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Active Matter at high density: velocity distribution and kinetic temperature
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We consider the solid or hexatic non-equilibrium phases of an interacting two-dimensional sys-
tem of Active Brownian Particles at high density and investigate numerically and theoretically the
properties of the velocity distribution function and the associated kinetic temperature. We obtain
approximate analytical predictions for the shape of the velocity distribution and find a transition
from a Mexican-hat-like to a Gaussian-like distribution as the persistence time of the active force
changes from the small to the large persistence regime. Through a detailed numerical and theoreti-
cal analysis of the single-particle velocity variance, we report an exact analytical expression for the
kinetic temperature of dense spherical self-propelled particles that holds also in the non-equilibrium
regimes with large persistence times and discuss its range of validity.

I. INTRODUCTION

Active Matter at high density is becoming a subject of
great interest since it plays a crucial role to understand a
broad range of biological systems [1–4], such as cell mono-
layers and living tissues. Experimental observations real-
ized with cell monolayers reveal large-scale collective mo-
tion, like swirls and velocity alignment [5–9]. In the spirit
of minimal modeling, these systems have been recently
modeled using high-density interacting Active Brownian
Particles (ABP) [5, 10], thus, modeling the complex cells
and cell-substrate interactions through steric interaction
and self-propulsion. Depending on their density, inter-
acting systems of ABP display a variegate phenomenol-
ogy. In particular, at moderate packing fractions, a non-
equilibrium phase-coexistence known as Motility-Induce
Phase-Separation (MIPS) [11–15] occurs even in the ab-
sence of attractive interactions [16–25]. Depending on
the active force and the packing fraction, ABP can also
attain homogeneous configurations, such as active liquid,
hexatic and solid phases [26–32]. With respect to equi-
librium systems of Brownian colloids, the active liquid-
hexatic and hexatic-solid transitions are shifted towards
larger values of the packing fractions and the hexatic
phase occurs for a broad range of parameters [30, 33–
35]. Moreover, the dense phases of Interacting ABP dis-
play a plethora of dynamical phenomena making them
quite different as compared to passive dense phases. In
particular, the particle velocities spontaneously form or-
dered domains even in the absence of explicit alignment
interactions in phase-separated configurations [16] and in
active liquid, hexatic and solid phases [35] and give rise to
fascinating intermittency phenomena [35, 36]. The spon-
taneous alignment mechanism makes the ABP models
suitable to describe the behavior of cell monolayers.
For systems of interacting ABP, several authors,

searching for an extension of equilibrium thermodynamic
concepts introduced an effective “temperature” in the
study of non-equilibrium systems of self-propelled par-
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ticles. Following ideas from glassy systems, several au-
thors introduce the dynamical effective temperature by
the ratio between the mean-square-displacement and the
time-integrated linear response function due to small per-
turbation, in the context of active disks [37–46], dumb-
ells [47, 48], polymers [49], looking both at active ho-
mogeneous (liquid, hexatic and solid) configurations and
phase-separated regimes. In the homogeneous case, the
effective temperature increases as the propulsive speed
increases and decreases as the packing fraction grows. In-
stead in the inhomogeneous case, i.e. when MIPS occurs,
the net distinction between the populations of the two co-
existent phases, e.g. slow particles in the dense clusters
and fast particles in the disordered phase, allows us to in-
troduce two distinct effective temperatures [46]. Mandal
et. al. [50] focused on the kinetic temperature, i.e. the
variance of the velocity distribution, for underdamped
self-propelled particles, outlining that the temperatures
in the two coexisting phases of MIPS are different. An
alternative definition of the active temperature has been
also proposed in the context of stochastic thermodynam-
ics to generalize the Clausius relation to active systems, a
program requiring the introduction of a space-dependent
temperature that depends on the potential itself [51–53].
In this work, we shall not discuss the concept of tem-

perature in non-equilibrium active systems [54] intended
as an observable satisfying well defined thermodynamic
relations, an issue still matter of debate, but focus on
the kinetic temperature of self-propelled particles. We
find its exact analytical expression as a function of the
model parameters for dense homogeneous configurations
in the non-equilibrium active solid and hexatic phases.
We also obtain the ABP single-particle velocity distri-
bution in these highly packed configurations as the per-
sistence time of the self-propulsion varies. The shape of
this distribution obtained via numerical simulations is
compared with theoretical predictions both in the small
and the large persistence regimes. We find a crossover
between the two regimes which manifests itself in a qual-
itative change in the shape of the velocity distribution.
The manuscript is organized as follows: in Sec. II,

we introduce the model, while, in Sec. III, we report
the velocity dynamics representing the starting point of
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our theoretical approach. Numerical and theoretical re-
sults of single-particle velocity distributions are shown in
Sec. IV, while the analysis of the first moments of the
distribution and the discussion about the kinetic tem-
perature are reported in Sec. V. Finally, we report some
discussions and conclusions in the final section.

