until we arrive with the twentieth question below 21 = 2 possibilities, i.e., at
1. At that point the true x will be revealed.

Indeed Mickey Haller could even avoid specifying the values 219, 218 and so on,
asking the witness each time directly, whether x is in the first or second half of the
previous interval, to allow the witness an answer between yes and no. Once dropped
from 220 to 1, however, Haller will be able to identify x unambiguously, as long as
the witness’ answers are still honest. Under this hypothesis, 20 yes-or-no questions
are enough to guess a number between 1 and 220, and consequently between 1 and
one million.

From an abstract point of view, with reference to an initial space � of cardinal-
ity N (which is power of 2), corresponding as said to the positive integers from 1 to
N , we can associate to each natural number t (up to the first one that exceeds the
logarithm in base 2 of N), and in substance to the questions up to t, the set Xt of
the positive integers selected in � after the relative answers. In detail we put:

• first of all, X0 = �;

• for each t, we subdivide Xt into two subsets of equal cardinality X and Xt ≠X,
we ask whether x œ X or not and we put Xt+1 equal to the first or the second
of the two sets depending on whether the answer is yes or no.
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At the end of the procedure, x is the only element in the intersection of the various
Xt.
But now let us suppose that, as Ulam himself imagines in his book, the questioner
sometimes lies, for example once or twice. Ulam then asks, “how many questions
would one need to get the right answer”?

In fact, this variant, which admits the possibility of lying answers, was consid-
ered before Ulam, and in a slightly di�erent way, by the Hungarian mathematician
Alfréd Rényi in 1961, in On a problem of information theory [105]. Thus, it is now
commonly called the Ulam-Rényi game (with lies).
Rényi assumed a certain percentage e of false answers, which he attributed only
to the malice of the interlocutor, but also to the possibility that the latter did not
understand the question or was unaware of some fact, or to the “noise” that can
be generated in the transmission channels, thus to unintentional errors in the trans-
mission of data (for example from a shuttle or a satellite in flight to the space base
on earth). For this reason, the terms “errors” and “lies” are used synonymously in
Rényi’s text. Instead Ulam hypothesized a maximum number e of lies that, in the
case of Haller, the witness can pronounce: up to e, but not more than e. Therefore
the case we have just examined is e = 0, that is, no lie.
Let us now consider the simplest case with lies, that of a single lie, thus e = 1.
Haller can initially follow the same strategy as for e = 0 and then, in order to find
the number x between 1 and N , formulate the same questions as before, so as many
questions as before, corresponding to the logarithm to base 2 of N .
This time, however, the value of x that is eventually derived could be right or wrong,
depending on whether or not the witness told the lie at hand.
Haller then adds a further question, asking whether the answers so far received are
true or not. We distinguish four cases:

• If the answer is yes and the answer is truthful, then the x-value shown above
is the correct one.

• If the answer is yes and it is false, then it represents the only admissible lie,
i.e., the first lie, so that, again, the previous answers are correct and the value
of x obtained is the correct one.

Ultimately, a yes answer means that the output obtained is right. However the same
cannot be said for a no answer.
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• If the answer is no and it is a lie, then there have been no previous lies and
the value of x is correct, but Haller cannot know if this is really the case.

• On the other hand, if the answer is no and it is truthful, then it reveals a
previous lie and thus raises the problem of finding it among the approximately
log2N claimed, to change it and reinterpret all the subsequent statements of
the witness. In this case, the arising situation is the same as the initial one,
i.e. the search for a mysterious number, referring no longer to x among N

possible values, but to the position of the lie among (approximately) log2N

eventualities, with the advantage that, since the available lie has already been
told, Haller is certain that his witness from now on will answer truthfully.

On the other hand, the lawyer could repeat the final question twice in succession:
a double yes or a double no necessarily coincide with the truth; a yes and a no, re-
gardless of their order, include a lie and thus ensure the correctness of the previous
testimony.

We have to acknowledge that this analysis of the case e = 1 is rather laborious
and makes us fear major complications as e increases. Anyway, fix any arbitrary
maximum threshold e of lies. Now suppose to repeat the first question until receiv-
ing e + 1 equal answers, i.e., all yes or all no. As the maximal number of lies is e,
e+1 agreeing answers provide the correct information.
Nevertheless, the maximum number of repetitions of the question which guarantees
this goal in the worst situations is 2e+1, in the case where the first 2e answers are
divided exactly in half: e for the yes ones and e for the no ones, so that the following
answer will decide whether or not the testimony is true. The most favorable case
is when the first e+1 answers all agree. However, whether these answers reach the
number 2e + 1 or are reduced to “only” e + 1, the repetitions to be formulated are
obviously too many. Indeed the procedure will have to be renewed at the subse-
quent questions, albeit with reference to the number of lies left available after those
already used.

To underline the ine�ectiveness of this method from a computational point of view,
let us return to the simple but extremely instructive case of a single lie. We have
seen that in this circumstance Haller is allowed to know the truth only with some
complication, at least when the first supplementary question is answered as no.
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If one wants to minimize the execution time and the number of necessary questions,
one must resort to very complex and sophisticated tools, which are based on some
ideas of the American mathematician Elwyn Berlekamp, known precisely for his
work on information and combinatorial game theories.
As shown in the 2002 text Searching Games with Errors by Andrzej Pelc [93], in the
case where e = 1, the minimum size of the winning strategy, i.e., the minimum num-
ber of k questions needed to win the game, is given by the following minimization
conditions that are obtained from Berlekamp’s results:

• min{k : N (k +1) Æ 2k} if the number N is even;

• min{k : N (k +1)+(k ≠1) Æ 2k} if the number N is odd.

In the case where N = 1000000 ≥ 220 the value one finds, generically and regardless
of the type of question (as long as the answer is of the type yes/no and admitting
1 lie or error), up to an integer approximation, is 25.
In case Haller asks questions that have a specific character, e.g., comparative or
bisection type questions about the search space (such as “is it smaller than...?” or
“is it located in this half?”) we expect a similar result to the previous one, but a
higher threshold due to the tighter constraints. In fact, the estimate we get this
time is log2N + log2log2N + 1 for a generic N , and thus approximately 26 for
N = 1000000 ≥ 220.

The subtle di�erence between the two numerical values obtained makes us realize
how much the type of questions asked to the interlocutor can influence the course
of the game.
Pelc himself, in his aforementioned work, underlines the blurred but palpable distinc-
tion between two di�erent approaches to the game that translate into two di�erent
strategies of the organization of questions: the adaptive one whereby each question is
modulated on the basis of the answers to the previous questions, or the one whereby
questions are not necessarily linked to each other and belong to a pre-established
list. Obviously, the first approach is the one that best suits a courtroom where
a cross-examination, such as the one that sees Mickey Haller as a protagonist, is
taking place and requires a good spirit of improvisation and versatility; the second
tactic is the one used in the previous speculations on numbers (a strategy adopted
a priori) in a situation that is not very applicable to everyday scenes. The adaptive
approach allows some reduction on the minimum number of questions to be asked
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only when the number of “suspects”, i.e., N , is greater than or equal to 21 (for
the adaptive there is then a minimum of 8 questions, which becomes 9 in the other
situation). The di�erence between the two approaches becomes more pronounced
when the number of errors and lies starts to increase. Indeed, one realizes that:

• exact estimates (as in the case of e = 1) can be obtained also for e = 2 and
e = 3, which set the minimum number of questions, when N is one million, at
29 and 33 respectively;

• equally exact values can be found when N is a power of 2 and e = 3;

• the more general case with e and N being completely arbitrary still seems to
be far from a solution.

As one might expect, the situation becomes more and more complicated as e in-
creases, quickly becoming unmanageable when the questions asked no longer involve
only two answers of the type yes or no.

In addition to the “computational” aspects, certain connections with logic are also
of great interest in the Rényi-Ulam game. The possibility of lying means that two
possible answers which are the negation of each other do not necessarily lead to an
unacceptable state of incoherence, on the contrary can provide some information:
for example, they ensure that the stock of lies has been reduced by one unit. This
means that if the witness answers the same question first a�rmatively and imme-
diately later negatively (or vice versa), Haller will have progressed in his search for
the real murderer, though. Moreover, in order to discover the true answer to the
question, he will simply have to repeat it a third time (in the case of a single lie).
Translated into mathematical terms, in order to discover the logical truth value of
a proposition, it is useful and not superfluous for it to be confirmed twice. Also
in logic, at least in this area, the principle “repetita iuvant” (i.e., “repeating does
good”) applies.
Joining a proposition with itself strengthens it, in contrast to classical logic, where
a proposition of the type A · A has the same truth value as the single A. In the
logic underlying the Ulam game this is no longer guaranteed.

