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We investigated both numerically and analytically the drift of a
Brownian particle in a ratchet potential under stochastic
resetting with fat-tailed distributions. As a study case we chose
a Pareto time distribution with tail index β. We observed that
for 1=2 < b < 1 rectification occurs even if for b < 1 the mean
resetting time is infinite. However, for b � 1=2 rectification is

completely suppressed. For low noise levels, the drift speed
attains a maximum for β immediately above 1, that is for finite
but large mean resetting times. In correspondence with such an
optimal drift the particle diffusion over the ratchet potential
turns from normal to superdiffusive, a property also related to
the fat tails of the resetting time distribution.

1. Introduction

The term stochastic resetting (SR) refers to the sudden
interruption of a stochastic process after random time intervals,
τ, followed by its starting anew (possibly after a finite latency
time), under same dynamical conditions.[1] This class of non-
equilibrium stationary processes found applications in searching
contexts,[2] optimization of randomized computer algorithms,[3]

and in many biophysical problems.[4,5] The notion of SR owes its
initial popularity to the observation that under SR the otherwise
infinite mean first passage time (MFPT) for a one-dimensional
(1D) free Brownian particle[6] to diffuse from an injection to an
assigned target point becomes finite. Most notably, it has been
reported that such MFPT can be minimized for an optimal
choice of the mean resetting time, hti:[7,8] Standard stochastic
methods[6,9] can be generalized to study diffusion under SR, for
instance, to calculate the MFPT of a reset particle out of a one-
dimensional (1D) domain,[10] potential well,[11] or cavity.[12] In
general, SR speeds up (slows down) diffusive processes
characterized by random characteristic times with standard
deviation larger (smaller) than the respective averages.[5]

A variation of this mechanism is autonomous SR,[13] whereby
a small motile tracer (like a bacterium or a micro-robot[14]) of

coordinate x undergoes overdamped Brownian motion on a 1D
substrate by switching its internal engine on and off. Let the
substrate be represented by a 1D periodic potential, V(x), of
period xL, and assume for simplicity that the potential unit cells
have one minimum each at xn ¼ x0 þ nxL, with n ¼ 0;�1; :::. At
resetting, the particle stops diffusing and falls instantaneously
at the bottom of the potential well it was in and it resumes
diffusing from there after an arbitrary small latency time
(Figure 1). If we further assume that the barriers separating two
adjacent potential minima are asymmetric under mirror
reflection, i. e., Vðx � x0Þ6¼Vð� x þ x0Þ (ratchet potential

[15–19]),
then (i) SR suffices to rectify the particle’s diffusion. The net drift
reaches a maximum for an optimal value of hti; (ii) SR
suppresses the particle’s spatial diffusion [quantified by its
mean square displacement (MSD)], which however retains its
normal character (i. e., its asymptotic linear dependence on
time). The relevant diffusion constant increases sharply with hti
in correspondence with the maximum of the drift speed.[13] As a
consequence, the diffusing tracer can autonomously rectify its
random motion in the absence of external time-dependent
fields of force or gradients, simply by time-operating its internal
engine to adjust to the spatial asymmetry of the substrate.
In both SR applications, namely either to control the MFPT

of an unbounded Brownian particle diffusing between two
given points or to rectify its motion along an asymmetric
substrate, the control parameter of the resetting protocol is
generally chosen to be the mean SR time, hti, independently of
the actual τ distribution.[8] Clearly, this approach is no longer
tenable in the case of a fat-tailed τ-distribution, when hti may
diverge. By adopting a Pareto’s power-law distribution for the
SR times, we investigated, both analytically and numerically,
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under what conditions SR can be a useful stochastic control
tool also for infinite hti.
The contents of this paper is organized as follows. In Sec. 2

we formulate a basic Brownian diffusion model and the SR time
distribution adopted in our numerical simulations, namely a
Pareto (Type I) distribution. In Sec. 3 we focus on some peculiar
properties of the SR statistics due to the fat tails of the chosen
τ-distribution, with and without substrate potential. In Sec. 4 we
analyze the dependence of the drift speed on the Pareto τ-
distribution parameters. We conclude that SR rectification may
occur also for infinite hti. In Sec. 5 we investigate the particle
diffusivity under SR and observe that for large but finite values
of hti the particle’s dynamics may become superdiffusive, a
phenomenon never reported for exponential τ-distributions.
Finally, in Sec. 6 we draw some concluding remarks about
possible generalizations and applications of the present model.