II. INTERACTING SELF-PROPELLED

PARTICLES

We consider a two-dimensional system of N self-
propelled disks, described by the Active Brownian Parti-
cles (ABP) model, where inertial and hydrodynamic ef-
fects are neglected. The position, xi, of each disk evolves
by the following stochastic differential equation:

γẋi = Fi + fai . (1)

The constant γ is the solvent friction while we do not
take into account the thermal diffusivity since for several
experimental active particle systems [1] is some orders
of magnitude smaller than the diffusivity associated with
the self-propulsion force, fai . According to the popular
ABP model, fai is a time-dependent force given by the
equation:

fai = γv0ni , (2)

where v0 is the constant modulus of the swim velocity
induced by fai and ni is the orientation vector of com-
ponents (cos θi, sin θi) evolving through a stochastic pro-
cess. In particular, the orientational angle, θi, performs
angular diffusion:

θ̇i =
√

2Dr ξi , (3)

where ξi is a white noise with unit variance and zero
average and Dr is the rotational diffusion coefficient. We
remark that the inverse ofDr defines the correlation-time
of the active force, namely τ = 1/Dr [55], which will be
assumed as a control parameter in the numerical study
performed in this manuscript.
The term Fi represents the repulsive force between

particles due to steric interactions. In particular, Fi =
−∇iUtot where the potential, Utot, can be expressed as
Utot =

∑

i<j U(|xij |), with xij = xi−xj . We choose U(r)

as a shifted, truncated Lennard Jones Potential [16, 56]:

U(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

+ ǫ, r ≤ 21/6σ (4)

and zero for r > 21/6σ. The constant ǫ is the typical
energy scale of the interactions, while σ is the nominal
particle diameter. The short-range nature of the poten-
tial allows us to consider only the force contributions of
first-neighboring particles even in the very packed con-
figurations considered in this paper. Both ǫ and σ are
set to one for numerical convenience.

We focus on high density regimes exploring the ho-
mogeneous aggregation phases of self-propelled particles.
In particular, we fix v0 = 50 and the packing fraction,
φ = N/L2σ2/4, to the value 1.1, where the system attains
active solid or hexatic configurations without showing
density inhomogeneities [35]. In particular, the hexatic-
solid transition is controlled by τ and occurs approxi-
matively at τ = 0.1. Under these conditions, we study
the single-particle velocity distribution varying τ and its
moments. We can distinguish between two regimes [35]:
i) the small persistence regime where τ < U ′′(r̄)/γ and
ii) the large persistence regime where τ > U ′′(r̄)/γ, be-
ing r̄ the average distance between neighboring particles
that is fixed by the density in any homogeneous con-
figurations. In the case i), the self-propulsion fai is the
fastest degree of freedom: in this regime, the persistence
time, τ , is smaller than the typical time of the potential
U ′′(r̄)/γ, so that the behavior of ABP resembles that of
passive Brownian particles and the xi just display oscil-
lations around their equilibrium positions. Considering
the structural properties of the system, this regime is in-
distinguishable from the passive solid-state. In case ii),
the evolution of fai plays a relevant role and affects the
dynamics of xi, manifesting itself in several dynamical
anomalies [16, 35] due to the intrinsic non-equilibrium
nature of active models.

