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Abstract

This thesis aims to deep analyse the application of Inertial Measurement Units

(IMUs) for gesture recognition purposes, aiming to develop a Data-Glove for people

with communication diseases as non verbal autistic child and people with aphasia.

The speci�c �eld of application is gesture recognition. This research was conducted

in collaboration with LiMiX with the �nal objective of create a device which can

translate gestures in voice. The main idea was to build a wearable device able to give

to the �nal user capabilities to rapidly customize his how dictionary of gestures and

translate his signs in voice in real time. Di�erent techniques for gesture translations

has been adopted.
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Chapter 1

Introduction

This thesis presents in details Talking Hands, an innovative wearable gesture recog-

nition device that aims to support people with verbal communication impairment.

Talking Hands acquires data through a data-glove and performs gesture recognition-

algorithms on a mobile application which is able to process both static and dynamic

gestures in real-time. Talking Hands' hardware, presented in Figure 1.1, consists of

a sensorized hand module and an arm module, which acquires and pre-processes ges-

ture's data. These data are sent over bluetooth to a smartphone application that

associates the gesture to a word or an expression, which is then pronounced through

smartphone's speaker.

This thesis is about the entire process and steps performed during Talking Hands'

development over the last 3 years.

Main output from this thesis will be an industrial prototype that could e�ciently help

speech-impaired people on a daily basis, and can help people with di�erent kind of

verbal disease, rehabilitating vocalization. Talking Hands can also be useful in user's

daily routine, for example when he/she is at home with his/her family and needs

something: water, food, go to the toilet, etc. Talking Hands in those situations will

be used as Augmentative and Alternative Communication system. Project's require-

ments are visible in Section 3.1.

Meaningful gestures, can be divided in static and dynamic. The former ones are

con�gurations of hands and arms that do not involve any motion. Dynamic gestures,

like �Good morning� and �House� in American SL (Sign Language), express their

meaning also through the movement and they are usually more di�cult to detect and

translate. In this thesis, we will also compare the results of di�erent machine learning

algorithms for dynamic signs translation.

1.1 Applications

Talking Hands will help people with both temporary or permanent speech disorders,

therefore they can �nally increase their experience in social interaction and have better

living conditions.



4 Chapter 1. Introduction

Figure 1.1: Talking Hands Render

Communication is perhaps one of the most important privileges enjoyed by the

majority of people. It plays an indispensable role in everyday life helping to facilitate

the process of sharing information, knowledge and development of personal relation-

ships. The importance of communication cannot be overstated, being essential to

access education, healthcare, employment, entertainment and social interactions (see,

for example, [1�5]).

Talking Hands aims to give voice to people with speech impairments, supporting

recovery or acquisition of basic verbal skills. Speech and language are central to the

human experience: they are vital, indispensable means for people to convey and re-

ceive knowledge, thoughts, feelings as well as to participate in social interactions and

relationships.

However, a huge number of people worldwide su�er from speech disorders and impair-

ments: communicative disabilities in which natural speaking faces di�culty. This is



1.1. Applications 5

more common during childhood but they can occur at any age (stuttering, articula-

tion, voice or language disorders) due to conditions like � but not limited to � Autism

Spectrum Disorder, stroke, deafness, mouth or throat cancer, Down Syndrome, neu-

rodegenerative diseases, etc., which result in a substantial inability to naturally or

�uently communicate.

The prevalence estimated on the extent of people experiencing such disorders varies

with the age and diagnostic criteria applied; however, it is estimated that:

� About 3% of the global population (i.e., 234 million people, Baukelmann, 2005)

su�ers from one of the 27 classi�ed speech disorders;

� The prevalence of speech and language disorders among school-aged children

ranges between 2.3-24.6% [6] in developed countries, median prevalence=5.95%;

In addition, speci�c studies report that:

� Disorders resulting from stroke (e.g., aphasia) occur in about 83% [7] of patients,

with stroke representing the third leading cause of disability worldwide (WHO);

� Approx. 60% of 4 to 6-year old children with Autism Spectrum Disorder (ASD)

shows moderate to severe language impairments [8]; the same is observed in

about 97.8% of adolescents with the Down Syndrome [9]. In addition, the abil-

ity to speak deteriorates in patients su�ering from ALS (Amyotrophic Lateral

Sclerosis) in almost 60% of the cases [10].

Communication disability is associated with long-term disadvantage, placing indi-

viduals and their families at greater risk of adverse outcomes. Even though legislative

measures to avoid discrimination exist in EU (e.g., Treaty on the Functioning of the

EU, Art. 10 and 19), and support equal opportunities, fair working conditions and

social inclusion for people with disabilities, several critical issues remain:

� Discrimination in the labour market: Verbal communication is a key skill for

employers: 85% of them report that mere stuttering heavily decreases a per-

son's employability [10]. As a matter of fact, young people with a history of

speech disorder face huge barriers in their professional career, are unemployed

for longer times respect to peers (47% unemployment ratio), and rate themselves

as signi�cantly less likely to get a job[11].

� Poor access to quality healthcare services [12]:People with communication im-

pairment often require more frequent interactions with health services, but �nd

them di�cult to access and are more vulnerable during encounters. A grow-

ing body of literature reports that these people face poorer health and medical

care outcomes compared to peers without disabilities (medical errors, delays in

treatments, marginalization, inadequate care) [13],[14].
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� Lower quality of education:Communication disabilities pose severe risk of ed-

ucational failure (Education and employment outcomes of young adults with

history of developmental language disorder, Gina Conti-Ramsden et al.,2018.

). Access to quality schooling is a serious concern for parents of children with

communication impairments (only 2% of them receive education with sign lan-

guage).

� Social exclusion: People with communication diseases face unacceptance, stig-

matisation and isolation; their families � mothers above all � are also much more

frequently subject to emotional disorders (anxiety, depression etc.) [15] , besides

the fact that disability is an established cause of social exclusion [16].

To remove these barriers, di�erent assistive technologies [17] have been developed over

the years. Among them, of key importance are the so-called Augmentative and Al-

ternative Communication (AAC) technologies [18], ranging from the simplest picture

board to PC, tablets, or programs synthesizing speech from text, (see Figure 1.2).

Even though AAC tools can provide vital support, they are still assessed to be lim-

ited in performance, with only basic vocabulary and translation of words/concepts

into speech through cumbersome and slow processes, costly and unpractical, mak-

ing them substantially unappealing to users, not �tting all their needs, and therefore

scarcely adopted. The dramatic impacts of communication disruption clearly show

how urgent is the need for the development of functional and accessible technologies

giving voice to people with speech disorders, to reduce for them of being left further

behind in social participation and inclusion. Reader is addressed to [19] for in depth-

analysis of this topic.

Figure 1.2: Example of speech generating device for patients a�ected
by cerebral palsy

To analyse gesture recognition problem, let us examine de�nition of sign language.

It is a similar problem and it is possible to �nd a wide literature about engineering
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approaches to the problem. Sing Language: a system of communication using visual

gestures and signs, as used by deaf people. Sign language involves not only one hand,

but also shoulders movement, facial expression and many other kinds of non verbal

communication activities performed by the human body. This work is limited to

gesture recognition using one hand, tracking movements/orientation of �ngers, hand

and forearm in the space.

Gesture Recognition's applications may vary. Input system and gesture recogni-

tion algorithms may be di�erent, but once data are acquired and processed, it is time

to decide what our system should do. Collected data can be used directly from the

Data-Glove's microncontroller or can be send to another device. In Talking Hands,

for example, data are sent via Bluetooth communication to a smartphone were the

gesture recognition algorithm will run and select which stored gesture matches with

the performed one, for detailed information reader is addressed to Section 4.1.

Other devices used by researchers are [20]: Computer screens, Liquid crystal dis-

plays and Speakers. LCDs and speakers sometimes are mounted directly of the Data-

Glove.

During research activity we did also di�erent tests and developed di�erent proto-

types to use the same/similar gesture recognition algorithm aiming to di�erent use of

the technology. For more information reader is addressed to Annex B.
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1.2 Overview

This thesis explains in detail the overall process performed to achieve the current

Talking Hands technology state, starting from the �rst prototype of Talking Hands

shown in Figure 1.1.

In Chapter 3 we describe the hardware of Talking hands, sensors used to acquire

information about the user's movements and the others electronic components. In

this chapter we also analyse possible sensors inside a data glove that can measure the

movements of �ngers, hand and forearm. Clarifying why we used some sensors instead

of others. In last sections of this chapter we describe designs and mechanical struc-

tures developed to overcome the issues of a wearable system for the hand, including

how interaction between user and device works.

In Chapter 4 we illustrate an high level �ow chart of the main parts of the translation

algorithm, which is the core of the system, and see how dynamic and static gesture

recognition algorithms may be integrated in the �nal application.

In the same chapter we describe the main strategy behind the static gesture recog-

nition algorithm developed during this project, how dictionaries work and how we

technically recognize gestures in real time. Relevant tests will be illustrated in the

same section.

In the same chapter we show trials of di�erent gesture learning methods, mainly ma-

chine learning methods for dynamic gesture recognition. We explain strategy devel-

oped for data segmentation, feature extraction and classi�cation with relevant tests.

In Chapter 5 is described the new architecture of the system, replacing �ex sensor-

swith IMUs. To do that, we need also to change the main microncontroller. We will

discuss also about future mechanical/design and ergonomics.
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Chapter 2

State Of Art

Before continuing, there is the necessity to underline a concept: in this thesis some-

times we refer to Sign Language Recognition as research �eld. We have to use Sign

Language Recognition as keyword because something similar and comparable to Talk-

ing Hands only refers to Sign Language Recognition, but in reality what we do with

Talking Hands is gesture recognition. For example in this chapter we will analyse also

some research about Sign Language Recognition.

Data acquisition of the user movement has to be simple enough to realize a portable

system. Second, recognition and translation of a meaningful gesture must be con-

ducted in real time. The translation within a very large set of signs, such as an entire

sign language, needs an heavy computation that can only be achieved in real time with

powerful hardware and software systems. Last, a systems for sign language translation

has to reconstruct the grammar structure of the phrases, because the sign languages

are very di�erent from their respective spoken languages. Di�erent papers and studies

of last decades face with these challenging tasks. For example, [21] and [22] are two

surveys about the major challenges and tools for gesture recognition, in particular

for video-based systems, while [23] presents the issues for an automatic sign language

analysis. In [24] a framework for recognizing American Sign Language (ASL) from

3D data is presented, with a extended analysis of the sign language modelling.

In spite of these studies, nowadays there is not a commercial gesture recognition

system that could improve vocal-impaired interaction.

The majority of works concerning gesture and SL recognition use cameras or other

external devices for data acquisition (e.g. [25],[26],[27],[28], [29],[30],[31]).This ap-

proach can obtain all the data required for a perfect SL translation, such as position,

con�guration and movement of the hands, facial expressions, position and movement

of the body.However, it has some disadvantages when applied in the realization of a

SL translation system that can be used daily. In fact, cameras and position trackers

do not allow system portability, since the users must rearrange their location when-

ever they move. Moreover, most of the papers rely on a simple background or other

hypothesis about the environment, this being a strong restriction in a real-life applica-

tion. The user is referred to [32] for an extensive survey about the gesture recognition

works from 2009 to 2017 focusing on sign language. To overcome the cited drawbacks,
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data-gloves have been adopted by a number of researchers. A major advantage is that

gloves can acquire data directly (degree of bend, wrist orientation, hand motion, etc.),

thus eliminating the need to process raw data into meaningful values. Furthermore,

this approach is not subject to environmental in�uences such as the location of the

individual or the background conditions and lighting e�ects, hence the acquired data

are more accurate (the reader is referred to [20] for a detailed survey on system-based

sensory gloves for sign language recognition from 2007 to 2017).

In literature there are systems that use cameras for data acquisition (e.g. [33],[34],[26]

and [29]). The major drawback of these solutions is the system portability: the user

is forced to be stand in front of the camera and to rearrange the camera location each

time he moves from a place to another. For this reason, other systems are designed

for gesture data acquisition, such as data gloves.

Classic literature about Sign Language Recognition aims to solve deaf commu-

nity's problems building a technical solution that will translate one sign language,

usually the American Sign Language as in [35].

SignAll is the top technology for Sign Language Recognition based on a video system,

SignAll has developed a technology leveraging AI and computer vision that is able to

recognize and translate a sign language. As of now, SignAll is the only company in the

world which has a commercially available product utilizing sign language to spoken

language technology. We refer to SignAll because is the only technology available on

the market for Sign Language Recognition, therefore it performs also gesture recogni-

tion. We refer to SignAll also because there is not e�cient and comparable projects on

the market which performs Sign Language Recognition or gesture recognition. This

will be discussed more in detail in Section 2.2.

2.1 A bit of History

Since late 70's scientists tried to �gure out how to remove physical devices as keyboard,

pointing devices as mouses. In fact in [36] wrote in 1997 authors reported that Chris

Schmandt and his colleagues at MIT Architecture Machine Group demonstrated the

"Put That There" system [37] a system able to recognize pre-de�ned sentences and

word, a maximum of 120 words exactly, treating words as a set of word reference

patterns. An example on command is "Create a blue square there". After the vocal

command, the user uses a pointing device to point on the screen "where" the system

needs to create the object. The space position and orientation technology was made by

Polhemus Navigation Science Inc. The system was called ROPAMS (Remote Object

Position Attitude Measurement System) and it is based on measurements made of

nutating magnetic �eld. All is based on magnetic �eld changes about three mutually

orthogonal coils to correspond to x,y and z spatial axes. One is mounted close to the

chair where the user sits and another is mounted on user's wrist like a watch.

A frame of the original video shown in Figure 2.1.
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Figure 2.1: Put-That-There

It is possible to assume that the �rst device that tries to recognize gestures, in this

case working as pointer (as a mouse) was developed (published) in 1979. [36] contin-

ues asserting that in the last two decades (1980-2000) promises about remove classical

pointing devices and keyboard has largely fallen. Systems that use natural gesture

are mostly con�ned to research laboratories. The scenario described by authors does

not evolved a lot since late '90s.

Till now data gloves or gesture recognition technologies did not replaced mouses

and keyboards. Integrating that technology in operative systems is the minor problem;

the biggest problem is that a really cheap, reliable, ergonomic and friendly to use

technology is still not available on the market.

Nowadays to develop a device similar to ROPAMS, mapping an exact position on

a screen will be really cheap and easy to use. The problem is that as humans, we

su�er of the "gorilla-arm syndrome": if we pose for a short period of time with arm

fully extended arm, hanging our arm in the air using ROPAMS system, we will start

to feel fatigue and discomfort really soon, also after 10 minutes usage.

This is the main motivation behind the failure of this kind of pointing devices.

One thing is to map a pointing gesture on a surface as a screen and another one is to

recognize hand gestures. Talking about gesture recognition algorithm , the former is

really easy to solve, the second is harder.

In "Gesture and Sign language in Human-Computer Interaction" [36], Alistar D.N.

Edwards in "Progress in Sign Language Recognition" divided gestural interaction into



12 Chapter 2. State Of Art

three categories:

� Natural Gestures: spontaneous gesture made by people in human to human

interaction supporting other forms of communication as the verbal form.

� Synthetic Gestures: used in human-computer interaction and designed speci�-

cally for one application.

� Virtual Reality interaction: where gesture mimics a real word action. Natural

and Synthetic Gestures may be included in this set.

Harling et al. in their work: "Hand Tension as a Gesture Segmentation Cue"

[38] explain that sign language recognition can be divided in four mainly classes,

considering gestures simply as any possible movement that the human hand can make.

The �rst group consists of static hand shapes, where only positions of the �ngers are

relevant; the second group consists of dynamic hand shapes, where the gesture is

made also changing and moving hand during time. Considering also hand motion and

orientation the main two groups can be subdivided to:

� SPSL: Static Posture, Static hand location

� DPSL: Dynamic posture, static hand location

� SPDL: Static posture, dynamic hand location

� DPDL: Dynamic posture, dynamic hand location

In [38] author considered hand con�guration and motion to divide gesture into

this four group, we can refer to them lately.

One thing is to recognize hand gesture and �ngers postures and another one is to

recognize sign languages in all their complexity. In [38] authors mistook gestures for

signs of a sign language, as many researchers did.