Moreover in the logic of the Rényi-Ulam game, the principle of the excluded third,
according to which of each statement A either its positive version, i.e., A, or its
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negation, i.e., ¬A, is true, but never both simultaneously, no longer applies. Enun-
ciating A and ¬A in succession, or vice versa, does not produce any paradoxical
situation since the interlocutor to whom the questions are directed is allowed to lie
a certain number of times. Moreover, the player, i.e., Haller in our case, regardless
of the value of e, is not so much interested in finding out whether every single answer
given by the witness is reliable or not as in asking him the questions in such a way
as to induce him to spend his lies as soon as possible.
From this perspective, each answer, whether a�rmative or negative, contains the
same precious information content.
It is then evident that in Ulam and Rényi’s game the truth values of an assertion
cannot be restricted to just two, i.e., 1 or 0, as in classical logic, but must be ex-
tended to 3, i.e. {yes, no, maybe}, or {1,0, 1

2} in the case of a single lie, and to an
even wider spectrum of values if the number of lies should increase.
Therefore, it becomes necessary to abandon classical logics and resort to new logics
called many-valued, i.e., open to more truth values. These will be the subject of the
next section.

8.2 Many-valued logics

The roots of many-valued logic can be traced back to Aristotle. In Chapter IX of
De Interpretatione [4] Aristotle considers the timely sentence “Tomorrow a naval
battle will take place”, which cannot be evaluated from the point of view of truth or
falsity. The sentence belongs to a broad category of propositions that make predic-
tions about the future, referring to future events that are unnecessary or not actually
determined. The Greek philosopher thus suggests the existence of a “third” logical
state for propositions.
The one who started to develop many-valued logics in a new, original and inde-
pendent way was the Polish logician and philosopher Jan £ukasiewicz in 1920. He
first focused on the idea of an additional third truth value, signifying “possible”,
“indeterminate”, admitting later extensions to logics with four or five values and
claiming that, at least in principle, there is no obstacle to develop infinite-valued
logics.
The British mathematician and popularizer Ian Stewart describes the novelty of this
point of view in the article A partly true story [110], in a joking and surreal tale, in
which he imagines a revived Epimenides conversing with £ukasiewicz himself. Here
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are some lines from it. It is Epimenides himself who narrates in the first person.

«Instead of just two truth values, 1 for a true statement and 0 for a false one,”
£ukasiewicz said, “I am prepared to consider half-truths with truth value 0.5 or
near-falsehoods with value 0.1 – in general, any number between 0 and 1».
«Why would anyone want to do that? » I asked, bemused.
£ukasiewicz smiled. «Suppose I said that the club president looks like
Charlie Chaplin. Do you think that’s true?»
«Of course not!»
«Not even his feet?»
«Well, I guess they do rather...»
«So it’s not completely false, either.»
«Well, he does look a bit like Chaplin. »
£ukasiewicz leaned toward me. He had very penetrating eyes.
«How much like him? »
«Around 15 percent, I’d say. »
«Good, then my statement “the club president looks like Charlie Chaplin” is 15 per-
cent true. It has a truth value of 0.15 in fuzzy logic.»
«That’s playing with words. It doesn’t mean anything.»
£ukasiewicz grasped my arm.
«Oh, but it does. It helps to resolve paradoxes.»

As the story goes on, £ukasiewicz explains to Epimenides how logics less categorical
than the classical one make it possible to overcome even the paradox of the liar.
The argument is discussed in the case of a sheet of paper such that on one side is
written that the statement on the opposite side is true, and on the other one that the
statement on the opposite side is false. £ukasiewicz observes that it is su�cient to
imagine an additional truth value 1/2 and to assign it to each of the two statements
on the paper in order to overcome any embarrassment: in fact, by doing so, each of
the two statements will be considered neither true nor false.

Many-valued logics (usually referred to as MVL) di�er from classic logics precisely
because they no longer have just two, but a greater number, if not an infinity of
truth values. The spectrum of these values is thus broader than the traditional 1
and 0. These latter remain, meaning respectively “true” and “false”, or rather “ab-
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solutely true” or “absolutely false” (since intermediate possibilities will also appear),
but other options are added.

The assignment of these truth values should again follow precise rules, starting
from the evaluation of the simplest formulas. For example, it must respect the
principle that, if one component of a formula is replaced by another one with the
same truth value, the evaluation of the overall formula also remains unchanged.
Even many-valued logics, like classic logics, rely on the connectives ·,‚,¬ and æ,
suitably adapted and integrated. However, it must be stressed that, already in the
case of 3 truth values, i.e., 0, 1, and 1

2 , the total number of n-ary connectives (for a
positive integer n) gets greater as n increases, if compared to classic logic. In fact,
an n-ary connective must be understood as a function of

Ó
0, 1, 1

2
Ôn

in
Ó
0, 1, 1

2
Ô
.

Consequently, the n-ary connectives increase in total from 22n to 33n . In particular:

• 1-ary connectives become 331 = 27 instead of 221 = 4,

• binary connectives become 332 = 19683 instead of 222 = 16.

Moreover, when we expand the truth values of a proposition, we will obviously have
to revise their assignment.
The trivalent logic L3 constructed by £ukasiewicz represents a first example and
model. The following tables illustrate how negation and implication are evaluated
in L3. They refer to arbitrary formulas F and G.

1) The connective ¬

F ¬F

1 0
0 1

1/2 1/2

2) The connective æ
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F G F æ G

1 1 1
1 0 0
0 1 1
0 0 1

1/2 1/2 1
1/2 0 1/2
1/2 1 1
1 1/2 1/2
0 1/2 1

The other connectives of disjunction and conjunction are introduced through the
following definitions:

• F ‚G = (F æ B) æ B,

• F ·G = ¬(¬F ‚¬B).

The tables concerning them are the following ones.

3) The connective ‚

F G F ‚G

1 1 1
1 0 1
0 1 1
0 0 0

1/2 1/2 1/2
1/2 0 1/2
1/2 1 1
1 1/2 1
0 1/2 1/2
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4) The connective ·

F G F ·G

1 1 1
1 0 0
0 1 0
0 0 0

1/2 1/2 1/2
1/2 0 0
1/2 1 1/2
1 1/2 1/2
0 1/2 0

In particular in L3 “false implies possible” is held to be true (see the last line of the
table of æ), in full respect of the principle “ex falso quodlibet”. There are, however,
3-valued logics that move in another direction. For example, in the weak 3-valued
logic KI

3 of Stephen Kleene (a 20th century American logician) “false implies pos-
sible” is declared possible because of the uncertainty that the eventuality “possible”
entails, as we read in [76].
As already mentioned, for each m > 2 one introduces to the £ukasiewicz mode a
logic Lm with m truth values, i.e. 0, 1

m≠1 , 2
m≠1 , . . . , m≠2

m≠1 ,1: in particular the three
aforementioned values 0, 1

2 , 1 for m = 3, or 0, 1
3 , 2

3 , 1 for m = 4 and so on.
In 1993 Daniele Mundici, in his article The logic of Ulam’s game with lies [80],
proved that the most adequate logic for Rényi and Ulam’s game with e lies is ex-
actly that of £ukasiewicz Le+2 with e+2 truth values 0, 1

e+1 , 2
e+1 , . . . , e

e+1 ,1.
Nowadays, the landscape of many-valued logics is very wide. In fact, they can be
applied not only to Ulam’s game with lies, but also to various situations of uncer-
tainty in everyday life.

The 1970s were marked by an interest in fuzzy sets and logics. This new approach to
the notion of uncertainty is suggested by certain applications to computer science.
It was initiated by Lofti A. Zadeh, a US-born Soviet mathematician and engineer
from the University of California, Berkeley, known for his contributions in the field
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of systems theory and automatic controls. He worked between 1972 and 1979, taking
up for fuzzy set theory certain insights that can be traced back to Descartes, Russell
and Einstein.
Zadeh himself illustrates his ideas in the following quote from Fuzzy logic, neural
networks and soft computing, a 1994 article [127]: “The term fuzzy logic is currently
used in two di�erent senses. In a narrow sense, fuzzy logic is a logical system that
aims at a formalization of approximate reasoning. As such, it is rooted in multival-
ued logic. [. . . ] In a broad sense, fuzzy logic is almost synonymous with fuzzy set
theory . . . a theory of classes with unsharp boundaries. [. . . ] What is important to
recognize is that . . . today the growing tendency is to use the term fuzzy logic in its
broad sense”.