III. THE VELOCITY DYNAMICS

As already reported in [16, 35, 57], the study of the
velocity dynamics reveals the existence of hidden collec-
tive behavior of self-propelled particles at high density
in the regime of large persistence times. Nevertheless,
many single-particle properties, such as the velocity dis-
tribution and its moments, have not been yet explored.
Following [16], we eliminate fai in favor of vi = ẋi,

i.e. the velocity of the particle, which does not coincide
with the swim velocity, v0ni, since the modulus of vi is
not fixed and its orientation is not parallel to ni. This
statement is true when particles interact and, thus, at
high densities, in particular. Transforming the dynamics
from the variables (xi, f

a
i ) to the new variables (xi,vi)

(without any approximations), the equations of motion
read:

ẋi = vi (5a)

τγv̇i = −γ

N
∑

j=1

Γij(xi − xj)vj + Fi + τγki (5b)

where each Γij is two-dimensional matrix with compo-
nents

Γαβ
ij (rij) = δijδαβ +

τ

γ
∇iα∇jβU(|rij |) . (6)

Greek indices are used to denote the spatial components
α, β = x, y while Latin indices identify the particle num-
ber i, j = 1, ..., N . Finally, the term ki is a noise vector
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that reads:

ki = v0

√

2

τ
ξi ×

γvi +∇iUtot

γv0
, (7)

where ξi is a vector with components (0, 0, ξi) and nor-
mal to the plane of motion, (x, y, 0). The vector ki is
a multiplicative noise depending both on vi and Fi and
is perpendicular to ni, i.e. the orientation of the active
force. Its amplitude scales simply as ∼ v0

√

2/τ since ni

is a unit vector.
The dynamics (5b) resembles the evolution of under-

damped passive particles which are out from equilib-
rium because of the occurrence of space-dependent fric-
tion forces (e.g. the diagonal terms of the matrix Γ)
and effective forces depending on positions and veloci-
ties of neighboring particles (e.g. the non-diagonal terms
of Γ). Eq. (5b) resembles the dynamics of the Active
Ornstein-Uhlenbeck particle (AOUP) [58–66], an alter-
native model used to study the behavior of self-propelled
particles. Upon a suitable mapping of the self-propulsion
parameters [67, 68], the difference between AOUP and
ABP dynamics is represented by the noise term ki, which
in the former is a white noise vector with independent
components [58, 59].

IV. PROBABILITY DISTRIBUTION

FUNCTION OF THE VELOCITY

We numerically study the distribution of the velocity
in the steady-state to evaluate the effect of the persis-
tent time, τ . As illustrated in Fig. 1 (a) and (b), the
distinction between large and small persistence regimes
produces different shapes in the probability distribution
function of the velocity, p(vx, vy). In the small-τ con-
figurations shown in panel (a) [case i)], p(vx, vy) has a
pronounced non-Gaussian shape: the probability of find-
ing a particle with v ≈ 0 is negligible and the velocity of
the particles is peaked around a circular crown with ra-
dius ≈ v0. Instead, in the large-τ configurations reported
in panel (b) [case ii)], p(vx, vy) presents a Gaussian-like
shape quite similar to the case of passive Brownian par-
ticles. Intuitively, in case i), the self-propulsion changes
rapidly without producing any appreciable change in the
particle positions giving rise only to very small fluctua-
tions. The net steric force exerted by the neighboring
particles on a tagged particle almost cancels out and has
little effect on the particle velocity, that in practice only
experiences the influence of the active force. This ex-
plains why the distribution of v is very similar to the
one of fa. On the contrary, in the large τ regime, this is
no longer true. The direction of the active force before
appreciably changing need an interval ∼ τ much larger
than the relaxation time associated with the interparticle
potential, τp = U ′′(r̄)/γ. Now, the resultant of the active
and steric forces nearly vanishes and (see Eq.(1)), as a
consequence, the average velocity is almost zero and the
single-particle kinetic energy decreases.

The transition from regime i) to regime ii) is quanti-
tatively evaluated in Fig. 1 (c)-(d) where the marginal
probability distribution of the velocity along one compo-
nent, p(vx) =

∫

dvyp(vx, vy), is studied for different val-
ues of τ . For smaller values of τ , p(vx) displays two sym-
metric peaks near vx ≈ v0. When τ grows, the peaks shift
towards smaller values of vx and their heights decrease
with respect to the p(vx) value around the origin. For
τ & 2×10−4, the two peaks merge and the bimodality of
the distribution is suppressed, while for further τ -values a
single pronounced peak placed at vx ≈ 0 occurs. The de-
viation between p(vx) and a Gaussian distribution is not
very pronounced as revealed in Fig. 1 (d), as shown by the
comparison with the best Gaussian fit. To provide an-
other perspective, we study the probability distribution
of the velocity modulus, p(v = |v|), in Fig. 1 (e)-(f). In
the small-τ regime (panel (f)), the distribution is peaked
around v = v0 displaying a quite symmetric shape fairly
described by a Gaussian centered in v = v0:

p(v) ≈ Nv exp
[

−α

2
(v − v0)