Today a more accurate de�nition of sign language is reported also in a lot of

studies, especially [20] summarized in this list:

1. Hand position and orientation:

Palm

Proximal Phalanges

Intermediate Phalanges

Distal Phalanges

2. Forearm position and orientation

3. Wrist position and orientation

4. Elbow position and orientation

5. Shoulder position and orientation
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6. Arm position and orientation

7. Facial Expressions

Happy Face

Angry Face

Lips Movement

Shake the Head

8. Movements talking about all the previous points in the list, for example about

forearm rotation performing a gesture:

Backward or forward

Clockwise or counterclockwise

Left or right

As previously explained, it is important to underline that this research does not

aim to translate SLs or a particular SL as American Sign Language.

2.2 Input Method - Vision Based Systems

The majority of works concerning gesture and SL recognition use cameras or other

external devices for data acquisition (e.g. [25, 26, 29, 30, 39�42]).This approach can

obtain all the data required for a perfect Sign Language translation, such as position,

con�guration and movement of the hands, facial expressions, position and movement

of the body.

Vision Based Systems usually use one or multiple cameras to acquire gestures.

Anyway there are di�erent techniques to capture gesture's information using a vision

system. Using for example normal cameras extracting 2D images and a 2D matrix of

pixels, others use techniques based on non standard cameras as thermal cameras or

IR cameras. Some studies are using more invasive techniques requiring gloves with

markers or a particular colour distribution as in [35].

Some studies as [43] developed easy and e�cient way to recognize gestures using

a single camera. As requirement the user needs to frame camera onto one hand, after

that the user can perform a sign, the system will recognize mainly:

1. Skin coloured object,

2. If there is an hand in camera's frame,

3. Fingers con�guration.

Extracting this information [43] recognizes 4 di�erent gestures (thumb up, thumb

down, point and stop gestures) with �nal aim of answering to questions coming from

a robot using a probabilistic framework. Some other works do hand shape recogni-

tion, recognizing just Sign Language alphabet. For example it [44] recognizes using a

particular feature extraction American Sign Language's numbers from 0 to 9.
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In a more complex system like SignAll [35], the solution goes beyond hand shape

recognition or �nger con�guration recognition, as simultaneously tracks the:

1. position of the hands (relative to each other)

2. hand form/hand-shape (position and direction of �ngers)

3. mimicry, facial features

4. position of hands and �ngers (relative t to other body parts)

5. movements etc.

Figure 2.2: SignAll System - marked gloves

SignAll is di�erent from classic research because aims to develop an useful prod-

uct not only to translate the entire data-set of a Sign Language. SignAll has been

cited because today is the only available product in the world doing American Sign

Language recognition, based on cameras and marked gloves. For this motivation we

think it needs an extended explanation to better understand Vision Based Systems

for gesture recognition.

From SignAll website is possible to read requirements for a correct usage of the

system:

� Both users (hearing and Deaf) must have an intermediate knowledge of written

English The Deaf user should use clear ASL, avoiding regional signs

� Users should avoid clothing:

Extremely colourful

Excessive clothing (coats, layers)

Oversized jewellery (bracelets)

Hats that shade or occlude the face
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� The system is sensitive to light, including direct sunlight; the backdrop should

be free of people and objects.

� Hardware needed to utilize the system is the following:

Cameras / camera mounts (desktop version)

Customized lighting (desktop version)

PC

Monitor

Touchscreen / Tablet

Figure 2.3: SignAll usage in a Welcome Desk

However, reading SignAll requirement's list is easy to understand that it is not a

portable system and not easy to use in di�erent kinds of environment. Environment

or clothing (e.g. light, background, objects etc.) dramatically in�uence the right

operation of SignAll.

In fact, cameras and position trackers do not allow system portability, since the

users must rearrange their location whenever they move. Moreover, most of the papers

rely on a simple background or other hypothesis about the environment, this being a

strong restriction in a real-life application.

Another case study regarding Vision based systems has been done in [45], a novel

multimodal framework for isolated Sign Language Recognition has been developed

using Microsoft Kinect and Leap Motion as input devices. Leap motion is kept below



16 Chapter 2. State Of Art

the hands and Kinect is placed in front of the signer, capturing horizontal and vertical

movements of �ngers while the user performs gestures.

Figure 2.4: Kinect Sensors

Kinect uses one RGB camera, as "colour sensor", an IR receiver which understand

deepness of an object thanks to IR emitter placed on the other side of the colour sensor

as illustrated in Figure 2.4, then there is a tilt motor, thanks to this motor Kinect

system can follow recognized object having a total view of 97 (43+27+27) degrees on

the vertical plane. There are also 4 microphones (24 bit 16kHz ADC), anyway audio

in Sign Language Recognition applications is not used.

Leapmotion uses two 640x240-pixel near-infrared cameras spaced 40 millimetres

each other with infrared-transparent window, operates at 120Hz capable of image

capture within 1/2000th of a second and e is able to discern 27 distinct hand elements

(bones and joints).

In [45], authors proposed a system which recognizes 50 di�erent gestures based on

a framework of 7500 gestures (words) of Indian Sign Language (ISL) using Hidden

Markov Model (HMM) and Bidirectional Long Short-Term Memory Neural Network

(BLSTM-NN) based sequential classi�ers.
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Figure 2.5: Gesture recognition using single and double hand: (a) A
single hand gesture (�welcome�) that was hard to estimate in Kinect,
however, captured by Leap motion sensor (b) A single hand ges-
ture (�o�ce�) is captured better by Kinect (c) A double hand gesture
(�thanks�) that was not correctly decoded by Kinect (d) A double hand
gesture (�where�) that was not correctly decoded by Leap motion. Im-

age from [45]

2.3 Input Method - Data Gloves

A Data-Gloveis a sensorized wearable device usually shaped as a classic glove. In

1982 Thomas G. ZimmermanO�site Link of Redwood City, California �led a patent

(US Patent 4542291). In 1987 the �rst article about a Data-Glove was published by

Thomas G. Zimmerman et al. in [46].

Authors presented two versions of Data-Gloves:

� Version 1: the cheaper one. It includes 14 �ex sensors disposed to read abduction

between each �nger and �exion on metacarpophalangeal joints and proximalin-

terphalangeal joints. See Figure 2.6

� Version 2 (Z-Glove): the expensive one. It includes 14 �ex sensors as ver-

sion 1, plus 3SPACE system from Polhemus Navigation Sciences Division. The
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3SPACE uses low frequency magnetic �elds to measure six degrees of freedom.

The small 3SPACE sensor is mounted on the dorsal side of the hand between

the glove's two layers. The 3SPACE is connected to one of the serial ports on

the Apple Macintosh computer, see Figure 2.7.

The 3SPACE requires no �ltering of data. Pholemus Inc. designed the ROPAMS sys-

tem for [37]. Probably 3Space is based on the same technology and it is the evolution

of ROMPAS.

The research done in [46] was passed to Nintendo Co. Ltd. The �rst wired glove

available to home users in 1989 was the Nintendo Power Glove (see Figure 2.8) built to

work with the NES (Nintendo Entertaining System). The Power Glove was designed

by Mattel, based on Zimmerman's Data-Glove. Nintendo's Power Glove did not use

the 3SPACE navigation system but used a series of ultrasonic sensors. There are

two ultrasonic transmitters in the glove and three ultrasonic receivers around the TV

monitor. The ultrasonic speakers transmit few pulses of 40 kHz sound and the system

measures the time it takes for the sound to reach the microphones. A triangulation

is performed to determine the X, Y, Z location of each of the two speakers, which

speci�es the yaw and roll of the hand. Pitch cannot be measured.

Power glove was discontinued after one year, probably because it did not work as

promised and because it was not so intuitive to use. Power Glove was sold for 75$,

equivalent to $155.30 nowadays.
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Figure 2.6: Z-glove Architecture

Figure 2.7: Z-Glove System

Figure 2.8: Power Glove for NES (Nintendo Entertaining System)
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Nowadays after Data-Gloves evolution, is possible to say that Data-Gloves use

di�erent kinds of sensors to understand motion of hands (including �ngers), sometimes

also arms and shoulders.

Usually data gloves are connected to other devices, i.e. Personal Computers or Mobile

Devices, sending them data about:

� Position;

� Velocity;

� Orientation;

� Acceleration;

of hand, arm, shoulder and �ngers or some of them.

The other component connected to the glove is usually a personal computer, a

microprocessor or a smartphone that can elaborate the data and interpret them in

di�erent manners, depending on the speci�c application.

As an example, let us consider a data glove used for virtual reality like the Power Glove.

This glove needs to give to the console/PC data about hand's and arm's orientation,

including �ngers' position. From a theoretical point of perspective, it is possible to

achieve this goal using an accelerometer for each �nger, one for the hand and one for

the arm. The position can be obtained by integrating twice the acceleration measures

provided by accelerometers.

However, in practice, it is not possible to attain a reliable estimation of position

using this procedure, unless very expensive and sophisticated accelerometers are avail-

able. In fact integration errors on cheap accelerometers (less then 10USD) are really

huge, an error within the order of 3Km/min. If the reader needs more information

about this problem, reader is addressed to [47]. The problem of integrating acceler-

ation to have velocity and position using commercial accelerometers is explained in

detail in [47].

We can also directly refer to the Figure 2.9 for reader convenience. Figure 2.9 gives

us a better understanding of expected errors. It suggests that is not recommendable

to use only accelerometers for this kind of tasks.
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Figure 2.9: Errors Estimating Velocity and Position from Accelera-
tion

Data glove may also be realized with sensor parts based on di�erent principles:

� Based on resistive or capacitive technology, those sensors read �exion of a two

bodies between a joint. Those kind of sensors are the widely used, two separate

sections will be used to describe them 3.3.1, 3.3.2;

� Optic �ber: data are extracted observing light's defelxion. Usually those sensors

are composed by a light transmitting material as transparent PET, light emitter

and light receiver. Light emitter are usually LEDs, normal LEDs or infrared

LEDs with its own receiver (light sensor or IR LED receiver); those sensors are

really cheap and can be usually handcrafted. Resolution and robustness may be

compared to resistive �ex sensors.

� Magnetic Hall e�ect sensors: they usually placed directly on the top of each

�nger with a strong magnet on the back of the hand. When a sensor placed on

the top of a �nger moves, hall e�ect sensor recognizes changes about magnetic

�eld orientation and those information will be useful to recognize �nger's �exion.

This system guarantees high level of accuracy and has low manufacturing cost.

It is not suitable to use this �nger tracking system in combination with an

IMU because the strong magnet on the palm will badly in�uence the 3 axis

magnetometer mounted in the 9DOF IMU. An example of this kind of sensors

used for �nger tracking is available [48].

� Pressure sensors, using data collected from pressure sensors placed on the glove.

Those kind of sensor which measure force applied to its own surface can be used

to understand if the user is touching a part of its Data-Glove improving recog-

nition performances, for example if we are doing the "O" gesture (as in Figure

2.10) thumb's �ngertip with index's �ngertip and a pressure sensor is placed on

one or both �ngertip we can be sure that the user is performing the "O" gesture

instead of the "C" gesture (see Figure 2.10) because he/she is touching his/her



22 Chapter 2. State Of Art

�ngertips.

� Accelerometers, in [20] accelerometers are reported as �nger tracker. During

project development we tried to use accelerometers as �nger tracker, and we

reported that it is not possible to use an accelerometer as �nger tracker. The

reader is addressed to Appendix A for a detailed explanation.

Figure 2.10: American Sign Language Alphabet

2.4 Gesture Learning Methods

The Software and �rmware development for gesture recognition is related to methods

used to classify gestures.

In gesture recognition �eld, information coming from Data-Gloves are input for our

classi�ers, data are time-varying signals. It is possible to de�ne two di�erent kinds of

gesture recognition: one is the dynamic gesture recognition, usually referring to Sign

Language Recognition, then we have the simplest one, called static gesture recognition.

In this thesis we deal with both problems, respectively in Section 4.3 and Section 4.1.

We can imagine a static gesture as a picture of user's hand, arm and �nger. Acquiring

that picture we can analyse which gesture the user is performing. A dynamic gesture

instead is a short video of the user's hand, arm and �nger; we have to analyse the

gesture and how the user is moving articulations. For example if I am rotating my

index �nger clockwise or counter-clockwise it will mean two di�erent things, they are
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two di�erent gestures. This is true if I am doing dynamic gesture recognition, will

not be true if I am doing static gesture recognition. If I am doing static gesture

recognition the gesture will be the same because motion is not taken into account. A

sub problem in both static and dynamic gesture recognition is to understand when

the user is really performing a gesture. This problem is known as segmentation, more

about segmentation will be explained in Section 4.3.

There are di�erent approaches to solve the problem. It is possible to develop a gesture

recognition algorithm directly on a Data-Glove to recognize a small set of gestures,

storing gestures' information directly into the Data-Glove or the gesture recognition

device, as in [49, 50]. It is also possible to use a Data-Glove only as input device,

using a more powerful machine to run the gesture recognition algorithm.

Gesture Recognition problem can be viewed from a pattern recognition stand-

point: "The �eld of pattern recognition is concerned with the automatic discovery of

regularities in data through the use of computer algorithms and with the use of these

regularities to take actions such as classifying the data into di�erent categories" [51].

Theoretically a gesture has the same pattern every time, for this reason Pattern Recog-

nition �ts perfectly as automated strategy for gesture recognition.

Set of methods for pattern recognition includes a variety of algorithms. Depending

on �nal application we can choose for example parametric classi�cation methods as:

Linear Discriminant Analysis, Quadratic Discriminant Analysis. Or Non paramet-

ric classi�cation methods as: Decision Trees, Arti�cial Neural Networks (ANN) and

Support Vector Machine (SVM). For non-parametric classi�cation we mean that no

distributional assumption regarding shape of feature distributions per class is known;

viceversa for parametric approaches distributional shape of feature distributions per

class is known, as the Gaussian shape for example.

The arti�cial neural network (ANN) is the most popular method used for machine

learning in the gesture recognition �eld as reported in [20]. ANN are based on units

(nodes) connected by directed links. A link from an unit a to unit b is used to prop-

agate the activation between two nodes. Each link has a numeric weight associated

to it and provides the output of one neuron (node) as an input to another neuron.

ANN are usually represented as weighted graphs. Neurons are described also as set

of layers. Di�erent layers perform di�erent transformations on input signal. Signals

travel from the �rst layer, called input layer, to the output layer (last layer). Neural

networks needs to be trained by processing examples, each example provide to an

ANN a known input, this input is pre-associated to the right-known output. This

procedure forms a weighted connection between the two. Those information are then

stored within the ANN data structure. When trained enough, ANN should be ready

to perform classi�cation even on not pre-learned examples and without being pro-

grammed with speci�c rules. For more information about arti�cial neural networks

the reader is addressed to [pp.727-737] [52].

Hidden Markov Models (HMMs) have been also a popular technique in gesture
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recognition �eld; HMMs are noticeable also in many di�erent applications as com-

puter vision and speech recognition. HMMs are based on Markov Chain Theory. An

example of gesture recognition using HMM is [53]. Galka et al used Parallel Hid-

den Markov Model (PaHMM). In this study, researchers say that this model can be

successfully used for Automatic Speech Recognition and Automatic Sign language

Recognition. Each channel of the PaHMM corresponds to a group of features which

describes di�erent articulations: phalanges, hand, arm. In this work the recognition

for a single channel is performed by a token passing algorithm and an analysis of the

N-best list which contains values (scores) obtained by each gesture model. For more

details about PaHMM and how they are used for gesture recognition the reader is

addressed to [53].

Support Vector Machines (SVM) is one of the most popular approach for super-

vised learning; they are learning algorithms that analyse data used for classi�cation

and regression analysis. After having trained a SVM, it will store most of the training

examples, associating each example to a class (or set), and when receives a new exam-

ple it will associate it to one of the classes. For more detail about SVMs reader can

reefer to [pp.744-748] [52]. Reading descriptions of ANN and SVM they looks pretty

similar, usually is hard to understand which one is the best. The di�erence is mainly

about how non-linear data is classi�ed. Basically, SVM utilizes non-linear mapping to

make the data linear separable. However, ANN employs multi-layer connection and

various activation functions to deal with non-linear problems. An interesting study

about this topic has been edited by Jinchang Ren [54] on classi�cation of MCCs in

mammogram imaging.