2. Model

The simulated particle dynamics was formulated in terms of the
overdamped Langevin equation (LE),

_x ¼ � V 0 xð Þ þ x tð Þ; (1)

where x tð Þ denotes a stationary zero-mean valued Gaussian
noise with autocorrelation hx tð Þx 0ð Þi ¼ 2D0d tð Þ (white noise)
and V(x) is the standard ratchet potential,[15,16]

V xð Þ ¼ sinð2px=LÞ þ ð1=4Þsinð4px=LÞ; (2)

with asymmetric barriers of height
DV ¼ 3=2ð Þð1þ 2=

ffiffiffi
3
p
Þ1=2 ’ 2:20. The potential unit cell [0; xL�

has a maximum (barrier) at xb ¼ xL=2pð Þarccos
ffiffiffi
3
p
� 1

� �
=2

� �
’ 0:19xL and a minimum (well bottom) at

x0 ¼ xL � xb ’ 0:81xL, with curvatures w2
0 ¼ V 0 0 x0ð Þ ¼ � V

0 0 xbð Þ
¼ ð2p=xLÞ

2ð3
ffiffiffi
3
p

=2Þ1=2 ’ 63:6=x2L , see Figure 1. The asymmetric
potential wells have right/left slopes of different lengths, x R;Lð Þ,
with x Lð Þ ¼ x0 � xb ¼ xL � x Rð Þ ’ 0:62xL. In addition to the ther-
mal fluctuations and the ratchet potential, the particle is
subjected to instantaneous resetting (with zero latency time) at
the local minimum after a random time, τ, with Pareto (Type I)
probability density function (pdf).

1 tð Þ ¼

b

t0

t0
t

� �1þb for t � t0

0 for t < t0;

8
<

:
(3)

of positive scale, τ0, and shape parameter (or tail index) β. The
main conclusions of the present work can be easily extended to
a Lomax distribution with same scale and shape parameters or
even to other fat-tailed τ distributions. Along with the restart
protocol, the Eq. (1) was numerically integrated by means of a
standard Milstein scheme,[20] to compute the FPT’s, Tdx (Tm), for a
particle to diffuse a distance δx (mxL) from the resetting point
(Figure 2), the drift speed v ¼ limt!∞ x tð Þh i � x 0ð Þ½ �=t (Figure 3),
and the asymptotic MSD,

Dx2 tð Þh i ¼ x2 tð Þh i � v2t2 � 2Dt; (4)

of a particle under stationary conditions (with or without SR)
(Figure 4). Particular attention was paid to choose appropriate
integration steps and running times, typically δt ¼ 10� 3 and
t ¼ 106. However, more accurate estimates of the above
dynamical quantifiers required much longer simulation runs
and shorter integration steps, respectively for small values of β
and τ0.

3. Stochastic Resetting Statistics

In the current SR literature the τ-distribution is often assumed
to be 1 tð Þ ¼ exp � t= th ið Þ= th i (constant restart rate, th i� 1), or
1 tð Þ ¼ d t � th ið Þ (sharp restart). In both cases, the MFPT for an
unbounded Brownian particle to diffuse a distance L, say,
x0 ! x0 þ L, is “regularized”,[7] i. e.,