Thus the premises are the same as in Aristotle and £ukasiewicz. Let us propose
them again, imagining the case of a gentleman, let’s call him Horace, who lays petu-
nia seedlings in a flowerbed in his garden, without bothering to bury and fertilize
them and thus ensuring that they survive. So, can we say that Horace “planted”
petunias? It is di�cult to admit that, if we compare his actions to those of a quali-
fied gardener. It becomes easier, if we compare his behavior to someone who throws
petunias straight into the bin. An example that leads even Zadeh to consider in-
termediate truth values between “absolutely true” and “absolutely false”, which he
calls “degrees of truth”.
But it is in deductive calculus that fuzzy logic shows itself to be original and di�er-
ent. In fact, in many-valued logics as in classical ones, the “inferential” apparatus,
i.e., the system of rules that oversee deductions, moves from certain formulas (the
hypotheses) to deduce others (the theses or consequences). In general, the truth
value of the hypotheses determines that of the consequences.
Instead, in fuzzy logic one starts from a fuzzy set of hypotheses to produce a nuanced
set of formulas that can be deduced from it. In other words, in fuzzy logic, both
being hypotheses and being deducible from given hypotheses are vague concepts.
Thus, both the premises and the conclusion have an “indistinct” degree of truth,
which can vary over a spectrum of predetermined values.
This brings us to fuzzy sets and how to interpret the concept of membership.
In classical set theory, specifically in the ZF system of Zermelo and Fraenkel, there
is an axiom, called separation axiom, which allows to carve out within a set S the
subset of elements x œ S that verify a given “property” P .
Nevertheless, in the fuzzy domain this consideration cannot remain so strict. In
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the set of petunias there are fuzzy properties, such as those of being planted, which
change their meaning depending on whether a professional gardener, Horace, or
someone who throws them in the rubbish takes care of them. Otherwise, referring
to the arguments of the previous chapter, in the set of all men there are nuanced
properties such as “young”, “big”, “tall”, “bald”, of which it is not easy to fix the
boundaries. Is it possible to apply the axiom of separation also to these properties?
In other words: do expressions such as “the set of young men”, “the set of big men”,
“the set of tall men”, “the set of bald men” make sense? When does a man start to
be young, or big, or tall, or bald? Let’s focus on the first case: it is clear that a 10
years old boy is young, but an old 90 years old man isn’t anymore. But when does
the end of youth and the beginning of old age o�cially take place?
In the fuzzy approach the various properties (being young, or big, or tall, or bald)
are understood vaguely and can only occur with a fuzzy degree of truth (which, in
the case of youth, is 1 or nearly for the 10-year-old, 0 or nearly for older people,
more indistinct in the intermediate ages).
Moreover, this is how it is in common language, which is fluid and devoid of ex-
cessively rigid oppositions. The fuzzy approach is particularly favoured in the legal
sphere and also in the medical sphere, where it is di�cult to provide a clear-cut char-
acterization of conditions such as “sick”, “healthy”, “prediabetic”, “osteopenia”, and
so on.
The fuzzy point of view has also produced technological devices in areas where
qualitative evaluation elements are ill-suited to the use of binary logic. The mod-
ern theory of automatic controls, which originally dealt with well-defined problems
with as precise information as possible with excellent results, has recently opened to
di�erent perspectives and more complex non-linear control techniques, for example
when

• the system is not precisely known,

• there are considerable parametric variations,

• the multiplicity of objectives to be achieved makes decision-making di�cult.

One of the most interesting prerogatives of fuzzy logic, recently explored, is precisely
the possibility of converting elements of human experience into numerical algorithms;
the result is automatic or semi-automatic procedures with artificial experience.

209



Chapter 9

Diophantine games and the theory
of computability

9.1 Playing with equations

Algebra is generally regarded as the branch of mathematics dealing with equations.
Its own name seems to confirm this; in fact, it derives from the Arabic “al-jabr”,
a word that appears in the title of a work dating back to the IX century A.D., by
the Persian mathematician Mohammed ibn-Musa al-Khwarizmi, dedicated precisely
to equations. Indeed, “al-jabr” means “reduction” and refers to the procedure that
moves negative terms in an equation from one member to another by changing their
sign.

Nowadays algebra, although inspired by equations, has progressively become the
abstract science of structures. Moreover the mere solution of equations is generally
considered as a useless and boring exercise, anything but a game. Nevertheless, a
simple example may convince otherwise.

Let’s imagine two players, A and B, facing each other in a battlefield consisting
of an equation with integer coe�cients, such as x1 + y1 + x2 = y2

2. The indetermi-
nates x1, x2 are those of A, while the others y1, y2 are those of B. The game
between the two is played as follows

• first A chooses a natural value for x1, for example X1 = 3, so that the equation
becomes 3+y1 +x2 = y2

2;

210



CHAPTER 9. DIOPHANTINE GAMES AND THE THEORY OF COMPUTABILITY

• then B chooses a natural value for y1, such as Y1 = 6, so that the equation
becomes 9+x2 = y2

2;

• A chooses for x2 the value X2 = 1, so that the equation becomes 10 = y2
2;

• at this point B has no way of answering with any natural value Y2 for y2 that
satisfies 10 = Y 2

2 because 10 is not a square.

It is then agreed that A is the winner, as well as in all cases where the choice of
indeterminates does not satisfy the equation. Otherwise, the winner is B.
Actually, A always has a winning strategy in this game, because with the choice of
the value of x2 he can always obtain that the sum x1 + y1 + x2 is not a square. In
fact, there are arbitrarily large natural numbers that are not squares.

Every equation with integer coe�cients in an even number 2n of indeterminates
generates to a similar game, where the two players alternately replace the unknowns
x1,y1, . . . ,xn,yn with natural numbers. If the equation is eventually satisfied, B

wins. Otherwise, A does.

These games are then linked to a delicate and fascinating subject in mathematics,
namely Diophantine equations, i.e., equations with integer coe�cients where integer
or even natural solutions are searched. The adjective “Diophantine” is a tribute
to the III century A.D. Alexandrian mathematician Diophantus, who studied these
topics. We already met him in Section 6.20. It is well known that Diophantine equa-
tions, despite their simple appearance, are very tricky. Let us therefore devote the
next two paragraphs to reminding of their dangers and highlighting their surprising
links with logic.

9.2 Diophantine equations

The restriction on the solutions of Diophantine equations, to be found in the range
of integers or even naturals, seems to simplify their search. But on the contrary, this
restriction often proves to be a complication. Here is a historically famous example
that illustrates the pitfalls.

The problem of the cattle farmer (Euler, Elements of Algebra [48], Part II,
Chapter 1, Question 6) A farmer lays out the sum of 1770 crowns in purchasing
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horses and oxen; he pays 31 crowns for each horse, and 21 crowns for each ox. How
many horses and oxen did he buy?

The initial impression is that the solution is easy to find. In fact, let x, y denote
respectively the number of oxen and horses bought. Then we obtain the following
equation with integer coe�cients:

31x + 21y = 1770.

This has two unknowns and one can express the first as a function of the second,
for example y from x as

y = ≠31x + 1770
21 .

It is in fact convenient to isolate here, for reasons that we shall see, the unknown
with the smallest coe�cient in absolute value, which is 21 of y, but of course there
is no prohibition to prefer x instead.
Nevertheless, the hope of a quick solution is only illusory. One just has to reflect for
a moment to realize that if, for example, x = 0 (that is, if the farmer does not buy
any ox) then we obtain y = 1770/21 = 590/7: a rational value but not an integer
one, because in N the division of 590 by 7 is not exact and gives the quotient 84
and the remainder 2 (the quotient and the remainder of 1770 with respect to 21 are
consequently 84 and 6). Well, 590/7 would be the number of horses bought. But
to such a conclusion it is easy to object that horses are bought in full, and not in
sevenths or twenty-firsts.
Furthermore, it could happen that, for positive integer values of x, the other inde-
terminate y takes on negative integer values, which is similarly absurd in Euler’s
problem. However, this eventuality can be quickly remedied by imposing the con-
dition 31x Æ 1770 on the solutions.
Clearly it is much less easy to find integer solutions in the infinity of rational ones.
Nevertheless, Euler devised a quick and brilliant procedure.
First, we have to note that our equation certainly admits integer solutions because
the greatest common divisor of the coe�cients of the indeterminates, GCD(21,31) =
1, divides the constant term 1770.
In fact, by Bézout’s identity, this greatest common divisor is represented as a linear
combination of 21 and 31 with integer coe�cients and, as a divisor of 1770, trans-
fers this property to it. Indeed, the Bézout identity approach and ultimately the
Euclidean successive division algorithm provide an alternative procedure for finding
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these integer solutions. But let us focus on Euler’s method and, reassured on this
preliminary point (the existence of integer solutions), let us proceed, deriving from
the previous expression of y and the division in N of 1770 and 31 by 21 (precisely,
1770 = 84 ·21 + 6 and 31 = 1 ·21 + 10),

y = ≠x + 84+ ≠10x+6
21 .

Let us denote by t the algebraic fraction (≠10x+6)/21. We thus obtain the integer
equation

21t + 10x = 6,

which is simpler than the previous equation because the coe�cient with the small-
est absolute value is reduced from 21 to 10. Furthermore, the original indeter-
minates x,y can be expressed in a parametric form with respect to t, firstly x as
(≠21t + 6)/10 and consequently y, again as a linear function of t with rational
coe�cients.
Repeat this procedure until, each time the representations of x,y being simplified
by the new parameter, the same x,y are expressed as linear functions with inte-
ger coe�cients (and not only rational ones) of this parameter. Thus, each integer
value of the parameter produces two integer values for the indeterminates. It is
easily checked whether these values respect the conditions x Ø 0 and 31x Æ 1770. It
turns out that the natural solutions of (x,y), net of the negative solutions to be ex-
cluded for each of the unknowns, are only three, namely (9, 71),(30, 40) and (51, 9).

