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Abstract

The trade of coffee market is comparable in size to that of oil and steel. This

leads to a high level of competitiveness among the players operating in the sector,

and the need to ensure the environmental sustainability of the sector. These aspects

can be supported by the scientific research to improve the quality and the efficiency

of the extraction process and to reduce the negative impact of coffee market on

the environment. In this thesis we consider two different mathematical models

for the espresso coffee extraction process to face the two main goals of coffee

industry: the beverage customisation and the sustainability of the sector. The

reduced model is used to predict the extraction efficiency. Two different numerical

schemes are proposed: the finite difference approximation scheme and a radial

basis functions (RBFs) approximation scheme; both the schemes are based on the

Crank-Nicolson method for the integration with respect to time. The reliability of

the model together with the proposed solving strategies is assessed experimentally,

by comparing the efficiency of real and simulated extractions conducted under

different physico-chemical conditions. Also a complete 3D model for the espresso

coffee extraction is considered and a wide campaign of chemical laboratory analyses

of espresso extracted samples is used for its calibration and validation. Finally,

the equation governing the dynamics of the water during the espresso extraction

to predict the flux behaviour is considered. The corresponding initial-boundary

value problem is solved by using the Crank-Nicolson scheme with respect to the

time, whereas the spatial derivatives are approximated via RBFs. The preliminary

reliability of the proposed solving strategy is experimentally assessed by comparing

the hydraulic head behaviour with different initial pressures of the incoming water.
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Introduction

Brewing coffee is an art as well as a business, indeed, after natural gas, it

represents the most exported raw material in the world. United States, with 400

million a day, are the main coffee consumer [1], while Europe has the highest per

capita consumption, with about 5 kg of coffee per year [2].

Contrary to popular opinion, moderate consumption of coffee can bring health

benefits due to the nutrients it contains, such as carbohydrates, proteins, lipids,

riboflavin (vitamin B-2), niacin (vitamin B-3), and various phenolic acids, which

have an antioxidant action. These nutrients, together with caffeine, seem to have

a positive effect on the incidence of degenerative illnesses such as Parkinson’s

disease [3]. Some studies also show that coffee consumption can be associated with

a lower risk of developing type 2 diabetes [4], while other studies show that coffee

consumption can have beneficial effects on the risk of developing certain types of

cancer, such as liver cancer [5], [6]. Obviously, if one exceeds with the consumption

of this beverage, its effects could turn into harmful for human health.

Multiple factors contribute to give coffee its unmistakable taste and aroma; in

fact, more than 1000 compounds occur in a cup of espresso, among them caffeine is

the best-known compound and its recognition and attraction are probably due to

the stimulating effects on the central nervous system [7]. Caffeine also influences the

coffee flavour since, together with other compounds, such as trigonelline, thermally

generated compounds (e.g., pyrazines, piperazine) and derivatives of phenolic

acids (e.g., chlorogenic acid), it affects the bitterness of coffee. The bitterness

is an important attribute of EC that drives the consumer acceptance [8]. In

addition, several evidences have demonstrated that phenolic acids and chlorogenic
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viii CHAPTER 0. INTRODUCTION

acids possess antioxidant, anti-inflammatory and anticarcinogenic activities [9]–[11].

Another revered taste of coffee flavour is the acidity (sourness); organic acids, such

as acetic, citric and tartaric acid, seem to be the main responsible for this sensation

in the oral mucosa [12]. Regarding the aroma, lipids play a key role because they

retain lipophilic compounds that sensibly contribute to the aroma of the beverage.

Obviously, all these nuances in coffee flavor are not the product of chance, but

they are the result of a complex process to which coffee beans undergo and which

gives coffee powder its peculiar physical-chemical characteristics. Numerous factors,

such as type of coffee blend, roasting and grinding degree and preparation method

(i.e., coffee extraction technique) can influence the levels of chemical compounds

that arrive in cup and, accordingly, the final coffee flavour and quality [13], [14].

There are different possible manufacturing processes that eliminate the pulp of the

coffee berries from the internal beans. For instance after harvesting the berries

from the coffee plant, one of these methods provides that the fruit is separated

from the seeds, and the beans are washed and dried in the open air. Then it

follows the roasting phase in which the beans are introduced into a proper machine,

that quickly brings them to a very high temperature. During this phase, over 600

chemical reactions take place in the bean, the result of which is a change in color

(from green to brown), nutritional content and flavor (particularly sweetness and

acidity), as well as weight loss and volume increase. At this point the coffee bean is

more crumbly, perfect to be ground. The grinding phase produces a coffee powder

with a granulometry that greatly affects the extraction, since the shape and size of

the coffee powder particles play a fundamental role in the extraction speed of the

chemical compounds and determine, together with the pressing operation, a key

feature of the coffee pod: its porosity. In fact, the grinding phase together with

the pressing operation create the coffee pod where the extraction process will take

place by a percolation process.

As a consequence, one of the main future goals of the coffee industry is the

customised coffee preparation, because the personal preferences depend on people’s

culture and traditions but also on health issues and temporary needs. For instance,

a strong coffee usually aids concentration after a poor night’s sleep or a light drink
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is usually preferred after a heavy meal. Moreover, the success of coffee poses a

new challenge for the environmental sustainability of the coffee industry: reduce

the pressure to the agricultural and forestry sector below the equatorial zone. In

other words, the raw material used in the preparation phase has to be minimised,

whereas the quality and reproducibility of the beverage should be kept as high as

possible. For this purpose, an important concept in the coffee industry to describe

the efficiency of an extraction system is the Extraction Yield (EY), which is defined

as the mass of extracted solubles driven into the cup over the mass of coffee powder.

This indicator can be related with the amount of the Total Dissolved Solids (TDS),

which is defined as the mass of dissolved substances over the mass of the beverage.

Thus, the EY is obtained multiplying the TDS by the ratio between the mass of the

beverage and the mass of the coffee powder. The TDS can be measured by a digital

refractometer or by drying a portion of espresso coffee (EC) and weighting the

remaining solids. The Specialty Coffee Association adopted a reference document,

called brewing chart [13], which prescribes for EY the following optimal range

18%− 22%; values lower than 18% lead to the so-called under-extracted coffees too

acidic and sweet, whereas values larger than 22% lead to the so-called over-extracted

coffees too bitter and astringent. In literature, EY and TDS are used for multiple

purposes, see [15], [16] for a detailed description of their application.

The process of coffee extraction is complex both from the physical and chemical

point of view, thus a complete description of such a process by a mathematical

model is challenging. A limited number of studies has been developed in the

physico-chemical modelling of coffee extraction. Among them, the model provided

in [17] describes dissolution and transport of filtered coffee, using an approach that

takes into account the intergranular and intragranular motion of coffee particles.

This one-dimensional model has been exploited in [18] to investigate the coffee

extraction uniformity. In [19], a one-dimensional percolation model is proposed

and used to calculate the EY. A similar percolation model is used in [20], to

predict the EY and the proposed numerical approach ensures the positivity of

the concentrations and the mass conservation. The same solving strategy is also

adopted in [21] where the percolation model is generalised for the prediction of an
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arbitrary number of chemical compounds. All these one-dimensional percolation

models have the advantage to be simple computational tools to predict the global

water flow and extraction dynamics [22]. The three-dimensional model considering

the main percolation processes and endowed with numerical simulations and a

preliminary experimental validation can be found in [23] and [24].

In this thesis we propose a comprehensive study on the modelling of the EC

extraction process and the numerical solution of the resulting problems.

The outline of the thesis is the following. In Chapter 1, we introduce Partial

Differential Equations (PDE), their properties and classification, then we focus on

Advection-Diffusion-Reaction equations and their features as they are the main

governing equations of the espresso extraction process.

Chapter 2 presents two percolation models for the prediction of the dynamics and

transport of water within the coffee pod and the physico-chemical characterisation

of the extracted coffee. In more details, porous media and their properties are

described, and the equations governing the percolation process in porous media are

derived; then we analyse the espresso percolation, and discuss the physico-chemical

processes occurring during the extraction process. In addition, we introduce and

discuss a three-dimensional model for the prediction of the coffee extraction. Finally,

we present and analyse a reduced model for coffee percolation.

Chapter 3 focuses on numerical methods for the approximation of initial-

boundary values problems. More precisely, we introduce the finite difference

method, which allows the solution of a differential equation by approximating the

derivatives with finite difference ratios. Then we present the Galerkin Method

and the finite element bases. Finally, we consider the Radial Basis Functions

(RBFs) and their properties, with particular attention to their applications in PDE

discretisation.

Chapter 4 presents the numerical experiments carried out on espresso coffee

percolation models of previous chapter. In particular, we propose two different

numerical approximations of the reduced model, (i.e., a finite difference approach and

an RBF-based approach). The reliability of such a model together with the proposed

solving strategies is assessed experimentally in both cases, by comparing real and
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simulated extractions conducted under the same physico-chemical conditions. The

results show that the proposed tools can help the coffee industry in the control

of the extraction efficiency, and, consequently, in its sustainability goals. Then,

we discuss the reliability of the three dimensional model; in more details, it is

tested through a wide campaign of chemical laboratory analyses on espresso coffee

samples extracted under different conditions. The results of laboratory analyses

on the considered chemical substances are compared with those of the numerical

simulations. The comparison shows the potential of such a model in coffee industry

applications, paving the way to tools allowing the customisation of the coffee

beverage taste. In addition, we propose a RBF-based numerical approximation

for the three dimensional model of the water flow; more precisely, we consider

only the equation describing the hydraulic head dynamics. The reliability of the

considered model, together with the proposed solving strategy is experimentally

assessed by simulating the hydraulic head behaviour with different initial pressures

of the incoming water. The preliminary and promising results suggest a further

investigation of such a tool in order to discretise the full percolation model. Also,

we discuss and compare the results presented in the chapter.

Finally, in the last Chapter we discuss the achieved results and we give some

final remarks and further developments.





Chapter 1

Fundamentals of mathematical

physics

The term mathematical physics refers to the development of mathematical

methods to be applied to physical problems. Mathematical physics needs the

powerful tool of differential equations. These equations express relationships between

physical quantities and their rates of change, providing a mathematical description

of dynamic systems.

In this chapter we discuss Partial Differential Equations (PDEs) and their

properties. In more details, this chapter is organised as follows. In Section 1.1

we introduce PDEs, and their classification. Then, in Section 1.2 we focus on

Advection-Diffusion-Reaction equations and their features.

1.1 Partial Differential Equations

Partial Differential Equations (PDEs) are powerful mathematical tools for

describing complex phenomena in physics [25], engineering [26], medicine [27],

economy [28] and other application fields [29]. A partial differential equation gives a

relation between an unknown function of several variables and its partial derivatives.

Such relations are quite natural in many physical phenomena, such as for example

the electromagnetic field generated by charged object, the wave propagation, the

1



2 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL PHYSICS

heat diffusion. So, the PDE theory provides an indispensable resource to deal with

models in several application fields such as physics, engineering, biology, and finance.

In this thesis they are used to model the espresso coffee percolation problem.

The general form of a linear second order PDE in the unknown u : Ω → R is

given by:
d∑

i,j=1

ai,j(xxx)
∂2u

∂xi∂xj
+

d∑
i=1

bi(xxx)
∂u

∂xi
+ c(xxx)u = f(xxx), (1.1)

where xxx = (x1, x2, . . . , xd)
t ∈ Ω ⊆ Rd is the vector of the independent variables,

coefficients ai,j(xxx), bi(xxx), c(xxx), and f(xxx) are given functions. In the case these

coefficients depend also on the solution u(xxx) the equation is nonlinear. A function

u(xxx) is said particular solution or integral of Equation (1.1) if, replaced in this

equation together with all its derivatives, it makes (1.1) an identity. The set of all

solutions of (1.1) is said general integral.

PDEs can be classified in three different families: elliptic, parabolic and hyper-

bolic equations. Such a classification is based on the coefficients of the highest order

derivatives in the equation itself. Thus, let A(xxx) = (aij(xxx))ij, i, j = 1, 2, . . . , d, be

the matrix of the coefficients of the second order derivatives of Equation (1.1). We

note that from Schwarz’s theorem [30] on the equality of mixed partial derivatives

we can suppose matrix A(xxx) symmetric. Let x̄xx ∈ Ω, and we denote A = A(x̄xx). From

the symmetry of A we have that its eigenvalues are real and we say that at x̄xx ∈ Ω

the equation (1.1) is:

• elliptic if the eigenvalues of A are all positive or all negative.

• parabolic if the eigenvalues of A are all positive or all negative except one

that is equal to zero.

• hyperbolic if A has only one negative eigenvalue and the others are positive,

or if A has only one positive eigenvalue and the others are negative.

Elliptic, parabolic, and hyperbolic partial differential equations of order two have

been widely studied, below we give some examples of such equations.
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The simplest examples of elliptic PDEs are the Laplace’s and Poisson’s equations,

respectively:
∆u = 0,

∆u = f(xxx),

where u is the unknown function, f : Ω ⊂ Rd → R is a given function, and ∆

denotes the (spatial) Laplace operator, i.e., ∆u =
∑d

i=1

∂2u

∂x2i
. In general, Laplace’s

equation describes situations of equilibrium, or also those situations in which the

variable of interest does not depend explicitly on the time variable.

Let us consider the function u : Ω× [0,+∞) ⊂ Rd+1 → R, u ∈ C2(Ω). Parabolic

PDEs are used to describe a wide variety of time-dependent phenomena, including

heat conduction. In fact, the most famous example of parabolic equation is the

heat equation:
∂u

∂t
−∆u = 0.

Besides heat conduction, parabolic equations can describe other situations, including

particle diffusion phenomena, and pricing of derivative investment instruments.

Finally, the model of hyperbolic equations is the wave equation:

∂2u

∂t2
−∆u = 0.

Many equations in mechanics are hyperbolic, so their study is of particular interest

nowadays. The solutions of hyperbolic equations are ’wave-like’. If there is a

perturbation in the initial data of a hyperbolic equation, not all points of the

domain feel the perturbation at the same time. This feature differs hyperbolic

equations from parabolic and elliptic equations. In fact, a perturbation in the

initial, or boundary, data of an elliptic or parabolic equation is felt simultaneously

by all points in the domain.

1.2 Advection-Diffusion-Reaction Equations

Advection-Diffusion-Reaction (ADR) equations are a class of PDEs that describe

phenomena where it is present at the same time advection, diffusion, and reaction
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processes. These equations find widespread applications in various scientific disci-

plines, including fluid dynamics, chemical engineering, environmental science, and

mathematical biology [31], [32].

Advection describes the process of transport of a conserved quantity, e.g., mass

or heat, due to fluid motion. Advection requires a fluid flow to transport the

quantity under consideration; thus, it can not happen in rigid solids [33].

Diffusion usually describes the spread of chemical species from regions of higher

concentration to regions of lower concentration or the heat diffusion between regions

with different temperature. It can occur both in fluids and solids. Diffusion in a

moving fluid does not depend on the flow direction. Diffusion can be thought as a

spreading mechanism driven by gradients of one or more quantities. For instance,

thermal diffusion is driven by a temperature gradient, mass diffusion is driven

by a concentration gradient, and momentum diffusion is driven by a gradient of

velocity [33].

Reaction is a process that leads to the transformation of one set of chemicals to

another, through creation or destruction of the substances under consideration [34].

Let d = 3, the general form of an advection-diffusion-reaction equation in the

unknown function u : Ω× [0,∞) → R can be expressed as [35], [36]:

∂u

∂t
= −∇ · (vvvu) +∇ · (D∇u) +R(u), (1.2)

where u(xxx, t) is the quantity of interest, vvv is a function of time and space and

describes the velocity field that the quantity u(xxx, t) is moving with, determining a

direction of preferred transport. D is the diffusion coefficient that may be dependent

on spatial coordinates, governing the spreading or smoothing of u. R(u) is the

reaction term, describing any chemical or biological processes affecting u; it describes

sources or sinks of the quantity u. For example, when u is the concentration of

a chemical species, R > 0 means that a chemical reaction is creating more of the

species, while R < 0 means that a chemical reaction is destroying the species.

Finally, ∇ represents the gradient operator and ∇· denotes the divergence operator.

The right-hand side of Equation (1.2) is the sum of three contributions.
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• The first contribution, −∇ · (vvvu) describes the advective movement of the

quantity of interest u that has been transported with velocity vvv.

• The second contribution ∇ · (D∇u) describes diffusion processes. If u is the

concentration of a chemical substance, then if the concentration in a region is

low compared to the surrounding areas, the substance diffuses in from the

surroundings, so the concentration will increase. Conversely, if concentration

is high compared to the surroundings, then the substance diffuses out and

the concentration will decrease.

• The third contribution R(u) describes the creation or destruction of the

quantity u by reaction processes. For example, if u is the concentration of a

substance, then R describes how the substance can be created or destroyed

by chemical reactions.

ADR equations describes different behaviors depending on the values of param-

eters and the nature of the underlying physical system. Thus, understanding their

classification and properties is crucial for interpreting the solutions and predicting

the system’s evolution.

Advection-Dominated Regime is characterized by an advection process that

dominates over diffusion; the equation describes a system where the transport

of the quantity u is primarily due to advection.

Diffusion-Dominated Regime Conversely, in the diffusion-dominated regime

the diffusion term prevails, leading to a smoother spreading of u over space.

This scenario is relevant in contexts such as heat conduction, where diffusion

plays a dominant role in the redistribution of temperature.

Reaction-Influenced Dynamics The reaction term R can depend on u, thus

the reaction term can introduce non-linearity in the system.





Chapter 2

Coffee percolation models

Brewing an espresso coffee means to fill with roasted, ground and tamped coffee

a filter basket, then let the hot water at high pressure enters the filter basket and

pass through it. This extraction method of coffee from the pod can be described

as a process of percolation of a fluid (water) into a porous medium (the coffee

pod). In fact, the espresso coffee is extracted from the coffee powder, obtained by

grinding the previously roasted coffee bean. Then, the powder is inserted in the

filter basket where it is tamped. These operations together create the coffee pod,

i.e. the place where the extraction process will occur, that is the porous medium.

Percolation in porous media can occur in a variety of ways, depending on the

properties of the medium and the forces driving the fluid flow. One common type

of percolation is gravity-driven flow, which occurs when a fluid flows downward

through a porous medium under the influence of gravity. This type of flow is

important in many natural systems, such as groundwater recharge and discharge,

and can also be used in engineering applications such as groundwater remediation.

In this chapter we present two different percolation models for the prediction of the

dynamics and transport of water within the coffee pod and the consequent physico-

chemical characterisation of the coffee extracted. In particular, in Section 2.1

porous media and their properties are described, and the equations governing the

percolation process in porous media are derived; in Section 2.2 we analyse the

espresso percolation, and discuss the physico-chemical processes occurring during

7
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the espresso extraction process. In Section 2.3 we introduce and discuss a three-

dimensional model for the prediction of the coffee extraction. Finally, in Section 2.4

we present and analyse a reduced model, for the same purposes. For both models

in Sections 2.3, 2.4 we will discuss benefits and disadvantages of using such a kind

of model.

2.1 Percolation in porous media

Porous media can be defined as collections of solid bodies (grains) with enough

open space around them to allow a fluid to pass through it. These are materials

containing interconnected void spaces, called pores, which are usually filled up with

one or more fluids, be them liquid or gas, while the skeleton, formed by the solid

part, is called solid matrix. Therefore, they are multiphase materials in the sense

that they consist in the solid phase, i.e. the solid matrix, and in the fluid phase,

since the pore space is occupied by at least a fluid. Some examples of natural porous

media are rocks, aquifers, polymer materials, as well as biological tissues such as

bones, wood and cork. Their relevant role in science and industrial applications

makes easy to understand why they are of such significant interest in scientific

literature.

Percolation in porous media is the movement of a fluid, usually the water,

flowing through the interconnected pores or void spaces, driven by forces such as

gravity, capillary action, and pressure gradients. During this flow mass transport

and dissolution phenomena can occur. With the term dissolution we mean that

chemical process in which a substance, usually in the solid state, melts into the

liquid. At the end of this process, the chemicals are dispersed in the liquid, so

mass transport by the fluid flow occurs. In the following we deepen in the main

properties that characterise porous media since it is helpful to understand how

percolation in porous media works, then we derive the general equations governing

the phenomena occurring during the percolation process in porous media.
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2.1.1 Porosity

Porosity is a scalar quantity that expresses the capacity of the medium to

contain fluids inside; it is defined as:

ε =
Vp
Vm

, (2.1)

where Vp denotes the volume of the voids while Vm denotes the total volume of the

medium. We observe that 0 < Vp < Vm, so we have 0 < ε < 1. Porosity is typically

expressed as a percentage and can range from very low values, as in the case of

dense rocks, to very high values as in the case of foams. Formula (2.1) defines total

porosity; in fact, since in real porous media not all pores are connected to each

other, we can define the actual porosity as

εa =
Vpi
Vm

, (2.2)

where Vpi is the volume of the interconnected voids contained in the volume Vm.

Therefore it expresses the ability of the medium to contain moving fluids inside.

Obviously, we have 0 < εa < ε < 1.

Moreover, if we define the voids index as

e =
Vp
Vs
, (2.3)

where Vs is the volume of the solid matrix, and then Vs = Vm − Vp we have the

relationship that links the voids index to porosity:

1

e
=
Vs
Vp

=
Vm − Vp
Vp

=
1

ε
− 1 =

1− ε

ε
,

from which we have:

e =
ε

1− ε
, ε =

e

1 + e
.

2.1.2 Permeability and hydraulic conductivity

Another important concept is permeability, which is a measure of how easily

fluids can flow through a porous medium. Permeability depends on factors such as
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the size and shape of the pores and the degree of connectivity between the pores.

Intrinsic (or absolute) permeability is defined as the capacity of a porous medium

to let a fluid pass through it. It is a property of the medium independent of the

fluid. It has the dimensions of a squared length and, therefore, is measured in m2

in the International System of Units (SI). But, since the values found in nature

are much lower in order of magnitude than the m2, in practical applications the

permeability is usually measured in darcy, a unit of measurement that, despite is

not part of the SI is widely used in geology. In particular,

1 darcy = 0.987 · 10−12 m2.

Whereas the absolute permeability is an intrinsic and exclusive property of the

porous medium, the hydraulic conductivity, often called the permeability coefficient,

can be defined as the volumetric flow rate of water flowing through a porous medium

of unitary section under the effect of a hydraulic gradient of unit value, at the

temperature of 20 ◦C. It has the dimensions of a velocity and, consequently, in

the SI is measured in m/s. Unlike absolute permeability, hydraulic conductivity

also depends on the properties of the fluid that passes through the porous medium,

such as density and viscosity, and not only on the medium itself. The relationship

between absolute permeability k and hydraulic conductivity K is as follows:

K =
ρ0gk

µ0

, (2.4)

where g is the gravity acceleration, ρ0 and µ0 are reference density and reference

dynamic viscosity of the fluid, respectively. Since the hydraulic conductivity

measures the fluid ability to flow through the porous medium, it can have different

values for different directions of flow. When the flow is uniform in all directions,

there is a unique value of K and the medium is said isotropic. While the medium is

called anisotropic when the hydraulic conductivity changes for different directions of

flow; in this case we have to extend it from a scalar to a tensor and we denote with

the symbol K. Therefore, the hydraulic conductivity tensor for a three-dimensional
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system will be a 3× 3 matrix:

K =


Kxx 0 0

0 Kyy 0

0 0 Kzz

 . (2.5)

The out diagonal elements are nonzero in the case in which a pressure change in

one direction also produces flow in other directions, so the K matrix will be:

K =


Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz


where Kxy = Kyx, Kxz = Kzx e Kyz = Kzy.

In addition, we call homogeneous a porous medium that has constant properties

(such as porosity, hydraulic conductivity, etc.) in all points of the domain, otherwise

we call it heterogeneous.

2.1.3 From the miscroscopic to the macroscopic behaviour

through the continuum hypothesis

Porous media can be analysed with two different levels of description. We define

a material point as a neighbourhood of a point belonging to the medium. Thus

according with the size of the neighbourhood we can consider at least two levels

of accuracy for its description. The microscopic level, where every point in the

domain is occupied by only one phase (solid, liquid or gaseous), that is when the

size of the neighbourhood tends to zero and the macroscopic level, where every

material point consists in all the different phases[33], that is when the size of the

neighbour is sufficiently large to contains several molecules/particles of the phases

under study. The study of the fluid flow into the medium at the microscopic level

means to consider the dynamics of the particles occurring in each phase and also

the complex inter-phases geometry. This is usually excessively expensive and almost

impracticable, at least with the current computational resources available nowadays,
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however, some strategies can be considered to speed-up this approach, see for

example the Lattice Boltzmann method [37] and the cellular automata models [38].