A strategy we want to underline, has been used by a gesture recognition commer-

cial product called Myo armband. Myo device turns electrical activity in the muscles

of a user's forearm into gestures to control computers and other devices [50], it uses

a 9-dof IMU and electromyography (EMG) sensors as input data.

Myo's gesture recognition method is interesting because is an hybrid solution in terms

of dividing computational load for gesture recognition between the device (a bracelet)

and a PC. Myo recognizes gestures using an ANN. Which kind of arti�cial neural

network has been used is not public declared, but the procedure to perform gesture

recognition is really clear. First of all, the user has to train the arti�cial neural net-

work connecting the Myo Armbend to his own PC, than he has to perform 5 di�erent

gestures when Myo's software asks. User's input will be used to train the ANN. Once

the arti�cial neural network has been correctly trained, the software on the PC will

re-program the bracelet with the trained ANN.

When this procedure is correctly completed, gesture recognition is directly performed

on the bracelet using trained arti�cial neural network.
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2.4.1 Results

Most of research deals with static gestures, achieving high levels of accuracy, even

99% [55�58]; in [55] an applicative hand glove architecture is described. It has �ve

�ex sensors, three contact sensors and one three-axis accelerometer that serves as an

input channel. It can translate American sign language in form of alphabet and it can

transmit data to a mobile phone; and the overall translation e�ciency is about 83%.

Researches in this study do not explain which gesture recognition algorithm has been

developed. Similar projects are described in [56�58].

In [56] 9 �ex sensors, 11 contact sensors (to detect if user is touching some part of his

hand) and one accelerometer have been used as sensing parts with samples at 500Hz.

This study reports an accuracy on gesture recognition process of about 92%. After

feature extraction, Principle Component Analysis (PCA) was used for the classi�ca-

tion in this study. For more information about PCA, reader is addressed to [56].

In [57] a Data-Glovecomposed of 10 �ex sensors (two on each �nger), an IMU on the

hand and touch sensors between each �nger have been used. They tried to recog-

nize SALS (South African Sign Language) collecting data of di�erent participants.

Using the described Data-Glove 
Based on this hardware, they tried di�erent meth-

ods: Elliott neural network, log-sigmoid neural network and SVM. They respectively

obtained 96%, 94% and 99% of recognition accuracy. In [58] two �ex sensors, one

on index �nger and one on medium have been used as sensors, together with an

ADXL345 accelerometer. At the end of their experiment they came out with 93.75%

gesture recognition accuracy, to understand which gesture the user is performing they

used Euclidean distance, the most similar stored gesture respect the one performed

by the user will be selected.

The hardware in [55�58] is almost the same, and they can vary for some details of

implementation and for mathematical techniques for signs detection and translation.

Others researchers have faced the problem of dynamic gestures recognition (e.g.

[59�61]) with a classi�cation accuracy between 78% and 94%. In [59], a wireless

hand gesture recognition glove is proposed for real-time translation of Taiwanese sign

language. This work does not use any machine learning technique, but they use a brute

force comparison, recording the former posture, how long does a posture persists,

the orientation of palm and the motion trajectory. The accuracy achieved by the

authors was 94% recognizing 5 dynamic gestures. Even in [60] a glove-based system to

recognize a sign language is proposed. In this case, the data-glove comprised of 10 tilt

sensors to capture �nger �exion, an accelerometer for hand motion and an Arduino

platform with a Bluetooth module to connect it to a mobile device and send the

recognized gesture. Since the recognition is performed directly by the microcontroller,

which has limited memory, only 9 gestures are recognized, with an accuracy of 78% for

dynamic gestures. No information about the used algorithm/method has been shown

in the paper. In [61], a data-glove system is proposed for the automated recognition of

Greek sign language isolated signs. In this case, the glove uses a �ve channel surface
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electromyogram and a 3D accelerometer to acquire data. The data was analysed using

Intrinsic Mode Entropy [62], achieving an accuracy of 93% on a dataset of 60 isolated

signs. However, the classi�cation technique was brie�y described.

In our opinion, the most remarkable papers about dynamic gesture recognition

through data gloves are [63] and [64]. In [63] the commercial sensory glove CybergloveTM

is exploited to acquire data about hand con�guration, while the Flock of Birds® mo-

tion tracker provides data about hand position and orientation. Di�erent features

for each gesture (distance and time of the gesture; bounding boxes; position, orienta-

tion, hand-shape and velocity histograms) are extracted and all these features allow

to describe a gesture with a 151-dimensional vector. The tests of [63] show a 92%

(277/300) of translation accuracy between a set of 50 isolated dynamic gestures, using

a multi-layer Arti�cial Neural Network.

In [64], a publicly available dataset of 95 sign categories is used. Data consist of

11 channels of information for each hand: spatial coordinates of the hand, the roll,

the pitch and yaw rotation angles of the wrist and a bend coe�cient for each �n-

ger. The real novelty of that paper was the application of a Bayesian-like paradigm,

known as hierarchical temporal memory [65], for sign language recognition. Their

method learns the spatio-temporal data structures and transitions that occur in the

data without depending on manually prede�ned features to be searched for and works

well in real time. They reach 91% recognition accuracy for a dataset of 95 categories

of Australian sign language.

The di�erences between our approach and the one presented in [64] will be further

discussed in Chapter 4. Table 2.1 shows further details regarding the databases used

in most of the previous studies, such as the type of gestures used with the frequency of

conducting these gestures. In addition, the table clari�es who created the signs along-

side the number of performers. The total number of samples used in the experiments

are known. Respect to studies from Table 2.1 our aim is to recognize any gesture and

not only a �xed Sign Language, mainly because users will not be restricted to deaf

people, Talking Hands aims to help people with di�erent communication diseases.

Users must be able to choose which gesture they can associate to a word, because

in 99% of the cases they don't know SLs. Some study uses a pair of gloves, this is

equal to have a larger set of gesture and more accuracy because user's has doubled

possible con�gurations. Talking Hands system uses a single glove to contain hardware

costs, being also a less invasive wearable system respect to one which uses a pair of

gloves. Talking Hands will be fore sure less accurate using a �xed size dictionary e.g.

200 words dictionary compared to a system which uses a pair of gloves. Respect to

some study Talking Hands system has not been tested on a large amount of samples

and from di�erent users. If Talking Hands system will be a product available on the

market an extremely large study may be conducted on every user/group of users.
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Table 2.1: Table of Data-Gloves for Sign Language Recognition, from
[20]
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Chapter 3

Talking Hands Platform

Data-Gloves' hardware in the last decades started to be built around speci�c sensors

and architectures. For example a Data-Glove which uses �ex sensors to detect �ngers'

�exion is a cliche just as a Data-Glove which uses an IMU to detect hand orientation

can be considered a cliche. Since sensor's industry started to produce really cheap

and reliable commercial IMUs, those sensors are becoming more and more popular.

From Section 3.3.1 to Section 3.4 we will explore the most used sensors to detect

�ngers' �exion and orientation of a rigid body. This will help the reader to understand

why some hardware and architectural solution have been used in the Talking Hands

system. It is important to underline that during thesis work�ow various components

were added, for example in former prototypes an haptic motor was not integrated in

the hardware architecture. From the current prototype a haptic motor with relevant

driver have been included inside Talking Hands' hardware architecture and will be

present also in future hardware iterations.

We can divide Talking Hands hardware mainly in two versions.

� Architecture used most of time during thesis lifetime, which is described in

Section 3.2. It is recognizable because it integrates as sensors two IMUs and ten

�ex sensors.

� The one described in Chapter 5 where hardware architecture has been totally

revised and it will integrates just IMUs as sensors.

First of all lets have a general view of Talking Hands' requirements.

3.1 Requirements

This section explains which are the requirements for our system. Talking Hands needs

to keep track of mainly two things:

1. Orientation of user's hand and forearm;

2. Flexion of user's �ngers.

User's shoulder is not relevant to recognize a gesture. System will be too much inva-

sive. Starting from those basic facts we can now de�ne more speci�c requirements.
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Requirement speci�cation for an embedded object/system is not so trivial, espe-

cially when several scienti�c/engineering sectors are involved, e.g. computer science,

mathematics and electronic engineering. In this section we will show the overall re-

quirements independently merging all macro areas involved, e.g: design, �rmware,

hardware etc.

Requirement Name Requirement Description

Talking The device must have speakers to talk on behalf of the user

Real Time The device must translate in real time gestures into sounds

corresponding to a word, letter or a phrase

Fingers' Flexion The system must recognize and compute the �exion of each

�nger (proximal and intermediate phalanges).

Hand Orientation The system must recognize and compute the orientation of

the hand in a 3D space

Arm Orientation The system must recognize and compute the orientation of

the arm in a 3D space

Wearable The device needs to be wearable. All the HW components

need to be mounted on a device that can be worn by the

user.

User's Tact The device must not in�uence the user's tact. It is necessary

to create a device that will stand on top of the hand, leaving

the bottom free as the user must be able to directly touch

things.

User's Movement Freedom The device should not in�uence user's movements. The user

should be totally free to move his/her hand and arm.

Modularity The device must be composed of two parts, connected by a

coupling/uncoupling system. Hand Module and Arm Mod-

ule.

Record Gestures The user should be able to register a gesture.

Association to Gestures The user must be able to associate to a gesture a letter, a

word, an entire phrase or a sound

Haptic and Visual Feedback The user must receive a haptic and/or visual feedback, be-

cause some user could be heard impaired.
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3.2 Talking Hands Architecture

Talking Hands system does not use a commercial data-glove. A Data-Glove has been

internally developed. Our Data-Glove is realized using a simple architecture to obtain

a low cost device which can be accessible to everybody, aiming for less than 1.000$

per piece.

Figure 3.1: Simple Architecture of the System

The hardware can be divided into three main modules:

� Hand Module: a small custom Printed Circuit Board (PCB) has been developed.

It integrates one IMU (Inertial Measurement Unit) to detect hand orientation;

one button to initialize the system and one haptic motor with relevant driver

to inform user about system's status. The rigid PCB described before has been

hybridized with a �exible PCB. Thanks to the hybridization process, it is possi-

ble to integrate also 10 di�erent �ex sensors tracking proximal and intermediate

phalanges (1 �ex sensor for each phalange) in the hand module. The reader is

addressed to Figure 3.19 for a better understanding.

� Arm Module: one custom board which includes a 32-bit microprocessor; one

IMU to detect forearm orientation; two RGB (Red-Green-Blue) LEDs to check

the system status; a Battery Management System, including a mini-usb con-

nection to recharge the battery; a Bluetooth Low Energy (BLE) module which

contains also a 32-bit Cortex M0 micro controller to manage BLE protocol and

connections between BLE devices. Moreover Arm Module can be used stand-

alone for gesture recognition purposes involving just arm orientation as done in

experiment reported in B.

� User's smartphone.
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Micro Controller Unit (MCU) communicates with di�erent peripherals: IMUs,

Bluetooth Low Energy module, LEDs, Haptic Driver, �ex sensors and the reset button.

In Figure 3.2 is possible to see a summary of how peripherals communicate with the

microcontroller. LEDs, �ex sensors and reset button are treated simply as generic

I/O, communicating with relevant microcontroller's digital or analog ports, IMUs

and Haptic Driver are connected to the same I2C (Inter-Integrated Circuit) bus, each

peripheral has a di�erent address on the I2C bus, the BLE module communicates with

the MCU using a 1152008N1 UART (Universal Asynchronous Receiver-Transmitter).

BLE communicates with smartphones opening a BLE connection as wireless UART.

BLEs are possible to be con�gured in di�erent ways thanks to GATT Pro�les, GATT

stands for Generic ATTribute Pro�le, it governs data organization and data exchanges

between connected devices. One device (the peripheral) acts as a GATT Server, which

stores data in Attribute records, and the second device in the connection (the central)

acts as a GATT Client, requesting data from the server whenever necessary. For more

information about BLE and GATT the reader is addressed to [66].

Figure 3.2: Type of Communication (yellow) between MCU and
peripherals (grey)

The initialization of the system through a button is required to set initial orien-

tation of the user at the origin, more precisely to set the initial data orientation of

the IMUsto point in the 3D space x, y, z = 0, 0, 0. For a better understanding of this

process the reader is addressed to Section 3.8.1. This procedure from now on will be

called: Reset Procedure. Once performed the reset procedure, the user can perform

gestures and the system will correctly translate the signs. In Figure 3.1 more details

about architectural components are presented:

� A Cortex M3 Atmel SAM3X8E is used as micro controller;

� 10 resistive �ex sensors has been used;

� Two BNO055 IMUs are used to collect orientation data;

� A Bluetooth Low energy module is used to communicate with smartphones using

our communication protocol.
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� A 3.7V 1100mAh Li-Ion Battery is used, which ensures an e�ective duration of

5.94 hours.

A solution with 10 �ex sensors has been developed to acquire data of �nger's

�exion. Two sensors are used on each �nger, having information about intermediate

and proximal phalanges joints. The distal phalanges joints are ignored because they

are not relevant for gesture recognition. This solution can be improved using a resistive

�ex sensor which have 2 sensible parts. This will ensure less probability of breaking

sensor's solder pins after intensive usage. Those pins soldered onto Flexible PCB,

after an intensive usage may generate problems decreasing system's reliability, those

problems will be taken into account in Chapter 5.

In some studies (e.g.[67]) the position of the �ngers are detected using EMG sen-

sors. Even if this can be an elegant solution with only one sensor, it can not recognize

the positions of single �ngers, so it is not enough if we want to discriminate a huge

number of di�erent gestures, for example more than 30 gestures.

Two 9 DOF IMUs from BOSCH are used to obtain information about the forearm

and hand orientation. These IMUs require an initial calibration, which it lasts about

30 seconds, but they achieve a high-level of reliability even for prolonged use, thanks

to the built-in functions of sensor fusion. This process will be removed thanks to new

sensor fusion algorithm used in BNO080. It implements an auto-calibration mode and

in Talking Hands future platform there will be no need of calibrating IMU's sensors.

The bracelet (arm part) is the "brain" of the system, inside there is the micro con-

troller, which manages glove's sensors, the Bluetooth module managing the connection

to the personal device and the battery that powers the whole system. The exploded

diagram alongside shows all the components present in the bracelet. A switch has

been used to turn on/o� the whole system.

In following sections 3.3.1, 3.3.2, 3.3.3 and 3.4 we are going to describe di�erent

possible sensors that could be mounted on Talking Handswith explaining why a solu-

tion (sensor) has be choose instead of others.

3.3 Flex Sensors

3.3.1 Resistive �ex sensors

Resistive �ex are widely use to measure bending angle of a �nger in applications

which involves Data-Gloves; data about �ex sensors are not di�cult to be interpreted

because they work just as a resistive potentiometer. Flex sensors are comfortable to

wear because they are really light, thin and with a low power consumption.

Flex sensors are not used only as �nger tracker, they can be used to track other part

of the body, for example knees, they can used also in industrial application, or as

simple switches.
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Figure 3.3: Exploded Diagram of Talking Hands's bracelet

In this thesis resistive �ex sensors are mainly considered for the measurement of

�ngers' �exion.

Among �ex sensors, a special role is played by the passive resistive ones. They

are made of electrically conductive patterns, engineered on top of or within a �exible

substrate (schematized in Figure 3.4) that is able to perceive bending without con-

cerning electromagnetic interference or sensor occlusion [68].

Most of the time �ex sensors are used to measure the �exion of a material or an

object. Imagine to �x a rubber band on a �nger, from the nail to the back of the hand:

when the �nger is bent, the rubber elastic extends. This allow to measure the �nger's

degree of extension. In our application they are used to measure �nger's �exion, more

speci�cally �exion between: phalanges and metacarpals bones; between proximal and

intermediate phalanges.

For example in Talking Hands �rst prototype, illustrated in Figure 3.15 ten �ex

sensors from Spectrasymbol have been used, each one long 55.37 mm. Data of each

�ex sensor is an input for the main microcontroller, it has been treated as a variable

resistance, using a simple voltage driver con�guration.

After intensive testing, is possible to say that resistive �ex sensors are good to

understand �ngers' �exion, but in a Data-Glove application repeatability on measure

is no longer guaranteed because the user will not always wear in the same way the

Data-Glove, �ex sensors may be translated upward or downward the �nger surface.