In general, if we consider polynomials with integer coe�cients looking for integer
roots (we refer to polynomials of any degree, and in any number of indeterminates),
the situation that arises is extremely varied. In fact, the answers are sometimes
a�rmative and sometimes negative, confirming or excluding solutions in Z, often
because of a sign that changes, or a coe�cient that increases or decreases by 1.
For instance

2x+4 = 0, x2 ≠1 = 0, x2 +y2 ≠1, . . .

2x+5 = 0, x2 ≠2 = 0, x2 +y2 +1, . . .

are all equations with integer coe�cients, with almost intangible di�erences between
them, at least if compared column by column; however, in the first row they also
have integer solutions, respectively ≠2, ±1, (±1, 0) and (0, ±1) while in the
second they do not.
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There are many examples, at least as famous as that of the Euler farmer, of equations
that

• admit integer coe�cients (possibly negative),

• but lack integer roots.

Indeed, in this way we encounter polynomials with integer coe�cients whose roots
are

• rational and not integer, such as 3/2 for 2x≠3,

• or real and irrational, such as the golden number „,
Ô

2, 3Ô2 for x2 ≠x≠1,x2 ≠
2,x3 ≠2 respectively,

• or even imaginary such as i for x2 +1.

Let us now propose other famous examples of Diophantine equations - just a few
among many possible ones.

The Bombelli equation. Singular is the case of

x3 ≠15x≠4,

a polynomial usually associated with the name Rafael Bombelli, an Italian mathe-
matician of the Renaissance. It is not di�cult to see that this polynomial admits
the integer root 4 (which is among the integer divisors of the constant term ≠4):
43 ≠15 ·4≠4 = 0.
Nevertheless, whoever, being aware of the solution formulas of the third-degree equa-
tions in one unknown (those that Bombelli and his Italian colleagues of the same
epoch determined), proceeded to apply them, would find himself in front of a sur-
prise, namely the necessity to obtain, at a certain point of the calculation, the square
root of ≠121, that is 11i if i exists, and nothing apparently sensible otherwise.
However, if we accept the first option, the i that appears then vanishes and finally
gives way to the 4 that we are looking for, together with two other irrational solu-
tions.

The Pythagorean equation and Pythagorean triples. Another important
Diophantine equation that has marked the history of mathematics is the homoge-
neous second-degree equation (with integer coe�cients) of the Pythagorean Theorem
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x2 + y2 = z2. It admits so-called trivial integer solutions (those for which one of a

and b is 0, and the other equals c).
But, as said in Chapter 5, there are also solutions (a,b,c) with a,b,c positive integers
(therefore non-trivial): the Pythagorean triples, such as (3, 4, 5) or (5, 12, 13). In
this case a,b,c are the measures of the catheti and hypotenuse of a right-angled
triangle (as can be seen from Figure 5.9). From an algebraic point of view, other
integer solutions such as (±3,±4,±5) and (±5,±12,±13) can be added, which lose
their geometric meaning.
There are also solutions that go beyond the integers (as in the case, already implic-
itly considered above, in which x = y = 1, z = · · · ?).
The “recipe” proposed by Euclid (Elements, Book X, Lemma 1 at Proposition 29
in [44]) and already sketched in Chapter 5, gives us almost all the Pythagorean
triples. Indeed, in Euclid’s original text, arithmetic is somewhat confused with ge-
ometry, the positive integers become segments and are thus identified with their
measurements, in fact we used this feature to translate it into a proof without words
(Section 5.2). Nevertheless, adapted in a modern key, i.e., in algebraic rather than
geometric terms, the recipe suggests taking, as we know, two positive integers u > v

and then constructing

a = u2 ≠v2, b = 2uv, c = u2 +v2.

It is easy to verify that (a,b,c) is a Pythagorean triple. However, some Pythagorean
triples escape this construction. As already underlined, this is the case with (9,12,15),
since 15 cannot be expressed as the sum of two squares.
Call primitive any Pythagorean triple whose components are coprime, as for (3, 4, 5)
and (5, 12, 13) but not for (9, 12, 15). In the millennia after Euclid, the work of
various mathematicians, in particular Kronecker, made it clear that

• all primitive Pythagorean triples (a,b,c) are obtained by Euclid’s recipe, i.e.,
as a = u2 ≠v2, b = 2uv, c = u2 +v2 starting from two positive integers u > v

prime to each other and of opposite parity

• each non-primitive Pythagorean triple is obtained from a primitive one by mul-
tiplying its components by their greatest common divisor (e.g., (9, 12, 15) =
(3 ·3, 3 ·4, 3 ·5)).

Fermat’s Last Theorem. An immediate generalization of the Pythagorean equa-
tion to a polynomial of integer degree n > 2 leads to the Diophantine equations
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xn + yn = zn. These are the subject of the so-called Fermat’s Last Theorem, in
memory of the French mathematician Pierre de Fermat who first enunciated but
did not prove it. We already introduced it in Section 6.20. According to its state-
ment there are no non-trivial integer solutions (thus triples composed of integers all
non-zero) to the previous equation when the exponent n is greater than 2. In the
margins of a copy of Diophantus’ Arithmetica [39], in correspondence to problem
VIII of Book II (“splitting a given square into the sum of two squares”), which thus
referred to Pythagorean triples, Fermat himself noted: «I have discovered a truly
marvelous proof of this, which this margin is too narrow to contain.»
The mystery remained until 1994, when Andrew Wiles (1953 - . . . ) provided the
first complete proof of the theorem, based on sophisticated mathematical tools such
as elliptic curves, modular forms and so on, unthinkable in Fermat’s time.

The Hardy-Ramanujan number . Which positive integers can be expressed
in more than one way as the sum of two cubes? In other words, does the Diophan-
tine equation x3 + y3 = z3 + t3 admit positive integer solutions for which we have
{x,y} ”= {z, t}? The minimum integer that is expressed in two distinct ways as the
sum of two cubes of positive integers is 1729. In fact:

1729 = 13 +123 = 93 +103.

This number and its double representation are famous because they are linked to
the following anecdote from Ramanujan’s life story told by Hardy: we take it from
D.R. Hofstadter’s book, Gödel, Escher, Bach: an Eternal Golden Braid, 1979 [65].

«I remember once going to see him [Ramanujan] when he was lying ill at Putney. I
had ridden in taxi-cab N. 1729, and remarked that the number seemed to me rather
a dull one, and that I hoped was not an unfavorable omen. “No, Hardy,” he replied,
“it is a very interesting number; it is the smallest number expressible as a sum of
two cubes in two di�erent ways”. »

Catalan’s conjecture. Diophantine equations are also connected to the famous
conjecture proposed in 1844 by the French mathematician Eugène Catalan (later
proved in 2002 by the Romanian mathematician Preda Mih�ilescu), according to
which the only two “pure” powers of non-zero natural numbers whose di�erence is
1 are 32 = 9 (a square) and 23 = 8 (a cube). Positive integer solutions are therefore

216



CHAPTER 9. DIOPHANTINE GAMES AND THE THEORY OF COMPUTABILITY

sought for the equation
x2 ≠y3 = 1 ,

or more generally
xn ≠ym = 1,

with n,m integer exponents greater than 1. The only possible combination is that
for which x = m = 3 and y = n = 2.

Pell’s equations. Finally, let us consider Diophantine equations of the form

x2 ≠dy2 = 0 ,

with d a positive integer. Euler linked them by mistake to the name of the mathe-
matician John Pell (1611-1685), after which they are named. We note that they all
have the trivial integer solutions x = ±1 and y = 0.
As far as non-trivial solutions are concerned, we distinguish two cases:

• for d a perfect square there is no way to express 1 as the di�erence of two
non-zero squares, 1 = x2 ≠

1Ô
d y

22
, so there are no non-trivial solutions;

• the case where d is not a perfect square is the only really interesting one; a
broad and sophisticated theory intervenes to classify the non-trivial solutions.

9.3 H10 and DPRM

In the face of such a variety of complicated examples, it is not surprising that, among
the famous 23 problems that David Hilbert proposed to the mathematical commu-
nity in 1900, one finds, precisely at place number 10, the one of recognizing with an
appropriate algorithm polynomials with integer coe�cients that also have integer,
or even natural roots. Here is the way Hilbert himself state it (English translation).

H10, Hilbert’s Tenth Problem. Given a Diophantine equation with any number
of unknown quantities and with rational integral numerical coe�cients: To devise
a process according to which it can be determined in a finite number of operations
whether the equation is solvable in rational integers.

Incidentally: neither the degree nor the number of indeterminates of the polyno-
mials under investigation receive any bound. In fact, if one narrows the setting of
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the investigation appropriately, algorithms that fulfil this requirement can some-
times be found. Let us present three examples, at least two of which recur routinely
in the teaching of high-school mathematics.