Therefore, a macroscopic description is helpful to overpass these difficulties and

the continuum hypothesis is assumed. It states that the macroscopic behavior of a

porous medium can be described in the same way of a continous medium. So that

we can consider quantities such as velocity, temperature, etc. . . . as continuous

functions in space and time, and usual mathematical analysis tools of differential

and integral calculus can be applied. There are three main approaches to transform

the microscopic physical laws that describe the flow behaviour into their macroscopic

counterparts: the REV averaging procedure, the homogenization approach and the

mixture theory. In this thesis the REV averaging procedure is presented, see [39]

and [40] for further details on the other two techniques.

The development of the macroscopic description from the microscopic properties

of the medium implies neglecting information not relevant for the fluid flow at

macroscopic level. In the REV averaging approach this disregarded information

is incorporated into averaged coefficients that help to describe the medium in a

realistic way. These macroscopic averaged quantities are related to the microscopic

quantities by averaging operators acting on an averaging volume. This means that

this spatial averaging procedure is referred to a certain elementary volume of the

porous medium and the characteristics of the material are averaged, this is called

REV (representative elementary volume). The REV dV has to be larger than the

dimension of a single pore in such a way that it can include a sufficient number

of voids to show changes on a microscopic scale. At the same time dV has to be

much smaller than the size of the medium in order to reflect the local variability

of macroscopic properties. Therefore, the continuum hypothesis implies that the

obtained averaged quantities are independent from the dimension of the averaging

volume dV and that they are continuous over space and time.

Let us assume that the REV dV exists, in the following we introduce average

operators that will be exploited in the derivation of the macroscopic balance

principle 2.1.4. Let xxx be the position vector of the centroid of dV , and let us

consider the point P within dV . We denote with rrr the position vector of P , and
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with yyy the position of P with respect to the centroid of dV , as shown in Figure 2.1.

Thus, we have:

Figure 2.1: Representation of a REV dV with one liquid phase l shown in light

blue, the gaseous phase g in white and the solid phase s in brown. The centroid of

dV and a point P are highlighted.

rrr = xxx+ yyy. (2.6)

We define the distribution function γα of the α-phase, establishing if the position

vector rrr in dV lies or not to the α-phase, where α ∈ {l, g, s}. This is:

γα(rrr, t) =

 1 if rrr lies in the α-phase,

0 otherwise,
∀t. (2.7)

Thus, for the point P in Figure 2.1 γl = γs = 1, but γg = 0. In the following, we

denote with dv the microscopic differential volume of the REV dV , independently

of the fixed coordinate system, that is in our case dv = dv(yyy). In addition we denote

with εα the volume fraction of the α-phase defined as:

εα(xxx, t) =
dVα(xxx, t)

dV
=

1

dV

∫
dV

γα(xxx+ yyy, t)dv. (2.8)
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It represents the fraction of the macroscopic REV volume dV covered by the α-phase.

Obviously the quantities defined in (2.8) satisfy the following relations:∑
α

εα = 1, and 0 ≤ εα ≤ 1.

For a given REV we define three different averaging operators all satisfying the

following criteria. For more details see [41]:

Criterion I: The integrand of averaging operators multiplied by the infinitesimal

element of integration is an additive quantity.

Criterion II: The macroscopic quantity has to exactly correspond to the total

amount of the microscopic one.

Criterion III: Proper definitions of the macroscopic quantities are needed. They

have to be given according to the ones of the microscopic quantities.

Criterion IV: The macroscopic averaged quantity must be the same function

most widely observed from experience.

Volume average operator:

⟨·⟩α(xxx, t) =
1

dV

∫
dV

(·)γα(xxx+ yyy, t)dv. (2.9)

Intrinsic volume average operator:

⟨·⟩α(xxx, t) = 1

dVα(xxx, t)

∫
dV

(·)γα(xxx+ yyy, t)dv. (2.10)

Intrinsic mass average operator:

(·)
α
(xxx, t) =

1

⟨ρ⟩αdV

∫
dV

(·)ρ(xxx+ yyy, t)γα(xxx+ yyy, t)dv, (2.11)

where ρ denotes the mass density. Let ψ be a scalar quantity, from (2.8), (2.9)

and (2.10) it holds:

εα(xxx, t)⟨ψ⟩α(xxx, t) =
dVα(xxx, t)

dV

1

dVα(xxx, t)

∫
dV

ψ(xxx+ yyy, t)γα(xxx+ yyy, t)dv = ⟨ψ⟩α(xxx, t).
(2.12)
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Moreover, from (2.11) we have:

⟨ρ⟩αψ
α
= ⟨ρ⟩α

1

⟨ρ⟩αdV

∫
dV

ψ(xxx+ yyy, t)ρ(xxx+ yyy, t)γα(xxx+ yyy, t)dv = ⟨ρψ⟩α (2.13)

In addition, we can define the fluctuation ψ̃α of the microscopic quantity ψ, as the

deviation of ψ at the point rrr from its mass average at the point xxx, i.e.:

ψ̃α(xxx,yyy, t) = ψ(xxx+ yyy, t)− ψ
α
(xxx, t). (2.14)

Furthermore, since ψα
(xxx, t) is constant in dV , for the two microscopic scalar quantity,

ψ, ϕ it follows:
ψ̃α

α

= 0,

ψ̃αϕ
αα

= ψ̃α
α

ϕ
α
= 0,

ψϕ
α
= ψ

α
ϕ
α
+ ψ̃αϕ̃α

α

.

(2.15)

2.1.4 The balance principle

Our intent is to describe the motion of a fluid in a porous medium. The laws

that describe this motion all derive from the balance statement of some extensive

property of this multi-component system (mass, momentum, mass, energy ...).

Thus in this section we derive the general balance principle for a porous medium

containing N chemical substances and only one liquid phase l. This assumption has

been made for the simplicity of notation and does not compromise the generality of

the discussion.

An extensive property of a chemical substance is a property that depends on the

mass of the substance which such quantity refers to, while an intensive property is

a property that does not depend on the size of the sample. Temperature, pressure,

density are examples of intensive properties, while volume, mass, momentum, kinetic

and internal energy are examples of extensive properties. Extensive and intensive

property are quantitative properties, for this reason in this context we use the two

terms as synonymous, and we use the same symbol to denote the property and its

amount.

In each point it is possible to define intensive and extensive quantities and

understand how they vary over time, that is, what their temporal rate of change is.
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We consider an extensive property of a chemical species k and we indicate

with Fk its amount. For each extensive property Fk we can associate an intensive

property ψk, which is the quantity of that property per unit of mass of the species

k. In addition, we can define the volume density fk of Fk, as the amount of Fk per

unit of volume, i.e.:

fk(xxx, t) = ρkψk(xxx, t), (2.16)

where ρk is the mass density of the chemical k, defined as the mass of the species k

per unit of volume. We note that the intensive properties can be either scalars or

vectors but, for simplicity of notation we denote them as scalars in any case.

For a given volume V containing the REV dV , we have:

Fk(t) =

∫
V

ρkψk(xxx, t)dV =

∫
V

fk(xxx, t)dV. (2.17)

The balance equation of the extensive quantity Fk in a fixed Eulerian coordinate

system is defined as:

DFk

Dt
≡ D

Dt

∫
V

fkdV −
∫
V

ρkFkdV =

∫
V

ρkGkdV. (2.18)

where Fk denotes an external sink of Fk and Gk is its net rate of production. The

notation
D

Dt
in (2.18) indicates the material (or substantial) derivative defined as:

D

Dt
=

∂

∂t
+ (vvvFk · ∇), (2.19)

where vvvFk is the velocity vector of the particle associated with Fk. The first term

in formula (2.19) is said local derivative, while the second one is called convective

derivative, it represents the change of the extensive property Fk due to the convection

of the particle from one position to another with a different amount of Fk.

Theorem 1 (Reynolds’ transport theorem). Let F be the extensive property defined

in (2.17), and let vvv be a fluid vector field. In addition, let V = V (t) be a volume

bounded by a closed surface moving with the fluid then

DF
Dt

=

∫
V

[
∂f

∂t
+∇ · (fvvv)

]
dV
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See [42] Chapter 2, for the proof of the theorem. Exploiting the Reynolds’

transport Theorem 1 from (2.18) we obtain:

D

Dt

∫
V

fkdV =

∫
V

[
∂fk
∂t

+∇ ·
(
fk vvv

F
k

)]
dV =

∫
V

ρk (Fk +Gk) dV,

from the arbitrariness of V we have:

∂fk
∂t

+∇ ·
(
fk vvv

F
k

)
= ρk (Fk +Gk) , (2.20)

Let jjjFk be the diffusive flux of the chemical k corresponding to Fk, defined as:

jjjFk = fk
(
vvvFk − vvvk

)
,

where vvvk denotes the particle velocity of the chemical substance k. That gives

fkvvv
F
k = jjjFk + fk vvvk. (2.21)

Thus, substituting (2.21) in (2.20), it becomes:

∂fk
∂t

+∇ ·
(
jjjFk + fk vvvk

)
= ρk (Fk +Gk) , (2.22)

and since the divergence operator is linear we get:

∂fk
∂t

+∇ · (fk vvvk) +∇ · jjjFk = ρk (Fk +Gk) . (2.23)

Usually the particle velocity vvvk of chemical k is not measurable. Thus, summing

over chemicals k = 1, . . . , N , we can consider the mass-weighted velocity vvv of the

particle, defined as:

vvv =
1

ρ

N∑
k=1

ρkvvvk, ρ =
N∑
k=1

ρk, (2.24)

and introduce the diffusive flux jjjk of the species k that relates vvvk to the mass-

weighted velocity vvv:

jjjk = ρk (vvvk − vvv) ,

that gives:

ρkvvvk = jjjk + ρkvvv. (2.25)



18 CHAPTER 2. COFFEE PERCOLATION MODELS

Inserting (2.25) in (2.23), and recalling formula (2.16) we obtain the following

general balance equation in which we eliminated the particle velocity vvvk of the

species k:

∂

∂t
(ρkψk) +∇ · (ρkψk vvv) +∇ ·

(
jjjFk + ψkjjjk

)
= ρk (Fk +Gk) . (2.26)

Equation (2.26) involves quantities related to each species k, however it is enough to

state the balance principle for barycentric related amounts. Thus, we can sum (2.26)

over all the chemicals k = 1, . . . , N and get:

∂

∂t
(ρψ) +∇ · (ρψ vvv) +∇ · jjj = ρ (F +G) , (2.27)

where:

ψ =
1

ρ

N∑
k=1

ρkψk,

F =
1

ρ

N∑
k=1

ρkFk,

G =
1

ρ

N∑
k=1

ρkGk,

jjj =
N∑
k=1

(
jjjFk + ψkjjjk

)
.

The microscopic balance equation (2.27) can be macroscoped exploiting the averag-

ing procedures (2.9)- (2.15), however we also need to provide averages of derivatives

with respect to space and time. To this purposes, the following theorem relates the

average of the divergence of the microscopic extensive quantity F to the divergence

of its average (i.e. to the divergence of the corresponding macroscopic quantity):

Theorem 2. Let F be an extensive quantity, dAαβ the macroscopic differential

interface between the phases α and β in the macroscopic REV volume dV , da a

microscopic differential element of dAαβ, nnnαβ = −nnnβα a normal vector on dAαβ

pointing from the phase α to β. It holds:

⟨∇ · F⟩α = ∇ · ⟨F⟩α +
1

dV

∑
β ̸=α

∫
dAαβ

F · nnnαβda.
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Furthermore, the following theorem expresses the average of the time derivative

of the extensive quantity F to the time derivative of its average:

Theorem 3. Let F be an extensive quantity, dAαβ the macroscopic differential

interface between the phases α and β in the macroscopic REV volume dV , da a

microscopic differential element of dAαβ, nnnαβ = −nnnβα a normal vector on dAαβ

pointing from the phase α to β, and www the velocity of the αβ interface. It holds:〈
∂F
∂t

〉
α

=
∂

∂t
⟨F⟩α − 1

dV

∑
β ̸=α

∫
dAαβ

F ·
(
www · nnnαβ

)
da

For the detailed proof of these theorems see [43, Sections 2.7.1, 2.7.2].

Exploiting the averaging procedures (2.9)- (2.15) and Theorems 2 and 3 the

microscopic balance equation (2.27) can be macroscoped, leading to the macroscopic

balance equation for the α-phase:

∂

∂t

(
⟨ρ⟩α ψ

α
)
+∇·

(
⟨ρ⟩α ψ

α
vvvα
)
+∇· (εαjjjα)−⟨ρ⟩α

[
F

α
+ eα (ρψ) + Jα

]
= ⟨ρ⟩αG

α
,

(2.28)

α = s, f, f = l, g. For a detailed derivation of this procedure see [41]. In

Equation (2.28) jjjα is the macroscopic diffusive flux vector for the intrinsic mass

averaged intensive quantity associated with the property F , ψα defined as:

jjjα = ⟨jjj⟩α + ⟨ρ⟩α ṽvvαψ̃α
α

,

It consists in two addenda; the first one describes the macroscopic diffusion, while the

second one is the macroscopic mechanical dispersion. The term eα (ρψ) represents

the exchange of ψα of the α-phase with the other phases, due to the relative motion

of the interfaces among the different phases. It is defined as:

eα (ρψ) =
1

⟨ρ⟩α
1

dV

∑
β ̸=α

∫
dAαβ

ρψ (www − vvv) · nnnαβda. (2.29)

Finally, Jα expresses the diffusion of ψα through the interfaces between the phases.

This is:

Jα =
1

⟨ρ⟩α
1

dV

∑
β ̸=α

∫
dAαβ

jjj · nnnαβda. (2.30)
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Moreover, if we set Fα
ex = eα(ρψ) + Jα, and we assume that there is no storing of

properties at the phase boundary, we obtain [41]:∑
α

⟨ρ⟩αFα
ex = 0. (2.31)

For the reader’s convenience, we rewrite equation (2.28) in the following simpli-

fied form where we omitted the averaging operators symbols, and we replaced the

mass density by its intrinsic average (2.12), i.e.: ρα = ⟨ρ⟩α = εα⟨ρ⟩α = εαρ
α:

∂

∂t
(εαρ

αψα) +∇ · (εαραψα vvvα) +∇ · (εαjjjα) = εαρ
α (Fα + Fα

ex +Gα) . (2.32)

Equation (2.32) is the balance principle for the intensive quantity ψα. We highlight

that, for conservative quantities such as mass, momentum and energy, it coincides

with the conservation principle.

2.1.5 Conservation of mass

Let Mα
k denotes the mass of chemicals k in the α-phase, the conservation of the

mass Mα
k is obtained from (2.32) where the definitions of the general quantities

in (2.32) are listed in Table 2.1.

terms description

ψα = ωα
k =

ραk
ρα

mass fraction of species k

jjjα = jjjαk diffusive flux of species k

Fα =
rαk
ρα

mass-weighted homogeneous (intraphase)
reaction rate of species k

Fα
ex =

Rα
k

ρα
mass-weighted heterogeneous (interphase)

reaction rate of species k

Gα = 0 since Mα
k is conservative

Table 2.1: Definitions of the general quantities in equation (2.32) for mass species

conservation (i.e. Fα = Mα
k and ψα = ωα

k ) with a brief description.
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Thus, for k = 1, . . . , Nα, α = s, f , f ∈ {l, g} we get:

∂

∂t
(εαρ

αωα
k ) +∇ · (εαραωα

k vvv
α) +∇ · (εαjjjαk ) = εα (r

α
k +Rα

k ) , (2.33)

where Nα denotes the number of chemicals k in the α-phase.

In order to ensure global mass conservation, equations (2.33) are subjected to

the following constrains:

i) the sum of the mass fluxes of all chemicals into the α-phase has to be equal

to the mass change in the selected phase. If Qα denotes the internal supply of

mass of the α-phase and Qα
ex represents the phase change of mass this lead to:

Nα∑
k=1

(rαk +Rα
k ) = ρα (Qα +Qα

ex) (2.34)

ii) The diffusive fluxes summed over all the substances vanish in the phase α,

i.e.:
Nα∑
k=1

jjjαk = 0. (2.35)

Each on of the Equations (2.33) states the balance principle for the mass fraction

of the species k in the α-phase. It can be equivalently expressed for the mass

concentration Cα
k of the chemical k, which represents the mass of substance k per

unit volume of α-phase and it is equal to the mass density ραk , i.e.: Cα
k = ραk = ραωα

k .

Therefore, for k = 1, . . . , Nα, α = s, f , f ∈ {l, g} we get:

∂

∂t
(εαC

α
k ) +∇ · (εαCα

k vvv
α) +∇ · (εαjjjαk ) = εα (r

α
k +Rα

k ) . (2.36)

The diffusive mass flux jjjsk of chemicals in the solid phase is meaningless, so we

formally consider jjjsk = 000. Thus, Equations (2.33) for the solid phase become:

∂

∂t
(εsρ

sωs
k) +∇ · (εsρsωs

k vvv
s) = εs (r

s
k +Rs

k) , (2.37)

for k = 1, . . . , N s.

For the diffusive mass flux vector jjjfk of the species k in the fluid phase f , we

consider the Fick’s law:

jjjfk = −ρfDDDf
k · ∇ω

f
k , (2.38)
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whereDDDf
k is the hydrodynamic dispersion tensor consisting in two parts, a molecular

diffusion Df
kIII and a mechanical diffusion DDDfmech, i.e:

DDDf
k = Df

kIII +DDDf
mech =

(
Df

k + βf
T ||vvv

fs||
)
III +

(
βf
L − βf

T

)vvvfs ⊗ vvvfs

||vvvfs||
, (2.39)

where ⊗ denotes the tensor product, Df
k is the molecular diffusion coefficient, βf

T , β
f
L

are the transverse and longitudinal dispersion coefficients, respectively, and III is the

identity matrix. In addition, the relative velocity vvvαs of the α-phase is defined as:

vvvαs = vvvα − vvvs, α = s, f, f ∈ {l, g}. (2.40)

However, when high concentrations of solubles occur non linear effects have to

be considered and the definition (2.39) of jjjfk should be replaced by an extended

nonlinear non-Fickian dispersion law[44], [45]. Therefore, Equations (2.33) for the

fluid phase becomes:

∂

∂t

(
εfρ

fωf
k

)
+∇ ·

(
εfρ

fωf
k vvv

f
)
+∇ ·

(
εfjjj

f
k

)
= εf

(
rfk +Rf

k

)
, (2.41)

for k = 1, . . . , N f .

Let Mα denotes the global mass of the α-phase, the global conservation of mass

Mα is obtained by summing (2.33) over all substances k, and taking into account

constrains (2.34), (2.35) and recalling that:
Nα∑
k=1

ωα
k = 1. (2.42)

For α = s, f , f ∈ {l, g} we have:

∂

∂t
(εαρ

α) +∇ · (εαρα vvvα) = εαρ
α (Qα +Qα

ex) . (2.43)

In addition, in Table 2.2 the definitions of the general quantities for Fα = Mα

of (2.32) are listed.

Finally, since mass is a conservative quantity, we have to require that the mass

created over all phases is null, i.e.:∑
α=s,l,g

εαρ
αQα

ex = 0. (2.44)
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terms description

ψα = 1 since equation (2.42) holds

jjjα = 0 since equation (2.35) holds

Fα = Qα internal supply of mass of the α-phase

Fα
ex = Qα

ex change of mass of the α-phase

Gα = 0 since Mα is conservative.

Table 2.2: Definitions of the general quantities in equation (2.32) for mass conser-

vation (i.e: Fα = Mα) with a brief description.

If we denote with Qα the bulk source term, i.e: Qα = εα(Q
α +Qα

ex) Equation (2.43)

becomes:
∂

∂t
(εαρ

α) +∇ · (εαρα vvvα) = ραQα, (2.45)

for α = s, f , f ∈ {l, g}. It states the global conservation of mass for the α-phase.

2.1.6 Conservation of momentum

Let Vα denotes the momentum of the α-phase, the conservation of the momentum

is obtained from (2.32) where the definitions of the general quantities are listed in

Table 2.3, where the interfacial drag term fffα
σ represents the exchange of momentum

between the phase α and the other phases, due to mass exchange and mechanical

interactions. We recall the abuse of notation in the symbol of intensive properties;

they can be either scalars or vectors but, for simplicity of notation we denoted them

as scalars in any case. Thus, for α = s, f , f ∈ {l, g} we get:

∂

∂t
(εαρ

αvvvα) +∇ · (εαρα (vvvα vvvα)) +∇ · (εασσσα) = εαρ
α (gggα + fffα

σ) , (2.46)

see [33] for a detailed discussion on equation (2.46).
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terms description

ψα = vvvα mass-weighted velocity of the α-phase

jjjα = σσσα stress tensor of the α-phase

Fα = gggα external supply of momentum due to gravity of the α-phase

Fα
ex = fffα

σ interfacial drag term

Gα = 0 since Vα is conservative

Table 2.3: Definitions of the general quantities in equation (2.32) for momentum

conservation ( i.e. Fα = Vα) with a brief description.

2.1.7 Conservation of energy

Let Eα, Kα denote the internal or thermal, and kinetic energy of the α-phase,

respectively. The conservation of the total energy Eα +Kα is obtained from (2.32)

where the definitions of the general quantities are listed in Table 2.4. For α = s, f ,

f ∈ {l, g} we get:

∂

∂t

(
εαρ

α

(
Eα +

1

2
||vvvα||2

))
+∇ ·

(
εαρ

α

(
Eα +

1

2
||vvvα||2

)
vvvα
)
+

+∇ · (εα (jjjαT + σσσα · vvvα)) = εαρ
α (Hα + gggα · vvvα +Hα

ex + fffα
σ · vvvα) ,

(2.47)

where || · || is the Euclidean norm, and Hα
ex, fffα

σ represent the exchange of energy

and momentum, respectively, between the phase α and the other phases, due to

mass exchange and mechanical interactions.

From Equation (2.47), after subtraction of vvvα dotted with (2.46), for α = s, f ,

f ∈ {l, g} we get:

∂

∂t
(εαρ

αEα)+∇·(εαραvvvαEα)+∇·(εαjjjαT )+εασσσα : ∇vvvα = εαρ
α (Hα +Hα

ex) , (2.48)

where the notation AAA : BBB means a double dot product between the two second

order tensor AAA, BBB of dimension D; i.e.:

AAA : BBB =
D∑
i=1

D∑
j=1

AijBji.
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terms description

ψα = Eα +
1

2
||vvvα||2 mass-weighted total energy of the α-phase

jjjα = jjjαT + σσσα · vvvα jjjαT ,σσσ
αheat flux vector and stress tensor
of the α-phase, respectively

Fα = Hα + gggα · vvvα Hα external supply of energy of the α-phase

Fα
ex = Hα

ex + fffα
σ · vvvα exchange of total energy between

the α-phase and all the other phases

Gα = 0 since energy is conservative

Table 2.4: Definitions of the general quantities in equation (2.32) for total energy

conservation ( i.e. Eα +Kα) with a brief description.

The term εασσσ
α : ∇vvvα in (2.48) represents an energy dissipation term. It is always

negative, however in porous media it is usually negligible, thus, for α = s, f ,

f ∈ {l, g} Equation (2.48) becomes:
∂

∂t
(εαρ

αEα) +∇ · (εαραvvvαEα) +∇ · (εαjjjαT ) = εαρ
α (Hα +Hα

ex) . (2.49)

The heat flux vector of the α-phase is proportional to the gradient of the temperature

Tα of the α-phase and it is defined as:

jjjαT = −ΛΛΛα · ∇Tα,

where the hydrodynamic thermodispersion tensor is:

ΛΛΛα = ΛΛΛα
0 +ΛΛΛα

mech

=
(
Λα + γαT ||vvvfs||

)
III + (γαL − γαT )

vvvfs ⊗ vvvfs

||vvvαs||
.