Figure 2. Pareto resetting statistics: (a) distribution of the FPT’s, T, for a free
Brownian particle with D0=1 to diffuse a distance L ¼ 10 under Pareto SR.
The resetting distance distributions with and without ratchet potential are
plotted respectively in (b) and (c) for D0=2. In (b) δx is the particle’s net
displacement between two consecutive resettings; in (c) m denotes the
distance in units of xL between two consecutive resetting potential minima.
Dashes lines represent the fitting power laws with exponents � 3=2þ bð Þ in
(a) and � 1þ 2bð Þ in (b) and (c); data sets for b > 1 in (a) have been fitted by
exponential curves. In all simulations the SR time was distributed according
to Eq. (3) with t0 ¼ 0:01; the ratchet potential, when present, is V(x) of Eq. (2)
with xL ¼ 1.
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Th i ¼ th iexp L=
ffiffiffiffiffiffiffiffiffiffiffi
D0 th i

p� �
� 1

h i
: (5)

Other exponential distributions, 1 tð Þ, yield similar predic-
tions as long as th i is finite; hence the choice of th i as a natural
SR control parameter.[10] By the same token, the particle
displacement, δx ¼ x � x0, assumes a stationary distribution.

[7]

For a constant SR rate, th i, such a distribution reads

pst dxð Þ ¼
Z ∞

0
p dx; tð Þ1 tð Þdt ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D0 th i

p e
�

dxj jffiffiffiffiffiffi
D0 th i
p

; (6)

where p dx; tð Þ ¼ ð4pD0tÞ
� 1=2exp½� dxÞ2=4D0tð � is the non-sta-

tionary Gaussian pdf of the same particle at time t in the
absence of SR. Relevant to our presentation is also recalling that
the distribution of the FPT for the process x0 ! x0 þ L, p(T), can
also be computed analytically.[7] In the limit of interest here,
L�

ffiffiffiffiffiffiffiffiffiffiffi
D0 th i

p
, p(T) decays exponentially, that is

p Tð Þ � e� T= Th i= Th i: (7)

For the Pareto τ-distribution of Eq. (3), we notice that

th i ¼
b

b � 1
t0; (8)

that is, th i is infinite for b � 1. The question is then to
determine the SR effects on the Brownian dynamics of Eq. (1)
over the entire range of the tail index, β. To this purpose we
first considered the predictions of Eqs. (6) and (7) for the
diffusion of a free Brownian particle with V xð Þ � 0. Replacing
the Pareto distribution, Eq. (3), into Eq. (6) yields, in the limit
x �

ffiffiffiffiffiffiffiffiffi
D0t0
p

,

pst dxð Þ ¼
b

4pD0

ffiffiffiffiffiffiffiffiffiffiffiffi
4D0t0
p

dx

� �1þ2b

: (9)

The distribution of a free particle position subject to SR with
Pareto time statistics is thus stationary, but its mean, xh i, is
infinite for b < 1=2. The above power-law decay of pst dxð Þ is
confirmed by the simulation data displayed in Figure 2(b). In
passing, we anticipate that a decay law with the same exponent
was obtained also for particles diffusing on the ratchet
substrate of Eq. (2). In that case the particle displacement was
measured as the distance between two consecutive restarting
V(x) minima, x0 ! x0 þmxL, namely δx ¼ mxL. In Figure 2(c) the
resulting jump distributions pst mð Þ are plotted for m � 0, only,
because the positive and negative power-law tails of pst mð Þ
appear to coincide, that is, for large displacements,
pst � mð Þ ¼ pst mð Þ.
Finally, coming back to the diffusion of a free particle with

V xð Þ � 0, we numerically computed the FPT distributions with
the Pareto τ-distribution of Eq. (3). Our numerical results are
displayed in Figure 2(a). One observes immediately that for
b > 1, p(T) decays exponentially, as predicted in Eq. (7), whereas
for b < 1=2 it decays according to the power law 1=T3=2þb. On
increasing β from 1/2 to 1, an exponential decay for small T
coexists with a residual power-law tail, the former gradually
taking over the latter.