The case of degree 1. Let us first focus on equations of degree 1 in an arbi-
trary number of unknowns, thus of the form

a1x1 + . . .+anxn = b

with n positive integer, a1, . . . ,an,b integers and a1, . . . ,an not all 0. As we have
already anticipated when discussing Euler’s farmer problem, this equation a1x1 +
. . .+anxn = b admits integer solutions z1, . . . , zn if and only if the greatest common
divisor d of a1, . . . ,an divides b.

Here is the proof.

First suppose that the equation has an integer solution (z1, . . . , zn), so a1z1 + . . . +
anzn = b. Let d be the greatest common divisor of the coe�cients a1, . . . ,an. Then
for each i = 1, ..,n there exists an integer bi for which ai = dbi. It follows that
b = db1z1 + . . .+dbnzn = d(b1z1 + . . .+ bnzn) is divisible by d.
Conversely, we know from Bézout’s identity that the greatest common divisor d of
a1, . . . ,an is expressed as their linear combination with integer coe�cients d = a1u1 +
. . .+anun, where indeed the integers u1, . . . ,un are calculated explicitly with the Eu-
clidean algorithm of successive divisions. If d divides b, i.e., b = dq by some integer
q, we deduce b = a1qu1 + . . .+anqun.

The case of a single indeterminate. Let us now consider equations of ar-
bitrary degree, but with only one indeterminate x, thus expressible in normal form
as

a0 +a1 ·x+a2·x2 + . . .+an ·xn = 0

with n positive integer, a0,a1, . . . ,an integers, an ”= 0.
We proceed as usual in the search for integer solutions. It is clear that if a0 = 0,
then the equation possesses the 0 solution in Z. Therefore, we can assume that a0 is
di�erent from 0. It is then well known that integer solutions, if they exist, are to be
found in the finite framework constituted by the divisors of a0. In fact, if z is an inte-
ger solution of the given equation, it turns out that z(a1 +a2z + . . .+an ·zn≠1) = ≠a0

, i.e. precisely that z is a divisor of a0.
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Consequently, in the worst-case scenario, it is su�cient to perform a systematic
brute force check, extended to these values, in order to identify among them those
that eventually solve the equation. It is in this way that, for example, one arrives
at the root 4 of the Bombelli equation.

An equation of degree 2 in two indeterminates. Finally, let us deal with the
case of an equation of degree 2 in two indeterminates x,y of the form

a·x2 + b ·y = c

where this time we assume that a,b,c are positive integer and we look for natural
values (i.e., non-negative integers) for x and y. Then, we have

0 Æ x Æ a·x2 Æ c, 0 Æ y Æ b ·y Æ c.

It follows that the area in which to search for solutions is finite, included between
0 and c, consequently it can be explored again by brute force methods, aimed at
checking every possible value of x,y between 0 and c.

Let us come back to H10. Note then that an algorithm capable of deciding the
presence of integer roots generates one to detect the existence of natural roots.
It is su�cient to apply Lagrange’s classical theorem of 1770, according to which
in Z, the natural numbers (i.e., non-negative integers) coincide exactly with the
sums of four squares. Thus, a polynomial equation such as that in Euler’s problem
31x + 21y = 1770 admits for x,y solutions in N (thus expressible as sums of 4
squares) if and only if in Z the following polynomial equation in 2 · 4 = 8 variables,
easily obtainable from the previous one, has solutions,

31
1
t2
1 + t2

2 + t2
3 + t2

4
2

+21
1
z2

1 + z2
2 + z2

3 + z2
4

2
= 1770.

Hilbert’s problem disregards, as mentioned, limitations on the degree and number
of indeterminates and the resulting facilities and requires a completely general al-
gorithm.

However, the answer to Hilbert’s tenth problem, obtained in 1970 by Martin Davis,
Hilary Putnam, Julia Robinson and Yuri Matijasevic, is unexpected ([77], [34] and
[35]): in fact, instead of providing the algorithm sought, it excludes its existence.

Theorem (Davis-Putnam-Robinson-Matijasevic DPRM). There exists no
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algorithm capable of distinguishing, for every integer coe�cient polynomial, whether
it admits integer roots or not.

This conclusion derives from the developments in mathematics that took place be-
tween 1900 and 1970, and in particular from the revolution that occurred in 1936,
when Turing proposed his computational model, as already illustrated in Chapter
1. Let us briefly explain the link with polynomials.
As seen in Chapter 1, a statement such as “there is an algorithm” (to solve a certain
problem on natural or integers) is objectively vague. Even more so is its negation
“there is no algorithm” for that given purpose. In fact, if in the positive case an
algorithm can be produced to prove its existence, in the negative version no such
constructive argument can help. The concept of an “algorithm” is only intuitive.
Well, Turing’s intention was precisely to give a mathematically rigorous content to
these assertions, as briefly summarized in Chapter 1, via the notion of “Turing ma-
chine”. Since this concept can be well defined in mathematical terms, the question
of whether or not an algorithm exists also takes on its own consistency and clarity.
By “problem” we mean here a question such as the following: given a subset W of
N, decide the membership of W of a generic n œ N, i.e., establish whether n is in W

or not.
Then this set W is said to be:

• decidable if there exists an algorithm, i.e., there exists a Turing machine, which
separates the elements inside W from those outside,

• semidecidable if there exists an algorithm, i.e., there exists a Turing machine,
which at least lists the elements of W (without necessarily recognizing those
outside).

The concept of semidecidability is thus weaker than decidability. In fact it is shown
that W is decidable if and only if it is semidecidable together with its complementary
N≠ W (the so-called Post theorem): in fact there is an algorithm that knows how
to distinguish the elements inside and outside W if and only if one has actual lists
of both the elements of W and those of the complementary - scrolling through them
one can easily establish, case by case, whether the input n considered is in W or not.

Above all, one discovers sets W of naturals that are

• semidecidable but not decidable (so they admit algorithms that list their ele-
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ments, but not procedures that distinguish their elements from others),

• or even not semi-decidable.

The theorem of Davis, Putnam, Robinson and Matijasevic connects these abstract
theorems to the world of integer coe�cient polynomials and thus transfers the cases
of undecidability from subsets of N to the solutions of integer coe�cient equations
and specifically to the Hilbert tenth problem. The correlation is established at the
key point of its proof, where the semi-decidable subsets W of N are characterised
as the Diophantine ones: those for which there exists a polynomial qW (x,y1, . . . ,yn)
with integer coe�cients such that, for every natural number N , N belongs to W if
and only if, by intervening in that polynomial as a parameter instead of x, it allows
natural solutions for the equation qW (N,y1, . . . ,yn) = 0.

Thus we discover even in H10 how the study of equations significantly intersects
the history of scientific thought, in particular the essence of the concept of algo-
rithm. Through it algebra and logic, are also connected to the genesis of modern
computer science and point out its unexpected limitations, i.e., the existence of
cases, singular but not circumscribed, in which the desired algorithm does not exist.

9.4 Diophantine games

Let us return to Diophantine games. As already underlined, the initial example of
this chapter can be extended to any polynomial equation p(x1, . . . , xn, y1, . . . , yn) =
0 with integer coe�cients, in an arbitrary number of indeterminates, which we as-
sume to be 2n and indicate by x1, . . . , xn, y1, . . . , yn (we will recall the reason
for this apparent restriction in a moment).

The relative game always involves two players A and B, who proceed as follows:
within N

• A chooses a value X1 for x1,

• B opposes him a value Y1 for y1,

• A selects X2 for x2,

• B opposes him a value Y2 for y2,
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and so on, until Xn, Yn for xn, yn respectively.

If at the end of this procedure p(X1, . . . , Xn, Y1, . . . , Yn) = 0, then B wins.
Otherwise, for p(X1, . . . , Xn, Y1, . . . , Yn) ”= 0, A wins.

Warning: in the polynomial p(x1, . . . , xn, y1, . . . , yn) some of the indeterminates
x1, . . . , xn, y1, . . . , yn may only appear in figure and not in substance. As if
to say that the involved player renounces the corresponding move. In this way the
assumption made, of an even number 2n of indeterminates, becomes legitimate.

Diophantine games were proposed by James Jones in 1982 [67]. They are clearly
inspired by the solution of H10 and related issues, but they are also linked to the
important contribution to game theory made by Michael Rabin in 1957 [103].

Here are other examples of Diophantine games.

Example 1. Let us again consider Euler’s farmer problem and describe the corre-
sponding Diophantine game, based on the equation 31x1 +21y1 = 1770. In it:

• A chooses a natural value X1,

• B answers a natural value Y1.

In the end, B wins if and only if 31X1 +21Y1 = 1770. From our previous discussion,
it is easy to deduce that A possesses a winning strategy, all he (or she) needs to
do is to avoid choosing 9, 30 and 51 as x1, at which point B will have no way to
successfully reply.