(2.50)

It consists in two parts; the thermal conductivity tensor ΛΛΛα
0 = ΛαIII and the thermal

mechanical diffusion tensor ΛΛΛα
mech, while γαL and γαT represent the thermal transverse

and longitudinal dispersion coefficients of the α-phase, respectively. In addition, we

recall that III denotes the identity matrix and the relative velocity vvvαs of the α-phase

has been defined in (2.40). We note that Equation (2.49) states the conservation of

total energy for the α-phase, i.e., the first law of thermodynamics , see [33] for a

detailed discussion on equation (2.49) and formula (2.50).
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2.2 Insights into the physics of espresso coffee

In this section we deepen in the physical and chemical processes that occur

during the espresso brewing procedure, in order to fully understand the dynamics

of espresso coffee preparation. This consists in hot water, usually at 93 ◦C, at high

pressure, typically 9 bar, that enters the filter basket previously filled with roasted,

ground and tamped coffee. This process is referred to as percolation. During the

espresso percolation the water dissolves the chemicals contained in the grains and

transports them in the cup. This occurs in two main stages: the imbibition phase

and the extraction. During the first phase, the water flows through the void spaces

among grains of coffee due to gravity and it is absorbed into each grain by capillarity.

Whereas, during the second stage the water dissolves the chemicals contained in

the coffee powder and transports the dissolved compounds from the interior of the

grains to their external surface up to the cup. However, in both the models that

we are going to present the initial imbibition phase of wetting is disregarded and

only the extraction phase is modelled.

The espresso beverage is extracted in a metal holder, generally called filter

basket or simply filter, in which the coffee powder is contained. Figure 2.2 shows a

picture of two conventional filter baskets for double portion extraction, with slightly

different lateral profile. The filter is usually manufactured in stainless steel and has

an almost cylindrical shape and a perforated bottom with holes whose diameter

is usually of 0.25mm [13]. This feature of the filter prevents the passage of larger

coffee particles from the pod into the cup, which could be annoying when tasting

the espresso. The typical width of double-shot filter is 60mm, while its height may

vary depending on its holding capacity. For example, the 20 g VST© competition

filter basket, has an height of 26mm. It is optimized for use with 20 g of dry coffee

powder, that is the usual dose used in specialty coffee bar and in World Barista

Championship competitions.

The filter basket gives the shape to the coffee cake. It has been seen that the

optimal ratio height-width of the coffee pod is around 0.2. This means that a coffee

pod contained in the VST© competition filter basket previously described has an
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Figure 2.2: Picture of conventional double-shot filter baskets

height of 12mm. The remaining empty space is left to prevent over-compacting of

the cake that would occur during the wetting phase in which the coffee particles

expand. Only small deviations of this ratio can be recommended; in fact, for too

larger height-diameter ratio an excessively high pressure is required or, for normal

pressure values an extremely coarse grind would be suggested, resulting in a low

extraction. Conversely, for too low height-diameter ratios, too fine grounds are

required in order to extract coffee in a standard time, this would prejudge the

reproducibility of the extraction, because channeling effects could appear [13] with

a resulting low quality extraction. The coffee pod is obtained by compacting the

ground coffee powder usually with a tamping force of around 20 kgF in the filter. In

general, the particle size distribution of an espresso grinding has a bimodal pattern;

Figure 2.3 reports the particle size distribution curve of an espresso powder sample

analysed with a laser diffraction particle size analyser. The x axis reports the values

of the particle diameters and the corresponding value on the y axis is the percentage

of volume covered by all particles having that diameter.

We highlight the bimodal trend of the curve that has a local minimum around

100µm, this allows us to divide the particles into two families: the fines, whose

diameter is smaller than 100µm, and the boulders, with diameter larger than

100µm. This peculiar feature of the particle size produces a double effect: it forms
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Figure 2.3: Particle size distribution curve of a sample of espresso coffee powder.

a coarse fixed structure of the pod, which allows a correct flow and, at the same

time, the large amount of fines allows the extraction of an higher amount of solubles

and emulsifier material. From a mathematical point of view, the coffee pod can be

modelled as a porous medium. In particular, both the size of the grains and their

ratio fines-boulders affects the porous structure of the medium and they determines

a relevant property, its porosity ε (cf. Section 2.1.1). Therefore, a mathematical

model for the espresso percolation process has to consider at least the feature of

the medium, the two phases involved, i.e. the liquid and the solid phases, and the

main processes taking place for each of them.

2.3 A 3D model for espresso coffee percolation

We present a three-dimensional model for the prediction of the coffee percolation.

The model was firstly proposed in [23], and it is the most complete mathematical

model available in literature for such a purpose. In fact, it allows the solution of

flow, mass and heat transport simultaneously. In the following we analyse and

derive each equation of this model by using fundamental principles described in
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Section 2.1.

Up to now, the general percolation model derived in Section 2.1 consists in

Equations (2.37), (2.41), (2.45), (2.46), (2.49), where the volumetric flux density,

usually called Darcy velocity can be introduced, i.e.:

qqqf = εf (vvv
f − vvvs). (2.51)

The following reasonable hypotheses are considered in the formulation of this model:

1. The porous medium is isotropic and homogeneous.

2. Since the percolation process lasts about 25 seconds, but espresso coffee comes

out after about 5 seconds, that are necessary for the coffee pod imbibition,

the flow is not considered during the first imbibition phase and therefore the

porous medium is considered saturated. This means that there is no gaseous

phase, i.e: f = l.

3. Thermodynamic equilibrium is assumed between the phase, that is the temper-

atures of all phases are equal at each point of the medium, i.e.: T l = T s = T .

Thus, energy conservation equations (2.49) can be summed up over the phases

resulting in only one equation.

4. Solid grains are assumed to be incompressible, thus fluids and solid equations

can be decoupled and there is no need to solve mass and momentum equations

for the solid phase.

5. The term associated with the solid movement εfvvvs is negligible, thus for the

volumetric flux density holds: qqqf = εfvvvf .

As consequence of these assumptions we have that the model consists in Equa-

tions (2.37), (2.41), and (2.45), (2.46), only for the liquid phase, i.e.: α = l, and

a unique equation of kind (2.49) since thermodynamic equilibrium is assumed.

Moreover, since the medium is saturated by a single liquid, the liquid volume

fraction is equal to the medium porosity εl = ε, while the solid volume fraction is

εs = 1− ε. For this reason and the aforementioned hypothesis 5, in the following
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we omit the superscript l in the volumetric flux density, i.e.: qqq = qqql, and in general

when we refer to the liquid phase.

2.3.1 The Darcy’s law

In this Section we analyse the Darcy’s law, which describes the motion of a

fluid in a porous medium. It was empirically formulated by Darcy in 1856 as the

result of his experiments for the construction of the Dijon fountains [46]. Darcy’s

law is valid in steady-state operations, i.e. the speed of the fluid is egligible and,

although varying from point to point, remains approximately constant over time at

each point; moreover, we assume the following conditions:

• laminar flux,

• system totally saturated by a unique fluid,

• absence of chemical-physical interactions between fluid and porous medium.

We note that alternative formulations of the Darcy’s law can also be given for un-

saturated media by making appropriate modifications on the hydraulic conductivity

coefficient [33]. Although Darcy’s law was formulated for the first time empirically,

it can be derived from the conservation equation of the momentum (2.46) for the

liquid phase l, where we split the liquid stress tensor σσσ into an equilibrium part,

gaining the pressure contribution, and non-equilibrium part, due to viscous forces,

τττ called deviatoric fluid stress tensor, according to:

σσσ = pδδδ − τττ ,

ερfffσ = p∇ε+ fff τ

(2.52)

where δδδ denotes the Kronecker delta function. Introducing (2.52) in (2.46) we get:

∂

∂t
(ερvvv) +∇ · (ερ (vvv vvv)) + ε∇p−∇ · (ετττ) = ερggg + fff τ , (2.53)

We observe that in a perfect fluid or in a fluid at rest, τττ vanishes, so that the stresses

within it are purely isotropic, i.e., σσσ = pδδδ, where p is the hydrostatic pressure[47].

Moreover, the velocity vvv is supposed to be sufficiently small so that the Reynolds
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number Rep [48] based on the typical pore diameter is enough small (in the case of

espresso coffee Rep ≈ 10−1). As a consequence, the inertial terms in (2.53) can be

neglected, i.e.:
∂

∂t
(ερvvv) ≈ 0, ∇ · (ερ (vvv vvv)) ≈ 0.

Thus, equation (2.53) becomes:

ε (∇p− ρggg) = fff τ , (2.54)

where fff τ is given by:

fff τ = −εµ
kkk
qqq,

where µ denotes the viscosity of the fluid and kkk is the intrinsic permeability discussed

in Section 2.1.2. Equation (2.54) is the Darcy equation, that is usually written in

pressure formulation:

qqq = −k
kk

µ
(∇p− ρggg) (2.55)

Moreover, Equation (2.55) can be written in its equivalent formulation for the

hydraulic head h = z +
p

ρ0g
as:

qqq = −Kfµ (∇h+ χeee) , (2.56)

where fµ =
µ0

µ
, is the viscosity relation function, χ =

ρ− ρ0
ρ0

, is the buoyancy

coefficient, eee = (0, 0, 1)T , and K is the hydraulic conductivity tensor discussed

in Section 2.1.2. In conclusion, Darcy’s law (2.56) describes the flow behaviour

through a saturated medium, in laminar flux regime. It states that the flux is

proportional to the hydraulic gradient, and the negative sign indicates that the

flow of the fluid occurs in the direction that goes from points at higher pressure to

those where the pressure is lower.

2.3.2 The Richards’ equation

Richards’ equation describes the flow of a fluid in a porous medium. Since the

extraction of coffee from the pod will be modeled as a flow problem in a porous

medium saturated by a single fluid we will derive the Richards’ equation for such
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a porous medium. See [49] for the derivation of the unsaturated case. Richards’

equation can be obtained combining the principle of continuity, namely the mass

conservation of the liquid phase (2.45) with the Darcy’s law (2.56).

Under the hypothesis of absence of sources or sinks, Equation (2.45) becomes:

∂(ερ)

∂t
+∇ · (ρqqq) = 0, (2.57)

where qqq is given by the Darcy’s law (2.56). Furthermore, from the product rule we

have:
∂(ερ)

∂t
= ε

∂ρ

∂t
+ ρ

∂ε

∂t
. (2.58)

Let us introduce the two following additional constitutive laws. The first states

that particles consolidate when the liquid pressure p decreases, i.e.:

∂ε

∂t
=
dε

dp

∂p

∂t
= Cv

∂p

∂t
, (2.59)

where Cv ≡
dε

dp
is a coefficient related to the classical coefficient of consolidation

used in soil mechanics [50]. The second law relates the water compressibility β with

the liquid pressure:

β =
1

ρ

dρ

dp
. (2.60)

From the chain rule and introducing (2.59) and (2.60) in (2.58) we have:

∂(ερ)

∂t
= ε

dρ

dp

∂p

∂t
+ ρCv

∂p

∂t
= ρ(εβ + Cv)

∂p

∂t
. (2.61)

In addition, recalling that h = z +
p

ρg
, we have:

∂h

∂t
=

1

ρg

∂p

∂t
, (2.62)

that is:
∂p

∂t
= ρg

∂h

∂t
. (2.63)

Moreover, combining (2.57), (2.61) and (2.63) we obtain:

gρ2(εβ + Cv)
∂h

∂t
+∇ · (ρqqq) = 0. (2.64)
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If we define the specific storage S0 as the volume of water released from a unit

volume of porous medium due to a unit decrease in hydraulic head, i.e. S0 =

gρ(εβ + Cv), (2.64) becomes:

S0
∂h

∂t
+∇ · qqq = 0. (2.65)

We note that in (2.65) we have also replaced ∇ · (ρqqq) with qqq · ∇ρ+ ρ∇ · qqq, and we

have assumed that the spatial gradient of ρ is negligible compared to other terms

in the equation, so it has been neglected and finally we divided by ρ. We point

out that, because the specific storage coefficient S0 depends on the fluid density,

that in turn is a function of the pressure p, and therefore of h, Equation (2.65)

is non-linear. However, since in reality S0 does not change very much when the

pressure changes, it is normally given as a constant value, i.e. S0 = gρ0(εβ + Cv),

where ρ0 is a reference mass density of the fluid. We note that Equation (2.65)

when the flux qqq is given by (2.56), it is the Richards’ equation valid for a medium

completely saturated by a single fluid.

2.3.3 The mass transport equations

During the percolation process the chemical substances can behave in two

different ways; i) they can be dissolved by the water flow and therefore they can be

transported by the fluid flow; ii) they can remain bounded to the porous medium

during all the percolation process. Hence, due to the different nature of the process

they are subjected to, we can divide the species in two different groups:

• the dissolved substances that are flowing together with the water and are

being transported by the water flow, whose dynamics is described by the

mass transport equation for the chemicals species in the liquid phase. For

such species we denote with Ck = C l
k = ρlωl

k, k = 1, 2, . . . , N l their chemical

concentration.

• the solid particles that remain bounded to the porous matrix, whose dynamics

is described by the mass transport equation for the species in the solid phase.
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For such substances we denote with Cs
k = ρsωs

k, k = 1, 2, . . . , N s their chemical

concentration.

The dynamics of the dissolved substances

The dynamics of the dissolved substances is described by the mass transport

equation for the species in the liquid phase and it derives from Equation (2.41),

where we substitute Formula (2.51) and assumption 5. In particular, if the notation

of the liquid concentration Ck, k = 1, 2, . . . , N l is used, we obtain:
∂

∂t
(εCk) +∇ · (Ck qqq) +∇ · jjjk = ε

(
rlk +Rl

k

)
, (2.66)

where

jjjk = εjjjlk. (2.67)

Equation (2.66) can be written in his equivalent convective form; in absence of

internal sinks or sources of water this is:

ε
∂Ck

∂t
+ qqq∇Ck +∇ · jjjk = Rk, (2.68)

where Rk denotes the total reaction rate of the species k in the liquid phase.

In conclusion, the dynamics in time of the concentration Ck of the chemicals k,

k = 1, 2, . . . , N l follows the second-order PDE (2.68). In particular, the second-order

term ∇ · jjjk describes diffusion phenomena that substances undergo to, while the

first-order term qqq∇Ck describes convection phenomena to which dissolved chemicals

are subjected.

The dynamics of the solid particles

The dynamics of chemicals remaining bounded to the porous matrix is described

by the mass transport equation for the species in the solid phase and it derives

from Equation (2.37), where from the notation for the solid concentration Cs
k, for

k = 1, 2, . . . , N s, it is obtained:

εs
∂Cs

k

∂t
= Rs

k, (2.69)

where Rs
k denotes the total reaction rate of the species k in the solid phase. Note

that, since we deal with stationary solids, we have that ∇ · (εsρsωs
k vvv

s) ≈ 0.
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2.3.4 The heat transport equation

The dynamic of the heat transport follows Equation (2.49), that is given for the

internal Energy Eα of the α-phase . Neglecting density, solid strain and chemical

effects, the internal energy is related to the temperature Tα of the α-phase through

the following relation:

dEα = cαdTα, α = s, f, (2.70)

where cα is the specific heat capacity of the α-phase, that we suppose independent

from the temperature. So that, if we denote with Eα
0 = Eα

0 (T
α
0 ) a constant reference

value of internal energy corresponding to the reference value of temperature Tα
0 , we

have:

Eα(Tα) = Eα
0 +

∫ Tα

Tα
0

cαdTα, α = s, f,

from which follows:

Eα = E0 + cα (Tα − Tα
0 ) , α = s, f. (2.71)

Thus, exploiting relation (2.71), in Equation (2.49) and supposing the thermody-

namic equilibrium of assumption 3, i.e., summing up over the phases Equation (2.49),

we get the following convective form for heat transport in porous media:

(ερc+ εsρ
scs)

∂T

∂t
+ ρcqqq · ∇T +∇ · jjjT = He, (2.72)

where He denotes a total source/sink of internal energy and jjjT is the heat flux

vector defined by:

jjjT = −ΛΛΛ · ∇T, (2.73)

where ΛΛΛ is the thermal hydrodynamic conductivity tensor defined by:

ΛΛΛ = (εΛ + εsΛ
s)I+ ρcΛΛΛmech

=
(
εΛ + εsΛ

s + ρcγT ||qqq||
)
III + ρc

(
γL − γT

)qqq ⊗ qqq

||qqq||
,

(2.74)

where ΛΛΛmech is the thermal mechanical diffusion tensor, Λ,Λs are the thermal

conductivities of the fluid and solid phases, respectively, while γL, γT are the

thermal transverse and longitudinal dispersion coefficients, respectively [33].
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2.3.5 The 3D coffee percolation model

As already described in the introduction of this chapter, the extraction process

of espresso coffee consists in hot water that enters the filter basket presviously

filled with ground, roasted and tamped coffee. Then the water flows through

the empty spaces between the grains, dissolving various chemicals substances and

removing some fine particles from the wet coffee powder. This process is called

coffee percolation.

Now, we are in a position to precisely define the complete percolation model

for espresso coffe extraction. This model has been proposed in [23] and [24]. It

divides the substances involved in the percolation process in liquid and solid species.

Among the first ones there are the carrier fluid, i.e. the water, together with the

dissolved and oily substances, while the solid species include all the particles that

belong to the porous medium.

Moreover, some simplifying hypotheses are assumed that sound reasonable for

the espresso coffee extraction, also in relation to analogous phenomena [33], [51], [52].

We used these hypotheses in the previous sections, for the derivation of the main

parts of the model, however, for the reader’s convenience, we recap the most

important assumptions below, see [23] for more details.

• The porous medium is isotropic and homogeneous. In particular, the homo-

geneity property has been assumed since the coffee powder is grounded with

different size of coffee grains, however their physical and chemical properties

are the same in each grain independently of their size and location.

• The momentum equation for the liquid phase is simplified by the Darcy’s law

since the pore Reynolds number is sufficiently small, in fact Rep ≈ 10−1 [23].

• A species appears in the liquid or solid phase depending on its involvement

or not in the transport process. This means that a fine solid particle that is

involved in the mass transport by the fluid flow is considered liquid, despite

being a solid species from the physical point of view; similarly a soluble species

that is bounded to the porous medium is considered solid.
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• Each species belongs to both the liquid phase and the solid phase, where the

liquid portion accounts for the quantity of that chemicals which is in solution

or in suspension in the water, while the solid portion accounts for the amount

of the same chemicals that is bounded to the porous matrix. This means that

we have the same number of liquid N l and solid N s species to be monitored

that we denote with Nl−s := N l = N s.

• Oberbeck-Boussinesq approximation [53], [54] is assumed, that is all the

thermophysical properties are considered constant except for the fluid density

in the buoyancy term (ρggg in (2.55) or χeee in (2.56), respectively).

• Since the percolation process lasts about 25 seconds, but espresso coffee

comes out after about 5 seconds, that are necessary for the porous medium

imbibition, the flow is disregarded during the first imbibition phase and so

the porous medium is considered saturated.

• The expansion of the coffee particles due to the wetting process is discarded.

• After the initial imbibition, local thermal balance is assumed between liquid

and solid phase.

• There are no internal sinks or sources of water, heat, and chemical substances

in the coffee pod.

The spatial domain of the percolation model is a circular cylinder C, with height

H, whose top circular face Γ1, of radius R, lays on the plane z = 0 of the three-

dimensional Cartesian coordinate system and its center is on the origin of the xy

plane. So that, the bottom face Γ3 lays on the z = −H plane, we denote with Γ2
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h hydraulic head

p pressure

qqq fluid flux

Ck mass concentration of liquid/solid species k

Cs
k mass concentration of solid species k

ε porosity

εs solid volume fraction, εs = (1− ε)

S0 specific storage coefficient

K hydraulic conductivity tensor

fµ viscosity relation function

χ buoyancy coefficient

eee (0, 0, 1)T

jjjk hydrodynamic diffusion/dispersion vector of species k

jjjT heat flux vector

Rk total reaction rate of species k

Rs
k total reaction rate of solid species k

T temperature

T0 reference temperature

ρc volumetric heat capacity of the fluid

ρscs volumetric heat capacity of the solid

He sources/sinks of internal energy

Table 2.5: Description of the symbols occurring in the model (2.75)

the lateral face. The complete model for the espresso coffee percolation is:

S0
∂h

∂t
+∇ · qqq = 0,

qqq = −Kfµ (∇h+ χeee)

ε
∂Ck

∂t
+ qqq∇Ck +∇ · jjjk = Rk, k = 1, 2, . . . , Nl−s,

εs
∂Cs

k

∂t
= Rs

k, k = 1, 2, . . . , Nl−s,

(ερc+ εsρ
scs)

∂T

∂t
+ ρcqqq · ∇T +∇ · jjjT = He,

(2.75)
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where each equation is prescribed in C, and for t ∈ (0, τ), where τ > 0 denotes

the percolation time. The unknowns of system (2.75) are the flux qqq, the hydraulic

head h, the mass concentration of the liquid and solid chemical species Ck, Cs
k,

respectively, and the temperature T . The symbols appearing in problem (2.75)

are reported in Table 2.5. We note that the first equation of model (2.75), is the

Richards’ equation (2.65), where the flux qqq is given by the second equation that is

the Darcy’s law (2.56). The third equation is the transport equation (2.68) for the

species k; there are Nl−s equation of this type, one for each species to be monitored.

The fourth equation states the mass conservation (2.69) for the solid species k that

is not involved in the diffusion-transport process; there are Nl−s equation of this

type, one for each species to be monitored. Finally, the last equation is the heat

equation (2.72) in the porous medium.

The boundary and initial conditions for problem (2.75) are shown below. For

the hydraulic head it holds:

h = hz0, on Γ1, t > 0,

∂h

∂n
= 0, on Γ2, t > 0,

qqq · n = −Φhmin{hC − h, 0}, on Γ3, t > 0,

p = p0(z), in C, t = 0,

(2.76)

where, the first equation prescribes a given profile for the hydraulic head at the

entrance of the coffee pod and n denotes the outward normal unit vector. In

particular the third equation of system (2.76) allows an external flux with rate

Φh(h− hC) when h > hC , where Φh is a prescribed transfer coefficient accounting

for a kind of conductivity of the filter placed at the lower base of the coffee pod,

and hC a proper value for the hydraulic head; this condition states that the coffee

start to exit when h is greater than hC nearby the filter. Finally, the last equation

in system (2.76) is the initial condition. It is given for the pressure p and it

automatically prescribes an initial condition for h. Here, p0 is the prescribed

pressure profile when percolation starts, thus for the compatibility condition it must

be hz0 =
p0(z)|z=0

ρ0g
.
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For the concentration Ck k = 1, 2, . . . , Nl−s of the liquid-solid species we have:
∇Ck · n = 0, on Γ1,Γ2, t > 0,

−(DDDk · ∇Ck) · n = −Φkmin{CkC − Ck, 0}, on Γ3, t > 0,

Ck = 0, in C, t = 0,

(2.77)

where CkC is a known value for the concentration and DDDk is the hydrodynamic

dispersion tensor defined in (2.39). If Ck > CkC a mass outward flux occurs with rate

Φk(Ck − CkC); again, as for the hydraulic head, Φk can be read as the admittance

of the filter at the bottom of the coffee pod, for the species k. Moreover, on the top

and lateral faces Neumann condition is prescribed since flux through these surfaces

is not permitted.

For the solid species only the initial condition is needed:

Cs
k = Cs

k0, in C, t = 0, k = 1, 2, . . . , Nl−s, (2.78)

where Cs
k0 is the concentration of the species k in the coffee powder before the

percolation process.

Finally, for the temperature we prescribe:
T = Tz0, on Γ1, t > 0,

∇T · n = 0, on Γ2,Γ3, t > 0,

T = T0, in C, t = 0,

(2.79)

where Tz0 is the incoming water temperature, and T0 is the initial temperature, i.e.

after the imbibition, of the system water-coffee powder. Besides, on the lateral and

bottom faces Neumann condition is prescribed.

In conclusion, the complete three-dimensional model for the prediction of espresso

coffee percolation is given by system (2.75) equipped with initial-boundary condi-

tions (2.76), (2.77) (2.78), and (2.79). It is the most complete model available in

literature for such a purpose. In fact, it allows the prediction of the water dynamics,

the transport of the dissolved substances, the dynamics of the solid particles, and

the energy balance between the liquid and the coffee pod.
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2.4 A reduced model for the espresso extraction

In this section we present and discuss a reduced model previously presented

in [19] for the prediction of the extraction efficiency, and later generalised in [21] to

forecast the extraction of an arbitrary number of chemical substances. This is a

one-dimensional model having the advantage to be a simple prediction tool taking

into account quantities that are averaged over the whole domain or over some its

sections. In the following, we discuss the mathematical model in [19], [21], [55]

to simulate the espresso coffee percolation, discarding also in this case the initial

imbibition phase. This means that we suppose that, at the initial time, each grain

has been wetted and the porous medium saturated. The detailed derivation of this

model can be found in [17]–[19].