This translation in�uences a correct reading of �nger's �exion.
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Figure 3.4: Scheme of a resistive �ex sensor. (a) Top view: electrical
contacts in grey, conductive �lm in black. (b) Lateral view: conductive
�lm, in black, on top of a substrate, in a lighter color. (c) Bending
the substrate causes a mechanical stress of the conductive pattern that

leads to a change in its electrical resistance from [68]

3.3.2 Capacitive �ex sensors

Silicone-capacitive �ex sensorsare highly accurate and reliable.

They are usually applied for sensing technology in medical, robotics and soft in-

dustrial industries. The sensor responds to changes in geometry, and communicates

to a 5-channel circuit to display stretch information.

As illustrated in Figure 3.7, these sensors work with di�erences on capacitance.

The sensor recognizes a maximal extension of 79.9% of its nominal length (78.00mm).

A wider extension will be ignored. This fact is signi�cant for our purposes.

Capacitive �ex sensors works on sensing the elongation and not �exion. This is a

really important fact to consider. For example they will su�er much less from the

problem described previously in Section 3.3.1.

One of the �rst points to consider in this study has been the calculation of the max-

imum extension for each �nger in the interested areas. A test of the sensor mounted

on the �ngers has been performed and the results are reported on the following table:

Finger Max Extension[mm]

Thumb 25.16

Index 30.24

Middle 25.52

Ring 29.51

Little 32.11

This is enough to infer that the extension of these sensors is 50% larger than the

one needed for our purposes.

Capacitive �ex sensor are really precise and easy to use, more than the resistive one.

Capacitive �ex sensors have not been used in Talking Hands because of their extremely
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Figure 3.5: How a Flex Sensor Works

Figure 3.6: Silicon Bend Sensor from Stretchsense and Circuit
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Figure 3.7: Silicon Bend Sensor from Stretchsense Charateristics
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high cost. Those �ex sensors are ideal for our application; costs for integrating this

technology are too high also during the production phase respecting our target price.

Stretchense itself is selling a glove with inside its capacitive �ex sensors, prize for a pair

of gloves is about 7.150$. This means 3.575$ per glove which uses just 5 capacitive

�ex sensors with two sensing zone to measure bending of the �rst two phalanges.

Stretchsense's glove architecture is visible in Figure 3.8.

Figure 3.8: Stretchsense's MoCap Glove

Moreover capacitive �ex sensorsfrom Stretchsense can understand splay movement

thanks to con�guration of this particular splay sensor. In the diagram a splay sensor

is showed with relevant channels: A, B and C. Channels A and C are will help us to

determine if splay movement is occurring. Channel B is placed above and between

channels A and C to capture bending at the middle knuckle. If index �nger moves to

the left, channel A decreases in length and channel C increases. Conversely, when the

�nger moves to the right, channel A increases and channel C decreases. Looking at

the di�erence enables us to determine the �nger's lateral position.

Figure 3.9: How Splay Sensor works

3.3.3 Sensors with Stainless Steel Soul

Main article about yarn-based stretchable sensor arrays (YSSAs) is [69]. It is an

innovative and original work. This study proposes YSSAs as low cost and reliable
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sensors.

What is really interesting in the article is how YSSAs are built and made. In Figure

3.10 is possible to understand sensor's components and relevant materials.

Sensors consist ofby (in order from inside to outside):

� Soul of Staineless Steel,

� Strends of Polyester which surround stainless steel soul,

� A rubber membrane,

� Spiral of Polyester wire,

� Membrane of polydimethylsiloxane (PDSM) sleeve.

Figure 3.10: Yarn-Based Stretchable Sensor Array - Schematic illus-
tration

YASSAs sensors shows also a linear growth considering Stress (deformation) - Volt-

age relation. As illustrated in Figure 3.11. Experiment is about bending the YASSA

sensor 1 time per second. Authors also declare a stretch�release response time of less

than 15 milliseconds. In a gesture recognition application, this technology will be

more than enough to recognize gestures.
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Figure 3.11: (Left) Linear �tting of stress-voltage - (Right) Gener-
ated voltage signals of the YASSA sensor

3.4 Inertial Measurement Units

During all the duration of this thesis a lot of focus was about IMUs understanding,

choosing the best IMU believing that is the best on the consumer market. This project

mainly aims to build a real product so a commercial IMU needs to be used. Highly

cost IMUs (>30 USD) will determinate a high cost for Talking Handsto be on the

market. The target is a product under the price of 1000 USD.

In the current version of Talking Hands two IMUs are used. In future versions eleven

IMUs BNO080are expected to be used. High cost on sensors means do not obtain a

relatively low cost product in production phase.

In this section IMU technology is explained for a better understanding about why

we choose this technology as main actor for this system.

An inertial measurement unit IMU is an electronic device that measures and re-

ports a body's speci�c force, angular rate, and sometimes the magnetic �eld sur-

rounding the body, using a combination of accelerometers and gyroscopes, sometimes

magnetometers. IMUs are typically used to manoeuvrer aircraft, including unmanned

aerial vehicles (UAVs) and spacecraft, like satellites and landers. [70�73].

3.4.1 9 or 6 Degree of FreedomIMUs

Typically a critical point is choosing the right IMUmodule for the particular applica-

tion and which IMU is right for your application. Six Degree of Freedom IMU does

not use the magnetometer and this might be an advantage since magnetometers are

highly sensible to the environment, i.e. the measures can be corrupted by the presence

of external magnetic �elds or due to the closeness to magnetic-iron materials.

However, a fundamental question arises: is the 6 Degree of Freedom IMU suitable

for our purposes? Clearly, a partial loss of information occurs, and hence the key point

is establishing whether acceleration and angular velocity are su�cient to recover the
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orientation or not. While from a theoretical point of view the answer is positive, in

practice the outcome is not sure.

With a 6 Degree of Freedom IMU drift starts to be huge after 2-3 minutes. A

rude way to solve the problem is resetting the IMU every time the drift starts to be

relevant, putting the dataglove in the known initial position then resetting the IMUs.

That is no acceptable for our application and we decided to integrate the magnetome-

ter in the IMUs, using two 9 Degree of Freedom IMUs.

Lets now introduce the problem called Gyro drift: not going back to zero-rate

value when rotation stops. Gyro drift occurs in inertial navigation systems (INS,

in area navigation/RNAV). An INS system consists of the inertial platform, interior

accelerometers and a computer.

There are two sorts of gyro drift:

� Leveling Gyro Drift: the random rotation of the gyroscope around the axis

will tend to shift the platform away from the horizontal causing an oscillation

action, which the accelerometers try to correct. This oscillation, depending on

its period, will cause velocity errors. Velocity errors will be re�ected on position

errors.

� Azimuth Gyro Drift: Azimuth gyroscope drift is caused from small position

errors. However, gyro drift about the azimuth axis (pitch, lateral axis) produces

small errors compared to the initial misalignment errors in azimuth.

To correct the Azimuth and Leveling gyro drift more information are needed. A

magnetometer can be used to correct it.

Merging all those information in a sensor fusion algorithm e.g. AHRS (Attitude

Heading Reference System) algorithm is possible to have a more reliable system.

The best IMU solution for us in terms of money, precision, reliability and repeata-

bility of the measures are BNO080 or BNO055 from Bosch Sensortech.

Before arriving to IMU solution, di�erent approaches have been tried. First of all

we tried to understand if it was possible to use accelerometers to track hand position,

integrating acceleration two times, obtaining position. We previously clari�ed why

is not possible to use a commercial accelerometer to obtain position and velocity

and a more detailed explanation is available in [47]. After that, we also tried to use

accelerometers as �nger trackers, replacing �ex sensors. We found that it is also not

possible, we tried in an empirical way proposing an experiment to clarify this concept,

the reader is addressed to Appendix A.
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3.4.2 BNO055

BNO055 is a System in Package (SiP), integrating a triaxial 14bit accelerometer, a

triaxial 16bit gyroscope with a range of ±2000 deg per second, a triaxial geomagnetic

sensor and a 32bit microcontroller running the company's BSX3.0 FusionLib software.

With a size of 5.2 x 3.8 x 1.1 mm3, it is signi�cantly smaller for our purposes.

Bosch declares that BNO055 is particularly suitable in applications like:

� Augmented reality

� Navigation

� Gaming

� Fitness and well-being

� Context awareness

It is worth to note that the role of IMUin those application is very close to our

case, and this is a further con�rmation of a good choice.

BNO080is really similar to BNO055, reader is addressed to download BNO080's data-

sheet for further and detailed information.

3.5 Processing Units

A Microcontroller or MCU (Micro Controller Unit) is a small electronic component

which is the brain of nowadays embedded systems.

In Data-Glove based applications microncontrollers are used as main component to

collect data from sensors, running a gesture recognition algorithm or a part of it.

Today in Data-Gloves we usually �nd more microncontrollers, especially thanks to

the huge growth of System On a Chip (SoC) technology. A SoC is a system were

the microncontroller may be just a part of it, in the same integrated circuit we found

also more peripherals, every component of the SoC is produced on the same man-

ufacturing process. A bit di�erent from SoCs, are Sistem in Packages (SiPs). The

di�erence between SiPs and SoCs is the manufacturing process; indeed SiPs do not

store components in one integrated circuit (substrate), but has multiple chips inside

the same package, a SoC instead integrates all the needed peripherals just in one

substrate. SiP's Dies (a small block of semiconducting material) contains integrated

circuits (ICs) which may be stacked vertically on a substrate as in Figure 3.12. They

are internally connected by �ne wires that are bonded to the package; those ICs may

also be connected to passive components (as resistors or capacitors) and mounted

on the same package. This means that a complete functional unit can be built in a

multi-chip package, and few external components need to be added to make it work.

For a better understanding the reader can refer to [74].
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Figure 3.12: Comparison among SOC (System-On-Chip), and SIP
(System-In-Package) from [74]

For example in our Data-Glove application we have a SiP component: the IMU

(BNO055). BNO055 is a system in package because it integrates a triaxial 14-bit ac-

celerometer, a close-loop triaxial 16-bit gyroscope, a triaxial geomagnetic sensor and

a 32-bit microcontroller (ARM Cortex M0) running the BSX3.0 FusionLib software.

The previous introduction about microncontroller, System in Package (SiP) and

System On a Chip (SoC) is done for a better understanding of the technology behind

Talking Hands' architecture, underlining today's trend to decentralize computation

also on an embedded system. IMUs perform all the computation in its own System in

Package (SiP) obtaining precise data about orientation with its own microncontroller

and its own sensors.

Developers and engineers do not have to face and manage hardware/�rmware in-

tegration of di�erent kind of sensors (magnetometers, gyroscopes and accelerometers)

but can easily relay on �ltered data directly from the SiP. It is possible to say that

nowadays in a Data-Glove application the main microncontroller is not chosen because

of its computational performances. It is chosen in relation of how many di�erent SiP

it is able to manage. For example in Chapter 5 the microncontroller will be changed

because the old ARM Cortex M3 is no longer able to manage the new architecture

with 11 IMUs connected using the I2C interface. It is not possible to connect 11

BNO080 to the same I2C channel because BNO080 can be con�gured only with 2 dif-

ferent I2C addresses (0x4A or 0x4B), so to manage 11 IMUs 6 di�erent I2C channels

are needed and every channel will host maximum 2 IMUs.

Computational power is no longer a problem if the gesture recognition algorithm

runs on another device and gesture's data are stored also in another device or an

external memory, for example on a smartphone or on a personal computer. In fact

lot of researches use just an 8-bit microncontroller as the Atmel AVR ATmega328P

of an Arduino board. This microncontroller has 14 digital IO pins, 6 analog inputs

and a 16MHz crystal oscillator, not at all comparable to the BNO055's or BNO080's

microncontroller.
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3.6 Talking Hands Prototypes

One of the biggest challenges during the development phase was the creation of design

and mechanics. Talking Hands has been thought to guarantee portability and comfort

without compromising user's tactile sensitivity.

Figure 3.13: Palm

Figure 3.14: Back of the Hand

In this section di�erent prototypes will be described, showing many di�culties

encountered during the design phase and how those problems have been faced.

The structure of the �rst prototype was thought to allow all the possible movements

to test the entire system in a real situation. It has been our �rst test bench.

In the �rst prototype shown in Figures 3.14, 3.13, 3.15 the main objective was to

create a structure which allows integration of sensors (IMUs and �ex sensors) leaving

the user free to move any articulation of his hand and forearm.

Design a slot for forearm's hardware components has been quite easy: a lot of space is

available on the forearm and it is possible to consider it as a fully-rigid body. All the

hardware components regarding the forearm have been inserted in Part c) of Figure

3.15. Arm part is really bulky because an Arduino Due has been used as prototyping

platform, a huge volume has been taken by it.



3.6. Talking Hands Prototypes 45

Housing all hardware components on the hand-part has not been so easy as for the

forearm. During design phase of the hand part two major technical problems have

been faced:

1 IMU integration in the hand structure: the IMU needs a rigid structure to

be mounted on, if the exoskeleton-hand-part slides on the user's hand, micro-

controller will receive false variations about hand's orientation. IMU must be

integral to the rigid body where it is mounted.

2 Allow �ex sensors sliding while �nger bends. In the meanwhile �ex sensors

should not be subject to torsion, otherwise data could be interpreted erroneously

as �exion.

About point 1, a rigid structure has been created following the hand shape. Inside

Hand Part (visible in Figure 3.15 b) an IMU BNO055 has been placed with all the

wiring needed to make �ex sensors, IMU and reset button work. About point 2,

�ex sensors come out from the hand part thanks to rails positioned in proximity of

knuckles, after coming out from those rails, �ex sensors continue to be driven by tracks

on the rings (see Figure 3.15 a).

As for the hardware architecture is possible to summarize the mechanical system

in three parts:

� A set of rings for housing the di�erent �ex sensors (Figure 3.15 a);

� The back of the hand, including all cable connections and IMU (Figure 3.15 b);

� The arm part connected to the previous via a fabric strap, through which the

cables pass; it has the space required to insert the microprocessor, an IMU, the

bluetooth communication module and the battery (Figure 3.15 c).

The �rst complete prototype is visible in Figure 3.16.
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Figure 3.15: Cad of Talking Hands. a) System of Rings b) Hand
Part c) Arm Part

Figure 3.16: Real First Prototype of Talking Hands

The second iteration started from the prototype previously described, this new

one, maintains functionality of the original one, but it is lightweight and the wear-

ability is also improved. Transparent and grey part visible in Figures 3.17 and 3.18

are 3D printed using a Formlabs Form 2 resin SLA 3D printer. Black part on the

hand is 3D printed using an SLS industrial printer; �exible nylon has been used as

material.

In Figure 3.18 is possible to see 4 transparent part mounted on the black one. There

are guides allowing �ex sensors to slide without being jammed while user closes/opens

one or more �ngers. This part replaces rails described in the previous prototype.

On the bracelet a 1.800mAh battery were mounted on the right side, a custom PCB
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has been created. Connection between the arm part and the hand part are done using

�exible silicone wires which prevent the cables from breaking. If we use standard

cables to wire the system, after a brief usage wires which connect �ex sensors usually

break up. In the previous prototype fractures to wires were really common, using this

particular silicon wires this problem is no longer present, also after one year of usage.

Figure 3.17: Lateral view of the second prototype

Figure 3.18: Top view of the second prototype
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Third and last built prototype, shown in Figure 3.19, has new custom PCB on

the arm part. A Flexible PCB has been realized trying to remove mechanical system

which allows �ex sensors to be used without any external accessories.

Flexible PBC is visible in Figure 3.19 on the hand. A haptic motor and relevant driver

have been added to the system as described in Section 3.2, with the possibility to use

more than 100 di�erent waveforms as haptic feedbacks for Talking Handssystem state.

For example if Talking Handscorrectly translated a sign into speech the glove will give

as feedback a short vibration. This haptic feedback is very important for hearing

impaired users.

The textile glove has been produced to test new hardware without loosing to much

time on mechanical development, this solution has been temporary taken for hardware

and software evaluation process.

The Flexible PCB is anchored to the textile glove thanks to velcro positioned between

the FPCB and the glove. Rails for �ex sensorsthis time are made directly inside glove's

�ngers.