Example 2. Let us now return to Catalan’s conjecture. We write the corresponding
equation in the form

(x1 +1)2 ≠ (y1 +1)3 = 1

so that when x1,y1 take on natural values, x1 + 1,y1 + 1 become positive integers.
The game between the players A and B now develops as follows:

• first A chooses a value for x1 among the natural numbers,

• then B contrasts it with a value for y1 also in N.
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If in this way the equation is solved, B wins. Otherwise A wins.
Recalling the solution of the conjecture, it is easy to deduce that the latter has an
easy winning strategy, i.e., to choose for x any value other than 2. At that point B

will have no way of answering him guaranteeing equality.
The game could be extended to all cases in which the exponents 2, 3 are replaced by
an arbitrary ordered pair of values n,m > 1. But Mih�ilescu’s theorem continues to
guarantee a winning strategy for A. Indeed, if (n,m) ”= (2, 3), then there is no need
of precautions: for equations containing powers other than a square and a cube,
there is no admissible solution in N.

It is time to clarify what is meant by a winning strategy for A or B.
We avoid too many details here and rely on informal definitions.

Assume then that one has a winning strategy for B, if one can find

• Y1 as a function of X1,

• Y2 as a function of X1, X2,
. . .

• Yn as a function of X1, . . . ,Xn,

such that p(X1, . . . ,Xn,Y1, . . . ,Yn) = 0.

On the other hand, there is a winning strategy for A if it is possible to find

• X1,

• X2 as a function of Y 1,
. . .

• Xn as a function of Y1, . . . ,Y n≠1,

such that p(X1, . . . ,Xn,Y1, . . . ,Yn) ”= 0 for each choice of Yn.

Here are other examples that illustrate this concept about more or less elemen-
tary questions of arithmetic.

Example 3. Consider the game of the equation x1 = y2
1 + y2

2 + y2
3 + y2

4. Actually,

223



9.4. DIOPHANTINE GAMES

x2,x3,x4 are missing, i.e. they are “fictitious”: the indeterminates are evidently
only 5, i.e. x1,y1, y2, y3, y4.
But it is convenient for us to pretend that they are 8 and also include x2,x3, x4. As
if to say that, in the relative game, A gives up his second, third and fourth moves,
leaving the initiative to B in those cases.
This time it is B who has a winning strategy: each natural number X1 can be
expressed in N as the sum of 4 squares, by virtue of the aforementioned Lagrange
theorem.

The outcome would have been di�erent if the squares had been 2 (the number 3
cannot be expressed as the sum of 2 squares), or 3 (the number 7 cannot be ex-
pressed as the sum of 3 squares).

Example 4. Let us now consider the equation x1 = 2y1, i.e., x1 ≠ 2y1 = 0. Note
that in this case A has a winning strategy: all he (or she) has to do is to choose
X1 odd, after which B has no way of telling him any Y 1 that would make the

equation true. The arithmetical meaning drawn from this game is that not every
natural number possesses its half.

Example 5. Let’s take 2x1 = y1, i.e., 2x1 ≠ y1 = 0. This time B has a winning
strategy, he (or she) only needs to choose Y1= 2X1. We rely here on the obvious
observation that every natural has its double.

Example 6. Two possible variants of the previous examples are derived for square
roots and squares, i.e., for the equations x1 = y2

1 and x2
1 = y1, i.e., x1 ≠ y2

1 = 0 and
x2

1 ≠y1 = 0. In the first case, A has a winning strategy, because not every natural is
a square; in the second case, the strategy is for B, because every natural has a square.

Example 7. An example on Pythagorean triples. Consider the equation (2x1 +3)2 +
y2

1 = y2
2, thus a variant of the Pythagorean equation.

We observe that the values of 2x1 + 3 when x1 ranges over natural numbers corre-
spond to odd integers > 1.
This time, it is B who has a winning strategy. Recall Euclid’s characterization of
the Pythagorean triples, and note that

2X1 +3 = (X1 +2)2 ≠ (X1 +1)2.
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Then, B only needs to choose

Y1 = 2 · (X1 +2) · (X1 +1), Y2 = (X1 +2)2 +(X1 +1)2 .

Example 8. Finally, consider the case of x1y1 + x2y2 = 1. Here the winning
strategy is for A: (s)he only needs to choose X1,X2 that are not coprime e.g.,
X1 = 2,X2 = 4, so 1 cannot be expressed in the desired form. In particular, there is
no way to express 1, which is odd, as 2Y1 +4Y2, which is still even.

9.5 Links with game theory

According to the conventions of game theory, Diophantine games are finite games
(i.e., with a limited number of moves) between 2 players, with perfect information
and victory or defeat outcome, and with no random moves. A famous theorem of
Zermelo and von Neumann then applies and ensures that in each of them exactly
one of the two opponents has a winning strategy.

In truth, in the specific case of Diophantine games, this general property is de-
rived in a direct and very simple way thanks to logic. It is in fact the principle of
the excluded third that guarantees, for every polynomial with integer coe�cients
p(x1,. . . ,xn,y1, . . . ,yn) = 0 (with n a positive integer), that exactly one of the follow-
ing two statements is true among the naturals:

• either the statement
÷x1’y1÷x2’y2 . . .÷xn’yn p(x1,x2, . . . ,xn,y1,y2, . . . ,yn) ”= 0,
in which case A admits a winning strategy,

• or its negation
’x1÷y1’x2÷y2 . . .’xn÷yn p(x1,x2, . . . ,xn,y1,y2, . . . ,yn) = 0 and then it is B who
possesses it.

Therefore in this setting the Zermelo-von Neumann theorem gets almost trivial.
But at this point another question arises in a natural way, i.e. to establish case by
case, that is, i.e., polynomial by polynomial, who is the lucky player between A and
B, the one with a winning strategy. We will discuss this subject in the following
paragraphs.
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We conclude this by emphasizing how Diophantine games also provide an oppor-
tunity to introduce the highly topical subject of game theory and its fascinating
applications to economics.

9.6 Links with computability theory

The connection with H10 links Diophantine games also to computability theory,
with some surprising results. Let us explore this topic here. A result by Jones,
which characterizes the semidecidable subsets of N in terms of equations, or rather
diophantine inequalities, is useful to us.

Theorem 1. (Jones, [67]). For every semidecidable subset W of N there exists
a polynomial pW (x,x1,y1,x2,y2) with integer coe�cients and 5 indeterminates such
that, for every natural number N , N belongs to W if and only if in N it is true
that ÷x1,’y1÷x2’y2 pW (N,x1,y1,x2,y2) ”= 0

Passing to Diophantine games, the same condition can be formulated as follows.
Note that, for each natural number N , the polynomial pW (x,x1,x2,y1,y2) generates
one in 4 variables, pW (N,x1,x2,y1,y2), in which N substitutes the first indetermi-
nate x as a parameter. Therefore N belongs to W if and only if, in the game related
to pW (N,x1,x2,y1,y2), the player A has a winning strategy.

Corollary. For every semidecidable subset W of N there exists a polynomial
pW (x,x1,y1,x2,y2) with integer coe�cients and 5 indeterminates such that, for every
natural number N , N belongs to W if and only if A has a winning strategy in the
Diophantine game of pW (N,x1,x2,y1,y2).

This connection to calculability theory causes unpredictable consequences for Dio-
phantine games.
First of all, there is no general algorithm that can decide, for each game, i.e., for
each polynomial with integer coe�cients, who of A and B has a winning strategy.
Furthermore, the result holds even in the restricted domain of polynomials in 4 in-
determinates, as in Jones’ article [67].

Theorem 2. There is no algorithm that decides, for each integer coe�cient poly-
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nomial in 4 indeterminates x1,x2,y1,y2, who of A and B has a winning strategy in
the corresponding diophantine game.

Proof. Consider a semidecidable but undecidable subset W of N. Since W is
semidecidable, Theorem 1 associates to it a polynomial pW (x,x1,y1,x2,y2) with in-
teger coe�cients and 5 indeterminates such that a generic natural number N lies in
W if and only if A has a winning strategy in the diophantine game of the polynomial
in 4 indeterminates pW (N,x1,y1,x2,y2).
But since W is undecidable, no algorithm can decide who of A and B has a winning
strategy in games involving the polynomials pW (N,x1,y1,x2,y2) as N varies, least
of all in the more general context of all integer coe�cient polynomials in 4 indeter-
minates. ‰

On the other hand, even when a winning strategy exists for A or B, we cannot
be content with knowing its existence in the abstract. We would like it explained
in detail, e�ective, algorithmic, computable, and then use it. Well, this concept of
a computable winning strategy constitutes the main argument of Rabin’s 1957 work
“E�ective computability of winning strategies” to which we therefore refer for a rig-
orous treatment. We limit ourselves here once again to an informal definition.

Following Rabin, we say that one has a computable winning strategy for B, if
one can give explicit algorithms that provide

• Y1 as a function of X1,

• Y2 as a function of X1, X2,
. . .

• Yn as a function of X1, . . . ,Xn

such that p(X1, . . . ,Xn,Y1, . . . ,Yn) = 0.