The preparation process of espresso coffee takes place when the hot and pres-

surised water goes inside the filter basket, filled with the tamped coffee powder

previously roasted. During the percolation process, the water flows through the

interconnected void spaces among the coffee grains and dissolves the chemical

substances contained in the powder. In particular, during the extraction phase

the pressurised hot water transports the previously dissolved chemicals from the

grains up to the cup. Moreover, most dissolved solubles of a coffee beverage comes

from the dissolution of the substances contained in the small grains, instead, the

substances within the big grains are only partially dissolved [22]. Therefore, the

proposed mathematical model describes the transport of chemicals from the interior

of the grains to their external surfaces, their dissolution into the liquid and the

transport process due to the fluid flow through the coffee pod. This model also

takes into account the two physical phases involved in this process, i.e., the liquid

and the solid phase, and the main physico-chemical processes occurring for each of

them. These are the advective transport and the diffusion of chemicals in the liquid

phase, and the diffusion phenomena of the species within each grain of the solid

phase. Here the grains of the coffee powder are approximated through spheres of

two distinct radii af , ab, for fine and coarse grains, usually called fines and boulders,

respectively. Note that this assumption agrees with the bimodality feature of coffee
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powder granulometry produced by usual grinding machines, see Section 2.2 for

details.

Figure 2.4 shows a sketch of the coffee pod, which is assumed to be a circular

cylinder of radius R0 and height L, whose top circular face lays on the plane z = 0

and its bottom face lays on the plane z = L. In the coffee extraction, the water

Figure 2.4: A graphic representation of the coffee cake. The coffee grains forming

the solid matrix are shown in brown, and the inter-granular pore space is shown in

red.

flow develops mainly along the vertical direction; in particular, a uniform inlet flow

is provided to the top face and, due to the low flow velocity, no (lateral) boundary

effects are assumed. So, this uniform flow from the top face to the bottom face can

be described with a one-dimensional model along the z-axis; at the same time, the

dissolution processes for chemicals in the coffee grains develop mainly along the

radial direction, therefore, the dynamics of the solid phase are described through a

one-dimensional model along the radial direction for each fixed z-level. In more

detail, the vertical direction is related to the inter-grain flow and transport, while

the radial direction corresponds to the intra-grain transport. Let Nl−s be the

number of the substances whose concentration has to be computed. We denote with

cli the concentration of the i-th liquid chemical substance outside the grains that

has been already dissolved and is being transported by the water flow. Similarly,

we denote with cfi and cbi the concentration of the i-th chemical substance into the

fines and boulders, respectively, that has not yet been involved in the transport
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process outside the coffee grains. So, cccl, cccf , cccb ∈ RNl−s are the vectors of the liquid,

fine solid and coarse solid concentrations, respectively.

We consider the following initial-boundary value problem describing the dynam-

ics of the concentration cli of chemical substance i in the liquid phase:



(1− ϕ)
∂cli
∂t

(z, t) = D
∂2cli
∂z2

(z, t)− q
∂cli
∂z

(z, t) + bfGf
i (ccc

l, cccf , z, t) + bbGb
i(ccc

l, cccb, z, t),

−D∂c
l
i

∂z
(0, t) + qcli(0, t) = 0,

−D∂c
l
i

∂z
(L, t) = 0,

cli(z, 0) = 0,

(2.80)

for i = 1, 2, . . . , Nl−s, z ∈ (0, L), t ∈ (0, τ), where τ > 0 is the percolation time, D

is the effective diffusivity, q is Darcy’s flux, ϕ is the local volume fraction occupied

by grains, which is defined as the sum of the volume fractions associated with each

kind of solid particles, i.e.,

ϕ = ϕf + ϕb, ϕf = bf
af

3
, ϕb = bb

ab

3
,

here bf and bb are the so-called Brunauer-Emmett-Teller parameters [56] and af and

ab are the radii of fines and boulders, respectively. For i = 1, 2, . . . , Nl−s, in (2.80)

the differential equation gives a one-dimensional version of model (2.68) and the

right-hand side consists of a diffusive term, an advective term and two reactive

terms Gf
i and Gb

i . They are described at the end of this section since they relate

the dynamics of liquid and solid species. The second and third equations in (2.80)

are the boundary conditions at the inlet and outlet of the coffee pod, respectively.

In particular, they prescribe no flux of solubles across the inlet, and no diffusive

flux at the outlet, respectively. Finally, the initial condition prescribes a zero liquid

concentration of solubles at the initial time t = 0.

The dynamics of the concentrations of chemical species i, for i = 1, 2, . . . , Nl−s,
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in the solid phase is modeled by the following initial-boundary value problem:



∂csi
∂t

(r, z, t) =
Df

i

r2
∂

∂r

(
r2
∂csi
∂r

(r, z, t)

)
,

−Df
i

∂csi
∂r

(0, z, t) = 0,

−Df
i

∂csi
∂r

(as, z, t) = Gs
i (ccc

l, cccs, z, t),

csi (r, z, 0) = c0i ,

(2.81)

for s = f, b, r ∈ (0, as), t ∈ (0, τ), and z ∈ (0, L). Problem (2.81) is given for fines,

i.e. s = f , and for boulders, i.e. s = b. Here, Df
i is the diffusivity of substance i

inside the grain, and it is assumed to be independent of the particle dimension,

and c0i is the initial solid concentration. The first equation of problem (2.81) is

the diffusion equation in spherical coordinates in the case of spherical symmetry. It

describes the transport of species occurring inside the coffee grains. The second

and third equations are the boundary conditions, in particular the third equation

describes the flux of soluble of type i per unit area occurring through the interface

between the small grains and the inter-granular space, that is Gs
i (ccc

l, cccs, z, t), s = f, b.

In addition, we highlight that Gs
i (ccc

l, cccs, z, t) = Gi
(
cccl(z, t), cccs(as, z, t), z, t

)
, since it

describes the exchange of solubles occurring on the surface of small grains, where

r = as, s = f, b. Finally, the last one is the initial condition, prescribing an initial

value, c0i of chemical i in the coffee powder. We highlight that, csi = csi (r, z, t),

this means that, for each i, i = 1, 2, . . . , Nl−s, we have one problem of type (2.80),

which for each z-level is coupled with two problems of kind (2.81), one for the solid

concentrations cfi and the other for cbi . The coupling is given by the terms Gs
i ,

modelling the mass transfer of the chemical i extracted from the grains going into

the liquid phase, i.e., the fluid moving among the grains. In fact, Gs
i , for s = f, b,

gives the flux per unit area of substances through the surface of the grains and

the void spaces among them. Moreover, in the reactive terms, we introduce the

substances interaction. In particular, we suppose that the amount of the extracted

substance i at the time t depends on the amount of the already dissolved species j,
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j = 1, . . . , Nl−s, j ̸= i at that time. They are defined as follows:

Gs
i (ccc

l, cccs, z, t) =kirc
s
i (a

s, z, t)max(csi (a
s, z, t)− cli(z, t), 0)max(cisat − cli(z, t), 0)·

·
Nl−s∏
j=1,
j ̸=i

max(clj(,t)− ci,jdis, 0),
(2.82)

for s = f, b, where cisat is the concentration of saturation of the liquid with respect

to the substance i, and kir is the reaction rate of the substance i, and max(x, 0) is

the continuous, non-differentiable function that selects the maximum non-negative

argument. Formula (2.82) is highly non-linear, and the numerical results of previous

works present in the literature [19], [21], [55], [57] justify its use. In particular

Gs
i (ccc

l, cccs, z, t) is zero when the liquid near the grains is saturated, or when it is at

the same concentration as the dissolved chemicals at the grain surface, or when all

solubles inside the grain have been dissolved. Furthermore, ci,jdis is the threshold

above which the dissolved amount of substance j influences the dissolution of

substance i. Thus, the flux is zero also when the substance j into the liquid

immediately near the grains has a concentration lower than the threshold ci,jdis.

Therefore, the complete mathematical model consists of the coupled prob-

lems (2.80) and (2.81), where the unknown solutions are the concentrations cli, c
f
i , c

b
i ,

i = 1, . . . , Nl−s.

We recall that this model can be used to forecast the extraction of an arbitrary

number of chemical substances, and also for the prediction of the extraction efficiency.

In the latter case we have Nl−s = 1. Thus, we are assuming a common behavior for

the different chemical substances. Note that this agrees with the aim of calculation

of the EY, i.e., the total amount of extracted substances.

The mass conservation principle asserts that the total mass of the system must

be conserved, i.e., it must be constant during the percolation process, or equivalently

its time rate of change must be null. More precisely, the total mass is given by

the sum of the mass Ml of the dissolved chemical species in the liquid phase, the

mass Mi of the species not yet dissolved in the solid phase, and the mass Mcup of

the dissolved substances already dropped into the cup. The total amount Ml of
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dissolved substances in the liquid phase at time t is given by:

Ml = πR2
0

∫ L

0

(1− ϕ)cldz. (2.83)

Differentiating (2.83) with respect to time, substituting the governing equation of

problem (2.80), evaluating the integral over each term and exploiting the boundary

conditions in (2.80), we obtain:

dMl

dt
= −πR2

0qc
l|z=L + πR2

0

∫ L

0

(
bfGf + bbGb

)
dz. (2.84)

The total amount Ms of substances within the grain of type s, at time t, is given

by:

Ms = πR2
0

∫ L

0

bs

4π(as)2

∫ as

0

4πcsr2drdz, s = f, b. (2.85)

In particular,
bs

4π(as)2
represents the number of particles of type s per volume inside

the cake. Moreover, in (2.85) the integral with respect to the variable r is the

total solid concentration within the particles of type s. Differentiating (2.85) with

respect to time, exploiting the governing equation of problem (2.81), and using its

boundary conditions, we have:

dMs

dt
= −πR2

0

∫ L

0

bsGsdz. (2.86)

So, considering the sum of (2.84) and (2.86), for both fines and boulders, we obtain:

d

dt
(Ml +Mf +Mb) = −πR2

0qc
l
∣∣
z=L

.

Since the model (2.80),(2.81) has to obey the mass conservation principle, we have

dMcup

dt
= πR2

0qc
l
∣∣
z=L

. (2.87)

where Mcup is the mass of dissolved substances dropped into the cup. By integrating

Eq. (2.87) with respect to time, and exploiting the initial condition of system (2.80)

we have:

Mcup = πR2
0q

∫ t

0

cl(L, s)ds. (2.88)
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In particular, let M̄cup = Mcup|t=τ be the mass of the total chemicals in cup at

t = τ , i.e., at the end of the extraction. In addition, let Min be the mass of dry

ground coffee powder in the filter basket, we have:

Min = ϕρπR2
0L, (2.89)

where ρ is the coffee grain density. Furthermore, we recall that the EY is defined

as the ratio between the mass of the total dissolved substances inside the cup and

the mass of the dry ground coffee, i.e.:

EY =
M̄cup

Min

=
q

ϕρL

∫ τ

0

cl(L, t)dt,
(2.90)

where formulas (2.88),(2.89) have been used. Finally, once the solution of prob-

lem (2.80)-(2.81) is obtained, the EY can be calculated exploiting formula (2.90).





Chapter 3

Numerical methods for differential

equations

The espresso extraction models presented in Sections 2.3 and 2.4do not have an

explicit analytic solution, so, we need some numerical methods that allows us to

determine an approximate solution of the corresponding continuous problems.

We recall that a PDE (cf. Chapter 1) relates the unknown function of several

independent variables, with its partial derivatives. For example
d∑

i,j=1

ai,j(xxx)
∂2u

∂xi∂xj
+

n∑
i=1

bi(xxx)
∂u

∂xi
+ c(xxx)u = f(xxx), (3.1)

is a second order partial differential equation, in the unknown u : Ω → R, where

xxx ∈ Ω ⊆ Rd.

In general, it is not always possible to determine, with analytical methods, a

solution of a differential equation, since the known analytical methods are of limited

applicability. Furthermore, even knowing the general integral, this does not mean

that a particular solution can then be determined; in fact, in order to identify

this solution, it is necessary to assign boundary conditions on u (and / or on its

derivatives) at the boundary of the domain Ω. Therefore, the theoretical study

of such equations often concerns only with the existence and uniqueness of the

solution. Thus, it is clear the importance of having numerical methods that allows

the construction of approximate problems (of finite dimension N) whose solution

49
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uN is an approximation of the exact solution u of the continuous problem.

In the following of this chapter we present different numerical methods for the

solution of PDE. Here we recall some general features common to all methods. Let

P(u, g) = 0 denotes a boundary value problem, composed of a PDE and boundary

conditions, in the unknown function u, and depending on the set of data g. We

recall that a problem is said to be well-posed if it admits a unique solution which

continuously depends on the data; in the following we always restrict our attention

to well-posed problems. In addition, let PN (uN , gN ) = 0 denotes an approximation

of P(u, g) = 0 with some numerical method, whose solution is uN , and depending

on the approximation gN of the data set g. If both problems admit a unique

solution, we have: u = u(g) and uN = uN(gN). In addition, let || · || denotes some

suitable norm, a numerical method is said to be convergent if the numerical solution

converges to the exact solution, that is, if

||u− uN || → 0 for N → ∞.

In particular, the method is convergent if and only if:

∀ε > 0 ∃Nε < 0, ∃δε, Nε such that ∀N > Nε, ∀gN : ||g − gN || < δε, Nε ,

||u(g)− uN(gN)|| ≤ ε,

where the norm used for the solutions may be different from the one used for the

data. Verifying the convergence of a numerical method may not be easy. Usually,

it is better to move on to verifying its consistency and stability properties. In

particular, a numerical method is said to be consistent if the numerical scheme

tend to the differential equation, i.e., if

PN(u, g) → 0 for N → ∞,

or equivalently if

PN(u, g)− P(u, g) → 0 for N → ∞.

Moreover, let uN + δuN be the solution of the problem PN (uN + δuN , gN + δgN ) = 0

with perturbed data. The numerical method is said to be stable if small perturba-
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tions on the data induce small variations of the solution, that is:

∀ε > 0 ∃δε > 0 such that ∀||δgN || < δε ⇒ ||δuN || < ε, ∀N.

As already mentioned, the convergence property is usually the most difficult

to verify by direct analysis. However, for consistent schemes applied to linear

well-posed initial value problems, the Lax-Richtmyer Equivalence Theorem states

that a numerical method is stable if and only if it is convergent. A rigorous proof

of this theorem for such a kind of problems is available in [58] and [59].

This chapter is organized as follows. In Section 3.1 we introduce the finite

difference method (FDM), which allows the solution of a differential equation by

approximating the derivatives with finite difference ratios. FDM has application in

many different areas of applied science; in [60], [61] is applied for the solution of

the diffusion equation, in [62], is used for the approximation of the gas dynamics

equations and in [63] is applied to the equations of continuum mechanics.

In Section 3.2 we present the Galerkin Method and the finite element basis.

Galerkin Method is a popular classical finite element method (FEM) for approxi-

mating initial-boundary value problems. Its fields of application are multiple, from

computational fluid dynamics [33] to medicine [64], [65].

Then, in Section 3.3 we deal with Radial Basis Functions (RBFs) and their

properties, focusing our attention to their applications in PDEs discretisation using

collocation method in Section 3.3.1. RBFs are powerful tools in applied mathematics.

This is a meshfree method having application in many different areas of applied

science and engineering. In particular, RBFs are useful in functions approximation,

and in the solution of many engineering problems [66], including applications in

image processing [67], [68]. In addition, they are a suitable tool for scattered data

interpolation problems [69], machine learning techniques [70], solution of differential

equations [71], and other applications [66].
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3.1 Finite Difference Method

The finite difference method transforms a partial differential equation in an

algebraic system having a finite number of equations and unknowns. In particular,

the derivatives of a function f(x) on the point x are approximated by an expression

involving only a finite set of values of the function in a neighbourhood of such a

point.

Let f : [a, b] → R be a sufficiently regular function, let us suppose f ∈ C4([a, b]),

in such a way that simple convergence results for the finite difference method are

guaranteed. If we consider for the function f the Taylor formula at the point x

until the second order, we have:

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +O(h3), h→ 0, (3.2)

and similarly:

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x) +O(h3), h→ 0, (3.3)

where O(·) is the Landau symbol. Subtracting the (3.3) from (3.2) we get:

f(x+ h)− f(x− h) = 2hf ′(x) +O(h3), (3.4)

from which we have:

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2). (3.5)

Similarly, from the Taylor formula at the point x until the third order, we have:

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

3!
f ′′′(x) +O(h4), h→ 0, (3.6)

and similarly:

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)− h3

3!
f ′′′(x) +O(h4), h→ 0, (3.7)

If we sum the (3.6) and (3.7) we get:

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+O(h2). (3.8)
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Our aim is to approximate the derivative of a function f in the given interval [a, b],

thus, we define a partition of [a, b], of step h =
b− a

N
i.e., the set of N + 1 nodes

{xn}n=0,1,...,N , such that x0 = a, xN = b and xn+1 = xn + h, n = 0, 1, . . . , N − 1.

We denote with un the approximation of f(xn), i.e.: un ≈ f(xn), n = 0, 1, . . . , N .

With this notation and from formula (3.5), for n = 1, . . . , N − 1 we can express the

approximation u′n of the derivative of f calculated in the point xn as:

u′n =
un+1 − un−1

2h
, (3.9)

that is called centered finite difference. The truncation error made in the approxi-

mation (3.9) corresponds to the remainder terms in formula (3.5), so it is given by

O(h2). Thus formula (3.9) is second-order accurate.

Similarly, from formula (3.8), for n = 1, . . . , N − 1 we can express the approxi-

mation u′′n of the second derivative of f calculated in the point xn as:

u′′n =
un+1 − 2un + un−1

h2
, (3.10)

that is called centered second finite difference, again it is affected by a truncation

error given by O(h2), thus it is second-order accurate. Finally, we note that in case

of a multivariate function an analogous approach can be used to approximate the

partial derivatives of this function, see [72] for a detailed discussion.

3.1.1 Approximation of a boundary value problem

We describe the use of finite difference quotients in the numerical solution of

the linear boundary value problem:
−f ′′(x) + p(x)f ′(x) + q(x)f(x) = r(x), x ∈ (a, b)

a0f(a)− a1f
′(a) = α

b0f(b) + b1f
′(b) = β,

(3.11)

where p, q, r ∈ C([a, b]) and exists some positive constants P ∗, Q∗, Q
∗ such that:

|p(x)| ≤ P ∗, Q∗ ≤ q(x) ≤ Q∗, x ∈ [a, b], (3.12)
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we also suppose that a0a1 ≥ 0, b0b1 ≥ 0 and at least one of the constant a0, b0 is

non-zero, suppose a0 ̸= 0. These conditions ensure the existence and the uniqueness

of the solution of (3.11), see [73], pag. 19.

Let us consider a uniform partition of the interval [a, b]:

xn = a+ nh, n = −1, 0, 1, . . . , N,N + 1, h =
b− a

N
, (3.13)

where x−1, xN+1 are auxiliary points outside the interval.

We want to approximate the boundary-value problem (3.11) by an auxiliary prob-

lem on the discrete function {un}−1≤n≤N+1. For this purpose, for n = 0, 1, . . . , N

we consider the approximation of the first and second derivatives of f by finite

different ratios (3.9) and (3.10). Thus, for x = xn, we have:

−un+1 − 2un + un−1

h2
+p(xn)

un+1 − un−1

2h
+q(xn)un = r(xn) n = 0, . . . , N. (3.14)

Multiplying by
h2

2
, we have:(

p(xn)
h

4
− 1

2

)
un+1 +

(
q(xn)

h2

2
+ 1

)
un +

(
−p(xn)

h

4
− 1

2

)
un−1

= r(xn)
h2

2
n = 0, . . . , N.

(3.15)

For the boundary conditions, i.e. for n = 0 and n = N , we have:
a0u0 − a1

u1 − u−1

2h
= α

b0uN + b1
uN+1 − uN−1

2h
= β,

(3.16)

So (3.11) can be approximated by the finite difference scheme of N + 3 equations

in N + 3 unknowns u−1, u0, u1, . . . , uN , uN+1:

(
p(xn)

h

4
− 1

2

)
un+1 +

(
q(xn)

h2

2
+ 1

)
un +

(
−p(xn)

h

4
− 1

2

)
un−1

= r(xn)
h2

2
n = 0, . . . , N

a0u0 − a1
u1 − u−1

2h
= α

b0uN + b1
uN+1 − uN−1

2h
= β.

(3.17)
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From (3.17) it is possible to obtain a finite difference scheme of N + 1 equations in

N + 1 unknowns u0, u1, . . . , uN by replacing the value of u−1 and uN+1, obtained

from (3.16), in the first equation, i.e. the one for n = 0, and in the last one, i.e.

the one for n = N , respectively. Thus we obtain the following linear system:

Au = r, (3.18)

where u = (u0, u1, . . . , uN)
T ,

r =
h2

2
(r(x0), . . . , r(xN))

T +

(
h

a1
α
[
1 +

h

2
p(x0)

]
, 0, . . . , 0,

h

b1
β
[
1 +

h

2
p(xN)

])T

,

A =



d0 c0 0 · · · · · · · · · 0

e1 d1 c1 0 · · · · · · 0

0
. . . . . . . . . ...

... . . . . . . . . . ...

... . . . . . . . . . 0

0 · · · · · · 0 eN−1 dN−1 cN−1

0 · · · · · · · · · 0 eN dN


, (3.19)

cn =

−1, n = 0,

−1

2

[
1− h

2
p(xn)

]
, n = 1, . . . , N − 1,

(3.20a)

dn = 1 +
h2

2
q(xn) +


h
a0
a1

[
1 +

h

2
p(x0)

]
, n = 0,

0, n = 1, . . . , N − 1,

h
b0
b1

[
1− h

2
p(xN)

]
, n = N,

(3.20b)

en =

−1

2

[
1 +

h

2
p(xn)

]
, n = 1, . . . , N − 1,

−1, n = N.
(3.20c)

Obviously this finite difference scheme holds only if a1 ̸= 0 and b1 ̸= 0.

Can be verified that the tridiagonal matrix A is non-singular and the following

result holds:
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Theorem 4. Let p, q be two functions satisfying the condition (3.12), we also

suppose that a0a1 ≥ 0, b0b1 ≥ 0 and |a0|+ |b0| ≠ 0. Let h be the discretization step

of the finite difference scheme (3.17) such that h <
2

P ∗ . Then the finite difference

scheme (3.17) has a unique solution.

Proof. See [73], pag. 96.

Finally, we note that this procedure can be generalised with analogous arguments

also in the case of PDE, as illustrated in [72].

3.2 The Galerkin Method

Given an initial-boundary value problem, composed of a partial differential

equation and initial/boundary conditions the Galerkin method requires a different

formulation of the problem. Thus, instead of looking for the classical solution,

we have to define the so-called weak solution, having in principle lower regularity

properties. These solutions naturally belong to Sobolev spaces, which are very

extensive spaces of functions, widely used in functional analysis and characterized

by weak derivatives, rather than derivatives understood in the classical sense.

Moreover, important advantages of the weak formulation are that problems derived

from physical applications with non-smooth data can be taken into account

In this Section we deep in the Galerkin finite element method, a classical

technique for the discretisation of PDEs. In particular, we face the discretisation of

an abstract boundary value problem in Section 3.2.1. Then, in Section 3.2.2 we

also present time discretisation for initial boundary value problems. Finally, in

Section 3.2.3 we provide some basic features of the finite element approximation.

3.2.1 Approximation of a boundary value problem

We consider the following boundary value problemLu = f, in Ω,

Bu = 0, on ∂Ω∗,
(3.21)
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where Ω ⊆ Rd, d = 2, 3, is a bounded open set, whose boundary is ∂Ω and ∂Ω∗ ⊆ ∂Ω

(possibly the whole boundary). We denoted with L a linear differential operator,

with B an affine boundary operator and with f a given function. Most often, L is an

unbounded operator in a space H that can be either L2(Ω) or the weighted Hilbert

space L2
w(Ω) :=

{
g : Ω → R |

∫
Ω

g2(xxx)w(xxx)dxxx <∞
}

. The unknown solution u is

searched in a subspace X ⊂ H, where H is an Hilbert space and the operators

L, B can be defined for functions belonging to X.