2
]

(8)

where N is a normalization factor and α a parameter
that satisfies, 〈v2〉 = 〈v〉2 + 3α/2. We observe that p(v)
becomes narrow as τ grows, in the small-τ regime, but,
for further values of τ , the peak of the distribution shifts
towards smaller values. After a crossover regime, occur-
ring for intermediate values of τ , the distribution p(v)
approaches a Gaussian-like shape such that

p(v) ≈ v exp (−v2/β) , (9)

where 1/β = 〈v2〉, consistently with the observations of
panel (d). Interestingly, in panel (f), we show that the
v-distribution collapses for v → vτ2/5 for a large range of
τ between (10−3, 10−1). Thus, 1/β, which plays the role
of an effective temperature, decreases as τ is enlarged.
We remark that the scaling of p(v) ceases to hold for val-
ues τ & 10−1 when the homogeneous active solid phase
breaks down. These observations will be clarified in the
next theoretical sections.

A. Theoretical predictions

From the set of stochastic equations (5), we derive the
Fokker-Planck equation for the probability distribution
function, p = p({x}, {v}) (where the symbol {·} has been
introduced to denote all the space-components of the N
particles):

∂

∂t
p =− vi · ∇xi

p+
1

τ

(

Iij +
τ

γ
∇xi

∇xj
U

)

∇vi
· (vjp)

+
∇xi

U

τγ
· ∇vi

p+
v20
τ
∇vi

∇vj
(Dijp) ,

(10)
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FIG. 1. Probability distribution of the velocity. Panels (a) and (b): map of the two-dimensional probability distribution
function, p(vx, vy) for two different values of τ = 10−5 (panel (a)) and τ = 10−2 (panel (b)). Panels (c) and (d): marginal
probability distribution function, p(vx), for several values of τ (colored lines). The dashed black lines in panel (d) are obtained
by numerical fits, obtained with Gaussian distributions. Panels (e) and (f) report the probability distribution of the velocity

modulus, p(|v| = v), for different values of τ . In particular, in panel (f), we show p(v) rescaled by τ 2/5. Panels (c), (e), and
(d), (f) share the captions. Numerical simulations are obtained with v0 = 50, ǫ = σ = 1 = γ = 1.

where Iij is the identity matrix and each element Dij is
a 2× 2 symmetric matrix of the form:

Dij = δij





n2
yi

−nxi
nyi

0
−nxi

nyi
n2
xi

0
0 0 0



 .

We remark that each Dij is a non-diagonal matrix as a
consequence of the complex noise structure in Eq. (5) and
of the fact that nx(y) is a function of the particle velocity
and position through Eq. (1). We point out that Eq. (10)
has the same form as the AOUP Fokker-Planck equation
except for the diffusion-like term (i.e. the term containing
Dij in Eq. (10)). However, in the AOUP equation, the
non-diagonal matrix Dij is replaced by a diagonal one,

D̃ij , with components

D̃ij = δij





1 0 0
0 1 0
0 0 0



 .

We observe that D̃ij can be obtained from Dij just by
replacing n2

x(y) and nxny by their averages, i.e. 〈n2
x(y)〉 =

1/2 and 〈nxny〉 = 0, respectively (with the addition of an
extra factor 2 needed for consistency between the param-
eters of the two models [67]). We remark that, even in the
simplified AOUP case, the solutions of Eq. (10) for τ > 0
and generic potential are only known in the regime of
small persistence, in particular, as an expansion in pow-
ers of τγ around a Gaussian distribution [59, 69]. On the

contrary, in the case of interacting ABP, there are neither
asymptotic nor approximated results for the probability
distribution function of the velocity.
Being the general solution of Eq. (10) unknown, we

will employ suitable approximations supported by nu-
merical observations. In Fig. 2, we report 〈|F|〉 and
〈|v|〉 as a function of τ . In the small-persistence regime,
v0 ≈ 〈|v|〉 ≫ 〈|F|〉 while in the large-persistence regime
the opposite relation holds, namely v0 ≈ 〈|F|〉 ≫ 〈|v|〉,
confirming the physical explanation mentioned before.
Such observation will be crucial in the following to derive
approximate analytical solutions of p(v).