Figure 3. Drift speed, v vs. β, in the ratchet potential V(x) of Eq. (2) with
Pareto τ statistics, Eq. (3), for xL ¼ 1, t0 ¼ 0:01 (a) and 0.001 (b), and different
D0 (see legends). In the inset of (b) we report the reciprocal of v (see text) vs.
β to better illustrate rectification suppression for b < 1=2. The horizontal
dashed line in (a) represents the estimate v ¼ 0:12xL=t0 valid for large β and
D0 (see Sec. 4).

Figure 4. Diffusion of a particle in the ratchet potential V(x) of Eq. (2) with
Pareto SR time statistics, Eq. (3). (a) Dx2

� �
, Eq. (4), vs. t for D0=2, t0 ¼ 0:01,

and different β (see legends). In the inset, the curve Dx2
� �

vs. t is plotted for
b ¼ 1:1 and Pareto τ-distributions truncated at t ¼ tmax (see text). (b)
Diffusion constant, D, of Eq. (4) vs. β, for D0=1 (empty symbols) and 2 (solid
symbols), and different τ0 (see legend). In the superdiffusive regime (marked
β range), D was extracted from the linear branch of Dx2

� �
curves [see (a)]. In

both panels xL ¼ 1.
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The exponential decay of p(T) is consistent with the
theoretical prediction of Eq. (7) as for b > 1 the mean SR time,
th i, of Eq. (8) is finite. Vice versa, as th i diverges, p(T) may be
taken approximately proportional to f Tð ÞProbðT < tÞ, where
f Tð Þ ¼ ðL2=4pD0Þ

1=2exp � L2=4D0Tð Þ=T3=2 is the Lévy-Smirnov
distribution of the particle’s FPT in the absence of resetting,[6]

and ProbðT < tÞ ¼
R∞
T 1 tð Þdt denotes the probability that T is

smaller than the SR time. Stated otherwise, we require that the
no-SR FPT distribution, f(T), is conditional to the FPT, T, being
not larger than the actual resetting time, τ. In the limit of
interest for our presentation, L�

ffiffiffiffiffiffiffiffiffi
D0t0
p

, an explicit integration
yields

p Tð Þ ’
1
t0

L2

4pD0t0

� �1
2 t0
T

� �3
2þb

: (10)

This estimate for p(T) explains the power-law tails of the
curves with b < 1 shown in Figure 2(a). Moreover, based on it,
one expects that Th i diverges for b < 1=2. As a matter of fact,
our numerical simulations point to the existence of particle’s
trajectories that fail to hit the target at x0+L even after
exceedingly long computer running times (i. e., up to 1011 time
units).
Similarly to the pst dxð Þ distributions, the power-law decay of

p(T) holds good also in the presence of the periodic substrate
potential, V(x), as discussed below in Sec. 4. In conclusion, SR
with a Pareto τ-distribution might still provide a useful
stochastic control technique also for infinite th i, but only in the
tail index range 1=2 < b < 1. As a final remark, we notice that
for b! ∞, the mean reset time tends to the Pareto scale
parameter, th i ! t0. In such a limit the formulas of Eqs. (5)-(7)
are a good approximation for our model, too, under the
conditions that xL �

ffiffiffiffiffiffiffiffiffi
D0t0
p

or L�
ffiffiffiffiffiffiffiffiffi
D0t0
p

, as appropriate.