Similarly, one has a computable winning strategy for A if one can give ex-
plicit algorithms that provide

• X1,

• X2 as a function of Y1,
. . .
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• Xn as a function of Y1, . . . ,Y n≠1

such that p(X1, . . . ,Xn,Y1, . . . ,Yn) ”= 0 for each choice of Y n.

That being said, further puzzles arise in this respect among Diophantine games.

Theorem 3. There exists a polynomial with integer coe�cients and 6 indeter-
minates such that in its Diophantine game B has a winning strategy, but no com-
putable one.

The proof adapts a result of Rabin in game theory, itself based on the existence
of simple sets - a concept elaborated by Post in the theory of computability. These
are sets S of naturals such that:

• S is semidecidable,

• the complementary N≠S is infinite, but without infinite semidecidable subsets.

We are not discussing the relevance of the notion within computability. It is enough
for us to know that these sets exist.

Proof. Let S be a simple, in particular semidecidable, set of natural numbers.
Then let ps be the polynomial in 5 indeterminates that is associated with it by
Theorem 1. This time we adapt it to construct a polynomial in 6 indeterminates

p(x1,y1,x2,y2,x3,y3) = ps (x1 +y1,x2,y2,x3,y3) .

Thus, a winning strategy for player B in the game of p requires to oppose to each nat-
ural X1 chosen by A a natural Y1 such that B still has a winning strategy for the con-
tinuation of the game, i.e., that of p(X1,Y1,x2,y2,x3,y3) = ps (X1 +Y1,x2,y2,x3,y3),
and thus a Y1 such that X1 +Y1 /œ S.

Since N ≠ S is infinite, this computable winning strategy for B is possible: what-
ever X1 A proposes, B takes out of S a natural number M Ø X1 and then chooses
Y1 = M ≠X1, so that X1 +Y1 = M /œ S.

On the other hand, a computable winning strategy for B would e�ectively oppose to
each natural X1 a natural number Y1 so that X1 +Y1 /œ S and thus, as X1 increases,
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would algorithmically generate within N ≠ S an infinite and semidecidable set,
the one composed precisely of the sums X1 + Y1: a conclusion that contradicts the
hypothesis that S is simple. ‰

9.7 Links with computational complexity theory

We deal here with another seemingly innocent curiosity about equations, that could
be reasonably proposed to high school students, but connects Diophantine games to
a capital topic of modern computing. To introduce it, let us return to the particular
cases of H10 on Z for which we have provided a solution algorithm. We refer first
of all to equations of degree 1

a1x1 + . . .+anxn = b

for which we know there is an integer solution if and only if the greatest common
divisor d of a1, . . . ,an divides b. As we know, the Euclidean algorithm answers this
condition, and does that running in times that modern computational complexity
theory recognises as short, to be precise quadratic, i.e. of second degree, with respect
to the length of the “initial data” a1, . . . ,an. In conclusion, the algorithm not only
exists, but is executed quite e�ectively.
Let us now turn, again on Z, to equations in one indeterminate

a0 +a1 ·x+a2·x2 + . . .+an ·xn = 0

with an ”= 0 and, in the interesting cases, a0 ”= 0 as well. We have seen how the
possible integer solutions are in the set of divisors of a0. However, this time the
search for these divisors, although elementary in principle, proves to be tricky in
practice. There are no known procedures that always complete it quickly. Indeed,
the best algorithms known today for retrieving the divisors of an integer take in the
worst cases prohibitively long (exponential, to use the appropriate technical term)
before providing their output. However, nothing prohibits, and nothing ensures,
that for our problem faster procedures will be discovered in some future time.
Indeed, in 1999, Cucker, Koiran and Smale [31] provided an algorithm checking
in a short time the existence of integer solutions for Diophantine equations in 1
indeterminate.
Finally, let us consider the third case of equations with degree 2 and two unknowns

a·x2 + b ·y = c
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with a,b,c positive integers, for which we wish to decide the existence of roots X,Y

that are non-negative, and consequently less than or equal to c. We have already
seen how the finite range determined in this way again permits a brute force ap-
proach, aimed at considering all ordered pairs of integers (X,Y ) with 0 Æ X,Y Æ c

and checking for each of them whether a ·X2 +b ·Y = 0 or not until the first possible
positive answer. However, the cases to be explored in the worst-case scenario, when
the solution is not there or is late in appearing, are (c+1)2, i.e., an exponential
quantity with respect to the length of c in base 10 or 2 (which coincides roughly
with its logarithm in that base). As many, therefore too many, checks may be re-
quired.

The question of measuring the e�ciency of an algorithm, or rather of identifying
those problems that admit an e�cient solving algorithm, constitutes that area of
modern theoretical computer science already mentioned, and called computational
complexity.
We have already seen in Chapter 2 that, when e�ciency is evaluated with the pa-
rameter time, thus relating, for a given program, the duration of its computations
to the length of the corresponding inputs, we assume the slogan

fast = at most polynomial.

In other words, one considers as fast a program that performs its calculations in
times that are governed by a polynomial function with respect to the length of the
input, and one consequently brands as slow an algorithm that instead takes, at least
asymptotically, as this length varies, times that are more than polynomial, in par-
ticular exponential. Related to this issue is the P = NP problem, already discussed
in Chapter 2.

What is the connection with our equations a·x2 + b · y = c? We have just under-
lined the di�culty of finding in a fast way its roots. On the other hand, it is easy to
agree that if we can rely on a bit of help, i.e., if solutions X,Y for x,y exist between
0 and c and someone suggests them to us, then it is quick for us to check them,
because all we have to do is to calculate a ·X2 + b ·Y and verify that it results in c.
The time cost of all this, which is very accessible, is that of three multiplications,
one addition and the checking of an equality. Observe alto that these possible solu-
tions X,Y have a length limited by that of the coe�cient c and are therefore fast
to present. The conclusion is that the problem of equations certainly lies in NP .
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As to whether it belongs to P , however, this remains to be clarified for the reasons
already stated. Therefore, the question on a·x2 + b ·y = c may viewed a very special
case of the much more general question whether P and NP coincide. But the two
problems are in fact equivalent. In other words

• if, by examining the question on the equations, one proves that it lies outside
P , then, evidently, one is entitled to infer that P ”= NP ,

• if, however, and herein lies the surprising part of the argument, one proves
that the problem on the equations lies in P , then one can deduce that P and
NP are equal.

So, the problem manifests the same characteristics as SAT : it lies in NP , and is in
P if and only if P = NP . It is then said to be NP-complete (like SAT ): to put it in
intuitive terms, finding a fast algorithm that solves it is equivalent to proving that
P = NP .

The problem of finding the divisors of a non-zero integer, related to the question of
finding the integer roots of a polynomial in one indeterminate, is also in NP . In fact,
checking a particular submultiple, once one knows it, boils down to performing the
relevant division and verifying that it is exact, i.e., gives 0 as remainder. If, however,
no non-trivial submultiple exist and can be suggested to us, the di�culties increase.
As already mentioned, there is no evidence that the divisor question is in P , even
if some people conjecture “yes”. However, it is not believed that it is NP-complete,
and thus capable, like the question on equations of degree 2, of deciding for itself
whether P = NP is valid or not.
Also Diophantine games have their links to computational complexity, as said. To
begin with, there is a theorem by Tung (in his 1987 paper, Computational complex-
ities of diophantine equations with parameters [115], a�rming the NP-completeness
of the problem of deciding whether or not A admits a winning strategy in a Dio-
phantine game with polynomials in 2 indeterminates.

Theorem 4. (Tung). The problem of deciding whether player A has a win-
ning strategy in a Diophantine game for polynomials of two indeterminates is NP-
complete.

So, in this case the input is a Diophantine polynomial and one would like to know
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whether or not A admits a winning strategy in the corresponding game. Well, this
question is NP-complete, so solving it quickly is equivalent to a�rmatively solving
P = NP .

It then becomes natural to introduce the concept of a fast computable winning strat-
egy. Informally, we can say that one has a fast computable winning strategy

for B, if one can exhibit explicit algorithms that give, in time at most polynomial
in the length of the input,

• Y1 as a function of X1,

• Y2 as a function of X1, X2,
. . .

• Yn as a function of X1, . . . ,Xn

such that p(X1, . . . ,Xn,Y1, . . . ,Yn) = 0.

Instead, one has a fast computable winning strategy for A, if one can ex-
hibit explicit algorithms that give, in time at most polynomial in the length of the
input,

• X1 (i.e., no time limit),

• X2 as a function of Y1,
. . .

• Xn as a function of Y1, . . . ,Y n≠1

such that p(X1, . . . ,Xn,Y1, . . . ,Yn) ”= 0 for each choice of Yn.

The following theorem, again due to Jones (in the article [67]), holds.

Theorem 5. There exists a polynomial with integer coe�cients and 4 indeter-
minates such that in its Diophantine game B has a computable winning strategy,
but no fast computable winning strategy.
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9.8 The algebra of games

Diophantine games are preserved by conjunction and disjunction, i.e. they naturally
extend from single equations to systems (i.e. conjunctions) of several equations, as
well as to their disjunctions.
Consider in fact the following variants of the original game: instead of an equation
p(x1, . . . , xn, y1, . . . , yn) = 0 with integer coe�cients, we consider either

• a system of several equations (their conjunction), or

• their disjunction.