Figure 3.19: Current Prototype with Naked Hand Part
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Starting from the current prototype, the main objective is to hide the electronic

parts as much as possible while keeping the glove structure lightly, in terms of visual

impact (user acceptance) and physical dimensions. 1 We will consider di�erent ways

and combinations of styles, materials and shapes, to arrive at the �nal goal. We will

analyse the pros and cons of using for example a more organic design, we will consider

the use of combinations of rigid and �exible materials, trying to reduce the parts and

create a monocoque object, easy to clean and wear.

Naturally, we will take into account relevant negative feedback of the textile glove,

which for example limits the use of touch and makes its use uncomfortable in certain

periods (e.g. use a textile glove during summer), taking into account also more dif-

�cult targets, such as patients with ASD (Autism Spectrum Disorder), considering

that people with ASD usually hate to wear gloves, a more lightly and charming device

will be preferred especially by youngest people with ASD. The same process will also

be done for smartphone's application. We must take into account the diversity of end

users, with respect to age, skills and residual skills. Therefore, we will simplify the

architecture, designing a more immediate and natural user experience and eliminate

all those more technical functions that might lead to confusion the user.

3.6.1 Talking Hands Ergonomics

Until now, we thought about mechanical structure design of Talking Hands just with

the aim of test former prototypes' hardware. A solution built with the aim of enhance

user experience has not been described. In this subsection we will take care also about

Talking Hands' ergonomics and user experience.

Ergonomics is the science that deals with the interaction between elements of a system

(e.g. humans, environment, technological components) and the function for which they

are used, in order to improve the satisfaction and overall performance of the system.

In practice, it is that science which deals with the study of interaction between people

and technologies. As a multidisciplinary science, in fact, it �nds application in three

main areas:

� Physics,

� Cognitive,

� Organizational.

Starting from the current prototype, we tried to �nd the right compromise be-

tween functionality and form, taking into account the dimensional and morphological

constraint given by the hardware. Main goal of the design phase is to lightening the

structure, without prevent the user's touch (sense). A �rst sketch has been developed

using organic geometry, simply adapting device's shape to the hand shape, this sketch

is visible in Figure 3.20.

1This study has been conducted with master student Michele Di Carlo, Industrial Designer.
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Figure 3.20: First Sketch - Organic Geometry

The sketch developed using organic geometry has been a good �rst iteration, es-

pecially because a huge quantity of material has been removed, structure is lighter,

but it still have hardware exposed in plain sight. The same problem will remain in the

sketch drawn during the second iteration (see Figure 3.21) with the combination of

rigid materials (rings and back of hand) and �exible materials (connections between

rings and back of hand). The idea was to use auxetic geometries managing di�erent

hands' sizes, making the structure softer where �ngers bend.

With respect to the current textile prototype, we began to work on a more minimal

shape that covers �ex sensors, leaving much of the palm area free.We have therefore

followed this path trying to free the area of the �ngertips as well. Regarding materials,

a combination of silicone and textile materials can be used to insert the �ex sensors

(green parts in Figure 3.22).

Thus we arrived at the development of the �rst real concept, which featured a minimal

design shown in Figure 3.22.

Although the concept was intended to solve the aesthetic problem and the problem

related to the poor breathability of the fabric glove, it did not solve some key points

relating to the various user groups: Product limits use of the �ngertips, wrapping

almost the entire surface of the �ngers. Such an impactful wearable object could cause

a refusal for a more complex user such as people with autism spectrum disorders, for

the majority of people with ASD, it would be unthinkable to put their hand into a

similar glove.
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Figure 3.21: Second Sketch - Auxetic Geometry

Figure 3.22: First Render, using �ex sensors
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3.7 Smartphone Application

In this section we will describe the Talking Hands' smartphone application.

Figure 3.23: Home screen Architecture

Figure 3.24: Dictionary screen Architecture
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In Figure 3.24 is possible to see how application's architecture has been developed.

The user in home screen have the possibility to

� connect/disconnect his own device;

� choose dictionary he/she wants to use;

� Mute/unmute the system;

� Reset initial orientation (see Section 3.8.1);

� Select spoken language;

This application has been created also to be used by a speech therapist. The

doctor can also select di�erent patients using the "select pro�le" button. This feature

can also be useful for a family which has one or more people that needs to use Talking

Handsor for an hospital/clinic.

When the user select "dictionary" he is redirected to another main page of the system;

in this environment the user can record gesture associating to each gesture a number,

letter, an entire phrase or a word creating his own dictionary of gestures. He can

also import/export dictionaries, change meaning to a gesture or change the word

associated to a gesture without delete the word. It is similar to the rename function

we have on PCs, we can rename the word associated to a gesture and moreover we

can substitute the gesture associated to a word just clicking on relevant buttons. See

Figure 3.24. Users have also the possibility to import/export dictionaries, in this way

users can share dictionaries. This will be really useful for a speech therapist: if he

needs to do the same exercises with more than one patient, he can import an already

existing dictionary made by another person. This feature will be also meaningful in

case the user want to change smartphone or operative system. The entire database of

gestures will be preserved.
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3.8 Interaction

Talking Hands' mechanical structure and hardware architecture have been described,

but to guarantee usability, interactions between the user and Talking Hands must be

clearly de�ned. Relying on physical and cognitive ergonomics, interactions between

the system and the user have been developed in parallel in order to optimize the

whole system. In this section the two main activities: Record Gesture" and "Talk",

are summarized respectively in Figure 3.25 as activity diagrams. The round labels 0

and 1 in Figure 3.25 describe how the two diagrams are connected.

Three stages of interaction will be illustrated:

� Interaction between the user and the data glove;

� Interaction between the device and the application;

� Interaction between the �nal user and the whole system.

Each stage is represented by a column in activity diagrams. In Subsection 3.8.1

we are going to illustrate how reset procedure works, this solution has been found

to remove external accessories as camera etc. to understand the initial orientation of

Talking Hands system.
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Figure 3.25: Interaction Activity Diagram - Talk and Record Ges-
ture

3.8.1 Reset procedure

One of the fundamental interactions for the correct functioning of Talking Hands is

IMUs' reset procedure. Whenever the user rotates from his initial reference system

(frame) to another point in space, the IMU will detect rotations respect the ini-

tial frame. Gestures have been recorded in relation to the initial frame, if the user

moves/rotates from the initial frame without the aim of performing a gesture, sensors

will detect a false rotation. This means that the gesture recognition algorithm will

fail in recognizing gestures.

A practical example is reported below: In our dictionary we have di�erent gestures

already recorded, including "hello" simply raising the hand close to the shoulder, as

shown if Figure 3.27a. If we do not move from initial frame and than we perform

"hello" gesture, the system will correctly recognize it. If we rotate 180 degree around

gravity axis, and then we perform the gesture "hello" the system will not recognize

it, because all data are shifted with a rotation of 180 degree as in Figure 3.27c.

For this reason, a reset button has been inserted, one physical and one digital

on the app as shown in Figure 3.26. The �rst was inserted on the glove taking into



56 Chapter 3. Talking Hands Platform

Figure 3.26: Reset Button Position

consideration an independent user. In the second case, we are talking about non-

autonomous users for which the speech therapist or tutor will manage reset procedure

from the smartphone.
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(a) Initial Frame

(b) The System correctly detects the hello gesture,

the user had to reset the initial frame after a 180

degree rotation

(c) The System does not detect the hello gesture,

user did not reset the initial frame after a 180 de-

gree rotation

Figure 3.27: Explanation of Reset Procedure

3.9 Discussion

Respect to other works Talking Hands di�erentiates mainly because aims to solve

problem in the real market and not only for research purposes. A lot of attention

has been gave to Human Machine Interaction and Design. Talking Hands as wrote in
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Section 3.1 must be wearable and it does not have to in�uence user's tact/movements.

Other studies did not reach this degree of detail and consistency in every single piece

of hardware or mechanical structure. Nevertheless it is also true that Talking Hands

system cannot recognize with an high percentage of accuracy (>90%) a large set of

gesture in the same dictionary (>200 gestures). What has been done in this research is

�nding a trade-o� between cost, usability and performances. This device will be sold

at less than 1.000$ per piece, imagine that Cyberglove�, used in a lot of researches

(see 2.1) is sold at 13.750$.
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Chapter 4

Gesture Recognition Process

Talking Hands is able to collect data of hand and arm orientation and �ngers' �exion.

Once data have been collected, �ltered and properly processed thanks to �rmware

written on Data-Glove's memory, data will be ready as input for two di�erent algo-

rithms: static or dynamic gesture recognition algorithm. They are respectively de-

scribed in Sections 4.1 and 4.3. We remind that in case of static gesture recognition,

con�gurations of hands and arms do not involve any motion. Dynamic gestures, like

"Good morning" and "House" in American Sign Language for example, express their

meaning also through movements. The main di�erence between static and dynamic

signs classi�cation lies in absence/presence of a temporal structure. As previously

discussed, a dynamic sign is characterized by spatial and temporal information: the

same hand con�guration can have two (or more) di�erent meanings according to the

performed movement. As a consequence, an algorithm for the classi�cation of dynamic

signs must be able to store the information coming from sensors while a gesture is

performed.

In case of static gestures, parameters to be analysed are the following:

1. Hand orientation:

Palm orientation

Proximal Phalanges

Intermediate Phalanges

2. Forearm orientation

In case of dynamic gestures we can update the list in this way:

1. Hand orientation and movements:

Palm orientation and movements

Proximal Phalanges

Intermediate Phalanges

2. Forearm orientation and movements

3. Movements of all the previous elements in the list, for example about forearm

rotation performing a gesture:
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Backward or forward

Clockwise or counter-clockwise

Left or right

This means that in case of dynamic gestures movements are really important, vice

versa they are totally ignored in static gesture recognition. This because in dynamic

gesture recognition moving an articulation clockwise or counter-clockwise can change

a gesture's meaning.

The strategy to simultaneously use those algorithms is described in Figure 4.1.

In this Chapter we will compare Talking Hands also with some studies about

Sign language Recognition, but is important to remember that Talking Hands is a

wearable device for gesture recognition that is oriented to support people with vocal

impairments in ordinary life. This device does not translate sign languages; it will

be used as an AAC device and gestures do not have a prede�ned meaning, the word

associated to a gesture will be chosen directly by the user. Talking Hands has been

thought as a user-friendly device with a great portability that allows to vocal impaired

people a basic interaction with everyone. These goals are achieved through software

design solutions that allow to simplify the di�erent tasks.

The main goal of software parts is to develop a system which allows users also

to customize their vocabulary and to be able to fully customize their own dictionary

autonomously, without having a standard reference as a Sign Language. In case of

people with Autism Spectrum Disorder or Down Syndrome, it will be really hard to

teach them a sign language; an easiest approach is to record gestures already used from

those patients inside Talking Hands application. People with some motor diseases will

face many problems to use a sign language, also if they know it. For example some

user cannot move �ngers so they must use their signs to talk and Talking Hands has

to face this situation too.

Strategies and methods adopted to solve these problems customizing dictionaries

are explained in Subsection 4.1.1.

4.1 Static Gestures Recognition

The work described in this section (Static) has been done using the �rst and second

prototypes of Talking Hands, in evolution with the hardware and design of Talking

Hands system. Also the software and the �rmware have continuously been integrated

and developed.

There are many limitations in gesture recognition systems. The �rst challenging

tasks is the collection of movements data. In Talking Hands data acquisition of user's

movement has to be simple enough to realize a portable system. Second, the transla-

tion of a meaningful gesture must be conducted in real time. The translation within
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Figure 4.1: Gesture recognition using Talking Hands System

a very large set of gestures, e.g. an entire sign language, needs an heavy computation

that can only be achieved in real time with powerful hardware and software systems.

Furthermore, a system to translate gestures in voice should reconstruct phrases' gram-

mar structure, because also sign languages for example are very di�erent from their

respective spoken languages. Di�erent papers and studies of last decades face with

these challenging tasks.

Most of the works in gesture recognition use advanced mathematical tools, such as

Neural Networks ([75]), Hidden Markov Models ([24], [29]), Support Vectors Machines

([67]), Fuzzy C-Means Clustering ([76]). Talking Hands uses a simpler solution and

the gesture recognition is based on a deterministic approach, using a distance function

de�ned on the space of the sensors data. Nevertheless, this approach reaches a high
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Figure 4.2: Talking Hands Set

level of translation, both on recognition rate and on the number of gestures point

of view, to some extent better than the other modelling solutions. The proposed

solution can not handle with dynamic gestures and this is the major drawback, but

we will discuss also a dynamic gesture recognition approach in Section 4.3. However,

a satisfying communication experience can be o�ered to the �nal user also with the

Static approach.

The software of Talking Hands consists of two main modules: one on the glove

(�rmware) and one on the smartphone. The �rmware pre-processes the sensors data

and establishes if the user is performing a meaningful gesture. The smartphone re-

ceives data from the glove and uses the speech synthesizer to talk. The translation

of the gesture into a text word can be implemented both on the �rmware and the

smartphone application, depending on the product version. For example in the very

�rst prototype the gesture recognition algorithm has been implemented directly on

the glove and the smartphone was used only as speaker.

4.1.1 Translation through Scenarios

Also if Talking Hands does not translate entire sign languages, it can guarantee to

a deaf person (or to a vocal impaired) a good communication through a scenario

translation, that is one of the most important novelty of this work.

We de�ne a Scenario as a set of gestures that Talking Hands can translate in a

single session. Hence the system can translate the gestures of a scenario at time, that

can be selected through the smartphone application. The user can switch among the

scenarios on-line, i.e. during the usage without the need of re-initializing.

This approach leads to some important advantages. In a scenario approach, ges-

tures can be easily recorded by the user through the smartphone application. The

user can associate a gesture to a word, a letter, a sound or to an entire phrase and then

the gesture is assigned to one or more scenarios, as shown Figure 4.3. This approach

enlarges the set of gesture that the system can translate, without losing reliability.

Hence, the same gesture can have more than one translation in di�erent scenarios.
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Moreover, similar gestures would not be misunderstood if they are not in the same

scenarios. Since the number of possible scenarios is limited only by the memory of

the smartphone, the user can have a huge set of gestures, where the limitation is due

mainly to the cognitive load of the user which has to remember and use properly the

scenarios and their gesture. In the actual prototype, the maximum number of gestures

in each scenario is about 40 − 50, but this limitation is due only to the correlations

that occurs among large set of gestures. Thanks to these advantages, the translation

through scenarios o�ers a good communication for the vocal impaired.

Figure 4.3: Schematic representation of three simple scenarios

4.1.2 Distance Function

The algorithm uses a distance on the space of vectors that represent the gestures both

to establish if the user is performing a gesture and to link the gesture to its translation.

This distance is de�ned to be both accurate and robust, i.e. if the data-glove has one

or two broken sensors, the translation still works.

We formally introduce a proper notation to give a clear presentation of the distance

function. We use quaternions to have information about orientations of the hand and

of the forearm, with respect to the initial position, using the results in [77]. This

choice avoids the well-known gimbal-lock problem of the Euler angles and uses less

bytes than the Direct Cosine Matrix (DCM). The data coming from sensors at each

sample time consist of 18 integers: 4 for each quaternion of the two IMUs and one

for each �ex sensor. We denote the quaternions coming from the IMUs of hand and

forarm with h = (h1, h2, h3, h4) and a = (a1, a2, a3, a4) respectively. According to the

BOSCH BNO055 data-sheet, the values of hi and ai are in [−214, 214], where 214 is a

scale factor. We remark that, since we are using quaternions that describe rotations

in the 3D space, the following identity holds

‖h‖ =
√

(h1)2 + (h2)2 + (h3)2 + (h4)2 = 214
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so we de�ne Q = {h ∈ Z4 : ‖h‖ = 214}. The �ex sensors data are denoted with

f = (f1, . . . , f10) and their values are in [0, 1000]: if f i = 0, the respective �nger joint

is totally bent. So we de�ne F = [0, 1000]10.

A data package coming from sensors during a single loop of the micro controller

is denoted with

s = (h,a,f) ∈ Q2 ×F = S

which is a 18 dimensional vector. With this notation, a distance function is a function

d : S × S → Z≥0

and it has to be equal to zero if and only if s1 and s2 describe the same gesture.