4. Rectification by Stochastic Resetting

We address now the effect of rectification by SR in the
asymmetric potential V(x). In Ref. [13] this mechanism was
analyzed in detail for exponential and periodic SR time statistics.
The most natural descriptor, the drift speed v defined in Sec. 2,
is plotted versus β in Figure 3 for Pareto τ-distributions with
small τ0. The positive sign of v is determined by the profile of
V(x) (Figure 1) and is related to the skewness of the jump
distributions pst mð Þ [Figure 2(c)], which deviate from a power-
law decay for very small values of m, typically m < 3, with
pst � mð Þ < pst mð Þ. As anticipated at the end of Sec. 3, for large β
we recovered the results of Ref. [13] with th i ¼ t0. In particular,
in the regime of strong noise, D0 � DV, the drift attains its
maximum value v ¼ x Lð Þ � x Rð Þ

� �
=2t0. Most remarkably, v drops

close to zero for β≲1, that is as the mean SR time diverges. This
behavior comes as no surprise, because rectification in a ratchet
potential only occurs in the presence of a time modulation,
represented here by the SR protocol, and increasing the
modulation time scale only weakens the effect.[15]

At low noise levels, D0 � DV , particle diffusion on a periodic
substrate is reduced. Indeed, in the absence of SR, the MFPT for

a low-noise particle to jump out of a local minimum, say, for
the process x0 ! x0 � xL, is represented by the Kramers’ time,

[9]

TK ¼ 2p=w2
0

� �
exp DV=D0ð Þ. For a particle under resetting the

jumping mechanism requires that th i > TK , that is a sufficiently
large th i. Since in both panels of Figure 3 τ0 was taken quite
small, w2

0t0 < 1, the only way to obtain an appreciable drift at
low noise was to lower β close to 1, see Eq. (8). Rectification
appears to be optimal when th i grows comparable with TK. On
the contrary, for large β, th i ! t0 and is, therefore, too small;
vice versa, for b < 1, as mentioned above, th i diverges and
large SR times tend to suppress ratcheting.[15] This argument
explains the resonant profile of the low-noise curves v versus β
in Figure 3 and the shift of their maxima toward higher β values
with increasing D0.
The positive, though small values of v for b < 1 in Figure 3

indicate that rectification occurs also for th i ¼ ∞. To clarify this
issue in the inset of Figure 3(b) we plotted the reciprocal of v
computed as the average time, Tm, the particle takes to jump m
wells to the right divided by the distance, mxL, between them.
We observe immediately that this ratio diverges as β ap-
proaches 1/2 from above. To support this numerical finding we
also computed the distribution of the FPT’s for the process
x0 ! x0 þmxL (not shown). For b < 1=2 we recovered power-
law distributions similar to those displayed in Figure 2(a) in the
absence of substrate potential, V xð Þ � 0. This led us to
conclude that Tm diverges and v vanishes for b! 1=2þ.

5. Diffusion Under Stochastic Resetting

We consider now the particle’s diffusion. In the absence of a
substrate potential, V xð Þ � 0, SR confines the particle around its
injection point, x0, as apparent from Eqs. (6) and (9) and,
therefore, its effective diffusion constant, D, defined in Eq. (4), is
identically zero. On the contrary, in the presence of a rectifying
substrate, the particle’s drift is characterized by the net speed,
v, investigated in Sec. 4, and its MSD, Dx2 tð Þ

� �
, defined in

Eq. (4). For exponential and periodic SR time distributions, we
showed in Ref. [13] that diffusion is normal for all values of th i,
that is Dx2 tð Þ

� �
¼ 2Dt. We also estimated the fitting parameter

D as a function of th i. In particular, for D0 � DV, SR affects the
particle’s diffusivity to a small extent, D ’ D0, whereas, in the
opposite limit, D0 � DV, D ¼ x2L=2TK th ið Þ, with TK th ið Þ denoting
the Kramers’ time for the exit process x0 ! x0 � xL under
resetting with average SR time th i. The limit TK th i ! ∞ð Þ

coincides with the standard Kramers’ time, TK, reported above,
while for estimates of TK th ið Þ at small th i the reader is referred
to Ref. [13].
Our new numerical results for the MSD of a particle diffusing

under resetting with the Pareto time statistics of Eq. (3) are
summarized in Figure 4. For the entire range of the tail index, β,
the particle’s MSD follows the normal diffusion law of Eq. (4),
with numerical fitting parameter D reported in panel (b). For
large β, th i ’ t0, so that, for D0 � DV, one recovers the well-
known result, D ’ x2L=2TK t0ð Þ, with TK t0ð Þ denoting the Kramers’
time in the presence of SR with time constant τ0.