1. Large persistence regime

Using the observation v0 ≈ 〈|F|〉 ≫ 〈|v|〉, holding in
the large persistence regime, we have ni ≈ ∇iU , and the
diffusive matrix can be approximated as follows:

Dij ≈ δij
1

v20γ
2





(∇yi
U)2 −∇yi

U∇xi
U 0

−∇yi
U∇xi

U (∇xi
U)

2
0

0 0 0



 .

In the active solid phases, where the defects of the crys-
talline arrangement are negligible, the sum of the forces
exerted by neighboring particles cancel out and we can
assume ∇xi(yi)U = 0. In other words, our approxima-
tion consists in replacing ∇xi(yi)U with 〈∇xi(yi)U〉 = 0.
This is true only in the high-density regime where we can
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FIG. 2. 〈|v|〉 (yellow data) and 〈|F|〉 (green data) as a func-
tion of τ . The black dashed line is drawn in correspondence
of v0 that is chosen as v0 = 50 in the numerical simulations.
The other parameters are ǫ = σ = γ = 1.

approximate the gradient of the potential expanding the
distance between neighboring particles around r̄. Since
〈∇xi

U∇yi
U〉 = 〈∇xi

U〉〈∇yi
U〉 = 0 and 〈∇xi

U∇xi
U〉 =

v20 , we obtain that Dij ≈ D̃ij , proving that, at very high
density in the large persistence regime, the ABP velocity
dynamics is well approximated by the AOUP dynamics.
Even with this simplification, an exact solution is not
known, and we shall employ an approximation for the
many-body velocity distribution [58]:

p({v}|{x}) ∝ exp



− 1

2v20

∑

ij

vi · Γij · vj



 . (11)

p({v}|{x}) is a multivariate Gaussian coupling the whole
set of velocities through the space dependent matrix Γij .
We remark that the prediction (11) is not the exact so-
lution of the Fokker-Planck equation associated with the
AOUP interacting dynamics, but it is a suitable approx-
imation which works in the large persistent regime. This
prediction has been tested in several cases, even under
the action of external potentials [52, 70].
In the active solid phase, the matrix Γij , which de-

pends on particles’ relative positions, simplifies due to
the hexagonal structure and to the short-range nature of
the interaction potential. Thus, the conditional proba-
bility distribution of vi (i.e. knowing the velocity of the
other particles) is given by Eq. (11) where the sum is
restricted to the first six neighbors of the target parti-
cle. Integrating out all the velocity degrees of freedom
except vi, we still obtain a Gaussian distribution with
zero average confirming the shape reported in Fig. (1) in
the small persistence regime:

p(v) ∝ exp

(

−β

2
v2

)

(12)

where β is the variance of the distribution or the inverse
of the kinetic temperature. Its exact expression as a func-

tion on the active force parameters will be derived in
Sec. V.

2. Small persistence-regime

In the small persistence regime, the AOUP approxima-
tion is no longer valid, as numerically shown in Fig. (1).
Indeed, according to the AOUP model, the shape of
p(vx, vy) should always be Gaussian (with asymptotic
corrections) at variance with our numerical results ob-
tained with ABP simulations. As shown in Fig. 2, we
simplify the noise matrix assuming v0 ≈ 〈|v|〉 ≫ 〈|F|〉,
obtaining

Dij ≈ δij
1

v20





v2y −vyvx 0
−vyvx v2x 0

0 0 0



 . (13)

The Fokker-Planck equation (10) with the matrix (13)
(in the small τ limit) turns to be

∂

∂t
p ≈− vi · ∇xi

p+
1

τ
∇vi

· (vjp)

+
∇xi

U

τγ
· ∇vi

p+
v20
τ
∇vi

∇vj
[Dijp] .

(14)

Neglecting the term ∝ ∇xi
U because the forces almost

cancel out in the solid phase (and their modulus is smaller
than the velocity modulus, as shown in Fig. 2), we can
easily check that Eq. (14) admits a solution of the form:

p(vx, vy) ∝ exp
[

−α

2
(|v| − v0)

2
]

. (15)

The shape of Eq. (15) corresponds to the Cartesian ver-
sion of the velocity distribution shape numerically ob-
served, i.e. Eq. (8).