Problem (3.21) can be reformulated in its weak form. This can be obtained

by multiplying the differential equation by a suitable set of test functions v and

integrating over the whole domain. In this procedure, to reduce the order of

differentiation of the solution u, the following integration by parts formula is

definitely useful∫
Ω

∂u

∂xi
vdxxx = −

∫
Ω

u
∂v

∂xi
dxxx+

∫
∂Ω

uvnidγ, i = 1, . . . , d, (3.22)

where n = (n1, . . . , nd) denotes the outward unit normal vector on ∂Ω. Solutions of

the weak formulation are not required to solve equations in system (3.21) pointwise,

but they have to solve the aforementioned integral equation for every v ∈ X. Such

a formulation is convenient to define approximation methods, such as the Galerkin

method.

As a result, the weak formulation of system (3.21) is:

find ũ ∈ W such that A(ũ, v) = F(v), for all v ∈ V, (3.23)

where W is the space of admissible solutions and V is the space of test functions,

both can be considered to be Hilbert spaces; A(·, ·) is the bilinear form obtained by

the operator L and the above mentioned integration; F ∈ V ′, where V ′ is the dual

space of V , thus F is a linear functional on V that accounts for the right-hand side

f and for possible non-homogeneous boundary terms. In fact, boundary conditions

on u can be enforced in two ways: they can be included in the definition of the

space W , and they are called essential; or they can be applied while transforming

the problem into its weak form, yielding suitable expressions for A and F , in such

a case they are called natural.
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The existence and uniqueness of the solution to (3.23) if W = V is guaranteed by

the Lax-Milgram Theorem, under proper hypothesis for the bilinear form A. Instead,

in the more general case W ̸= V , the existence and uniqueness are guaranteed

by an extension of the Lax-Milgram Theorem. A complete presentation of these

results can be found in [74]. Now, we turn into the numerical approximation of

problem (3.23). Let h > 0 be a discretisation parameter (for example the mesh

spacing) and

{Vh : h > 0}

be a family of finite dimensional subspaces of V . Suppose that, for all v ∈ V ,

inf
vh∈Vh

||v − vh|| → 0, as h→ 0, (3.24)

meaning that, as h becomes smaller, every function belonging to V can be well ap-

proximated with some function in Vh. Thus, if W = V , the Galerkin approximation

to (3.23) is:

find uh ∈ Vh such that A(uh, vh) = F(vh), for all vh ∈ Vh. (3.25)

For the analysis of problem (3.25), we have the following theorem.

Theorem 5. Let V be a real Hilbert space, endowed with the norm || · ||, A(w, v) :

V × V → R a bilinear form and F(v) : V → R a linear continuous functional.

Assume moreover that A is continuous, i.e. there exists γ > 0 such that:

|A(w, v)| ≤ γ||w|| ||v||, for all w, v ∈ V,

and coercive, i.e. there exists α > 0 such that:

A(v, v)| ≥ α||v||2, for all v ∈ V.

Then, there exists a unique solution uh to (3.25), which furthermore is stable since

||uh|| ≤
||F||V ′

α
.

Moreover, if u is the solution to (3.23) with W = V , it follows

||u− uh|| ≤
γ

α
inf

vh∈Vh

||u− uh||,

hence uh converges to u, as h→ 0.
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Let {ϕj}1≤j≤Nh
be a basis for the vector space Vh. Then, any function uh in Vh

admits a representation over this basis as follows

uh(xxx) =

Nh∑
j=1

ξjϕj(xxx),

and choosing the basis functions ϕj also as test functions vh and using linearity, we

obtain a linear system of Nh equations in Nh unknowns, i.e.:

Aξξξ = FFF , (3.26)

where ξξξ = (ξj),FFF = (F(ϕj)) , and A is the stiffness matrix whose entries are

Aij = A(ϕj, ϕi), i, j = 1, . . . , Nh..

The Galerkin method has been defined for the case in which W = V . However, if

some constraint requires to keep the two spaces different, then the Petrov-Galerkin

method can be defined in similar way.

3.2.2 Approximation of an initial boundary value problem

Now, we turn our attention to time-dependent problems. We consider the

following initial boundary value problem
∂u

∂t
+ Lu = f, in (0, t̄)× Ω,

Bu = 0, on (0, t̄)× ∂Ω∗,

u = u0, on Ω, for t = 0,

(3.27)

where t̄ > 0 is the observation time, u ∈ H, u and f are functions of the space

variables xxx, and the time variable t, u0 = u0(xxx) is the initial datum, the operators

L, B, defined as in problem (3.21), may depend on t. For each Hilbert space W, H

with norm || · ||W , ∥| · ||H , respectively, we define the following spaces:

L2(0, t̄;W ) =

{
v : (0, t̄) → W : v is measurable and

∫ t̄

0

||v(t)||2Wdt <∞

}
,

C0([0, t̄];H) = {v : [0, t̄] → H : v is continuous and ||v(t)||H <∞} .
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With the same procedure already described for problem (3.21), we suppose that

problem (3.27) has a unique solution that can be computed by the weak formulation

of problem (3.27): find ũ ∈ L2(0, t̄;W ) ∩ C0([0, t̄];H) such that

d

dt
(ũ(xxx, t), v) +A(ũ(xxx, t), v) = F(t, v), for all v ∈ V, (3.28)

and ũ = u0 at t = 0, where A(·, ·) is a bilinear form that corresponds to the operator

L and F ∈ V ′.

The numerical approximation of problem (3.28) must be performed both in

space and in time. First, we deal with the time discretisation. We divide the time

interval [0, t̄] in Nt subintervals of length ∆t =
t̄

Nt

: [tn, tn+1], n = 0, . . . , Nt − 1. A

possible method to obtain the time discretisation is the finite difference scheme,

which consists in replacing the time derivative with a quotient obtained from the

Taylor expansion of u, see Section 3.1 or [72]. The basic idea is illustrated on the

following Cauchy problem
dy

dt
= ψ(t, y(t)), t ∈ (0, t̄),

y(0) = y0,
(3.29)

where ψ is a continuous function from [0, t̄] × R in R which is also Lipschitz

continuous with respect to y, uniformly in t ∈ [0, t̄]. There are many possible finite

difference schemes with different order of accuracy, however, we limit our interest

on the θ-scheme, which is probably the most used. The Cauchy problem (3.29)

discretised by means of the θ-scheme becomes

1

∆t
(yn+1 − yn) = θψ(tn+1, y

n+1) + (1− θ)ψ(tn, y
n),

for n = 0, . . . , Nt − 1, with y0 = y0 and yn approximation of y(tn). The choice

for the parameter θ must fall in [0, 1]; the extreme cases, θ = 0 and θ = 1, define

the well-known explicit forward and implicit backward Euler schemes, respectively,

which are first order accurate with respect to the time step ∆t; the scheme with

θ = 1/2 is known as the Crank-Nicolson scheme, which is potentially second order

accurate; for any value of θ ̸= 0, the scheme is implicit.
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The θ-scheme applied to (3.28), together with the Galerkin method for spatial

discretisation, gives the following fully discrete problem: for each n = 0, . . . , Nt − 1

find un+1
h ∈ Vh such that

1

∆t
(un+1

h − unh, vh) +A
(
θun+1

h + (1− θ)unh, vh
)
=

θF(tn+1, vh) + (1− θ)F(tn, vh), for all vh ∈ Vh, (3.30)

where we denote with unh the approximation of u(xxx, t) at each time step n and by

u0h a convenient approximation to u0(xxx). To complete the discretisation procedure,

we provide the algebraic restatement of (3.30) with the same basis definition made

for (3.26). Setting

unh(xxx, t) =

Nh∑
j=1

ξj(t)ϕj(xxx), u0h(xxx, 0) =

Nh∑
j=1

ξ0jϕj(xxx),

the following system of Nh equations in Nh unknowns is obtained

Mξn+1 + θ∆tAξn+1 = ηn+1, n = 0, . . . , Nt − 1 (3.31)

where ξn+1 = (ξn+1
j ), in particular, ξ0 = (ξ0j ), Mij = (ϕi, ϕj), and

ηn+1 = θ∆tF (tn+1) + (1− θ)∆tF (tn) +Mξn − (1− θ)∆tAξn,

for j = 1, . . . , Nh, n = 0, . . . , Nt − 1. The stiffness matrix A is the same as that

introduced in the steady case, unless it depends on t that happens when the operator

L in (3.27) is time-dependent. The same argument holds for the vector F with

respect to the operator B in (3.27). The symmetric and positive-definite matrix M ,

which is always time-independent, is called mass matrix. Finally, we note that the

order in which spatial and temporal discretisation are applied is not relevant for

the purposes of the final algebraic system.

3.2.3 The Finite Element Method

In the previous sections we have defined the Galerkin method to discretise with

respect to space variables both steady and time-dependent problems, as well as
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the finite difference θ-scheme to discretise with respect to time when necessary.

Although the Galerkin method can work well with a generic Riesz basis of the Hilbert

space H, this method becomes particularly efficient when a finite element basis is

employed. Thus, in the following of this section, we present the main properties of

such base of functions: the existence of a triangulation of Ω, the construction of a

finite dimensional subspace, and the existence of a basis of functions having small

support with respect to the whole set Ω.

Triangulation

As usual, let Ω ⊂ Rd, d = 2, 3 be the domain. For the sake of simplicity, we

restrict our discussion to domains with piecewise polygonal boundaries, i.e., Ω̄ can

be exactly covered by a finite union of polyhedra. However, if the domain is not

polygonal, it can always be approximated by a polygonal domain. In this case,

the accuracy of this operation increases as the diameter of the polyhedra becomes

smaller. We begin with a preliminary definition.

A d-simplex K is the convex envelope of d+1 points aaaj ∈ Rd, j = 1, 2, . . . , d+1,

called vertices of K, that are not all lying in the same hyperplane. It is the smallest

convex passing through all these points. Consider the set Th of non degenerated

d-simplices Th = {Kj : j = 1, 2, . . . , N}. This is called triangulation or triangular

mesh of Ω̄ if:

1. Kj ⊂ Ω̄, j = 1, . . . , N and Ω̄ =
⋃N

j=1 Kj;

2. for any two distinct simplices Ki,Kj ∈ Th, Ki ∩ Kj is a k-simplex, 0 ≤ k ≤
d− 1, such that all its vertices are also vertices of Ki and Kj; in particular,
◦
Ki ∩

◦
Kj = ∅.

3. diam(Kj) ≤ h for all Kj ∈ Th, where diam(Kj) is the longest edge of Kj.

Where h denotes the diameter of the triangulation.

This definition tells us that, in the space the intersection of two tetrahedra can

be either empty, or reduced to a single common entity, such as a vertex, an edge or
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a face. Such a mesh is often referred as conforming mesh. Its vertices or nodes are

the vertices of the d-simplices Kj that form the mesh.

Piecewise polynomial spaces

The second basic property of a finite element method consists in determining a

finite dimensional space that is a suitable approximation of the infinite dimensional

space X to which the exact solution of the differential problem belongs. Such finite

dimensional space is where the approximated solution is sought. To this end, we

consider the set Πd
m of the polynomials p with coefficients in R of degree less than

or equal to m:

Πd
m =

p(xxx) =
∑

0≤i1,...,id≤m
i1+···+id≤m

αi1...idx
i1
1 · · ·xidd , αi1...id ∈ R,xxx = (x1, . . . , xd)

 .

Hence, in a three dimensional space we obtain

Π3
m =

p(x1, x2, x3) =
∑

0≤i,j,l≤m
i+j+l≤m

αijlx
i
1x

j
2x

l
3, αijl ∈ R

 .

It can be verified that Πd
m is a vector space of dimension

dim(Πd
m) =

d+m

m

 . (3.32)

Then, we can define the finite dimensional functional space Xm
h as

Xm
h =

{
vh ∈ C0(Ω̄) : vh|Kj

∈ Πm for all Kj ∈ Th

}
. (3.33)

Such Xm
h is the desired approximation of X.

A triangular Lagrange finite element Πd
m is locally defined by the triad (K, Pm,Σm),

where:

1. K is a d- simplex associated with the triangulation Th,

2. Pm is a vector space of polynomials of degree less than or equal to m on K,
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3. Σm is the principal lattice of order m of the simplex K.

The principal lattice of a d-simplex is a set made of a finite number of points

belonging to the simplex K. In particular, when m = 1, Σm is composed of the

vertices of the simplex, when m = 2, it is composed of the vertices and the edge

midpoints of the simplex. In addition, Σm is called the set of nodes corresponding

to the degrees of freedom of the finite element (K, Pm,Σm).

Degrees of freedom and basis functions

A final necessary ingredient for the finite element method is to construct a basis

for the space Xm
h in such a way that the basis functions are easy to be defined. An

important aspect is the choice of a set of degrees of freedom on each d-simplex K.

We define the degrees of freedom associated with the d-simplex K as the number of

values necessary to the function vh ∈ Xm
h for being uniquely determined in K. The

number of degrees of freedom is directly given by the dimension of the vector space

Πd
m, reported in formula (3.32). Let us analyse few cases of special interest. If

d = 2 and

m = 1, dim(Π2
1) = 3, meaning that we have three degrees of freedom. Thus,

we have to choose three values on each 2-simplex K that allow us to

describe uniquely a function vh|K. The simplest and usual choice is the

values at the vertices of each K. In addition, we note that such a choice

satisfies the requirement of continuity of vh in Ω̄.

m = 2, dim(Π2
2) = 6, thus the degrees of freedom are given by the number

of the vertices and the middle points of each edge. Let us remark once

again that this choice guarantees that vh ∈ C0(Ω̄), since the degrees

of freedom on each edge uniquely identify the restriction of vh on that

edge, in fact, we have three values describing a quadratic function in one

variable.

d = 3 and
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m = 1, dim(Π3
1) = 4, thus a typical choice for the unique description of a

function vh ∈ X1
h is the values at the four vertices of each 3-simplex K.

m = 2, dim(Π3
2) = 10, so the degrees of freedom are usually determined by

the four vertices and the six middle points of the edges of each simplex

K.

Let us describe a procedure for the construction of a basis for Xm
h . We denote

with (σj)1≤j≤Nh
the global set of nodes in Ω̄, thus Nh accounts for the total number

of degrees of freedom of Πd
m. It can be shown that the space Xm

h is a subspace

of H1(Ω) of finite dimension corresponding to Nh; Moreover, there exists a basis

{ϕi}1≤i≤Nh
of Xm

h defined by

ϕi(σj) = δij, i, j = 1, . . . , Nh, (3.34)

where δij is the Kronecker function. Every function vh ∈ Xm
h can be uniquely

written as

vh(xxx) =

Nh∑
i=1

vh(σi)ϕi(xxx).

The basis functions ϕi are usually called shape functions. We note that the support

of each shape function is small, in the sense that it is made of a few d-simplices of

the triangulation Th. More precisely, the support of the shape function ϕi is made

of the only d-simplices that share the node σi.

3.3 RBF Method

We exploit RBFs to solve the initial-boundary values problems predicting the

espresso extraction of Sections 2.3, 2.4. Since solution of differential equations

include function approximation as fundamental component, we begin our discussion

about RBFs with the multivariate scattered data interpolation problem. The usual

situation we have to face is the following: given a set of measurements, and the

corresponding set of locations at which these measurements were achieved, we

have to find a relation which allows us to obtain information also about other



66 CHAPTER 3. NUMERICAL METHODS

locations. Thus, we have to find a function which is a "good" in some sense to fit

the given data. This is called data interpolation, and if the locations do not lie

on a regular grid, then it is called scattered data interpolation. More precisely, let

X = {xxxi}i=1,2,...,n, xxxi ∈ Ω ⊆ Rd be the set of locations, usually called data sites,

and let {fi}i=1,2,...,n, fi ∈ R the corresponding set of measurements, usually called

data values. In addition, we assume that the data are obtained by sampling some

unknown function f at the data sites, i.e., fi = f(xxxi), i = 1, 2, . . . , n. The following

discussion is restricted to scalar-valued data, however, it can be easily generalized

to vector-valued data.

The interpolation problem consists in finding a continuous function f̃ such that

f̃(xxxi) = fi, i = 1, 2, . . . , n. A usual approach to solve such a kind of problem is to

assume the function f̃ is a linear combination of certain basis functions Bj, i.e.,

f̃(xxx) =
n∑

j=1

λjBj(xxx), xxx ∈ Rd, (3.35)

where λj are unknown coefficients which can be determined by imposing the

interpolation conditions f̃(xxxi) = f(xxxi), i = 1, 2, . . . , n. This leads to the following

linear system

Aλλλ = fff,

where A is the interpolation matrix whose entries are given by aij = Bj(xxxi),

i, j = 1, 2, . . . , n, λλλ = [λ1, λ2, . . . , λm]
T , and fff = [f1, f2, . . . , fn]

T . The interpolation

problem is well-posed, i.e., a solution exists and it is unique, if and only if the

matrix A is non-singular.

In the univariate case, i.e., d = 1, one can interpolate to n distinct data sites

using a polynomial of degree n− 1. Unfortunately, the situation is not as favorable

in the multivariate case.

Let the finite-dimensional linear function space B ⊆ C(Ω) have a basis

{B1, B2, . . . , Bn}. Then B is an Haar space on Ω if

detA ̸= 0

for any set of distinct point {xxx1xxx2, . . . ,xxxn} in Ω, where A denotes the matrix whose

entries are aij = Bj(xxxi)·
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Note that the existence of a Haar space guarantees the invertibility of the

interpolation matrix A, i.e., the existence and uniqueness of an interpolant of the

form (3.35). In the multivariate case the following theorem forbids the existence of

Haar space of continuous functions of dimension greater than one.

Theorem 6 (Mairhuber-Curtis). If Ω ⊂ Rd, d ≥ 2 contains an interior point, then

there exist no Haar spaces of continuous functions on Ω except those of dimension

one.

Proof. See [75], [76].

The Mairhuber-Curtis Theorem tells us that for the interpolation problem of

arbitrary scattered data in the multivariate case, i.e, d ≥ 2, if we want to have a

well-posed problem we can not decide before the set of basis functions we plan to

use, instead we have to choose the basis functions to depend on the interpolation

points. In some sense, RBFs give a solution to the problem arising from the

Mairhuber-Curtis theorem.

A function Φ : Rd → R is called radial if there exists a univariate function

φ : [0,∞) → R such that:

Φ(xxx) = φ(||xxx||),

where || · || denotes some norm on Rd, usually the Euclidean norm.

Thus, we can use a RBF expansion to solve the interpolation problem (3.35).

In particular, it becomes:

f̃(xxx) =
n∑

j=1

λjΦ(xxx− xxxj) ≡
n∑

j=1

λjΦj(xxx), xxx ∈ Rd. (3.36)

If we think at Φ(xxx) as a function with center at the origin, for j = 1, 2, . . . , n, the

shifts Φj(xxx) = Φ(xxx−xxxj) are functions centered at xxxj . For this reason we often call

xxxj a center. In particular, the radial basis function Φj(xxx) is said to be centered at

xj . As before, unknown coefficients λj in (3.36) can be determined by imposing the

interpolation conditions f̃(xxxi) = f(xxxi), i = 1, 2, . . . , n. Thus, we have the following
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linear system 
Φ1(xxx1) . . . Φn(xxx1)

...
...

Φ1(xxxn) . . . Φn(xxxn)


︸ ︷︷ ︸

A


λ1
...

λn


︸ ︷︷ ︸

λλλ

=


f(xxx1)

...

f(xxxn)


︸ ︷︷ ︸

fff

. (3.37)

The interpolation problem is well-posed, if and only if the matrix A is non-singular.

Therefore, now the question is for what kind of RBFs the matrix is non-singular.

To this purpose, we recall that a positive definite matrix has all the eigenvalues

positive, and therefore it is non-singular. Thus, if we consider a basis functions

that can generate a positive definite interpolation matrix, we would always have

a well-posed interpolation problem. To this aim let us introduce positive definite

function.

A continuous function Φ : Rd → C is called positive definite if for all n ∈ N, all

sets of pairwise distinct centers X = {xxx1,xxx2, . . . ,xxxn} ⊂ Rd , and all λλλ ∈ Cn , we

have
n∑

i=1

n∑
j=1

λiλ̄jΦ(xxxi − xxxj) ≥ 0.

The function is called strictly positive definite if the quadratic form is zero only for

λλλ ≡ 0. The previous definition of (strictly) positive definite functions is given for

complex coefficients and complex-valued functions. The following theorem states

the elementary properties of a positive definite function.

Theorem 7. Let Φ be a positive definite function. The following properties are

satisfied.

1. Φ(0) ≥ 0.

2. Φ(−xxx) = Φ(xxx), ∀ xxx ∈ Rd,

3. Any positive definite function is bounded. In fact: |Φ(xxx)| < Φ(0).

4. Φ(0) = 0 if and only if Φ ≡ 0.

5. The product of (strictly) positive definite functions is (strictly) positive definite.
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6. Non-negative finite linear combinations of positive definite functions are pos-

itive definite. If Φ1,Φ2, . . . ,Φn are positive definite on Rd and λj ≥ 0,

j = 1, 2, . . . , n, then Φ(xxx) =
∑n

j=1 λjΦj(xxx), xxx ∈ Rd,is also positive defi-

nite. Moreover, if at least one of the Φj is strictly positive definite and the

corresponding λj > 0, then Φ is strictly positive definite.

Proof. See [76].

The previous Theorem 7 shows the elementary property of complex-valued

positive definite function, however, in usual applications we concern with real-

valued functions. From Theorem 7 it is clear that a positive definite function is

real-valued if and only if it is even In addition, the following theorem characterizes

real-valued strictly positive definite functions.

Theorem 8. Let Φ : Rd → R be a continuous function. Then Φ is strictly positive

definite if and only if it is even and we have, for all n ∈ N, for all λλλ ∈ Rn, and for

all pairwise of distinct xxx1,xxx2, . . . ,xxxn,

n∑
i=1

n∑
j=1

λiλjΦ(xxxi − xxxj) ≥ 0.

In addition, Φ is strictly positive definite on Rd if the quadratic form is zero only

for λλλ ≡ 0.

Proof. See [76].

Thus, to get a well-posed interpolation problem of kind (3.37) one can use

positive definite functions. Unfortunately, not all the most popular radial basis

functions fit into this characterisation. However, in the following we generalise

the notion of positive definite functions to that of (strictly) conditionally positive

definite functions of order m, in such a way we cover all the relevant choices for

RBFs.

A complex-valued continuous function Φ is called conditionally positive definite

of order m on Rd if for all n ∈ N, all sets of pairwise distinct centers X =
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{xxx1,xxx2, . . . ,xxxn} ⊂ Rd , and all λλλ ∈ Cn , satisfying

n∑
j=1

λjp(xxxj) = 0

for any complex-valued polynomial p of degree at most m− 1, we have

n∑
i=1

n∑
j=1

λiλ̄jΦ(xxxi − xxxj) ≥ 0.

The function Φ is called strictly conditionally positive definite of order m on Rd if

the quadratic form is zero only for λλλ ≡ 0.

An immediate observation is the following

Lemma 9. A function that is (strictly) conditionally positive definite of order m on

Rd is also (strictly) conditionally positive definite of any higher order. In addition, a

(strictly) positive definite function is always (strictly) conditionally positive definite

of any order.

Proof. See [75].

As earlier, we can restrict ourselves to real-valued, even functions.

Theorem 10. A real-valued continuous even function Φ is conditionally positive

definite of order m on Rd if and only if for all n ∈ N, all sets of pairwise distinct

centers X = {xxx1,xxx2, . . . ,xxxn} ⊂ Rd , and all λλλ ∈ Rn , satisfying

n∑
j=1

λjp(xxxj) = 0

for any real-valued polynomial p of degree at most m− 1, we have

n∑
i=1

n∑
j=1

λiλjΦ(xxxi − xxxj) ≥ 0.