[13] In the
opposite regime of D0 � DV, the potential barriers exert a
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negligible confining action, so that one recovers the vanishing
substrate limit with D ’ D0.

[13] Vice versa, for b < 1=2 we
already know that SR has no bearing on the particle’s dynamics
because th i ¼ ∞, so that we expect that D ’ x2L=2TK , with TK
denoting the Kramers’ time in the absence of SR (i. e., D grows
independent of τ0). We recall that for large values of β and D0,
namely for th i�TK, TK t0ð Þ can be approximated to TK, which
explains why in such conditions D is seemingly constant over
the entire β range [see curves in Fig. 4(b) for D0=1]. Of course,
also for b� 1, decreasing τ0 makes the Kramers’ time under
resetting, TK t0ð Þ, grow exponentially large and, consequently, D
is suppressed.
Most notably, the MSD deviates for the normal diffusion law

of Eq. (4) for b! 1þ, namely as th i of Eq. (8) starts diverging.
We remind that this is the β range where rectification is optimal
(Figure 3), thus providing another instance of the connection
between drift surge and excess diffusion.[21] In this case the
correct diffusion law reads Dx2 tð Þ

� �
/ ta, with α as large as 1.76

for b ¼ 1:1. Indeed, the D values reported in Figure 4(b) for
0:7 < b < 1:4 were fitted over the linear branches of the curves
Dx2 tð Þ
� �

versus t (i. e., for t < 50), for the sake of a comparison.
This result is unusual and has no counterpart in the current

Brownian ratchet literature.[15–18] To support this numerical
finding we ran several checks. We preliminary noticed that (i)
increasing the distribution scale parameter, τ0, namely for larger
th i values, the diffusion exponent decreases; (ii) the occurrence
of superdiffusion is largely independent of the noise level.
These remarks confirm that superdiffusion is related to
rectification. Then, we truncated the Pareto distribution of
Eq. (3) at t ¼ tmax, meaning that the power-law decay of 1 tð Þ

was restricted to the range [t0; tmax�. The effect of this change is
displayed in the inset of Figure 4(a). For b ¼ 1:1 and sufficiently
large values of tmax, superdiffusion still sets on, but only for

t < tmax; for t > tmax one recovers normal diffusion with a ¼ 1.
This is a clear indication that superdiffusion is related to the fat
tails of the SR time distribution: cutting the 1 tð Þ tails off
suppresses superdiffusion.
Another check is illustrated in Figure 5, where in panels (a)-

(c) we plotted trajectory samples of a particle under resetting
respectively with b ¼ 0:5 (no drift), b ¼ 1:1 (optimal drift), and
b ¼ 2 (small 1 tð Þ tail effect). At different times, t, we computed
the corresponding asymptotic distributions of the particle’s
position, x. In panels (d)-(f) the variable x was rescaled as
x ! za ¼ x � xh ið Þ=ta=2, with α the diffusion exponent intro-
duced above. For a given β, all distributions collapse on a
unique curve. When the diffusion is normal, a ¼ 1, namely for
b ¼ 0:5 and 2, such a curve is the Gaussian,
p z1ð Þ ¼ ð4pDÞ

� 1=2exp � z21=4D
� �

, with the appropriate diffusion
constant D reported in Figure 4(b). In the presence of super-
diffusion, i. e., for b ¼ 1:1, the distribution p zað Þ of Figure 5(e) is
strongly skewed with a long negative tail associated with the
trajectories of Figure 5(b) that appear to diffuse very slowly, if at
all. As there a ¼ 1:76, the corresponding x distributions clearly
broaden faster than linearly with time, and this mechanism is
responsible for the detected superdiffusive effect. To support
this observation more quantitatively, we computed the drift
speeds of the trajectories sampled in Figure 5(b) as functions of
time, vi tð Þ ¼ xi tð Þ=t, and determined their time-dependent
variance, s2v tð Þ ¼ v2i tð Þ