V. THE KINETIC TEMPERATURE

In Fig. 3, we show the first two moments of the ve-
locity modulus distribution as a function of τ , namely
〈|v|〉 and 〈v2〉. The latter coincides by definition with
the kinetic temperature of a system of ABP and, for
this reason, we will denote 〈v2〉 simply as “kinetic tem-
perature” in the rest of the paper. For τ . 10−4, the
system is in the small persistence regime [case i)] and
both 〈|v|〉 and 〈v2〉 are roughly constant with τ , being
approximatively 〈|v|〉 ≈ v0 and 〈v2〉 ≈ v20 . We recall
that, in this regime, the interparticle forces almost bal-
ance and the velocity displays the same statistical prop-
erties of the self-propulsion in such a way that the ki-
netic temperature does not display any τ -dependence.
Upon increasing τ , the values of 〈|v|〉 and 〈v2〉 mono-
tonically decrease reaching very small values. The more
persistent is the particle motion, the slower it becomes
and, as a consequence, the kinetic temperature decreases
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monotonically with τ . After a crossover regime occur-
ring for 10−4 . τ . 10−3, a clear power-law scaling
with τ appears for 10−3 . τ . 10−1 in both the mo-
ments. In particular, we have 〈|v|〉 ∼ v0(γτ)

−2/5 and
〈v2〉 ∼ v20(γτ)

−4/5, as clearly shown in Fig. 3. The valid-
ity of these scalings ceases approximatively at τ = 10−1,
i.e. near the solid-hexatic transition. Starting from this
value of τ , both 〈|v|〉 and 〈v2〉 decrease slower than
∼ τ−2/5 and ∼ τ−4/5 as the persistence time is increased
without showing any clear power-law scaling with τ .
In what follows, we develop an exact, analytical predic-

tion valid in active the solid-state for the kinetic tempera-
ture which will explain the scaling with τ numerically ob-
served shedding light also on the role of the other parame-
ters. Indeed, the periodicity of the almost-solid structure
and, in particular, its hexagonal order suggests switching
in the Fourier space to perform calculations [35, 57]. As
reported in Appendix A, the velocity correlation in the
Fourier space reads:

〈v̂q · v̂−q〉 =
v20

1 + τ
γω

2
q

(16)

where v̂q is the Fourier transform of the velocity vector
v and q = (qx, qy) is a vector of the reciprocal Bravais
lattice. The factor ω2

q
has the following form:

ω2
q
= −2K

[

cos(qxr̄) + 2 cos
(1

2
qxr̄

)

cos
(

√
3

2
qy r̄

)

− 3
]

(17)

where the dimensional constant K reads

2K = U ′′(r̄)− U ′(r̄)

r̄
. (18)

and r̄ is the average distance between neighoring parti-
cles. To obtain the variance of the velocity, we need to to
go back to the real space calculating the inverse Fourier
trasform in the origin:

〈v2〉 = v20
N2

∑

q

1

(1 + τ
γω

2
q
)
. (19)

Taking the continuum limit in the q-sum and accounting
for the periodicity of the lattice, we restrict the integral
to the first Brillouin zone:

〈v2〉 ≈ v20I
[

τ

γ

]

, (20)

where

I
[

τ

γ

]

=
r̄2

|B|

∫

B

dq
1

(1 + τ
γω

2
q
)
, (21)

and |B| is the area of the Brillouin region associated with
the hexagonal lattice. We remark that it is not possible
to approximate ω2

q
for small q truncating at the quadratic

order since the integral diverges at q = 0. To the best of

FIG. 3. 〈v2〉 (red data) and 〈|v|〉 (blue data) as a function
of τ . The colored dashed lines are plotted as a eye-guides,
while the solid red line represents the theoretical prediction,
Eq. (20). Numerical simulations are realized with v0 = 50
and ǫ = σ = γ = 1.

our knowledge, Eq. (20) is the first analytical expression
for the kinetic temperature of interacting self-propelled
particles that does not require fitting parameters. We
observe that our expression increases quadratically with
v0 in agreement with previous results [46] while the de-
pendence on packing fraction and persistence time is con-

tained in the integral I
[

τ
γ

]