In addition, Φ is strictly conditionally positive definite of order m on Rd if the

quadratic form is zero only for λλλ ≡ 0.
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Sometimes there is the need to have an interpolant that can reproduces certain

types of functions. For example when data are constant, or when they come

from a linear function, then it would be desirable that also the interpolant has

such properties. Moreover, when we have to face numerical solution of partial

differential equations, sometimes it is important that the interpolant can reproduce

linear functions. Thus, what we can do is to modify the interpolant by adding

certain polynomials to the expansion (3.36), i.e., we can consider the following

approximation of f :

f̂(xxx) =
n∑

j=1

λjΦj(xxx) +
M∑
j=1

µjpj(xxx), (3.38)

where m ∈ N, M =

 m− 1 + d

m− 1

, and {pj(xxx)}j=1,2,...,M is a base of the M -

dimensional linear space Πd
m−1 of polynomials in xxx ∈ Rd, with real coefficients, of

degree at most m− 1. The interpolation conditions f̂(xxxi) = f(xxxi), i = 1, 2, . . . , n,

leads to a system of n linear equations, but now we have n + M unknowns,

λ1, λ2, . . . , λn, µ1, µ2, . . . , µM , so in order to ensure a unique solution we also require

the polynomial basis {pj(xxx)}j=1,2,...,M to be orthogonal to the RBF coefficients λλλ,

i.e.:
n∑

j=1

λjpk(xxxj) = 0, k = 1, 2, . . . ,M. (3.39)

As before, if we denote with Pij = pj(xxxi) and µµµ = (µ1, µ2, . . . , µM)T , imposing

the interpolation conditions f̂(xxxi) = f(xxxi), i = 1, 2, . . . , n, and the orthogonality

conditions (3.39), we obtain: A P

P T 0


︸ ︷︷ ︸

Â

 λλλ

µµµ

 =

 fff

000

 , (3.40)

whose solution, if Â is invertible, is λλλ

µµµ

 = Â−1

 fff

000

 . (3.41)
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In the following, we refer to Â as the polynomially augmented RBF (PA-RBF)

interpolation matrix associated to the interpolation nodes xxxi, i = 1, 2, . . . , n. The

following theorem states that to guarantee the invertibility of Â we have to re-

quire the matrix P to have full rank, or equivalently that the interpolation nodes

xxx1,xxx2, . . . ,xxxn has to be unisolvent for polynomials of degree m− 1. We recall that,

the set of points X = {xxx1,xxx2, . . . ,xxxn} ⊆ Rd is said to be (m− 1)-unisolvent if the

only polynomial of total degree at most m− 1 interpolating zero data on X is the

zero polynomial.

Theorem 11. Let Φ be a real-valued even function, strictly conditionally positive

definite of order m on Rd, if the points {xxx1,xxx2, . . . ,xxxn} form an (m− 1)-unisolvent

set, then the system of linear equations (3.40) is uniquely solvable.

Proof. See [75].

3.3.1 RBF Collocation

We consider the following boundary value problemLu = f, in Ω,

u = g, on ∂Ω,
(3.42)

where Ω ⊆ Rd, is a bounded set, whose boundary is ∂Ω. We denote with L a

linear elliptic partial differential operator and with f and g given functions. For

the sake of simplicity, we consider Dirichlet boundary conditions. We represent the

approximate solution û by a RBF expansion analogous to that used for scattered data

interpolation. In particular, for the following discussion we assume the interpolant

of the form (3.38), since this is the form we use in the numerical simulations.

However, an analogous approach can be used also in the case of an approximated

solution with the form (3.36). In addition, for the same reason, we restrict ourselves

to the case in which the set of the centers coincides with those of the collocation

points, and we denote this set with X = {xxx1,xxx2, . . . ,xxxn}.
Let us suppose that uuu = (u(xxx1), u(xxx2), . . . , u(xxxn))

T and Theorem 11 holds, apply-

ing the operator L to û, and using the following notation aaa(xxx)L = (Lφ1(xxx), . . . ,Lφn(xxx)),
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ppp(xxx)L = (Lp1(xxx), . . . ,Lpm(xxx)), we have:

Lû(xxx) =
(
aaa(xxx)L ppp(xxx)L

)
︸ ︷︷ ︸

bbb(xxx)L

 λλλ

µµµ

 = bbb(xxx)LÂ−1

 uuu

000

 = (bbb(xxx)LÂ−1)1:nuuu, (3.43)

where in the second equality we exploited relation (3.41) for û, and the notation

(·)1:n denotes the first n components of the vector (·). Therefore, equation (3.43)

allows us to compute the action of the operator L on the function û at the point xxx

as a linear combination of the values of u in the nodal points.

Let us split the n collocation points in X in nI interior points collected in XI

and nB boundary points collected in XB; i.e., X = XI ∪ XB and n = nI + nB.

In addition, we reorder the points in such a way that we have first all the nI

interior points and then all the nB boundary points, this means that the vector

uuu can be reordered as uuu = (uuuI ,uuuB)
T , where uuuI = (u(xxx1), u(xxx2), . . . , u(xxxnI

)), and

uuuB = (u(xxxnI+1), u(xxxnI+2), . . . , u(xxxn)) . The collocation problem is obtained by

imposing the differential equation at the interior points XI and the boundary

condition at the boundary points XB. That is:Lû(xixixi) = f(xxxi), xxxi ∈ XI ,

û(xixixi) = g(xxxi), xxxi ∈ XB.
(3.44)

Exploiting (3.43) the differential equation of problem (3.44) becomes:

(bbb(xxxi)
LÂ−1)1:nuuu = f(xxxi), xxxi ∈ XI , (3.45)

Let fff be the vector containing the given function f evaluated at the interior points

in XI . Similarly, let ggg be the vector containing the given function g evaluated at

the boundary points in XB. Problem (3.44) written in matrix form is: L

B

uuu =

 fff

ggg

 (3.46)

where L ∈ RnI×n has rows Li,: = (bbb(xxxi)
LÂ−1)1:n, xxxi ∈ XI , and B ∈ RnB×n, B ≡(

ÂÂ−1
)
nI+1:n,1:n

. Thus, if

 L

B

 is non singular, the collocation problem (3.46)
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has a unique solution uuu =

 L

B

−1 fff

ggg

. For further in-depth analysis on RBF

collocation see [75], [76].



Chapter 4

Numerical simulations

In this chapter we present and discuss the numerical experiments carried out on

espresso coffee percolation models of Sections 2.3 2.4.

In particular, in Section 4.1 we describe two numerical approximations of

problem (2.80), (2.81). The reliability of such a model together with the proposed

solving strategies is assessed experimentally in both cases, by comparing a set of real

extractions and simulated extractions conducted under the same physico-chemical

conditions. The results show a good predictive power of the reduced percolation

model, which can help the coffee industry in the control of the extraction efficiency,

and, consequently, in its sustainability goals.

In Section 4.2 we discuss the reliability of the three dimensional model presented

in Section 2.3. This model has been tested through a wide campaign of chemical

laboratory analyses on espresso coffee samples extracted under different conditions;

8 chemical substances among the most relevant ones in affecting the beverage

taste have been considered. The results of such laboratory analyses are compared

with those of the numerical simulations obtained using the aforementioned model.

Such a model has been implemented in the simulation tool for porous media and

groundwater movement FeFlow Demo 7.2 [77]. The comparison between the real

and simulated EC shows the potential of such a model in coffee industry applications,

paving the way to tools allowing the customisation of the coffee beverage taste.

In Section 4.3 we present a RBF-based numerical approximation for the three

75
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dimensional model. More precisely, in the numerical experiment we focus on the

prediction of the flow and we consider the equation describing the hydraulic head

dynamics. The reliability of the considered model together with the proposed

solving strategy is experimentally assessed by simulating the hydraulic head with

different initial pressures of the incoming water. The preliminary results show a

reasonable behaviour of the simulated quantity. Such a scheme deserves further

investigation in order to discretise the full percolation model.

Finally in Section 4.4 we discuss and compare the results presented in the

previous sections.

4.1 The experiment with the reduced percolation

model

In this Section we describe the numerical approximation methods proposed

for the reduced percolation model (2.80), (2.81). In more details, Section 4.1.1

describes a finite difference based approximation scheme for such a model. Besides,

Section 4.1.2 presents a RBF-based approximation scheme for the same model. In

both sections, we assess experimentally the reliability of such a model together with

each proposed solving strategy, by comparing real and simulated extractions. The

presented results show the potential of such a model in coffee industry applications.

4.1.1 A Finite Differences approximation

In this Section we present an approximation scheme based on the Crank–Nicolson

method for the numerical solution of problem (2.80), (2.81). This method is a

nested fixed-point iteration strategy for the solution of the resulting nonlinear

system of algebraic equations. As already described in Section 2.4, the reduced

percolation model can be used for multiple purposes of coffee industry, in fact, it

can be used both for the EY (Extraction Yield) prediction i.e., when the number of

total monitored chemical substances is I = 1, and for the flavour prediction i.e.,

I > 1; so, we performed two different experiments, testing the predictive power of
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the model in both cases. For each of them we describe the experimental procedure

used for the coffee samples extraction, then we present the results of the numerical

simulations. Finally we show the comparisons between experimental and numerical

results.

The numerical results of the two cases of study shown in this section, together

with the proposed approximation scheme has been presented for the first time

in [55] and [21], respectively.

Numerical approximation

The numerical approximation scheme of the problem (2.80), (2.81) is based on

the Crank-Nicolson method [78]. For the reader’s convenience below we report the

reduced model. The problem modelling the liquid concentration is:

(1− ϕ)
∂cli
∂t

(z, t) = D
∂2cli
∂z2

(z, t)− q
∂cli
∂z

(z, t) + bfGf
i (ccc

l, cccf , z, t) + bbGb
i(ccc

l, cccb, z, t),

−D∂c
l
i

∂z
(0, t) + qcli(0, t) = 0,

−D∂c
l
i

∂z
(L, t) = 0,

cli(z, 0) = 0,

for i = 1, 2, . . . , Nl−s, z ∈ (0, L), t ∈ (0, τ). The problem modelling the solid

concentration is 

∂csi
∂t

(r, z, t) =
Df

i

r2
∂

∂r

(
r2
∂csi
∂r

(r, z, t)

)
,

−Df
i

∂csi
∂r

(0, z, t) = 0,

−Df
i

∂csi
∂r

(as, z, t) = Gs
i (ccc

l, cccs, z, t),

csi (r, z, 0) = c0i ,

for i = 1, 2, . . . , Nl−s, s = f, b, r ∈ (0, as), t ∈ (0, τ), and z ∈ (0, L).

In the following, we describe all the details of this approximation scheme.

Let N be a positive integer, hz = L/N and zj = (j − 1)hz, j = 1, . . . , N + 1.

Similarly, let M be a positive integer, hf = af/M and hb = ab/M , respectively,

and rk = (k − 1)hs, k = 1, . . . ,M + 1, where s = f, b. Let Nt be a positive integer,



78 CHAPTER 4. NUMERICAL SIMULATIONS

ht = τ/Nt, and tn = nht, n = 0, 1, . . . , Nt. Using the Crank-Nicolson method

together with the first-order upwind scheme for the spatial discretisation of the

advective term, the discretised form of problem (2.80) is



(
ε+ 2β + 3δ + ht

q2

D

)
cl,i1,n+1 − (2β + δ) cl,i2,n+1 = −

(
−ε+ 2β + 3δ + ht

q2

D

)
cl,i1,n+

+ (2β + δ) cl,i2,n +
ht
2
Gf,i

1,n+1+

+
ht
2
Gb,i

1,n+1 +
ht
2
Gf,i

1,n +
ht
2
Gb,i

1,n, n = 0, 1, . . . , Nt − 1,

− (β + δ) cl,ij−1,n+1 + (ε+ 2β + δ) cl,ij,n+1 − βcl,ij+1,n+1 = (β + δ) cl,ij−1,n+

− (−ε+ 2β + δ) cl,ij,n + βcl,ij+1,n +
ht
2
Gf,i

j,n+1+

+
ht
2
Gb,i

j,n+1 +
ht
2
Gf,i

j,n +
ht
2
Gb,i

j,n, j = 2, 3, . . . , N, n = 0, 1, . . . , Nt − 1,

− (2β + δ) cl,iN,n+1 + (ε+ 2β + δ) cl,iN+1,n+1 = (2β + δ) cl,iN,n+

− (−ε+ 2β + δ) cl,iN+1,n +
ht
2
Gf,i

N+1,n+1+

+
ht
2
Gb,i

N+1,n+1 +
ht
2
Gf,i

N+1,n +
ht
2
Gb,i

N+1,n, n = 0, 1, . . . , Nt − 1,

cl,ij,0 = 0, j = 1, 2, . . . , N + 1,

(4.1)

for i = 1, 2, . . . , I. Where ε = 1−ϕ, β = htD/(2h
2
z), δ = htq/(2hz), cl,ij,n ≈ cli(zj, tn),

and Gs,i
j,n ≈ Gs

i (λ
i
n, c

s,i
M+1,n, zj, tn), s = f, b with vectors λi

n, c
s,i
M+1,n defined as

λi
n =

(
cl,i1,n, c

l,i
2,n, . . . , c

l,i
N+1,n

)T
, (4.2)

cs,iM+1,n =
(
cs,iM+1,1,n, c

s,i
M+1,2,n, . . . , c

s,i
M+1,N+1,n

)T
, s = f, b,

i = 1, 2, . . . , I. Moreover, for the approximations Gs,i
j,n, of the reaction terms we

used

Gs,i
j,n = bskirc

s,i
M+1,j,nfp(c

s,i
M+1,j,n−c

l,i
j,n)fp(c

i
sat−c

i,l
j,n)

I∏
k=1
k ̸=i

fp(c
l,k
j,n − ci,kdis), s = f, b, (4.3)
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where, for i = 1, 2, . . . , I, we denote with cs,iM+1,j,n the approximated solid concen-

trations, defined below, and

fp(x) =

exp
(

x
p
+ log(p)− 1

)
, x ≤ p

x, x > p,
(4.4)

where p > 0 sufficiently small, provides a continuous and derivable approximation

of the max(x, 0) function. Similarly, using the Crank-Nicolson method where the

spatial discretisation is obtained by using the half step symmetric scheme, the

discretised form of problem (2.81) is



(
1 + 6αs,i

)
cs,i1,j,n+1 − 6αs,ics,i2,j,n+1 =

(
1− 6αs,i

)
cs,i1,j,n+

+ 6αs,ics,i2,j,n, j = 1, 2, . . . , N + 1, n = 0, 1, . . . , Nt − 1,

− αs,i k2−
(k − 1)2

cs,ik−1,j,n+1 +

(
1 + αs,ik

2
− + k2+

(k − 1)2

)
cs,ik,j,n+1 − αs,i k2+

(k − 1)2
cs,ik+1,j,n+1 =

= αs,i k2−
(k − 1)2

cs,ik−1,j,n +

(
1− αs,ik

2
− + k2+

(k − 1)2

)
cs,ik,j,n+

+ αs,i k2+
(k − 1)2

cs,ik+1,j,n, k = 2, 3, . . . ,M, j = 1, 2, . . . , N + 1, n = 0, 1, . . . , Nt − 1,

− αs,iM̃
2
− + M̃2

+

M2
cs,iM,j,n+1 +

(
1 + αs,iM̃

2
− + M̃2

+

M2

)
cs,iM+1,j,n+1 = αs,iM̃

2
− + M̃2

+

M2
cs,iM,j,n+

+

(
1− αs,iM̃

2
− + M̃2

+

M2

)
cs,iM+1,j,n −

ht
hs

M̃2
+

M2
Gs,i

j,n+1+

− ht
hs

M̃2
+

M2
Gs,i

j,n, j = 1, 2, . . . , N + 1, n = 0, 1, . . . , Nt − 1,

cs,ik,j,0 = c0i , k = 1, 2, . . . ,M + 1, j = 1, 2, . . . , N + 1,

(4.5)

for i = 1, 2, . . . , I, where αs,i = htD
f
i / (2h

2
s) , s = f, b, k− = k − 3/2, k+ = k −

1/2, M̃− = M − 1/2, M̃+ = M + 1/2, cs,ik,j,n ≈ cs,i(rk, zj, tn), and Gs,i
j,n has been
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defined in (4.3). We note that at r = 0 we used the De L’Hôpital rule that gives:

∂csi
∂t

(0, z, t) = lim
r→0

(
2

r
Df

i

∂csi
∂r

(r, z, t) +Df
i

∂2csi
∂r2

(r, z, t)

)
=

= 3Df
i

∂2csi
∂r2

(0, z, t), i = 1, 2, . . . , I.

(4.6)

For i = 1, 2, . . . , I, systems (4.1),(4.5) are coupled through the functions Gs,i.

Moreover, in system (4.5) the concentrations cs,ik,j,n, for s = f, b depend on zj,

therefore such systems must be solved for each zj, j = 1, 2, . . . , N + 1.

The discretised systems (4.1),(4.5) can be written in matrix form as follows:

Aiσi
n+1 = Ciσi

n +φ
i
n+1 +φ

i
n, n = 0, 1, . . . , Nt − 1, i = 1, 2, . . . , I, (4.7)

Biλi
n+1 = Eiλi

n +ψ
i
n+1 +ψ

i
n, n = 0, . . . , Nt − 1, i = 1, 2, . . . , I, (4.8)

where
Ai, Ci ∈ R2(N+1)(M+1)×2(N+1)(M+1),

Bi, Ei ∈ RN+1×N+1,

σi
n ∈ R2(N+1)(M+1),λi

n ∈ RN+1,

φi
n ∈ R2(N+1)(M+1),ψi

n ∈ RN+1;

for n = 0, 1, . . . , Nt − 1 and i = 1, 2, . . . , I. The liquid unknown vector has been

defined in (4.2), and solid unknown vector is defined as

σi
n =

cf,in

cb,in

 , (4.9)

with
cf,in =

(
cf,i1,1,n, c

f,i
2,1,n, . . . , c

f,i
M+1,1,n, c

f,i
1,2,n, c

f,i
2,2,n, . . . , c

f,i
M+1,2,n, . . . ,

cf,i1,N+1,n, c
f,i
2,N+1,n, . . . , c

f,i
M+1,N+1,n

)T
,

and analogously for the vector cb,in , i = 1, 2, . . . , I. The vectors with the non-linear

terms are defined as

φi
n =

Ff,i
n

Fb,i
n

 ,

ψi
n =

(
ht
2
Gf,i

1,n +
ht
2
Gb,i

1,n,
ht
2
Gf,i

2,n +
ht
2
Gb,i

2,n, . . . ,
ht
2
Gf,i

N+1,n +
ht
2
Gb,i

N+1,n

)T

,
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with

Fs,i
n =

(
0, . . . , 0,−

htM̃
2
+

hfM2
Gs,i

1,n, 0, . . . , 0,−
htM̃

2
+

hfM2
Gs,i

2,n, 0, . . . , 0,−
htM̃

2
+

hfM2
Gf,i

N+1,n

)T

,

s = f, b, i = 1, 2, . . . , I. We note that non-zero elements in φi
n are in positions

that are multiples of M + 1; matrices Ai are block diagonal matrices of order

2(N + 1)(M + 1),

Ai =



Af,i 0 . . . 0

0
. . . 0

...
... 0 Af,i 0

...
... 0 Ab,i 0

...
... 0

. . . 0
... 0 Ab,i


,

i = 1, 2, . . . , I, where each block is a three-diagonal matrix of order M + 1, that is

As,i =


As,i

1,:

As,i
2,:

...

As,i
M+1,:

 ,

whose rows are:

As,i
1,: =

(
1 + 6αs,i −6αs,i 0 . . . 0

)
,

As,i
k,: =

(
0 . . . 0 −αs,i

k2−
(k − 1)2

1 + αs,i
k2− + k2+
(k − 1)2

−αs,i
k2+

(k − 1)2
0 . . . 0

)
,

k = 2, 3, . . . ,M,

As,i
M+1,: =

(
0 . . . 0 −αs,i

M̃2
− + M̃2

+

M2
1 + αs,i

M̃2
− + M̃2

+

M2

)
,
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for s = f, b. B is a three-diagonal matrix of order N + 1,

Bi =



ε+ 2β + 3δ +
htq

2

D
−2β − δ 0 . . . 0

. . . . . . . . . 0
...

0
. . . . . . . . . 0

...
... 0 −β − δ ε+ 2β + δ −β 0

...
... 0

. . . . . . . . . ...
... 0

. . . . . . . . .
... . . . 0 −2β − δ ε+ 2β + δ


.

Similarly, the right-hand side matrices in (4.7),(4.8) are

Ci =



Cf,i 0 . . . 0

0
. . . 0

...
... 0 Cf,i 0

...
... 0 Cb,i 0

...
... 0

. . . 0
... 0 Cb,i


,

where

Cs,i =


Cs,i

1,:

Cs,i
2,:

...

Cs,i
M+1,:

 ,

whose rows are:

Cs,i
1,: =

(
1− 6αs,i 6αs,i 0 . . . 0

)
,

Cs,i
k,: =

(
0 . . . 0 αs,i

k2−
(k − 1)2

1− αs,i
k2− + k2+
(k − 1)2

αs,i
k2+

(k − 1)2
0 . . . 0

)
,

k = 2, 3, . . . ,M,

Cs,i
M+1,: =

(
0 . . . 0 αs,i

M̃2
− + M̃2

+

M2
1− αs,i

M̃2
− + M̃2

+

M2

)
,
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for i = 1, 2, . . . , I, and s = f, b.

Ei =



ε− 2β − 3δ − htq
2

D
2β + δ 0 . . . 0

. . . . . . . . . 0
...

0
. . . . . . . . . 0

...
... 0 β + δ ε− 2β − δ β 0

...
... 0

. . . . . . . . . ...
... 0

. . . . . . . . .
... . . . 0 2β + δ ε− 2β − δ


.

Note that, the matrices Cs,i and Ei have the same structure of As,i and Bi,

respectively. In addition, except for the sign of the terms involving ht, they have

also the same elements. This feature is determined by the trapezoidal rule used for

the time discretisation.

The solution to system (4.7),(4.8) is based on a two-step procedure. More

precisely, from (4.7),(4.8), we consider a nested fixed-point iteration for each

time step. It consists in solving consecutively such linear systems for a given

n = 0, . . . , Nt − 1:

Aiσi,µ,ν
n+1 = Ciσi

n +φ
i,µ,ν−1
n+1 +φi

n, (4.10)

Biλi,µ,ν
n+1 = Eiλi

n +ψ
i,µ,ν−1
n+1 +ψi

n, (4.11)

i = 1, 2, . . . , I, where the index ν stands for the inner fixed-point iteration and

µ for the outer fixed-point iteration, relatively to the time step n + 1; moreover,

φi,µ,ν
n+1 ,ψ

i,µ,ν
n+1 mean that the concentrations of the substance i are evaluated at those

inner ν and outer µ iterations, respectively. The stages of the solving strategy are

outlined in Algorithm 1.
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Algorithm 1: Given the initial value c0i , for i = 1, . . . , I, and the parame-
ters maxit1, maxit2, tol1, tol2 compute the solution σi

n, λi
n, n = 1, . . . , Nt,

of system (4.7),(4.8), by the following steps.

1 for n = 0, 1, . . . , Nt − 1 do
2 for i = 1, 2, . . . , I do
3 σi

0 = (c0i , . . . , c0i)
T ; λi

0 = (0, . . . , 0)T ;
4 σi,1,1

n+1 = σi
n; λ

i,1,1
n+1 = λ

i
n;

5 for µ = 2, 3, . . . ,maxit2 do
6 σi,µ,1

n+1 = σi,µ−1,ν̄
n+1 ;

7 for ν = 2, 3, . . . ,maxit1 do
8 λi,µ,ν−1

n+1 = λi,µ−1,ν̃
n+1 ;

9 Compute σi,µ,ν
n+1 from Aσi,µ,ν

n+1 = Cσi
n +φ

i,µ,ν−1
n+1 +φi

n;
10 if max

(∣∣σi,µ,ν
n+1 − σi,µ,ν−1

n+1

∣∣) ≤ tol1 then

11 σi,µ,ν̄
n+1 = σi,µ,ν

n+1 ;
12 break;
13 end
14 end
15 λi,µ,1

n+1 = λi,µ−1,ν̃
n+1 ;

16 for ν = 2, . . . ,maxit1 do
17 σi,µ,ν−1

n+1 = σi,µ,ν̄
n+1 ;

18 Compute λi,µ,ν
n+1 from Bλi,µ,ν

n+1 = Eλi
n +ψ

i,µ,ν−1
n+1 +ψi

n;
19 if max

(∣∣λi,µ,ν
n+1 − λi,µ,ν−1

n+1

∣∣) ≤ tol1 then
20 λi,µ,ν̃

n+1 = λi,µ,ν
n+1 ;

21 break;
22 end
23 end
24 if max

(∣∣∣σi,µ,ν̄
n+1 − σi,µ−1,ν̄

n+1

∣∣∣) ≤

tol2 and max
(∣∣∣λi,µ,ν̃

n+1 − λi,µ−1,ν̃
n+1

∣∣∣) ≤ tol2 then
25 σi,µ̄,ν̄

n+1 = σi,µ,ν̄
n+1 ; λi,µ̄,ν̃

n+1 = λi,µ,ν̃
n+1 ;

26 break;
27 end
28 end
29 σi

n+1 = σ
i,µ̄,ν̄
n+1 ; λi

n+1 = λ
i,µ̄,ν̃
n+1

30 end
31 end
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We observe that maxit1 is the maximum number of steps for the inner iterate,

and maxit2 is the maximum number for the outer iterate. For each i = 1, 2, . . . , I,

the final inner iteration on system (4.10) yields σi,µ,ν̄
n+1 , while the last inner iteration

on system (4.11) gives λi,µ,ν̃
n+1 . These iterations satisfy the corresponding stopping

criteria reported in Algorithm (1), see lines 19 and 24, where max function gives the

maximum component of the vector argument and tol1 > 0 is a prescribed tolerance.