The straightforward de�nition of euclidean distance is meaningless in S, due to the

two quaternion h,a components. Hence, the two quaternions h = (h1, h2, h3, h4)

and−h = (−h1,−h2,−h3,−h4) represent the same orientation, but their euclidean

distance is not equal to zero. To overcome this issue, a proper distance function in Q
must be used. Following the results in [77], we de�ne

ϕ : Q×Q → [0, 1000] ϕ(h1,h2) = int

[
2000

π
arccos

(
|h1 · h2|

228

)]
(4.1)

where |h1 · h2| indicates the absolute value of the standard dot-product. The multi-

plication factor 2000/π is introduced to have the same order of magnitude between

the distances of quaternion and �ex sensors, while the normalization factor of 228

derives from (4.1.2). The distance between two data vectors s1 = (h1,a1,f1) and

s2 = (h2,a2,f2) is de�ned as

d(s1, s2) = ϕ(h1,h2) + ϕ(a1,a2) +
10∑
i=1

|f i1 − f i2|,

which is the sum of quaternions and �ex sensors distances. The overall distance com-

putation requires: 27 sums, 10 multiplications, 10 comparisons, 2 arccos evaluations.

This function is very accurate and it is equal to zero if and only if s1 and s2 have

exactly the same orientations and �ex sensors values. However, it is not fault toler-

ant: if there is a broken sensor, the distance function does not recognize it and the

whole system fails. To overcome this issue, we introduce a threshold M ∈ Z≥0 and

we consider two vectors s1 and s2 the same gesture if

d(s1, s2) < M

Tuning the parameter M , we trade o� accuracy and robustness of the system.

4.1.3 Gesture Recognition Algorithm

The gesture recognition algorithm of Talking Hands is simple, deterministic and it

can run in the microprocessor of the data-glove. It is a real-time checking algorithm,
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i.e. it processes and checks all data coming from the di�erent sensors continuously.

Hence Talking Hands does not need any external pc. In Figure 4.4 the high level �ow

chart of the algorithm is shown.

Figure 4.4: High Level Flow Chart of Talking Hands

The most important parts of the algorithm are the gesture detection, which estab-

lishes if the user is performing a meaningful gesture, and the translation, which links

the gesture with the corresponding output. The high level �ow chart of the gesture

recognition algorithm is composed by the following steps:

1. Filter data to clear sensors noises;

2. Gesture Detection: determine if the user is performing a gesture. To achieve

this goal, the algorithm computes the distance in time of the sensors data.

If the distance is larger than a given threshold, it deduces that the user is

moving from a gesture to another and is in a transition phase: in this case, the

algorithm restarts. More precisely, the system saves the vector sτ of the current

gestures, where τ indicates the actual loop. In the next micro controller loops,

the algorithm checks if

d(sτ , sτ+i) < M ∀i = 1, ..., T

where T ∈ Z is the number of loops that the same gesture has to occur to

be considered. Consequently, T is a parameter of the system: increasing too

much this value, the system would have a delay in translation; with a too low

value, the system could not distinguish among gestures and transition phases.
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If ∃j ∈ 1, . . . , T so that d(sτ , sτ+j) > M , the system overwrite the value of sτ

with sτ+j .

3. Translation: it links the gesture with its meaning. A scenario can be considered

a �nite collection of couples (s, w), where s ∈ S is the characteristic gesture of

the gesture and wi is the string of its translation. Hence we de�ne a scenario as

S = {(si, wi)}i=1,...,N , where N is the number of gestures in the scenario S.

� if the actual gesture sτ is su�cient close to the characteristic vector of

a recorded gesture, i.e. ∃i = 1, . . . , N : d(sτ , si) < M , the algorithm

associates sτ with the translation of the closer recorded gesture, i.e. wj

with j = argmini=1,...,N d(sτ , si).

� otherwise the algorithm restarts, since no translation is achieved;

4. The achieved translation wj is sent to the speech synthesizer.

The point 2 and 3 of the previous description can be also switched: �rstly the actual

data are translated to the closer recorded gesture if the distance is lower than a certain

bound; then, if the same translation is maintained for a certain time, it is sent to the

speech synthesizer. This last solution is computational expansive since it requires the

comparison of each sampled data with the whole set of gestures. Moreover, if the

translation is performed in the smartphone application, this requires to send all the

sensors data to the smartphone with a continuous communication. Hence, determining

if the user is performing a gesture before the e�ective translation is preferred. This

allows to compute only a distance between the actual sensors data and the past ones

in each micro controller loop. If the distance is lower than a certain bound M for

a certain time T , only the last data are used for the translation, so only a sample

of sensors data is sent to the smartphone, reducing the communication load of the

Bluetooth module.

4.1.4 Tests

The �rst prototype of Talking Hands has been carefully tested.

The translation tests are executed as follows. In each test the user performed the

entire set of 40 gestures for �ve times, for a total of 200 translations. The percentage

of successful translations is shown in Figure 4.5. The prototype achieves more than

90% of accuracy. The fails are both lack of translations and word misunderstanding.

The second test reported in Figure 4.5 achieved a translation rate of almost 80%, but

with a broken sensor: this demonstrates the robustness of the system. Talking Hands

has an operating time of 6 hours with a 3.7V 1100mAh Li-Ion Battery.
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Figure 4.5: Successful Translation Histogram

4.2 Considerations on proposed Static Gesture method

Proposed method is preferred for a real application aiming to consumer market. Here

we are going to see strength and weak points of the proposed method. One of the

strengths is that this method requires a low computational e�ort. No training is

needed respect to Machine learning methods, user needs only to record a gesture using

the smartphone application, every microprocessor or smartphone processor will be able

to run the gesture recognition algorithm, also cheap smartphones' processors. This

guarantees a 100% compatibility with users' smartphone. Using this method Talking

Hands' battery life is not compromised because using BLE protocol a gesture is sent

only when the device (glove) detects the intention of the user to perform a gesture

and connection is not always active because a continuous streaming of information is

not needed. Furthermore considering reached accuracy using this method it has been

considered good enough for the �nal application. As weakness there is no possibility to

recognize dynamic signs and similar gestures may be hard to be correctly recognized

if not performed exactly as in the recording phase, because of the distance function.
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4.3 Dynamic Gestures Recognition

This chapter introduces a complete work-�ow for the translation of dynamic isolated

gestures based on data acquired from a data-glove. A gesture recognition system

based on a wearable device represents indeed a more e�cient solution with respect to

cameras or position trackers for helping speech-impaired people on a daily basis. This

study presents experimental results, comparing di�erent machine learning classi�ers

and discussing their performances both in terms of translation accuracy and compu-

tational time. The feature extraction and classi�cation performances of the proposed

work �ow have been also tested using a public database and compared with other

works in the literature, showing improved results. The reported analysis suggests a

multi-layer perceptron neural network as the most suitable classi�er for the realization

of a wearable gesture translation system. Using data of Talking Hands, we perform

the classi�cation among 30 dynamic gestures and compare the results obtained by

the following machine learning methods: nearest neighbours, linear Support Vector

Machine (SVM), random forest, neural networks and naive Bayes classi�er. In addi-

tion, we have tested the same methods on a publicly available dataset of 95 gestures,

comparing our results to similar results available in the literature. Tests provided

satisfactory results, showing that our hardware/software solutions outperforms the

accuracy levels of translation provided by other studies, even on the same data. Work

described in this chapter (Dynamic) has been done using third prototype (described

in Section 3.6) of Talking Hands system.

In a real world application, a SL sentence consists of several true-gesture sequences

and non-gesture sequences, also called movement epenthesis (ME). As consequence, a

SL translation system must perform two subsequent tasks: 1) segmentation, namely

splitting a sentence into true-gesture sequences and ME sequences; 2) classi�cation of

each true-gesture sequence.

Segmentation

To better understand the segmentation task, let us consider Figures 4.6 and 4.7. In

Figure 4.6 a data sequence coming coming from the IMU of the hand module is

shown. This data refer to subsequent gestures performed by an user. However, it is

not obvious at �rst glance how many gestures are performed, and where one ends and

the consecutive begins. Figure 4.7 shows the same sequence after the segmentation

process: six dynamic gestures have been detected, highlighted by the green boxes.

In order to split a data-streaming between true-gesture sequences and ME se-

quences, a threshold on the velocity computed on the quaternion coming from IMU

of the hand module is exploited. Indeed, if a dynamic gesture is occurring, the user

is moving his/her hand and a variation on the quaternion could be detected.

The distance function (4.1.2), which has been implemented to compare two quater-

nions, is not suitable for this segmentation process. Indeed, the quaternions coming

from the IMUs could have some computational errors, so they could slightly di�er
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Figure 4.6: Data without Segmentation

Figure 4.7: Segmentation of a data sequence with six gestures

from the unit norm. In that case, the distance (4.1.2) is not reliable. This can be seen

in Figure 4.8: even if the system is still, a little velocity is detected.

Di�erently respect the recognition phase, during the segmentation process we are

interested on the distance between two consecutive quaternions. Hence, they can

di�er only for a small amount and the Euclidean distance could lead to better result.

The velocity computed with the Euclidean distance is reported in Figure 4.9. The

di�erent gestures are isolated setting a threshold on the velocity signal.
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Figure 4.8: Velocity computed from the data sequence of quaternion
using the distance function (4.1.2).

Figure 4.9: Velocity computed from the data sequence of quater-
nion using the Euclidean distance function. The red line indicates the

threshold used for the segmentation.

Feature Extraction

Data acquired from Talking Hands cannot directly be used to classify gestures. Indeed,

each gesture has to be described by a �xed length vector to implement the di�erent

machine learning methods. Moreover, since a data sequence relative to one second

consists of about (8 + 10) × 70 = 1260 numbers, classi�cation performed on such a

heavy vector could be too computational demanding for a mobile application.

In some works available in the literature (e.g. [63]), the feature vectors refer to

meaningful data about the gestures, such as histograms of hand position, con�guration
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and velocity or time and distance of gestures. In this work a representation of gesture

data has been chosen using the coe�cients of some �tting curves instead. In particular,

a cubic spline with three knots has been used for each one of the eight data sequences

of the two quaternions. As well known, a spline is a function de�ned piecewise by

polynomials. More formally, let q̂ij(tk), with i = 1, 2 and j = 1, . . . , 4, be one of the

component of a quaternion, where t is an integer that varies from 0 to T . To ease

the presentation, indexes have been dropped denoting the component simply as q̂(tk).

A �tting spline q(t), namely a piecewise function de�ned by polynomials, is built as

follows

q(t) =



α00 + α01t+ α02t
2 + α03t

3 if 0 ≤ t < c1

α10 + α11t+ α12t
2 + α13t

3 if c1 ≤ t < c2

α20 + α21t+ α22t
2 + α23t

3 if c2 ≤ t < c3

α30 + α31t+ α32t
2 + α33t

3 if c3 ≤ t ≤ T

where ci, i = 1, 2, 3 are three uniform distributed points, called knots. Each one of

these polynomial functions can be found using the least squares error metric, thus

minimizing

e =
T∑
t=0

(q(t)− q̂(t))2 .

The constraints have been added that q(t) must be continuous and with continuous

�rst and second derivatives. With these constraints, the function q(t) is given by

16 − 9 = 7 parameters that will constitute the feature vector that describes q̂(t).

Hence, the information of a gesture coming from the two quaternions is described by

7× 8 = 56 numbers, regardless of the duration of the gesture.

We adopted a polynomial of third degree for each data sequence coming from the

10 �ex sensors, so they are described by 4× 10 = 40 numbers. As consequence, each

gesture is described by a 96-dimensional vector.

We tested the following classi�ers for gestures translation: nearest neighbour,

linear SVM, random forest, neural network and naive Bayes.

The nearest neighbours classi�er uses a k-nearest neighbours algorithm with k = 3

and a standard euclidean metric on the feature vectors. The linear support vector

machine uses a C-support vector classi�cation to avoid over�tting, with a penalty

parameter C = 0.025 [78]. The random forest classi�er uses 100 trees with a maximum

depth of 5 [79]. The neural network is a multi-layer perceptron with one hidden layer

constituted by 100 nodes and logistic sigmoid function, namely f(x) = 1/ (1 + e−x) ,

as activation function [80]. The naive bayes classi�er implements a gaussian naive

bayes algorithm for classi�cation [81].

All these classi�ers have been implemented using the Python library Scikit-learn

[82], and their respective classes are listed in Table 4.1.

Experiment 2 is based on the data acquisition from [83]. For each hand [83] has

recorded those kind of data:
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Table 4.1: Scikit-learn classes of implemented classi�ers

Method Scikit-learn library Class

Nearest Neighbours neighbors KNeighborsClassi�er
Linear SVM svm SVC
Random Forest ensemble RandomForestClassi�er
Neural Network neural_network MLPClassi�er
Naive Bayes naive_bayes GaussianNB

a x position expressed relative to a zero point set slightly below the chin. Ex-

pressed in meters.

b y position expressed relative to a zero point set slightly below the chin. Ex-

pressed in meters.

c z position expressed relative to a zero point set slightly below the chin. Expressed

in meters.

d roll expressed as a value between -0.5 and 0.5 with 0 being palm down. Positive

means the palm is rolled clockwise from the perspective of the user. To get

degrees, multiply by 180.

e pitch expressed as a value between -0.5 and 0.5 with 0 being palm �at (hori-

zontal). Positive means the palm is pointing up. To get degrees, multiply by

180.

f yaw expressed a value between -1.0 and 1.0 with 0 being palm straight ahead

from the perspective of the user. Positive means clockwise from the perspective

above the user. To get degrees, multiply by 180.

g Thumb bend measure between 0 and 1. 0 means totally �at, 1 means totally

bent. However, the �nger bend measurements are not very exact.

h Fore�nger bend measure between 0 and 1. 0 means totally �at, 1 means totally

bent. However, the �nger bend measurements are not very exact.

i Middle �nger bend measure between 0 and 1. 0 means totally �at, 1 means

totally bent. However, the �nger bend measurements are not very exact.

j Ring �nger bend measure between 0 and 1. 0 means totally �at, 1 means totally

bent. However, the �nger bend measurements are not very exact.

k Little �nger bend measure between 0 and 1. 0 means totally �at, 1 means totally

bent. However, the �nger bend measurements are not very exact.

Some considerations need to be undertaken:

1. Talking Hands system does not need and does not acquire data about position

compared to a,b,c in the list 4.3.
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2. Talking Hands system does not use orientation expressed in Euler angles com-

pared to d,e,f in the list 4.3.

3. Talking Hands system acquire also data about forearm orientation and not just

about palm orientation, both expressed in quaternions.

4. Talking Hands system does not acquire bending measures between 0 and 1 as

in points: g,h,i,j,k of the list 4.3. Talking Handssystem acquire �nger's �exion

(bending) of two phalanges: proximal and metacarpal using an 10 bit ADCs to

convert analog signal coming from �ex sensor in a range starting from 0 to 1023.

5. Talking Hands system utilizes just one glove.

Especially from point 1 in list 4.3 is possible to understand that position does not

in�uences results expressed in Section 4.5.

4.4 Experimental

In this section, the results of two di�erent experiments are presented. In Experiment

1 data from Talking Hands has been used during training and test phases. Each

sign has been detected using the previous described segmentation process. Then the

feature vectors were computed as described in Section 4.3. In Experiment 2 data from

a public database of signs [83] has been used to train and test the di�erent methods.

Since in Experiment 2 the data are not acquired with the Talking Hands' hardware,

this experiment has been conducted to compare the Talking Hands' gesture recognition

algorithm with others in literature, regardless of the data source. Moreover, using

a publicly available database, the comparison with other isolated signs translation

processes that have been tested on this database (e.g. [64]) is highly reliable.
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Experiment 1. We used data collected from Talking Hands. The data-glove has been

wired connected to a pc and computation has been performed o�-line using Python.

The pc used for the tests is an Asus K550JK (hardware speci�cation: Intel Core i7-

4710 HQ 2.5 GHz, 8GB RAM). This database consists of 27 gestures classes that do

not refer to any signed-word. For example, some gestures are the following: a clock-

wise (or counterclockwise) rotation of the arm; two clockwise (or counterclockwise)

rotations of the arm; a right-left (or left-right) movement of the hand; two right-left

(or left-right) movements of the hand; an up-down (or down-up) movement of the

hand; two up-down (or down-up) movements of the hand; waving hand; a clockwise

(or counterclockwise) rotation of the hand. A total of 6 instances per gesture has been

collected from each of the �ve users involved in this experiment. The �nal dataset

consists of 810 gestures. The segmentation and feature extraction processes described

in Section 4.3 have been applied.