Recall that, among integers,

• finitely many numbers are all equal to 0 if and only if the sum of their squares
is so,

• one of finitely many factors is equal to 0 if and only if their product is.

Note that the second property remains valid over any integral domain, while the
first extends to, for example, Q and R but not to C.

In any case, if p1, . . . ,ph are polynomials with integer coe�cients,

(a) satisfying among the integers the system of equations p1 = 0, . . . ,ph = 0 is equiv-
alent to satisfying the single equation p2

1 + . . .+p2
h = 0,

(b) satisfying among the integers a disjunction of equations p1 = 0 or . . . or ph = 0
is equivalent to satisfying the single equation p1 · . . . ·ph = 0.

We deduce that:

• there is a winning strategy for A or B in game (a) if and only if there is the
strategy for the Diophantine game of the polynomial p2

1 + . . .+p2
h;

• there is a winning strategy for A or B in game (b) if and only if there is the
strategy for the Diophantine game of the polynomial p1 · . . . ·ph.

9.9 Links with number theory

Many of the famous results or open problems of number theory (in particular on
prime numbers) can be translated into Diophantine games, where in the first case
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brilliant strategies apply and in the second case one has to admit the provisional
absence of known strategies.

A simple premise. Let n,m œ N, then:

• n Ø m if and only if B has a winning strategy for the equation n = y +m, i.e.,
n≠ (y +m) = 0;

• consequently n > m, i.e., n Ø m + 1, if and only if B has a winning strategy
for the equation n = y +m+1, i.e., n≠ (y +m+1) = 0.

The following is easy to deduce:
Lemma. A natural number N > 1 is prime if and only if B has a winning strategy
for the Diophantine game of the equation

(N ≠ (y2 +x1x2 +1)) · (x1x2 ≠ (y3 +n+1)) · (x1 ≠1) · (x2 ≠1) = 0.

Proof. For the sake of simplicity, we denote the polynomial just introduced by
Pr (N, x1, x2, y2,y3). In it, at the moment, N > 1 represents only a parameter and
not a given indeterminate.
In the corresponding Diophantine game, the first to move is A with X1,X2, after
which B returns Y2, Y3. According to the above considerations, fixed X1, X2 œ N,
there exist Y2, Y3 so that Pr (N, X1, X2, Y2,Y3) = 0 if and only if either

• N ≠ (Y2 +X1X2 +1) = 0 for some Y2 i.e., N > X1X2, or

• X1X2 ≠ (Y3 +n+1) = 0 for some Y3, i.e., N < X1X2 (so, at least so far, N ”=
X1X2), or

• if N = X1X2, then X1 = 1 or X2 = 1, i.e., the decomposition of N is trivial.

But this obviously amounts (remembering the assumption that N > 1) to stating
precisely that N is prime. In this case, and only in this case, B has a winning
strategy. ‰

Let us now deal with the problems of arithmetic that have been predicted.

Example 1. The infinity of primes (a celebrated result of Euclid’s Elements) is
equivalent to the existence of a winning strategy for B in the Diophantine game of
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the polynomial

(y1 ≠ (x1 + y2))2 +(y1 ≠ (y3 + 2))2 + (Pr(y1, x4, x5, y5 , y6 ))2 = 0,

i.e., of the system composed of the equations

y1 = x1+y2, y1 = y3 +2, Pr (y1, x4, x5, y5 , y6 ) = 0.

Equivalently y1 Ø x1, y1 Ø 2 and therefore y1 is prime (in the third equation
y1 is regarded as an indeterminate). The reason is soon explained: since there are
infinitely many primes, whatever natural number X1 proposed by A,B can find a
prime Y1 Ø X1.
On the other hand, if prime numbers constituted a finite set only, and M was its
maximum, A would only need to choose X1 > M to deprive B of any possibility of
successful replication.

Example 2. The conjecture about the existence of infinite pairs of twin primes
(two prime numbers that di�er by 2, such as 3 and 5, or 17 and 19) is equivalent to
the existence of a winning strategy for B in the diophantine game of the polynomial

(y1 ≠ (x1 + y2))2 +(y1 ≠ (y3 +2)2 +(Pr(y1,x4,x5,y5,y6))2

+(Pr(y1,+2,x7,x8,y8,y9))2 = 0,

i.e., the possibility of guaranteeing the conditions y1 Ø x1, y1 Ø 2, whence obviously
y1 +2 Ø x1, y1 +2 Ø 2, and y1, y1 +2 primes. The details are analogous to the pre-
vious example.

Example 3. Goldbach’s conjecture (that every even number > 2 is the sum of
two primes) is equivalent to the existence of a winning strategy for B in the dio-
phantine game of the equation that corresponds to the system formed by 2(x1 +2)≠
(y2 +y3) = 0 and the equations that, when annihilating, ensure that y2 and y3 are
primes (in particular greater than 1).

In fact, assume the conjecture to be valid. At the beginning of the game A proposes
a generic even number > 2, which can be represented in the form 2(X1 + 2) for the
appropriate X1 œ N. Let us admit that B opposes the decomposition of this number
into the sum of two primes Y2,Y3: then all the above polynomials, and thus the sum
of their squares, get value 0 (due to the appropriate choice of variables appearing
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after x1, y2 and y3 in the game, in accordance with its rules).
Conversely, suppose the conjecture is false. Then it is A who has a winning strategy.
It is su�cient for him to choose a counterexample 2(X1 +2) inexpressible as the sum
of two primes.
Whatever the values Y2 and Y3 that B opposes, at least one of the two is not
prime, so that the polynomial that would attest its primality cannot equal 0 (again
due to an appropriate choice of further variables, according to the rules of the game).

Example 4. It is still an open question in arithmetic whether prime numbers
of the form m2 + 1 (i.e., successors of squares, such as 5, 17, 37, 101 etc.) are an
infinity or not. Indeed, the problem is the last in a list of four (the first two being
the previous two examples respectively), proposed in 1912 by the German math-
ematician Edmund Landau during the International Congress of Mathematicians.
Let us consider the polynomial

(y1 +x2)2 +1 = (y2 +2)(y3 +2)

and the related Diophantine game. Note that:

• if there are infinitely many primes of the above form, and thus arbitrarily large
primes of that form, then it is A who admits a winning strategy (whatever
Y1 B proposes, A adds X2 to it so that (Y 1 +X2)2 +1 is prime; then there is no
way for B to decompose it into the product of two integers Y2 +2,Y3 +2 > 1);

• on the other hand, if the primes of the form under consideration are finitely
many, and M is their maximum, then the situation is reversed and it is B

who has a winning procedure ((s)he only has to choose Y1 Ø
Ô

M , after which,
whatever A’s answer X2, (Y 1 +X2)2 + 1 > Y 2

1 Ø M is composite, and B can
provide two factors Y2 +2, Y3 +2).

Thus, it is confirmed that exactly one between A and B possesses a winning strat-
egy, and moreover we know what this possible strategy consists of. But to find out
who is the lucky player, one must resolve an age-old question about the primes.

In conclusion, we want again emphasize how Diophantine games, besides suggesting
how to play with equations, introduce challenging topics in a light-hearted manner.
They can be a pleasant interlude in mathematics courses, especially in scientific high
schools, but not only. Arithmetic is sometimes neglected in the curricula of these
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schools, but it was always and is still considered the “queen of mathematics”; so it
deserves more attention. Moreover, thanks to Diophantine games, new horizons of
(economic) game theory and theoretical computer science can be opened or at least
insinuated. In all this, logic intervenes, both for the game theory part and, thanks
to DPRM, for the most surprising and paradoxical aspects.
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Conclusion

Let us draw a brief picture of the work done in this thesis. Its nodal axis has been
“logic”, exhibited and recommended as a reasoning technique, in all its aspects of
strength and internal coherence.
Thus we do believe that logic should be taught at school to all students, from the first
school levels to high school, in order to let them develop the logical-argumentative
and analytical thinking skills and learn how to reason and to face and solve prob-
lematic situations. Naturally, all this should be done gradually, with prudence and
creativity, and in any case favouring the dimension of intuition and amazement over
the coldness of excessive rigor.
In our thesis we focus mainly on mathematical logic. In many ways, in fact, logic has
become a fundamental part of mathematics, albeit with fruitful interactions with
computer science, language and much more.
We have tried to highlight in a particular way various ideas of logic that can intrigue
students because they are linked to the history of thought, or because they are ca-
pable of inspiring games of intelligence. For various reasons this is the common
denominator of proofs without words, syllogisms, mathematical induction, para-
doxes, Pinocchio’s logic (= logic with lies), and Diophantine games.
Finally let us recall some papers this thesis is originating, on Diophantine games
[51] and induction [52], respectively.
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