Moreover, the outer iteration serves to refine the results produced by the inner

iterate, where coupling between systems is neglected. The final outer iteration

satisfies a stopping criterion where tol2 > 0 is a prescribed tolerance. Besides, this

final iteration gives (σi,µ̄,ν̄
n+1 ,λ

i,µ̄,ν̃
n+1 ) that is the approximated solution at time tn+1

of the original system (4.7),(4.8). We note that the convergence of the inner steps

can be improved by relaxed iterations with a proper parameter ω, which also helps

to have a positive solution at initial time steps. The following algorithm sums up

the ideas on the solving strategy for systems (4.7),(4.8).

Experimental measurements

In this Section we present the results of the two experimental campaigns of

espresso extractions. More precisely, in Extraction Procedure 1 we describe the

equipment, the procedures and the physical parameters of the extraction campaign,

as well as the results obtained in terms of EY. While in Extraction Procedure 2 we

describe the equipment, the procedures and the physical parameters used in the

experiment we performed for the prediction of the beverage taste. In particular, we

considered two types of chemicals that affect the most the espresso taste, namely

caffeine and total amount of chlorogenic acids (CQAs).

Extraction Procedure 1. The samples were prepared using the grinding machine

Mythos 1 [79] to prepare the coffee powder, which was tamped with the dynamo-

metric tamper PUQ® PRESS M2 [80]. The espresso samples were extracted with

the professional espresso coffee machine Victoria Arduino VA388 Black Eagle [81].

The grinder, the tamper and the espresso machine were provided by the espresso

machine manufacturer Simonelli Group SpA (Belforte del Chienti, Italy). The
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experiments were performed with two types of Arabica coffee: the single origin

Cibao Altura (HMC, origin - Dominican Republic, variety - typica, caturra, process

- fully washed), and the Arabica mix Modœtia (HMC, origin - Brazil, variety -

mundo novo & catuai, process - natural; origin - India Plantation, variety - kent,

process - washed; origin - Ethiopia Yirgacheffe, variety - heirloom, process - washed).

The extraction of the samples was performed following this procedure: 20 ± 0.1

g of coffee powder were used to fill the VST© Competition filter basket, with

inner radius 29.25mm and height 26mm; the coffee powder was tamped with a

constant tamping force set at 20 kgF; the mass of extracted espresso coffee was

kept constant at 40± 2 g, in such a way that the brew ratio between grams of coffee

powder and grams of extracted coffee was kept constant at 1:2. The extractions

differ in the values of water pressure, water temperature and granulometry of the

coffee powder for both the coffee types; all these parameters were modified one at a

time within a grid of prescribed values. Each parameter has been properly set in

the espresso machine by an experienced professional barista. The extraction grid

consists in these parameters and values: coffee type - Cibao Altura and Modœtia;

water temperature - 90.4, 93.4 ◦C; water pressure - 6, 9 bar, and 12 bar applied

only to the extra fine and extra coarse granulometries; granulometry - optimal,

fine, coarse, extra fine, extra coarse for Cibao Altura, and optimal, fine, coarse for

Modœtia. We note that with optimal granulometry we mean the granulometry that

yields about 40 g of coffee in cup extracted in 25 s at 93.4 ◦C and 9 bar. Taking this

granulometry as reference, the finer granulometries are obtained by reducing the

distance between the burrs of the grinder, whereas the coarser by increasing the

distance between the burrs. Clearly, fixed the brew ratio, the extraction times vary

depending on the granulometry. We report the mean times τ in Table 4.1. They

were calculated as the average of the extraction times recorded for the corresponding

granulometry, as the water temperature and pressure vary. Table 4.1 also shows

the mean height L of the tamped coffee powder into the filter basket.

In addition, the coffee powder obtained with different grinding settings was

analysed by the laser diffraction granulometer Mastersizer 3000, Malvern Instru-
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Coffee type
Optimal Fine Coarse Extra Fine Extra Coarse

L[mm] τ [s] L[mm] τ [s] L[mm] τ [s] L[mm] τ [s] L[mm] τ [s]

Cibao Altura 13.04 28 13.27 42 14.20 21 12.60 75 14.20 16

Modœtia 13.00 26 13.27 41 14.20 21 − − − −

Table 4.1: Heights L of the tamped coffee powder and extraction times τ for the

different granulometries and types of coffee.

ments [82]. This device measures the volume of the sample particles and calculates

the diameter of equivalent spheres, so the particles are uniquely classified by their

diameter, regardless of their actual shape. Figures 4.1, 4.2 show the particle size

distribution curves for the Cibao Altura and Modœtia, respectively. For each values

of diameter in the x-axis, the corresponding value in the y-axis represents the

volume percentage covered by all the particles having that equivalent diameter.

We point out the bimodal trend of the curves presenting a local minimum around

100µm. This justifies the usual choice of dividing the coffee particles into two

families: the boulders, whose diameter is bigger than 100µm, and the fines, whose

diameter is smaller than 100µm; in addition, as representative radius for boulders

and fines, i.e., ab, af , we choose the two modes for each granulometry profile. In

Figure 4.1, we report the optimal, extra fine and extra coarse granulometries, for

the Cibao Altura. We observe that these three profiles of granulometry are sensibly

far from each other. In fact, in the extra coarse powder there is a higher amount

of boulders and their average size is the biggest with respect to the optimal and

extra fine powder. Similarly, the extra fine powder has the highest percentage of

fines and the least of boulders, furthermore, the boulder particles have a smaller

average diameter. Figure 4.2, shows the granulometry profiles of Modœtia samples;

it reflecets the same trend observed in Figure 4.1 but with less evident differences,

since the three grinding levels are closer.

TDS Measurement Procedure 1. The TDS measurements were obtained fol-

lowing this procedure: a small amount of coffee sample, after properly cooled down
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Figure 4.1: Particle size distribution curves of the Cibao Altura ground coffee.
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Figure 4.2: Particle size distribution curves of the Modœtia ground coffee.

and stirred, was inserted in a digital refractometer manufactured by VST inc. then

the TDS value was recorded. Samples for each extraction configuration were tripled

and the total number of the samples is 90. Then, the EY has been calculated for

each sample using the following relation:

EY =
TDS

brew ratio
.

Tables 4.2, 4.3 show the values of TDS and EY recorded for each sample of
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the Cibao Altura and Modœtia coffee, respectively; TDS and EY values have been

averaged over the three repeated extractions. We highlighted the maximum and

minimum values of EY inside each granulometry, since they are useful for the

numerical results. The parameters configuration that globally maximises the EY

is: 93.4 ◦C, 6 bar and fine granulometry, closely followed by the 93.4 ◦C, 6 bar and

extra fine granulometry, for Cibao Altura; 90.4 ◦C, 6 bar and fine granulometry, for

Modœtia.
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T [◦C] p [bar] τ [s] granulometry TDS [%] (σ) EY [%]

93.4 9 25 Optimal 10.3 (0.00) 20.77

93.4 6 31 Optimal 10.5 (0.20) 21.35

90.4 9 26 Optimal 10.3 (0.15) 20.53

90.4 6 32 Optimal 10.0 (0.17) 20.34

93.4 9 42 Fine 10.2 (0.27) 20.90

93.4 6 42 Fine 10.7 (0.15) 21.86

90.4 9 42 Fine 10.4 (0.21) 21.21

90.4 6 44 Fine 10.2 (1.04) 20.43

93.4 9 19 Coarse 9.6 (0.25) 19.91

93.4 6 24 Coarse 10.1 (0.17) 20.20

90.4 9 19 Coarse 9.4 (0.30) 19.42

90.4 6 24 Coarse 9.8 (0.29) 19.83

93.4 9 74 Extra Fine 10.9 (0.16) 21.77

93.4 6 73 Extra Fine 10.9 (0.42) 21.80

93.4 12 81 Extra Fine 11.0 (0.14) 21.45

93.4 9 15 Extra Coarse 8.9 (0.14) 18.24

93.4 6 21 Extra Coarse 9.5 (0.07) 19.14

93.4 12 14 Extra Coarse 8.9 (0.00) 18.02

Table 4.2: TDS measurements equipped with the standard deviation (σ) and EY

calculation for the samples of Cibao Altura coffee extracted with Procedure 1.

The experimental measurements confirm that a finer particle size increases the

TDS and the EY. Moreover, they show that the optimal pressure configuration is

6 bar.
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T [◦C] p [bar] τ [s] granulometry TDS [%] (σ) EY [%]

93.4 9 26 Optimal 10.4 (0.28) 20.87

93.4 6 26 Optimal 10.0 (0.12) 20.43

90.4 9 26 Optimal 10.2 (0.06) 20.81

90.4 6 25 Optimal 10.2 (0.06) 20.53

93.4 9 39 Fine 10.9 (0.23) 22.09

93.4 6 39 Fine 10.8 (0.25) 22.07

90.4 9 42 Fine 11.0 (0.3) 22.18

90.4 6 41 Fine 11.2 (0.26) 22.58

93.4 9 18 Coarse 9.6 (0.50) 19.44

93.4 6 22 Coarse 9.7 (0.31) 20.11

90.4 9 19 Coarse 9.5 (0.06) 19.09

90.4 6 22 Coarse 10.0 (0.29) 20.10

Table 4.3: TDS measurements equipped with the standard deviation (σ) and EY

calculation for the samples of Modœtia coffee extracted with Procedure 1.
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In addition, we considered two types of substances among the most relevant

ones affecting the beverage taste, namely caffeine and total amount of chlorogenic

acids (CQAs), given by 3-Caffeoylquinic acid (3-CQA), 3,5-Dicaffeoylquinic acid

(3,5-CQA), and 5-Caffeoylquinic acid (5-CQA). In this case the extraction of coffee

samples followed this procedure:

Extraction Procedure 2. The coffee variety used is the pure Arabica coffee

named Cibao Altura (HMC): origin – Dominican Republic; region – Juncalito

Montains; producer – Finca Nunez; variety – typica, caturra; process – fully washed;

altitude – 900 masl; descriptive notes – cashew nuts, cane sugar, dried apricot. The

coffee beans were ground using the grinding machine Mythos 2 [83]. Then, 20± 0.1

g of coffee powder were used to fill the VST© Competition filter basket, with height

26 mm and inner radius 29.25 mm; the coffee powder was tamped with a constant

tamping force set at 20 kg F, using the dynamometric tamper PUQ® PRESS

M2 [80]. The espresso samples were extracted with the traditional espresso coffee

machine Victoria Arduino 388, Black Eagle [81]. Also in this case the equipment

was supplied by the manufacturing company Simonelli Group SpA (Belforte del

Chienti, Italy). The mass of extracted espresso coffee was kept constant at 40± 2

g, and also in this case the brew ratio between grams of dry coffee and grams of

extracted coffee was kept constant at 1:2. The samples were extracted at different

values of water temperature and water pressure; these parameters were modified one

at a time within a set of prescribed values by an experienced professional barista.

Each sample was collected into a ceramic coffee cup and, after being properly cooled

down, was transferred into a test tube. Samples for each extraction configuration

were duplicated. The total number of the extracted samples is 18.

The extraction grid consists in the following values: water temperature - 88, 93,

98 ◦C; water pressure - 7, 9, 11 bar. The coffee powder was ground in such a way

that with 20 g of dry coffee, we can brew 40 g of coffee beverage in 25 ± 1 s. In

addition, we measured the averaged height of the coffee pod that is 13.88 mm.

Again, the coffee powder was analysed by the laser diffraction granulometer

Mastersizer 3000, Malvern Instruments [82]. Figure 4.3, shows the particle size
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distribution curve. The values of the particle diameters are shown on the x axis.

The corresponding value on the y axis represents the percentage of volume covered

by all particles having that diameter. Again, as representative radii for fines and

boulders, af and ab, we choose the half of the two modes.
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Figure 4.3: Particle size distribution curve of the coffee powder for the granulometry

used in the experimental extractions.

Caffeine and CQAs were quantified in the ground coffee and in extracted samples.

The results of the chemical analyses, with the relative standard deviations, RSD

(expressed in percentage), are shown in Tables 4.4-4.5. Moreover, in Table 4.5 the

highest and lowest amount of the analysed substances in cup have been highlighted,

when varying water temperature and pressure.

caffeine [g/kg] CQAs [g/kg]

16.24 (7.0) 37.17 (0.1)

Table 4.4: Concentrations of caffeine and CQAs contained in the coffee powder

extracted with Procedure 2, it reports also the percentage RSD value that is (RSD).
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Conditions caffeine CQAs

p [bar], T [◦C] mg/40mL mg/mL (RSD) [%] mg/40mL mg/mL (RSD) [%]

7, 88 224.85 5.62 (4.3) 140.67 3.52 (3.9)

9, 88 236.56 5.91 (3.5) 136.17 3.40 (1.6)

11, 88 222.95 5.57 (4.5) 128.56 3.21 (7.7)

7, 93 235.41 5.89 (0.4) 134.98 3.37 (0.6)

9, 93 253.17 6.33 (1.5) 150.75 3.77 (4.1)

11, 93 240.35 6.01 (1.0) 139.92 3.50 (3.6)

7, 98 226.45 5.66 (0.9) 141.94 3.55 (1.4)

9, 98 235.94 5.90 (3.6) 137.94 3.45 (3.0)

11, 98 230.25 5.76 (1.7) 133.12 3.33 (0.9)

Table 4.5: Total caffeine and CQAs concentration for samples extracted with

Procedure 2.

The extraction configuration that maximises the amount of extracted chemicals

is 9 bar, 93 ◦C, while the configuration that minimises the amount of extracted

chemicals is 11 bar, 88 ◦C.

Numerical results

In this section we present the numerical results of model (2.80),(2.81) obtained

by the approximation scheme and the iterative procedure described in Algorithm 1.

We discuss two case of study. In the first one we have I = 1, so that we can

compare experimental and numerical results in terms of the EY. These results have

been presented for the first time in [55]. In the second case we set I = 2, and

we compared the in-silico extractions with real extractions in terms of extracted

substances. This case of study has been presented for the first time in [21].
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Extraction Yield prediction

The numerical solution of model (2.80),(2.81) with I = 1 is obtained by the

approximation scheme (4.10), (4.11) and the iterative procedure described in Algo-

rithm 1. This method has been implemented in MATLAB together with the mass

computation formulas of Section 2.4 to show the mass conservation of the model,

and also the EY, i.e., formula (2.90), to compare the numerical results with the

experimental results described in the previous section.

In the numerical simulations, the physico-chemical parameters of the model

are the same used in literature; in particular, the solid diffusivity Df = 6.25 ·
10−10 m2/s [19], the liquid diffusivity D = 1.0 · 10−8 m2/s [19], the concentration

of saturation csat = 212.4 kg/m3 [19], the initial solid concentration cs0 = 200

kg/m3 [22] considering the extractable mass of coffee grains at 90◦C reaching about

30% of the coffee bed, the total solid fraction ϕ = 0.8272 [19], whereas the reaction

rate kr = 6.0 · 10−9 m7/kg2 has been fitted to the experiments. Regarding the

parameters of the discretisation scheme, we choose N = 4,M = 5 thus the orders

of the length of space steps are hz ≈ 10−3, hf ≈ 10−6, hb ≈ 10−5; time steps are

Nt = 1000 thus ht ≈ 10−2; the parameter p in (4.4) is 0.1. The relaxation parameter

ω depends on the time step, in particular, ω = 0.8, if n = 1; ω = 0.1, otherwise.

Finally, in Algorithm 1 the tolerances are tol1 = tol2 = 10−10 and the maximum

number of allowed iterations are maxit1 = maxit2 = 1000. We note that, although

the rough spatial discretisation with N = 4 and M = 5, they seem sufficient to

describe the dynamics of the process. In fact, we have also performed similar

simulations with doubled parameters, i.e., N = 8,M = 10, obtaining the same

behaviour of the results described below.

Moreover, with this model the temperature and pressure control is indirect, in

fact temperature and pressure are not parameter of the model. However, their

control is indirectly allowed by acting on the Darcy’s flux. On the other hand, we

observe that the granulometry is the parameter of the model with the major impact

on the simulated EY.

In the following, we show the results of the model calibration. We select these
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six extractions: EFCA, FM, OM, OCA, CM, ECCA, where the normal-size letters

are the acronym of the granulometry (EF extre fine, F fine, O optimal C coarse

and EC extra coarse) and the subscript letters identify the coffee type (CA Cibao

Altura, M Modoetia). In Table 4.6 we summarized the geometrical and physical

parameters due to the granulometry of each sample. In more details, af , ab come

from the granulometry analyses reported in Figures 4.1,4.2, while ϕf is obtained

from the volume percentage covered by all the fine particles and the total solid

fraction ϕ. In Figure 4.4, we show the values of the Darcy’s flux q, on the y-axis,

Sample af [µm] ab [µm] ϕf τ [s]

EFCA 16.6 187.4 0.27 75

FM 15.5 200.0 0.24 41

OM 16.6 227.0 0.22 26

OCA 16.6 213.0 0.22 28

CM 15.6 227.0 0.20 21

ECCA 16.5 242.0 0.17 16

Table 4.6: Geometrical and physical parameters of the simulated extractions with

I = 1.

as function of granulometry obtained from the model calibration. In particular, the

granulometry is represented by the solid fraction of fines ϕf , shown on the x-axis.

The fines radius is reported on the legend. Markers of the same shape and colour

identify a unique value of Darcy’s flux. Figure 4.4 shows five different values for

q corresponding to the granulometry types taken into account. In particular, the

extra coarse granulometry corresponds to the value of Darcy’s flux q = 7 · 10−4

m/s; the coarse granulometry to q = 5.3 · 10−4 m/s; the optimal granulometry to

q = 4.5 · 10−4 m/s; the fine granulometry to q = 3.0 · 10−4 m/s; the extra-fine

granulometry to q = 1.5 · 10−4 m/s. We note that, if we read the picture from

smaller to bigger values of ϕf , we can identify five vertical regions, divided by the

dashed lines, corresponding to granulometries with increasing fineness and for which
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Figure 4.4: Distribution of the Darcy’s flux values on the y-axis, as function of

granulometry data: ϕf on the x-axis and af reported in the legend.

a decreasing value of q has to be prescribed. Thus, q is inversely proportional to

the granulometry. In fact, as we expect, the coarser the granulometry the lower

the resistance of the porous medium and the higher the value of q. In addition,

the point q = 4.5 · 10−4 in Figure 4.4, is given by the superposition of samples OM

and OCA, which have very similar granulometry features and so the same Darcy’s

flux value. This result confirms what we expected from the experimental campaign:

if grinded in a similar way, different types of coffee can produce beverages with

similar EY values.

Table 4.7, reports the EY values computed by using Eq. (2.90), where the

integral has been approximated by the trapezoidal rule. We reported the Darcy’s

flux values and the corresponding EY ranges from the laboratory experiments as

well, for the reader’s convenience. The simulated EY values are in agreement with

those calculated from the TDS measurements in Tables 4.2,4.3. In particular, the

samples OCA, CM, ECCA show a numerical EY falling in the range values of the

measured EY for the corresponding samples in Tables 4.2,4.3. On the other hand,

the remaining samples have a numerical EY that is very close to the range identified

by the measured EY, in more details, the EY of EFCA, FM and OM underestimate
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Sample q [10−4m/s] EY [%] Experimental EY range [%]

EFCA 1.5 21.03 21.45− 21.80

FM 3.0 21.79 22.07− 22.58

OM 4.5 19.75 20.43− 20.87

OCA 4.5 20.92 20.34− 21.35

CM 5.3 19.36 19.09− 20.11

ECCA 7.0 18.37 18.02− 19.14

Table 4.7: Numerical results of the EY with the corresponding Darcy’s flux values.

the measured EY of about 2.0%, 1.3% and 3.3%, respectively.

The proposed method preserves the two main features of mass transport: the

mass conservation and the positivity of the solution. We show some numerical

evidence of these features in Table 4.8 and Figure 4.5, respectively. Table 4.8 shows

the numerical mass conservation of system (4.10),(4.11). We denote with Mt the

total mass of the system at time t,

Mt =
(
Ml +Mf +Mb +Mcup)∣∣

t
,

where the liquid and solid phase mass and the mass of substances already dropped

into the cup have been defined in Section 2.4. We denote with M0 the total mass

at time t = 0. Obviously, at t = 0, only Mf ,Mb > 0. Similarly, we denote with

Mτ the total mass at the end of the extraction. As it can be seen in Table 4.8, M0

and Mτ are strictly close to each other and within a difference of less than 3.4%.

Some oscillation in the total mass occurs at the initial time steps, but, at the end of

the simulation, we have mass conservation. This initial oscillatory behaviour is due

to the fact that the numerical simulation needs some initial steps before reaching

stability.

Finally, Figure 4.5 reports the qualitative behaviour of the liquid and solid con-

centrations over time at about half the height of the coffee powder, i.e., L/2, for the

sample OM, other samples showed similar behaviours. In both Figures 4.5(a), 4.5(b),

the black line correspond to the liquid concentration cl, which is null at the initial
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Sample M0 [g] Mτ [g]

EFCA 5.7 5.6

FM 6.0 5.9

OM 5.9 5.7

OCA 5.9 5.8

CM 6.4 6.2

ECCA 6.4 6.2

Table 4.8: Mass conservation of the numerical scheme: comparison between the

initial mass M0 and the final mass Mτ .

time and it soon undergoes a steep increase due to the dissolution of substances.

Then, for increasing times, as the amount of coffee in the cup increases, the liquid

concentration into the filter basket decreases. The red and blue curves in Fig-

ure 4.5(a) are the solid concentration of fines cf at the centre of the particles and

at the boundary, respectively. The fine particle releases its soluble material very

quickly and it is rapidly depleted by dissolution and diffusion. The three lines, after

few initial seconds, closely follow each other, in particular, the corresponding values

show that the red line is slightly above the blue line, which is slightly above the

black one. Moreover, since the blue and red curves of the fines external layer and

inner core, respectively, almost coincide with the curve of liquid concentration, Gf is

small, meaning that after an initial peak the contribution of the fines decreases. We

note the constant trend of the fines concentration between 1 s and 5 s. Here Gf ≡ 0

since cf < cl, thus the dissolution of fines stops and their concentration remains

constant. Figure 4.5(b) shows the behaviour of the solid concentration of boulders

cb at the centre of the particle and at the boundary, respectively corresponding

to the cyan and violet curves. Here the external layer feels the dissolution much

more than the core, which initially remains quite unmodified. Besides, the violet

line always follows the black line from above, thus the external layer of boulders

resists the dissolution better than fines and its contribution lasts till the end of the
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extraction.
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Figure 4.5: Concentration curves during the simulated extraction of OM sample at

half height of the coffee powder: (a) concentrations of liquid (black), fine’s centre

(red), fine’s boundary (blue), (b) concentrations of liquid (black), boulder’s centre

(cyan), boulder’s boundary (violet).

Prediction of the extracted chemicals substances

The numerical solution of problem (2.80),(2.81) with I = 2 is obtained by the ap-

proximation scheme (4.10), (4.11) and iterative procedure described in Algorithm 1.

We implemented this procedure in a MATLAB program.

In the numerical simulations the physico-chemical parameters used in the model

are in good agreement with those used in [19], [55] and [23]. Table 4.9 shows the

configuration of these parameters for the in-silico extractions, whose value depends

on the substance.

Moreover, the liquid diffusivity is D = 1.0·10−8 m2/s, and the total solid fraction

is ϕ = 0.7. The discretisation parameters are the same used for the EY prediction.