. As shown in Fig. 3 (see the

comparison between red points and the solid red line),
Eq. (20) is in fair agreement with numerical data when
the system attains solid configurations for τ . 10−1. On
one hand, I[0] ≈ 1 for small values of τ , while, on the
other hand, the numerical integration of I confirms both
the crossover regime and the scaling ∼ (τ/γ)−4/5 in the
large persistence regime. For τ & 10−1, Eq. (20) underes-
timates the values of 〈v2〉 with respect to numerical data
because, for these values of τ , the structure of the system
is no longer a solid without defects. Thus, a fundamen-
tal hypothesis behind the derivation of the prediction is
violated and, thus, Eq. (20) is no longer valid. In partic-
ular, it has been already shown that, in the proximity of
defects, active particles have kinetic energies much larger
than the ones in the absence of defects, as occurs in active
solid configurations [35]. This is a clue to understanding
why the decrease of 〈v2〉 with τ in active hexatic phases
is slower than the decrease for active solids. We remark
that the integral I contains also the dependence on the
packing fraction through the constant K in Eq.(17). In-
deed, K is mainly determined by the second derivative
of the potential calculated at r̄ that is uniquely fixed by
the packing fraction in any homogeneous configurations.
Thus, the growth of φ induces the increase of the ki-
netic temperature through the non-linear derivatives of
the function U(x̄). The explicit dependence on the po-
tential shape is in agreement with previous studies based
on temperature definitions derived in simpler cases, i.e.
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FIG. 4. 〈v4x〉/〈v
2

x〉
2 (blue data) and 〈v2xv

2

y〉/〈v
2

x〉
2 (red data)

as a function of τ . The colored solid lines are eye-guides
while the dashed black lines are marked in correspondence of
〈v4x〉/〈v

2

x〉
2 = 3 and 〈v2xv

2

y〉/〈v
2

x〉
2 = 1, i.e. at the expected val-

ues for a velocity following the Gaussian statistics. Numerical
simulations are realized with v0 = 50 and ǫ = σ = γ = 1.

a one-dimensional particle confined through an external
potential [51, 52].

A. Higher order moments and non-Gaussianity

In spite of the fact that the equilibrium-like Gaussian
prediction is a good approximation of the velocity dis-
tribution, at least in the large persistence regime, even
from Fig. 1 (d) clear deviations from the Gaussian the-
ory are evident in its tails. To get a quantitative analysis
of the non-Gaussianity, we report the behavior of the
higher-order moments in Fig.4. In particular, we show
the kurtosis of the vx-distribution, namely 〈v4x〉/〈v2x〉2.
This observable is rather small (around ∼ 1) in the small-
τ regime as a result of the non-Gaussianity of the distri-
bution (Fig. 1 (c)). On the contrary, in the Gaussian-
like regime, for τ & 10−3, the kurtosis shows just small
departures from the Gaussian prediction corresponding
to 〈v4x〉/〈v2x〉2 = 3. In particular, our numerical obser-
vations reveal that 〈v4x〉/〈v2x〉2 ≥ 3, meaning that the
tails of the distribution are a little fatter than the Gaus-
sian prediction. Finally, for larger values of τ , i.e. for
τ > 10−1 at the solid-hexatic transition point, the kur-
tosis abruptly increases and the system departs from the
Gaussian-like regime. As already mentioned, this is con-
sistent with the occurrence of intermittency phenomena
in the hexatic phase [35] that manifest themselves also
in high and non-Gaussian peaks in the time-trajectory
of the single-particle kinetic energy. As a further con-
firmation, a similar scenario, consistent with the obser-
vation regarding the kurtosis, occurs for the observable,
〈v2xv2y〉/〈v2x〉2. In particular, 〈v2xv2y〉/〈v2x〉2 . 1 in the small

persistence regime, 1 for regime with 10−3 ≤ τ ≤ 10−1

(as expected in Gaussian regimes) and & 1 when the
hexatic phase occurs.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the properties of the ve-
locity of highly packed systems of self-propelled particles
(active hexatic and solid phases) to understand the influ-
ence of the activity. A transition from Mexican-hat-like
velocity distribution (i.e. peaked in the proximity of a cir-
cular crown with a radius larger than zero) to Gaussian-
like velocity distribution is observed going from the small
persistence to the large persistence time regime. Analyz-
ing the velocity dynamics, we derive suitable approxima-
tions to predict the functional form of the probability dis-
tribution function of the velocities in both these regimes.
Concerning the active solid, we derive by a Fourier-space
method a theoretical expression for the variance of the
velocity distribution, giving the kinetic temperature of
ABP in this phase. Thus, on one hand, we have derived
new approximate analytical results concerning the veloc-
ity distribution of ABP particles holding both near and
far from equilibrium and, on the other hand, we have
provided the analytical expression for the active kinetic
temperature in the solid phase.