Experiment 2. In this experiment we used a publicly available database [83]. This

dataset consists of 95 di�erent signs of Australian Sign Language, with 27 samples per

sign, captured from a native signer using high-quality position trackers. This was a

two-hand system and this is the biggest di�erence with the our dataset in experiment 1.

Moreover, two Flock-of-Birds magnetic position trackers provided 6 degrees of freedom

of each hand, i.e. roll, pitch and yaw as well as 3D position. Therefore, di�erently

from Talking Hands, this system used some external device to acquire precise data

about the position. Two sensors gloves provided data about �ngers' bending. Hence,

22 attributes were acquired. The sample frequency was about 100Hz.

In both experiments, each classi�er has been tested using the �hold out� method

with three di�erent test sizes, namely 40%, 20% and 10%. The remaining samples

were used in training process. For each test size, a Monte Carlo validation has been

applied with 100 runs, choosing randomly the training set of each gesture class at

each run.

At each run, and for each classi�er, we collected the results about classi�cation

accuracy, classi�cation time and training time to perform some statistical analysis to

compare the classi�ers.

Moreover, with the dataset of Experiment 1, we conducted other tests to study

the user-indipendence of the proposed method.

4.5 Results and Discussion

4.5.1 Experiment 1

Table 4.2 reports all the statistics about experiment 1. For a better understanding, the

box plots in Figure 4.10a shows the statistics on the performances of the considered

classi�ers when a test size of 10% is used. The box extends from the lower to upper

quartile values of the data, with a line denoting the statistical median. The whiskers

extend from the box to show the range of the data and the outliers are indicated with

circles past the end of the whiskers.
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We notice that nearest neighbours and random forest classi�ers performed better

than the others in terms of classi�cation accuracy (Figure 4.10a). In particular, the

Random Forest classi�er reaches the highest average of translation accuracy (99.7%).

The statistical Wilcoxon rank sum test was performed to compare the mean values

reached by the classi�ers. The null hypothesis that the classi�cation methods have

equal medians at the 5% signi�cance level was not rejected when comparing Nearest

Neighbours, Linear SVM and Random Forest, indicating that these three methods

are equivalent and have better performances than the other two. The Wilcoxon rank

sum test also showed that Neural Network and Naive Bayes are equivalent in terms

of classi�cation accuracy.

The results of the experiment 1 with test sizes of 20% and 40% are quite similar

to those of 10%, indicating that the number of training samples does not particu-

larly e�ect the translation accuracy. This is very important in the perspective of a

commercial product, since it is infeasible to obtain large training datasets of signs for

each user. Our experiment with a test size of 40% achieved a translation accuracy

of 99.3% for the Random Forest classi�er. However, the results of the three tests are

not equivalent from a statistical point of view. Indeed, the Wilcoxon rank sum test

conducted on the three tests of each classi�er showed that they have di�erent medians.

The neural network classi�er is faster than the others in terms of translation

time, but its training time lasts longer. However, the translation time is much more

important in a real world application, since the training process could be performed o�-

line. Moreover, the training process of the neural network lasted 4.1 seconds on average

and this is a reasonable time for a commercial sign language translation system.

Table 4.2: Comparison in experiment 1

Test Size Method Classi�cation Accuracy Classi�cation Time (milliseconds) Training Time (milliseconds)
Mean St. Dev. Min Max Mean St. Dev. Min Max Mean St. Dev. Min Max

10%

Nearest Neighbours 99.5% 0.88% 96.6% 100.0% 6.8 1.05 6 14 2.4 0.49 2 3
Linear SVM 99.5% 0.81% 96.6% 100.0% 3.8 0.67 3 7 22.6 2.16 21 41
Random Forest 99.7% 0.59% 97.7% 100.0% 8.4 1.07 7 16 264.6 44.59 240 560
Neural Net 98.8% 1.15% 95.5% 100.0% 1.0 0.26 0 2 4059.4 590.87 2319 6549
Naive Bayes 99.1% 0.95% 96.6% 100.0% 2.5 0.56 2 4 3.0 0.52 2 7

20%

Nearest Neighbours 99.3% 0.69% 97.6% 100.0% 11.1 0.60 10 13 2.1 0.35 2 3
Linear SVM 99.3% 0.62% 97.6% 100.0% 6.2 0.45 5 7 19.1 0.64 17 21
Random Forest 99.5% 0.46% 98.2% 100.0% 9.7 0.50 9 11 231.1 3.36 227 247
Neural Net 98.4% 0.91% 95.9% 100.0% 1.5 0.50 1 2 3609.4 551.37 2009 4225
Naive Bayes 98.9% 0.69% 95.9% 100.0% 3.3 0.48 3 4 2.8 0.37 2 3

40%

Nearest Neighbours 98.9% 0.61% 96.7% 100.0% 19.7 0.77 18 22 1.7 0.44 1 2
Linear SVM 99.2% 0.44% 98.2% 100.0% 10.1 0.53 9 11 14.6 0.55 14 16
Random Forest 99.3% 0.36% 98.2% 100.0% 12.9 0.44 12 14 206.4 4.18 200 232
Neural Net 98.0% 0.76% 96.4% 99.4% 2.4 0.49 2 3 3083.4 447.35 1457 3487
Naive Bayes 98.5% 0.74% 95.8% 100.0% 5.1 0.33 4 6 2.6 0.49 2 3

4.5.2 Experiment 2

As discussed before, we used a publicly available dataset for the second experi-

ment. For each sign, we extracted the feature vector using a cubic spline �tting

for the position and the orientation data, while a polynomial �tting has used on �n-

gers' bending data. Therefore, each gesture was described by a vector of dimension

((7× 6) + (4× 5))× 2 = 124.
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Table 4.3: Comparison in experiment 2

Test Size Method Classi�cation Accuracy Classi�cation Time (milliseconds) Training Time (milliseconds)
Mean St. Dev. Min Max Mean St. Dev. Min Max Mean St. Dev. Min Max

10%

Nearest Neighbours 92.9% 3.36% 84.2% 98.6% 105.8 6.29 96 139 12.6 2.00 11 30
Linear SVM 79.4% 6.72% 61.1% 91.2% 137.6 14.03 123 178 981.2 20.07 941 1041
Random Forest 92.6% 3.74% 82.8% 98.6% 24.8 1.51 23 36 943.0 29.63 903 1037
Neural Network 97.4% 1.78% 91.2% 99.6% 2.0 0.36 1 3 20211.4 1021.99 17577 22690
Naive Bayes 86.3% 5.47% 69.1% 94.4% 18.7 0.79 18 23 10.7 0.76 9 13

20%

Nearest Neighbours 92.0% 2.14% 85.1% 96.8% 256.1 90.35 194 474 12.3 4.35 9 27
Linear SVM 78.3% 4.10% 67.0% 86.8% 316.6 109.73 242 562 3806.4 28457.56 836 285530
Random Forest 91.6% 2.47% 85.6% 97.0% 60.3 18.79 45 114 992.3 234.84 844 2571
Neural Network 97.4% 1.03% 94.7% 99.5% 4.3 1.75 3 9 19000.6 7743.48 12965 36567
Naive Bayes 85.1% 3.20% 75.1% 90.5% 47.7 24.18 33 131 14.4 5.42 11 32

40%

Nearest Neighbours 91.0% 1.67% 86.0% 94.0% 470.9 146.25 265 712 11.3 4.28 6 25
Linear SVM 78.0% 2.46% 72.3% 83.2% 620.4 219.92 324 1221 780.8 171.71 548 1081
Random Forest 90.5% 1.80% 83.8% 94.4% 149.5 52.82 77 278 1042.5 284.16 696 2558
Neural Network 97.1% 0.88% 94.3% 98.8% 7.9 3.12 4 20 24259.8 8395.39 11590 35454
Naive Bayes 82.4% 3.37% 70.7% 88.4% 134.4 52.49 60 198 16.9 5.95 9 35

Table 4.3 shows the statistics on the results obtained with the Monte Carlo cross

validation. In this experiment, the neural network classi�er performed better than

the others in terms of classi�cation accuracy in all the three tests, reaching a 97.4%

of accuracy with a test size of 10%. The Wilcoxon rank sum test showed that each

classi�er was not equivalent to the others.

Also in this case, the neural network is the fastest classi�er, with a translation time

of about 3 milliseconds. Comparing the translation times, all the classi�ers took more

time in the second experiment than in the �rst one. However, the Neural Network

increased less than the others, remaining on the same order of magnitude. This is

a very important feature from the perspective of future applications, and makes the

neural network classi�er more suitable than the others to be applied for a translation

between a large set of signs. Moreover, it had the smallest performance variation

among the compared classi�ers, making it the most reliable one. The only drawback

of the Neural Network is the large increasing of the training time, which can last more

than 20 seconds. However, we think this could be still a reasonable time in a real

world application.

4.5.3 User Independence

Other tests have been conducted to test the proposed method on user-independent

scenarios. In particular, we divided the dataset of Experiment 1 among the �ve users.

Then, we train the classi�ers using the data of four users and test them on the gestures

performed by the remaining user. Other tests have been conducted using the data of

a single user as train set and the remaining data of the four users as test set. The

results are shown in Table 4.4.

The accuracy levels of classi�ers trained on a dataset of four users are slightly

less than the ones on Experiment 1. However, Nearest Neighbours, Linear SVM and

Random Forest classi�ers reached an accuracy level of about 96%, which is comparable

to other results in literature (see section below for more details). The accuracy of the

Naive Bayes classi�er has signi�cantly decreased, meaning that this classi�er is highly

user-dependent.
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As expected, the accuracy levels of classi�ers trained on a dataset of just one user,

which are reported in the righ-hand side of Table 4.4, are worst than the others. In

particular, we notice that the Naive Bayes classi�er is unable to manage the user-

independent scenario, scoring 13.6% on average, while the classi�ers that performed

better in this case are the Nearest Neighbours and the Linear SVM.

Table 4.4: User independence results

Method Train data of four users Mean Train data of one user Mean

Nearest Neighbours 97.6% 93.3% 97.5% 99.4% 95.2% 96.6% 89.2% 80.8% 87.8% 85.1% 85.5% 85.6%

Linear SVM 99.4% 92.1% 96.3% 99.4% 96.4% 96.7% 91.3% 82.0% 89.1% 90.2% 89.3% 88.3%

Random Forest 99.4% 90.9% 99.4% 96.3% 95.2% 96.2% 80.3% 73.5% 77.8% 75.3% 71.3% 75.6%

Neural Network 97.0% 85.4% 96.3% 97.6% 93.3% 93.8% 84.3% 75.8% 86.0% 84.3% 71.6% 80.2%

Naive Bayes 93.3% 85.4% 92.6% 93.9% 56.4% 82.9% 10.7% 16.8% 10.3% 14.9% 16.6% 13.6%

4.5.4 Comparison with other works

Table 4.5: Comparison of translation accuracy with similar papers

Work Acquisition Method Classi�cation Method # Gestures # Users Accuracy

Shukor et al. [60] data-glove distance function 9 4 78%
Saggio et al. [saggio2020] data-glove convolutional neural network 10 7 98%
This work data-glove proposed method 27 5 99.7%

Kumar et al. [kumar2018] Microsoft Kinect hidden markov model 30 8 84%
Mittal et al. [mittal2019] Leap Motion long-short term memory neural network 35 6 89.5%
Oz and Leu [63] data-glove neural network 50 ≤ 6 92%
Kumar et al. [kumar2017b] Microsoft Kinect and Leap motion HMM and bidirectional LSTM neural network 50 ≤ 10 98%
Kosmidou and Hadjileontiadis [61] EMG and accelerometers intrinsic mode entropy model 60 3 93%
Gamage et al. [25] camera gaussian process dynamical Model 66 1 ≈85%
Rozado et al. [64] position tracker hierarchical temporal memory model 95 1 91%
This work position tracker proposed method 95 1 97.4%

Table 4.5 reports the classi�cation accuracies of the proposed method and those

of other similar papers, together with the acquisition and classi�cation applied and

the number of gestures among which the translations occurred.

The works di�er for the acquisition methods applied, the number of gestures among

which the classi�cation occurs and the number of users involved in the study. As a

consequence, the comparison can be conducted only on the recognition's accuracy,

which gives a loose indication on the overall performances of the systems developed

in these works. Talking Hands obtained the highest performance for the translation

of isolated dynamic signs, reaching an average of 99.7% accuracy among 27 gesture

classes with a Random Forest classi�er. The dataset used in [64] and in our second

experiment is the same, thus the comparison with that work is more meaningful than

the others. As previously stated, since the dataset is the same, this comparison is only

between the gesture recognition algorithm implemented. Hence, we only compare the

feature extraction process and the di�erent classi�ers previously described in this

chapter with the analogous steps of [64].

The accuracy obtained with our methods is 97.4% and it is statistically higher then

the one obtained in [64], which is 91%. This is quite remarkable, since our method

does not directly rely on any temporal classi�cation technique, like HMM or LSTM.

Indeed, the temporal information of the di�erent gesture categories is captured by the

coe�cients of the splines that �t the data sequences. Instead, the algorithm of [64]
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relies on a Bayesian-like paradigm known as hierarchical temporal memory (HTM)

and each gesture category is modelled as a single HMM. Moreover, the algorithm

presented in [64] are not feasible for a mobile application running on a microprocessor

and a smartphone, di�erently from the algorithm presented in this chapter for Talking

Hands.

The results about the time of classi�cation and training are missing in [64], hence

a discussion on them is not possible.
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(a) Statistic of experiment 1 with a test size of 10% - Classi�cation

Performance

(b) Statistic of experiment 1 with a test size of 10% - Translation Time

(c) Statistic of experiment 1 with a test size of 10% - Training Time
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Chapter 5

New Platform

In this Chapter the new Talking Hands platform will be described. This solution will

not be physically realized in time for the end of this PhD thesis, what we are going to

illustrate is the new hardware architecture and new mechanical design. This new new

con�guration comes out after almost one year of tests and feedback from �nal users

and clinicians.

5.1 Future Hardware

Current prototype (described in Section 3.6), although successfully demonstrated its

functionalities, but it is not enough reliable and usable to be turned into a commer-

cial product so far. New version of Talking Hands will achieve higher performances,

improving sensors' data reliability, mainly designing a new hardware solution.

First of all, lets explain why Talking Hands hardware architecture will change:

� Flex sensors' pins easily break Flexible PCB's tracks (see Figure 5.1) if glove is

not worn correctly. We are talking about glove visible in Figure 3.19.

� Flex sensors does not ensure repeatability, measures will change every time user

remove/wear the glove. Moreover resistive �ex sensors do not have an accurate

�exion measurement.

� Flexible PCB constrains usage of a textile Data-Glove as wearable solution. Flex

sensors and Flexible PCB do not allow to easily customize sizes for children and

depends on user's phalanges length. This is a problem also for glove's sizes, and

an FPCB printed for an adult must be di�erent for a kid. This means that there

is a need to produce di�erent sizes of: Flexible electronic printed circuit; Flex

sensors; textile gloves.

� Flex sensors are very expensive even for large quantity orders, IMUs are cheaper

and performs better as �nger tracker;

� Flex sensors needs to be calibrated, mapping the range of minimum/maximum

�exion user is able to perform. Each user should have his own �exes' con�gura-

tion, this augment system complexity.
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� BNO055 (IMU) needs to be calibrated for a correct usage, replacing it whit a

new BNO080/085 will remove the calibration procedure because those IMUs

have a built in auto-calibration procedure, in this way the user does not need

to perform speci�c movements before starting to use Talking Hands.

� Textile glove removes user's tact.

Figure 5.1: Broken F-PCB's tracks after few hours incorrect usage,
�ex sensor's pin has been stressed during usage, white surface means

broken bus

To solve those problems a new �ngers' system composed by nine IMUs, one for

each �nger's phalanx (proximal and intermediate) excepted for thumb has been cre-

ated. Thumb has only one IMU because it does not have an intermediate phalanx,

thumb's IMU will be placed on top of distal phalanx, because the distal phalanx is

the most expressive (talking about gestures), because thumb's proximal phalanx just
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follows movements of thumb's distal phalanx. Use two IMUs for the thumb will be

redundant, augmenting costs, complexity and wearability. IMUs' con�guration about

�nger module has been illustrated in Figure 5.2.