� �
� vi tð Þh i2, with . . .h i denoting stochas-

tic averages taken over an ensemble of N ¼ 3� 103 trajectories.
As illustrated in the inset of Figure 5(b), s2v tð Þ decays with time
according to two distinct power laws, t� 1 and ta� 2, respectively
at shorter and larger times. This is consistent with the relevant
diffusion exponents of Figure 4(a), because, by the same
argument, the corresponding MSD would amount to
Dx2 tð Þ
� �

¼ s2v tð Þt2.

Figure 5. Trajectory statistics for a particle diffusing in the potential V (x) with xL=1 and Pareto τ statistics: (a)-(c) trajectory samples for D0=2, τ0=0.01 and
β=0.5 (no rectification, normal diffusion), 1.1 (optimal rectification, superdiffusion), and 2 (low rectification, normal diffusion). The inset in (b) is the variance
of the time dependent trajectory drift speeds, s2

u
tð Þ (see text); (d)-(e) corresponding pdf’s of the particle positions at time, t, reported in the legends. The

variable x has been rescaled to zα= (x � (x))/tα/2. The Gaussian (dashed) curves (4πD)� 1/2 exp(� z21/4D) in (d) and (f) are reported for a comparison. The values of
α and D used here have been extracted from the MSD data in Figure 4.
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6. Conclusions

In conclusion we have shown that randomly motile particles
can propel themselves on a spatially asymmetric substrate by
autonomously regulating their own internal motility for max-
imum efficiency. For fat-tailed distribution of the activation
times, the particle drift can turn superdiffusive. The interest of
this conclusion goes beyond the context of SR, as discussed
below.
The SR protocol of Sec. 2 can be readily generalized to the

more realistic case when a finite latency time, τl, is required
before the reset particle is allowed to restart. As discussed in
Ref. [13], this basically amounts to replacing th i with th i þ tl,
thus leaving the overall SR properties unchanged. However, this
variation of our model lends itself to an alternative physical
interpretation. Consider the LE (1) with the potential of Eq. (2)
but, instead of implementing the SR protocol with latency time
τl, we now assume a dichotomic noise strength, D0 tð Þ, whereby
D0=0 for a fixed time interval, τl, and D0 tð Þ ¼ D0 for a random
time interval, τ, with Pareto distribution 1 tð Þ. The resulting LE
describes a special case of flashing ratchet[16] with random cycle
tl þ t. This means that, as a side result, we have proven that
under certain conditions, flashing ratchets with fat-tailed time
distributions may exhibit superdiffusive dynamics, an occur-
rence never reported in the earlier literature on autonomous
particle transport.[15,22]

Acknowledgements

Y.L. is supported by the NSF China under grant No. 12375037,
and F.M. also by NSF China under grant No. 12350710786.
P.K.G. is supported by CSIR EMR II file no. 01/3115/23 Open
Access publishing facilitated by Università degli Studi di
Camerino, as part of the Wiley - CRUI-CARE agreement.

Conflict of Interests

The authors have no conflicts to disclose.

Data Availability Statement

The data that support the findings of this study are available
within the article.

Keywords: Stochastic resetting · Brownian motors ·
Superdiffusion · Lévy flights

[1] M. R. Evans, S. N. Majumdar, G. Schehr, J. Phys. A: Math. Theor. 2020, 53,
193001.

[2] L. Kusmierz, S. N. Majumdar, S. Sabhapandit, G. Schehr, Phys. Rev. Lett.
2014, 113, 220602.

[3] A. Montanari, R. Zecchina, Phys. Rev. Lett. 2002, 88, 178701.
[4] S. Reuven, M. Urbakh, J. Klafter, Proc. Natl. Acad. Sci. USA 2014, 111,
4391.