At least in homogeneous solid configurations, our an-
alytical expression for the kinetic temperature increases
quadratically with the speed of the self-propelled parti-
cles (that is proportional to the Peclet number). This
quadratic scaling has been also observed by means of dif-
ferent definitions of temperature, such as the active effec-
tive temperature for homogeneous configurations [47, 49].
In those cases, our kinetic temperature displays a mono-
tonic decrease as a function of the packing fraction as
also for the effective temperature [46]. Our results show
that the kinetic temperature contains a strong depen-
dence on the shape of the interacting potential in agree-
ment with another temperature definition obtained in the
case of single-particle confined through external poten-
tials [51, 52]. Thus, the concavity of the potential plays
a fundamental role not only for confined non-interacting
active particles [71] but also for interacting systems, be-
ing relevant to determine the velocity variance (and, thus,
the kinetic temperature) in both cases. While the ki-
netic temperature does not show a dependence on τ in
the small persistence regime, a power-law decay with τ is
numerically observed and theoretically predicted in the
large persistence regime. We remark that our predictions
are valid in the active solid-state while does not work
where orientational and/or positional orders are broken
(i.e. active hexatic and liquid state, respectively). In
those cases, the occurrence of large non-Gaussianity and
intermittency phenomena in the time-trajectory of the
kinetic energy are consistent with the failure of the the-
oretical predictions [35].
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Appendix A: The kinetic temperature of active

particles in the solid-state

To develop a prediction for the kinetic temperature
of self-propelled particles in the active solid state, we
shall employ two approximations to simplify the dynam-
ics, Eq. (1). i) The dynamics of each component of fai
is replaced by independent Ornstein-Uhlenbeck processes
with equivalent persistence time, τ = 1/Dr, and variance
v20 in such a way that 〈|fa|〉 = v0 consistently with the
ABP model. ii) Each particle oscillates around a node of
a hexagonal lattice so that the total interparticle poten-
tial is approximated as the sum of quadratic terms. With
these two assumptions, the original dynamics, Eq. (1),
becomes:

ẋi(t) = fai (t)−
n.n
∑

j

∇iU(|xj − xi|)
γ

(A1)

τ ḟai (t) = −fai (t) + v0
√
2τ ξi(t) , (A2)

where the sum involves the nearest neighbors of the lat-
tice node i, and the symbol ∇i is the gradient with re-
spect to xi. Introducing the displacement ui of the parti-
cle i with respect to its equilibrium position, x0

i , namely

ui = xi − x0
i , (A3)

we obtain

u̇i(t) = fai (t) +
K

γ

n.n
∑

j

(uj − ui) (A4)

τ ḟai (t) = −fai (t) + v0
√
2τ ξi(t) , (A5)

being K the strength of the potential in the harmonic
approximation, i.e. U ≈ K

2 (uj − ui)
2, that explicitly

reads:

2K =

(

U ′′(r̄) +
U ′(r̄)

r̄

)

,

where r̄ is the lattice constant. Because of the linearity of
the system, it is useful to switch to normal coordinates,
in the Fourier space representation:

ûq =
1

N

∑

i

ui e
−iq·x0

i (A6)

η̂q =
1

N

∑

i

ηi e
−iq·x0

i , (A7)

where ûq and η̂q are the Fourier transform of u and fa,
respectively. The dynamics in the Fourier Space reads:

d

dt
ûq(t) = −ω2

q

γ
ûq(t) + η̂q (A8)

τ
d

dt
η̂q(t) = −η̂q + v0

√
2τ ξ̂q , (A9)

where

ω2
q
= −2K

[

cos(qxr̄) + 2 cos
(1

2
qxr̄

)

cos
(

√
3

2
qy r̄

)

− 3
]

where q = (qx, qy) are vectors of the reciprocal Bravais
lattice. Defining v̂q as the Fourier transform of the ve-

locity v, that satisfies v̂q = d
dt ûq, we can easily calculate

the steady-state equal time correlations in the Fourier
space, that is:

〈v̂q · v̂−q〉 =
2v20

1 + τ
γω

2
q

. (A10)

Eq. (A10) is the final expression for the spatial veloc-
ity correlation in the Fourier space and corresponds to
Eq. (16).
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dini, F. Peruani, H. Löwen, R. Golestanian, U. B. Kaupp,
L. Alvarez, et al., Journal of Physics: Condensed Matter
32, 193001 (2020).

[5] S. Henkes, K. Kostanjevec, J. M. Collinson, R. Sknepnek,
and E. Bertin, Nature communications 11, 1 (2020).
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