Also the schema about the hardware architecture and microcontroller - peripherals

communication has been updated (see Figures 5.3 and 5.4).

Using new platform's hardware architecture problems of previous list will be

solved, a fully wearable industrial prototype with enough durability and reliability

to be used in real world applications will be developed. The advantages with respect

to the current solution are outstanding:

� Fully Adaptable and wearable: IMUs will be mounted in the glove itself and will

be fully adaptable to any person, overcoming the problem related to the size of

the glove and the size of the bending sensors.

� Durability: the welding of the circuit connecting the bending sensors to the

acquisition unit are the weakest points and currently subject to breaks and

malfunctioning after usage (see Figure 5.1). Eliminating this part will make

Talking Hands usable for long term.

� Sensitivity and reliability: the use of IMUs will increase precision and sensitiv-

ity in detecting �exions and �nger movements. This was already tested in a

functional prototype.

� Usability: the use of �exible multi-sensing platform integrated in a wearable

bracelet integrated in the e-Glove - only requiring housing for the battery - will

strongly improve the usability and wearability of the device for patients.

� Cost: using standardized �exible electronics and substituting the bending sen-

sors with IMUs, the production cost for will be reduced by 20-25%, from current

250¿ to less than 200¿ / unit. It seems stranger but buying >1000 IMUs will

guarantee a cost of 5¿ per IMU comparable to �ex sensors. Plus having a

more precise �ngers tracking and without the need of producing an FPC, but

encapsulate IMUs inside �ngers' rings.

Also software improvements will be performed in the new version. In Section 4.3

strategy and method behind dynamic gesture recognition have been explained. In new

version of Talking Hands another objective is to port software developed for PCs into

smartphones' applications, developing a new app which integrates dynamic gesture

recognition implementing a simple solution that will not compromise the �nal user

experience.
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Figure 5.2: Full IMU Architecture
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Figure 5.3: New Hardware Architecture

Figure 5.4: New microcontroller - Peripherals Communication

5.2 Future Design

Starting from the design solution described in Subsection 3.6.1 and considered the

new hardware proposed in Section 5.1, the bulky �ex sensors will be replaced by

small sensors (IMUs) that can be positioned on �ngers' phalanges (proximal and

intermediate). This was a huge step forward, which allowed us to work further on

decreasing the material on �ngers' surface.

This step brought device's design from the "glove" hypothesis to the "exoskeleton"

hypothesis. This study aimed to reduce hardware's surface on �ngers to the minimum

possible surface, see Figures 5.5 and 5.6. Even if the two alternatives go back a little

to the �rst prototypes, in combination with the new hardware solution, they were

the key to accomplish the �nal objective. In this way area of the palm is not totally

covered as in the previous cases, releasing �ngers from all the material that up to this
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point was necessary to contain internal hardware components.

Figure 5.5: Second Render, using IMUs

Focusing of the arm part, bracelet's dimensions were excessively bulky, so we tried

to reorganize the layout of the internal components, eliminating some parts that are

redundant or super�uous as buttons, moreover soft materials, in combination with a

rigid core allows usage of the glove on any type of arm. As a last point we worked on

the variable thicknesses of the glove, which follows the internal hardware; in the end

we opted for the stylistically "cleaner" solution, that is the alternative you can see in

Figure 5.6.
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Figure 5.6: Last Render, using IMUs

Bracelet's previous version had signi�cant dimensions, not optimized for the hard-

ware inside. We worked on both the interaction and components to make the bracelet's

body less bulky as possible. Buttons at the top have been eliminated and a 1100 mAh

battery has been inserted, replacing the old 1800 mAh to recover volume; inside the

layout of the components has been optimized to save more space. In addition, the

part relating strap's attachment has been modi�ed, recovering other space in height

we have therefore gone from a footprint of 68 x 42 x 36 mm to a footprint of 68 x 42

x 19 mm. External dimensions are visible in Figure 5.7. About length and width of

the bracelet, main constrain is the size of main electronic board.

To attach the arm part to user's forearm a watch band has been used, removing

problem to produce also this part. A comparison between current prototype and new

bracelet design is visible in Figure 5.8
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Figure 5.7: Bracelet Dimensions

Figure 5.8: Bracelets Comparison (render)

Based on the ergonomic study of the hand, we hypothesized three sizes based on

the percentiles of a man, a woman and a child. The three sizes will respectively cover

a range that goes from the 5th percentile of a 6-year-old child to the 5th percentile of

a woman (S) from the 5th percentile of a woman to the 50th percentile of a woman

(M) and from the 50th percentile of a woman to the 95th percentile of the man (L),

see Figure 5.9

A further study needs to be conducted about rings sizes; probably the best solution

will be to create 2 or 3 sizes of silicon rings which may adapt to a wide range of �ngers.
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Figure 5.9: Talking Hands sizes
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Chapter 6

Conclusion and future work

This thesis presented a work-�ow for the translation of static and dynamic signs

from a custom sensory glove, called Talking Hands. Di�erent algorithms (static and

dynamics) and classi�ers have been tested, some of them, especially Random Forest

and Neural Network, performed better than the other works in literature. This work

shows that high performances of gesture recognitioncould be obtained without any

external camera or position tracker, acquiring all the data from a wearable device.

Indeed, even if explicit information about the position of the hand is not available,

the data about the orientation allow a high translation accuracy. The presented results

suggest that a completely wearable gesture recognitiondevice system can be possibly

realized. Though some steps are still missing to achieve this goal. Indeed, it should

be recalled that all the translation process for dynamic gesture recognition (described

in Section 4.3) should be implemented on a smartphone application. Thanks to the

powerful processors available today, the computation load is not an issue, and the

main problem is represented by the communication channel, since all the data about

the dynamic gestures should be sent to the phone in real time. For this reason, further

studies will be carried out on compressing data, trying to maintain the BLE antenna

or upgrade it to the next BLE generation standard. Otherwise, a WiFi module can

be used to manage a huge amount of data. Several system tests must be done to

ensure product usability. Those test will start with post-stroke patients with aphasia

in collaboration with KOS-Care group.
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Appendix A

Accelerometer as �nger tracker?

This brief appendix reports results study of Analog Devices' ADXL362 accelerome-

ter for the acquisition of data relating to �nger �exion, understanding if ADXL362

or similar accelerometers are suitable as �nger tracker for Talking Hands project. A

simple Hardware Architecture used to conduct this experiment is shown in Figure A.1.

This experiment was conducted using two ADXL362 embedded in two di�erent

rings which can be seen in Figure A.2, one placed on the intermediate phalanx and

the other one on the proximal phalanx.

Data about linear acceleration are acquired by a microcontroller, the microcontroller

sends through serial communication (UART1152008N1) real time data to a PC, where

data are stored.

Figure A.1: Hardware Architecture of accelerometers as �nger
tracker

Figure A.3 shows the raw data of the accelerometer reading during the �exion of

the �ngers in three conditions (shown in A.2):

� Palm facing left, �ngers up,

� Palm facing left, front �ngers,

� Palm down.

During each phase of the experiment, three total �exions of the index �nger has

been performed at a very low speed.
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Figure A.2: Hand position in the experiment: (Left) Palm facing
left, �ngers up (Center) Palm facing left, front �ngers, (Right) Palm

down

This is not possible in the second condition: in the central part of the graph, or

that relating to the second condition, accelerometer's values do not show signi�cant

changes during the three �exions. Flexion can not be recognized, Figure A.4 shows

data about �ngers' �exion in the critical case.

Figure A.3: Data sequence of the three conditions

The problem is that with hand con�gured as in Figure A.2 (Center) �nger's �ex-

ion are almost ignored. In conclusion, results were not satisfactory. Certain �nger's

movements cannot be easily and precisely discriminated by using only accelerome-

ters, otherwise ambiguous we can get ambiguous results, misunderstanding �ngers'

position.
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Figure A.4: Finger's �exion in the critical case
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Appendix B

Gesture detection system within

relative reference systems

Aim of the experiment:

This experiment tries to solve the problem of recognizing gestures of an user who

drives a vehicle, just using an IMU. Considering the forearm as a rigid-link, an IMU

will perfectly tracks forearm's orientation. Starting from the assumption that it is

possible to recognize the orientation of any object that is moving within a reference

system, but having another reference system, e.g. a person walking inside an bus, in

this experiment we will recognize user's forearm movements while the user is driving

a car.

Solution:

In this application Talking Hands system's arm part has been used, its architecture is

described in Section 3.2. Meaningful gestures are expressed considering only the user's

forearm orientation. Detecting the gestures of a user in a static position is possible,

simply by exploiting the data relating to the orientation of the user's arm in space, as

already explained in Chapter 4. This is no longer possible when the user is no longer

static but he is moving, e.g. walking or driving a car.

Today in literature a solution which solves this problem just using Inertial Sensors

like IMUs, accelerometers etc has not been found. This solution solves the problem

by using only inertial measurement units. The proposed solution can be generalized

to n-relative reference systems. To be clearer, let's explain this with a practical (but

absurd) example : let's assume that the �nal user is driving a car inside a submarine.

There are three relative reference systems:

� Submarine: which a�ects the movements of the car and the user;

� Car: which undergoes the movements of the submarine and in�uences those of

the user.

� User: who undergoes the movements of the submarine and the car.

We have one IMU for each system: submarine; car; user. So we have also relevant data

about systems' orientation. IMU on user's forearm will be embedded in a device called
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AGIS (Automotive Gesture Interaction System). This device is visible in Figure B.1.

It will be a simple bracelet the user can wear.

Figure B.1: AGIS render

For a better understanding refer to B.2. This reasoning can be extended to n-

relative reference systems, it is not bounded at 3 di�erent reference systems. In

our experiment we tried with 2-relative reference system: a human inside a car. To

recognize gestures in a car while driving, a real time correction is needed. Available

data are:

� user's forearm orientation, thanks to the IMU placed on the user's forearm

thanks to AGIS.

� car's orientation, placing an IMU placed on user's car thanks to a smartphone

(which embed an IMU) on car's dashboard using a smartphone holder as shown

in B.2.

IMU's output for our system are quaternions. According to mathematical theory,

quaternions are the elements of a four-dimensional algebra on the �eld of real numbers.

They constitute a vector space and a generic quaternion q is written as:

q = a1+ bi+ cj + dk

where a, b, c, d are real numbers, and i, j, k are symbols that can be interpreted as

unit-vectors pointing along the three spatial axes. The canonical basis for this vector

space is:

1 := < 1, 0, 0, 0 >, i := < 0, 1, 0, 0 >, j := < 0, 0, 1, 0 > and k := < 0, 0, 0, 1 >
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Figure B.2: Example of user's and car's reference system

Given a quaternion q its conjugate is de�ned as: q∗ = a− bi− cj − dk
The norm of a quaternion whose norm is:

‖q‖ =
√
qq∗ =

√
a2 + b2 + c2 + d2

A unitary (or normalized) quaternion is de�ned as a quaternion that has norm equal

to 1.

The inverse of a quaternion q is: q−1 = q∗

‖q‖ .

Any rotation in three dimensions can be represented as a combination of an axis

and an angle of rotation. Quaternions represent a simple way to encode this axis-angle

representation in four numbers and apply the corresponding rotation to a position

vector representing a point relative to the origin in R3.

A quaternion rotation can be represented using the formula:

q = e
1
2
ϑ(bi+cj+dk) = cos12ϑ− (bi+ cj + dk)sin1

2ϑ

where ϑ is the rotation angle and the vector < b, c, d > represents the rotation

axis.

When the user's IMU is turned on, IMU starts to detect its orientation, returning

quaternion that indicate the axis and the angle of rotation respect to the reference.

With the user's IMU positioned on the wrist, changes in the orientation of the user's

forearm will be detected. Remembering that if the user walks, moves, or even just

rotates on himself, the orientation detected by the IMU will obviously change.

Using a matching method between quaternions, a gesture recognition algorithm

has been developed starting from the algorithm described in 4.1. From Talking Hands

we bring also the strategy to reset orientation every time the user performs a body ro-

tation, as described in Section 3.8.1. In fact, the same gesture repeated with the body

rotated generates di�erent quaternions, which if compared with those memorized for

the associated gesture lead to not detecting the gesture, despite the movement made
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by the user being the same. This happens because external rotation is applied also

to the user's arm. For example if I am standing and wearing AGIS with arm parallel

to the ground and y axes of AGIS's IMU perpendicular to the ground, if I apply a

rotation to my body about 180 degree, this means AGIS's IMU will receive also a

rotation of 180 degree on the y axes.

There are two possible approaches to this type of problem. The simplest and most

direct one involves the use of a button that, connected to AGIS and pressed by the

user, resets the reference system every time the body rotates with respect to the initial

reference system of the bracelet. Same as Talking Hands application (3.8.1).

Inside a car, previous solution is not advisable: while driving, in every curve, climb

or descent the car will change the orientation of the user compromising the recognition

algorithm. This means the user must care more to reset the button then driving.

Using a second IMU we can address this problem. In fact, a second IMU integrated

in the car provides us information on the orientation of the car system (using an IMU

placed on a smartphone as in B.2), while the AGIS's IMU give us information about

user's movements.

With car's quaternions, we can calculate the reverse rotation to correct user's ori-

entation reference system. By doing this we obtain quaternions representing the user's

movements independently from the car's movements.

In this way the matching is e�ective and the recognition of gestures occurs without

the user bothering to make these corrections clicking a reset button. This correction

is totally autonomous.

Since IMU's reading is continue, it will not refer to the instant in time, so let qC

quaternion sent by the car and qA sent by AGIS in the same instant.

Lets refer to qrC e qrA as quaternions which represents the two reference systems, quater-

nions' values when IMUs are turned on (car and AGIS), we can call these quaternions

also initial frames.

The resulting rotation represented multiplying the two quaternions is equivalent

to the succession of the two rotations of the multiplied quaternions: in fact, by mul-

tiplying a quaternion by its inverse we obtain the unit vector, which represents the

rotation of zero angle, therefore the absence of rotation.

In this way qCc = qrC
−1qC represents current car's orientation corrected respect to

the reference car's initial frame. In fact if the car has not been moved since starting

the system, we have:

qC = qrC =⇒ qrC
−1qC = 1.

If we suppose that the user did not move the arm yet, quaternion qCc represents also

AGIS's rotation since AGIS is inside the car anchored to user's arm.
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Lets calculate the inverse of qCc:

qCc
−1: it is the quaternion which will correct AGIS's orientation.

qAc = qCc
−1qA is the quaternion that indicates AGIS's orientation respect to qrA,

independently from car's movements.

Quaternion qAc is the data used in the gesture recognition algorithm.

This gesture recognition algorithm has been implemented to simplify the user

experience inside a smart car. After connecting the device to a smartphone, the user

can forget his smartphone and control all multimedia and telephone commands using

gestures. The algorithm that compensates car's changing orientation allows the user

to answer a phone call just moving his wrist as in a prede�ned gesture, or controlling

the multimedia system's volume while changing music tracks. This experiment has

been conducted in a real situation, 5 di�erent gestures where recorded: volume up;

volume down; answer/end call; next track; previous track. In real test situations 99%

of accuracy has been reached about gesture recognition.
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Appendix C

List of Publication

Articles referring to Talking Hands are: [84], where hardware is described together

with data about its translation e�ciency with reference to static gestures, while pre-

liminary results about translation of dynamic gestures have been presented in [85].

Two articles were published also in medical journal, in a short abstract published for

Life Span and Disability Journal [86] there is a short description of Talking Hands-

for non verbal communicators. [19] is focused on Talking Hands helping people with

non-verbal Autism Spectrum Disorder. They must use an augmentative and alterna-

tive communication (AAC) system that helps with ordinary speech, such as picture

exchange communication systems, text systems, and voice output devices. Sign lan-

guage (also a form of AAC) has been recommended for people with ASD because it has

many advantages as a communication system. In [19] we describe a possible impact

of Talking Hands for people with ASD. We analyse the following advantage: Talking

Hands could increase the possibility to talk naturally after using Talking Hands as

therapy.

Last publication is about Talking Hands used for dynamic gesture recognition, in-

cluding also experimental results shown in section 4.4, comparing di�erent machine

learning classi�ers and discussing their performances both in terms of translation ac-

curacy and computational time. This word has been published in [87].
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