[5] S. Reuveni, Phys. Rev. Lett. 2016, 116, 170601.
[6] S. Redner, A Guide to First-Passage Processes, Cambridge University
Press, UK 2001.

[7] M. R. Evans, S. N. Majumdar, Phys. Rev. Lett. 2011, 106, 160601.
[8] A. Pal, S. Reuveni, Phys. Rev. Lett. 2017, 118, 030603.
[9] C. W. Gardiner, Handbook of Stochastic Methods, Springer, Berlin 1985.
[10] A. Pal, V. V. Prasad, Phys. Rev. E 2019, 99, 032123.
[11] S. Ray, D. Mondal, S. Reuveni, J. Phys A: Math. and Theor. 2019, 52,

255002.
[12] W. Zhang, Y. Li, F. Marchesoni, V. R. Misko, P. K. Ghosh, Entropy 2023, 25,

271.
[13] P. K. Ghosh, S. Nayak, J. Liu, Y. Li, F. Marchesoni, J. Chem. Phys. 2023,

159, 031101.
[14] J. Wang, Nanomachines: Fundamentals and Applications, Wiley-VCH,

Weinheim 2013.
[15] P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 2009, 81, 387.
[16] P. Reimann, Phys. Rep. 2002, 361, 57.
[17] F. Jülicher, A. Ajdari, J. Prost, Rev. Mod. Phys. 1997, 69, 1269.
[18] J. Prost, J.-F. Chauwin, L. Peliti, A. Ajdari, Phys. Rev. Lett. 1994, 72, 2672.
[19] X. Ao, P. K. Ghosh, Y. Li, G. Schmid, P. Hänggi, F. Marchesoni, Eur. Phys. J.

Special Topics 2014, 223, 3227.
[20] P. E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential

Equations, Springer, Berlin 1992.
[21] G. Costantini, F. Marchesoni, EPL 1999, 48, 491.
[22] F. Yang, Z. Zhang, et al., Rev. Mod. Phys. 2024, 96, 015002.

Manuscript received: March 20, 2024
Revised manuscript received: May 5, 2024
Accepted manuscript online: August 12, 2024
Version of record online: ■■■, ■■■■

Wiley VCH Mittwoch, 16.10.2024

2499 / 370778 [S. 6/7] 1

ChemPhysChem 2024, e202400313 (6 of 6) © 2024 The Authors. ChemPhysChem published by Wiley-VCH GmbH

ChemPhysChem
Research Article
doi.org/10.1002/cphc.202400313

 14397641, 0, D
ow

nloaded from
 https://chem

istry-europe.onlinelibrary.w
iley.com

/doi/10.1002/cphc.202400313 by U
niversita D

i C
am

erino, W
iley O

nline L
ibrary on [30/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1088/1751-8121/ab7cfe
https://doi.org/10.1088/1751-8121/ab7cfe
https://doi.org/10.1088/1751-8121/ab1fcc
https://doi.org/10.1088/1751-8121/ab1fcc
https://doi.org/10.3390/e25020271
https://doi.org/10.3390/e25020271
https://doi.org/10.1103/RevModPhys.81.387
https://doi.org/10.1016/S0370-1573(01)00081-3
https://doi.org/10.1103/RevModPhys.69.1269
https://doi.org/10.1140/epjst/e2014-02329-1
https://doi.org/10.1140/epjst/e2014-02329-1
https://doi.org/10.1209/epl/i1999-00510-7
https://chemistry-europe.onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fcphc.202400313&mode=


RESEARCH ARTICLE

A diffusing swimmer can autono-
mously rectify its random motion in
the absence of external time-
dependent fields of force or gradients,
simply by switching on and off its
internal engine to adjust to the spatial
asymmetry of the substrate. For ap-
propriate power-law distributions of
its switching times the swimmer drifts
superdiffusively with exponent close
to two.
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Ratcheting by Stochastic Resetting
With Fat-Tailed Time Distributions
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