In more details, we set N = 4,M = 5 in such a way that hz ≈ 10−3, hf ≈ 10−6, hb ≈
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substance
kr Df csat cs0 cdis

[m7/kg2] [m2/s] [kg/m3] [kg/m3] [kg/m3]

caffeine 9.6 · 10−10 9.0 · 10−10 212.4 16.24 0.5

CQAs 1.7 · 10−9 1.0 · 10−10 75.0 37.17 0.1

Table 4.9: Parameters configuration used in the numerical simulation, for each

traced chemical substance.

10−5; the time steps are Nt = 1000, thus ht ≈ 10−2; the parameter p in (4.4) is

0.1. Furthermore, the relaxation parameter ω = 0.8, if n = 1; ω = 0.1, otherwise.

Finally, in Algorithm (1), the chosen tolerances are tol1 = tol2 = 10−10 and the

maximum number of allowed iterations are maxit1 = maxit2 = 1000, but only in

the first time step is required such a large number of sub-iterations.

The geometrical and physical parameters due to the granulometry of the samples

are reported in Table 4.10. In particular, af , ab come from the granulometry analyses

shown in Figure 4.3, again the fine solid fraction ϕf is obtained considering the

volume percentage covered by all the particles smaller than 100 µm and the total

solid fraction ϕ.

af [µm] ab [µm] ϕf q [m/s]

14.63 227 0.18 q = 4.5 · 10−4

Table 4.10: Geometrical and physical parameters of the simulated extractions.

In Table 4.11 we show the results of the numerical simulations performed with the

discussed parameters setting.

The concentration of the substances obtained by numerical simulation are in

completely agreement with those coming from laboratory analyses. Figure 4.6



102 CHAPTER 4. NUMERICAL SIMULATIONS

caffeine [mg/mL] CQAs [mg/mL]

5.78 3.48

Table 4.11: Results of the numerical simulation for the prediction of the extracted

chemicals substances.

shows the comparison between the numerical and experimental results, where the

chemicals are reported along the x-axis. In particular, the black vertical bars identify

the range spotted by the chemical analyses. The lighter-colour circular markers

represent the expected value, calculated as the average of the experimental data,

while the darker-colour square markers are the results of the numerical simulations.

In more details, the simulated value for the caffeine is very close to the corresponding

caffeine CQAs
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Figure 4.6: Comparison between simulated and extracted caffeine and CQAs, in

the case of interaction among species.

expected value, while the simulated value for the CQAs is completely superposed

on the corresponding expected value.

Finally, in Table 4.12 we report the simulated caffeine and CQAs values under

varying the discretisation parameters N and M , in the case of interaction among

species. Moreover, we added the absolute error between the simulated and extracted
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values in brackets, to give some numerical evidence of the accuracy of the proposed

solving strategy. Also, in Table 4.12 we report the execution time of Algorithm 1.

The results have been obtained on a PC equipped with an Intel(R) Core(TM)

i7-10510U CPU @ 1.80GHz 2.30GHz, operative system Windows 10.

N , M
caffeine (E) CQAs (E) execution time

[mg/mL] [mg/mL] [s]

3, 4 5.64 (0.21) 3.49 (0.03) 4.2

4, 5 5.78 (0.07) 3.48 (0.02) 5.3

5, 6 5.85 (0.00) 3.45 (0.01) 6.3

Table 4.12: Comparison of the numerical simulations under varying discretisation

parameters.

4.1.2 An RBF-based approximation

In this section, we describe an RBF-based numerical approximation of prob-

lem (2.80)-(2.81). This approximation scheme is based on the Crank-Nicolson

method, as in the previous approach, but now the spatial derivatives are approx-

imated via RBFs. Then, with the results of the same experimental extraction

campaign presented in Extraction Procedure 1 we describe the corresponding nu-

merical simulations. In particular, since such simulations have the same operative

parameters of the real extractions, we make a comparison between them in terms of

the EY. Such numerical results together with the approximation scheme discussed

in this section, has been presented for the first time in [84]. Before proceeding,

we would like to point out that, since the purpose of numerical simulations is the

prediction of EY, i.e., I = 1. For the sake of simplicity, in presenting the numerical

scheme we omit all indexes species-related.
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Numerical approximation

Let Z = {zj}j=0,1,...,N ⊆ [0, L] be a set of distinct discretisation nodes along

the vertical direction, such that z0 = 0 and zN = L. Let z−1 be a node in a left

neighbourhood of 0 and zN+1 be a node in a right neighbourhood of L, we choose

Z̄ = Z ∪ {z−1, zN+1} as the set of the approximation nodes. In Figure 4.7, we show

the points of Z in blue, and the points of Z̄ \ Z in red.

Similarly, for s = b, f , let Rs = {rsk}k=0,1,...,Ms ⊆ [0, as] be a set of distinct

discretisation nodes along the radial direction in fines and boulders, respectively,

we use R̄s = Rs ∪ {rs−1, r
s
Ms+1} as the set of approximation nodes in the radial

direction, where rs−1 is a point in a left neighbourhood of 0 and rsMs+1 in a right

neighbourhood of as.

0 L

z−1 z0 z1z2 z3 . . . zN−2 zN−1 zN zN+1

Figure 4.7: Graphical representation of points in Z̄.

Let Z and Rs, s = f, b, be the polynomially augmented RBF (PA-RBF) inter-

polation matrices associated with the nodes Z̄ and R̄s, respectively. We note that

these matrices are such that equations (3.40) hold and d = 1. Thus, for a fixed

time t, if we collect in the vector cccl(t) the values of the liquid concentration cl(z, t)

calculated at the points of Z̄, that is cccl(t) =
(
cl(zj, t)

)
j=−1,0,...,N+1

, the analogue of

relation (3.43) for the liquid concentration cl, is:

Lĉl(z, t) =
(
bbb(z)LZ−1

)
−1:N+1

cccl(t), (4.12)

where ĉl(z, t) denotes the approximation of cl(z, t) with formula (3.38). Similarly,

for fixed t and z, if we collect the values of the solid concentrations cs(r, z, t),

s = f, b, calculated at the points of R̄s in the vectors cccs(z, t), that is cccs(z, t) =

(cs(rsk, z, t))k=−1,0,...,Ms+1, the analogue of relation (3.43) for the solid concentrations

cs are:

Lĉs(r, z, t) =
(
bbb(r)L (Rs)−1

)
−1:Ms+1

cccs(z, t), (4.13)
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where ĉs(z, t) denotes the approximation of cs(z, t) with formula (3.38).

We denote with L0 the identity operator and with L1 and L2 the first and second

derivative operators respect to z, respectively. For each of these operators, we can

consider relation (4.12) at each point of Z. For instance, for the first derivative,

this leads to: (
L1ĉ

l(zj, t)
)
j=0,1,...,N

=
(
ZzZ

−1
)
:,−1:N+1

cccl(t) ≡ Zzcccl(t), (4.14)

where Zz ≡
(
bbb(zj)

L1
)
j=0,1,...,N

has N + 1 rows, moreover, Zz = (ZzZ
−1):,−1:N+1 is

called differentiation matrix of first order. Similarly, for L0 and L2 with matrices

Z0 and Zzz, respectively.

Similarly, for fixed zj we can consider relation (4.13) in each point of Rs. For

the second order differential operator respect to r, that with an abuse of notation

we denote with L2, this leads to:

(L2ĉ
s(rsk, zj, t))k=0,1,...,Ms =

(
Rs

rr (R
s)−1)

:,−1:Ms+1
cccs(zj, t) ≡ Rs,rrcccs(zj, t), (4.15)

where Rs
rr ≡

(
bbb(rsk)

L2
)
k=0,1,...,Ms , s = f, b, defines the differentiation matrices of

second order in the radial direction Rs,rr. Similarly, for L0 and L1 with matrices

Rs
0 and Rs

r, respectively, for s = f, b.

In more detail, we have the following matrices:

Iz = (Z0Z
−1) :,−1:N+1,

Zz = (ZzZ
−1) :,−1:N+1,

Zzz = (ZzzZ
−1) :,−1:N+1,

Is =
(
Rs

0 (R
s)−1)

:,−1:Ms+1, s = f, b,

Rs,r =
(
Rs

r (R
s)−1)

:,−1:Ms+1, s = f, b,

Rs,rr =
(
Rs

rr (R
s)−1)

:,−1:Ms+1, s = f, b.

We define some useful notations for the following approximation scheme. A

matrix endowed with the subscript j denotes the single j-th row of the corresponding

original matrix (i.e., the matrix without the subscript j). This means that, regardless

of the vertical or radial coordinate, the subscript 0 denotes the first row of the matrix

that corresponds to the point z0 = 0 or rs0 = 0, s = f, b, respectively. Similarly,
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the subscripts N and M s, s = f, b denote the row of the matrix corresponding to

the boundary points zN = L and rsMs = as, s = f, b, respectively. Moreover, in the

following solid systems, we use this notation: a matrix equipped with the subscript

I is the sub-matrix that consists of all the rows of the corresponding original matrix

except the ones corresponding to the left boundary point, z0 = 0 or rs0 = 0, s = f, b,

that is for instance: Rs,r
I = (Rs,r)1:Ms,:.

With the aforementioned notations, we can express the liquid phase system as:

(1− ϕ) Iz
∂cccl(t)

∂t
= DZzzcccl(t)− qZzcccl(t) + bfGGGf (t) + bbGGGb(t),

−DZz
0ccc

l(t) + qIz0ccc
l(t) = 0,

−DZz
Nccc

l(t) = 0,

cccl(0) = 0,

(4.16)

where for each vertical level zj, j = 0, 1, . . . , N, we collect the reactive terms into

vectors GGGs(t), s = f, b, whose components are given by:

Gs(zj, t) = krI
s
Mscccs(zj, t)max

(
IsMscccs(zj, t)− Izj ccc

l(t), 0
)
max

(
csat − Izj ccc

l(t), 0
)
.

For each vertical level zj, j = 0, 1, . . . , N, there are two problems of kind (2.81)

for the solution of the solid phase, coupled to the liquid phase through the non-linear

source terms. For s = f, b, they are given by:

IsI
∂cccs(zj, t)

∂t
= Df

(
2

r
Rs,r

I ccc
s(zj, t) +Rs,rr

I cccs(zj, t)

)
,

Is0
∂cccs

∂t
(zj, t) = 3DfRs,rr

0 cccs(zj, t),

−DfRs,r
0 ccc

s(zj, t) = 0,

−DfRs,r
Mscccs(zj, t) = Gs(zj, t),

cccs(zj, 0) = c0.

(4.17)

We note that at r = 0, the discretisation (4.6) based on De L’Hôpital rule has

been used.

Now we can apply the time discretisation to problems (4.16), (4.17) similarly

as we did in the finite differences approximation. In more details, we use the

Crank-Nicolson method for both linear and non-linear parts where the boundary
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conditions are implemented at the new time level. Note that when we indicate a

discrete time level, we use the time index as a superscript.

We start with the time discretisation of the PDE for the liquid phase. Let Nt

be a positive integer and ht = τ/Nt; for n = 0, 1, . . . , Nt − 1 we have:

(1− ϕ) Iz(cccl,n+1 − cccl,n) =

ht
2

(
DZzzcccl,n+1 − qZzcccl,n+1 + bfGGGf,n+1 + bbGGGb,n+1 +DZzzcccl,n − qZzcccl,n + bfGGGf,n + bbGGGb,n

)
,

where cccl,n ≈ cccl(tn), n = 0, 1, . . . , Nt. Thus, we get:

[
(1− ϕ) Iz − ht

2
(DZzz − qZz)

]
cccl,n+1 =

[
(1− ϕ) Iz +

ht
2
(DZzz − qZz)

]
cccl,n

+
ht
2

(
bfGGGf,n+1 + bbGGGb,n+1

)
+

+
ht
2

(
bfGGGf,n + bbGGGb,n

)
,

−DZz
0ccc

l,n+1 + qIz0ccc
l,n+1 = 0,

−DZz
Nccc

l,n+1 = 0,

cccl,0 = 0.

(4.18)

We do the same for the solid phases; so for s = f, b, we get

IsI
(
cccs,n+1(zj)− cccs,n(zj)

)
=

=
ht
2
Df

(
2

r
Rs, r

I cccs,n+1(zj) +Rs, rr
I cccs,n+1(zj) +

2

r
Rs, r

I cccs,n(zj) +Rs, rr
I cccs,n(zj)

)
,

where cccs,n(zj) ≈ cccs(zj, tn), j = 0, . . . , N , n = 0, 1, . . . , Nt. Thus, we get:

[
IsI −

Dfht
2

(
2

r
Rs, r

I +Rs, rr
I

)]
cccs,n+1(zj) =

[
IsI +

Dfht
2

(
2

r
Rs, r

I +Rs, rr
I

)]
cccs,n(zj),[

Is0 −
3Dfht

2
Rs, rr

0

]
cccs,n+1(zj) =

[
Is0 +

3Dfht
2

Rs, rr
0

]
cccs,n(zj),

−DfRs,r
0 ccc

s,n+1(zj) = 0,

−DfRs,r
Mscccs,n+1(zj) = Gs,n+1(zj),

cccs,0(zj) = c0,

(4.19)
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In systems (4.19), the concentrations cccs,n(zj), s = f, b depend on zj, therefore

such systems must be solved for each vertical level zj . Moreover, systems (4.18), (4.19)

are coupled through the reactive terms Gs, whose approximations Gs,n(zj), s = f, b,

are obtained from

Gs,n(zj) = krI
s
Mscccs,n(zj)fp

(
IsMscccs,n(zj)− Izj ccc

l,n
)
fp
(
csat − Izj ccc

l,n
)
,

where, for p > 0 sufficiently small, fp is the continuous and differentiable approxi-

mation of the function max(x, 0) defined in (4.4).

In matrix form, the complete system can be written as

Aσn+1 = Cσn +φn+1, n = 0, . . . , Nt − 1, (4.20)

Bλn+1 = Eλn +ψn+1 +ψn, n = 0, . . . , Nt − 1, (4.21)

where

A,C ∈ R(N+1)(Mf+Mb+6)×(N+1)(Mf+Mb+6),

B,E ∈ R(N+3)×(N+3),

σn ∈ R(N+1)(Mf+Mb+6),λn ∈ RN+3, n = 0, . . . , Nt − 1,

φn ∈ R(N+1)(Mf+Mb+6),ψn ∈ RN+3, n = 0, . . . , Nt − 1.

The vectors σn and λn are defined as:

σn =

cf,n

cb,n

 ,

λn =
(
cl,n−1, c

l,n
0 , . . . , cl,nN+1

)T
,

(4.22)

with

cf,n =
(
cf,n−1 (z0), c

f,n
0 (z0), . . . , c

f,n
Mf+1

(z0), c
f,n
−1 (z1), c

f,n
0 (z1), . . . , c

f,n
Mf+1

(z1), . . . ,

cf,n−1 (zN), c
f,n
0 (zN), . . . , c

f,n
Mf+1

(zN),
)T

,

and analogously for the vector cb,n. In particular σn and λn are unknown for n ≥ 1,

instead λ0 is the null vector and, for s = f, b, cs,0 are the vectors having all entries

equal to c0.
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The vectors with the non-linear terms are defined as

φn =

Ff
n

Fb
n

 ,

ψn =

(
0,
ht
2
bfGf,n(z0) +

ht
2
bbGb,n(z0), . . . ,

ht
2
bfGf,n(zN) +

ht
2
bbGb,n(zN), 0

)T

,

with

Fs
n = (0, . . . , 0, Gs,n(z0), 0, . . . , 0, . . . , 0, G

s,n(zN), 0)
T ,

s = f, b. Thus, the unique non-zero elements of Fs
n are in the positions given by

M s + 2 + k(M s + 3), k = 0, . . . , N . For the solution of system (4.20), (4.21) we

apply the nested fixed-point iteration procedure resumed in Algorithm 1.

More in detail, for each time step n = 0, . . . , Nt − 1, we consider the following

nested fixed-point iteration:

Aσµ,ν
n+1 = Cσn +φ

µ,ν−1
n+1 , (4.23)

Bλµ,ν
n+1 = Eλn +ψ

µ,ν−1
n+1 +ψn, (4.24)

where the index ν stands for the inner fixed-point iteration and µ for the outer

fixed-point iteration, both relative to the time step n+1. We note that, discretising

the model with such a scheme, leads to a slightly different solid system to solve

than that resulting from the finite difference approximation, since the vector φn

is nedeed only at time n + 1. Finally, we note that the convergence of the inner

steps has been improved by relaxed iterations with proper parameters ωl and ωs,

s = f, b, which also helps the positivity of the solution at the initial time steps.

Experimental measurements

The experimental campaign of the espresso extraction samples is the same

described in Extraction Procedure 1 where we described the equipment, the pro-

cedures and the physical parameters of the extraction campaign, as well as the

results obtained in terms of EY. Here, for the sake of brevity, we have considered a

reduced expeimental campaign with respect to the previous section
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Numerical results

The numerical solution of problem (2.80),(2.81) is obtained by the approximation

scheme (4.23), (4.24) and the iterative procedure described in Algorithm 1. This

method has been implemented in MATLAB together with the EY computation

formula (2.90) to compare the numerical and experimental results described in

Extraction Procedure 1, where only samples of Modœtia coffee powder have been

considered.

In the numerical simulations, the physico-chemical parameters are the same used

for the EY prediction in Section 4.1.1, and they are in good agreement with those

used in [19], [22]: the reaction rate kr = 6.0 · 10−9 m7/kg2 [55], the solid diffusivity

Df = 6.25 · 10−10 m2/s [19], [55], the liquid diffusivity D = 1.0 · 10−8 m2/s [19], [55],

the concentration of saturation csat = 212.4 kg/m3 [19], [55], the initial solid

concentration c0 = 200 kg/m3 [22], [55], the total solid fraction ϕ = 0.8272 [19], [55].

Regarding the parameters of the discretisation scheme, the points in Z are

distributed as half of a Chebyshev nodes set in such a way that we have more points

near z = 0 . Instead, the point in Rs are uniformly distributed. Moreover, as RBFs

we choose the polyharmonic splines of exponent 3. That is:

Φj(z) = φ (||z − zj||) = |z − zj|3, zj ∈ Z̄,

Φj(r
s) = φ

(
||rs − rsj ||

)
= |rs − rsj |3, rsj ∈ R̄s, s = f, b.

The maximum degree of the polynomial basis is m = 3. Moreover, we choose

N = 100, M f = 4, andM b = 40; the numbers of time steps are Nt = 800, 1000, 1500,

for coarse, optimal and fine granulometry, respectively. Thus ht ≈ 10−2; the

parameter p in (4.4) is 0.1. The relaxation parameters ωl and ωs, s = f, b depend

on the time step. In particular, ωl = 0.9 and ωs = 0.75, if n ≤ 15; ωl = ωs = 0.1,

s = f, b, otherwise. Finally, in Algorithm 1 the tolerances are tol1 = 10−7 and

tol2 = 10−6 and the maximum allowed iterations are maxit1 = maxit2 = 500.

Table 4.13 reports the parameters depending on the granulometry. In particular,

af and ab come from the granulometry analyses of Figure 4.2, ϕf is calculated

considering the volume percentage covered by all the fine particles with respect

to the total solid fraction ϕ, the Darcy’s flux q is inversely proportional to the
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Sample af [µm] ab [µm] ϕf q [10−4m/s] τ [s]

Fine 15.5 200.0 0.24 3 40

Optimal 16.6 227.0 0.22 4.5 26

Coarse 15.6 227.0 0.20 5.3 20

Table 4.13: Geometrical and physical parameters of the simulated extractions.

granulometry. In fact, the finer the granulometry the higher the resistance of the

porous medium, thus the smaller the value of q. Finally, the percolation time τ is

obtained as the average of the real extraction times reported in Table 4.3.

In Table 4.14, we show the results of the numerical simulations performed

with the previously discussed parameters setting. The EY values are obtained by

using Eq. (2.90), where the integral has been approximated by the trapezoidal

rule. Also the corresponding EY ranges from the laboratory experiments have been

reported. For all the samples, there is a good agreement between numerical and

Sample EY [%] Experimental EY range [%]

Fine 22.53 22.07− 22.58

Optimal 20.44 20.43− 20.87

Coarse 19.30 19.09− 20.11

Table 4.14: Numerical results of the EY with the corresponding EY ranges from

the laboratory experiments.

experimental data. In fact, the simulated values fall in the range identified by

the experimental data. Figure 4.8 shows the comparison between the numerical

and experimental results. In more detail, the granulometry is reported along the

x-axis; the black vertical bars represent the EY ranges spotted by the laboratory

experiments, instead, the coloured square markers are the values of the simulated

EY.

In addition, Figure 4.9 shows the qualitative behaviour of the simulated liquid
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Figure 4.8: Comparison between simulated and real EY values.

concentration over time, for the optimal granulometry sample; similar behaviours

are observed for the other granulometries. From Fig. 4.9 we can see that the liquid

concentration is null at the initial time and it immediately increases due to the disso-

lution of substances. Then, for later times, as the amount of the beverage in the cup

increases, the liquid concentration in the coffee pod decreases. Figures 4.10, 4.11(a)

Figure 4.9: Liquid concentration, cl during the simulated extraction of the sample

with optimal granulometry.

show the qualitative behaviour of the simulated solid concentration of boulders and

fines respectively, over time at about half the height of the coffee pod, i.e. L/2,
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for the optimal granulometry sample. From Fig. 4.10 we can see that in boulder

particles the external layer is more affected by dissolution than the core, which

initially remains quite unmodified. From Fig 4.11(a) we can see that in the first

Figure 4.10: Solid concentration of boulders cb at half the height of the coffee

pod, i.e. z = L/2, during the simulated extraction of the sample with optimal

granulometry.

moments of the extraction the concentration of fine particles immediately decreases

due to the dissolution, then for about the next five seconds, the concentration

remains constant and finally decreases again, releasing the fines soluble material

very quickly. This constant trend is very interesting and it can be easily analysed

with Figure 4.11(b), where the liquid and fine solid concentration curves are shown

in blue and orange, respectively, over time at about half the height of the coffee

powder, i.e., L/2. Here we plot the solid concentration of fines at the center of the

particle, however, analogous behaviour has been observed also at the boundary.

When cf < cl, then Gf=0, this means that the dissolution of fines stops and their

concentration remains constant.
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(a) (b)

Figure 4.11: (a) Solid concentration of fines cf , and (b) Liquid (in blue) and solid

concentration of fines at the center of the particle (in orange) at half the height of

the coffee pod, i.e. z = L/2, during the simulated extraction of the sample with

optimal granulometry.

4.2 The 3D model

In this section we describe a numerical experiment for the solution of the model

discussed in Section 2.3.5. Such a model predicts the amount of the chemicals

substances of interest at the end of the extraction. The numerical experiment we

propose consists of two steps. The first step is making the numerical simulations

corresponding with the real EC obtained with the Extraction Procedure 3, described

below, and used for the chemical analysis. This means that both the real and

simulated extraction processes are conducted under the same extraction conditions.

The second step is the comparison of the numerical results with the laboratory

results. Such kind of numerical experiment is used for the calibration and then

validation of the model, over different sets of extractions. In Section 4.2.1 the model

used in the numerical experiment is further detailed with the nomenclature of the

chemical species of interest, and the numerical scheme for the model approximation

is outlined. Then, the results of the experimental extraction campaign are presented

in Section 4.2.2. In addition, the settings of the numerical simulations are described
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in Section 4.2.3. Finally, the results of the numerical experiment are presented and

discussed in Section 4.2.4; the results shown in this section has been presented for

the first time in [24].

4.2.1 Numerical approximation

The percolation model takes into account all the species analysed in the chemical

analyses; i.e., caffeine (CF), chlorogenic acids (CQAs), trigonelline (TR), citric

acid (CA), acetic acid (AA), tartaric acid (TA), ferulic acid (FE), lipids (LP). For

greater clarity, instead of using a numeric index for each species, we prefer the

use of an alphabetic index corresponding with the acronym of the species. Note

that CQAs accounts for the total amount of different derivatives of chlorogenic

acids. The model described in Section 2.3.5 can easily consider fines; however,

from numerical experiments not reported here, we have that their erosion and

transport do not significantly interfere with the other species. Moreover, chemical

analyses for fines are not available, given their extreme complexity. Thus, we

choose to discard fines, taking in mind the possibility to add them in a future

analysis without compromising the validity of the current work. System (2.75) has

Nl-s = 8 equations for the liquid/solid and solid species. In fact, we recall that

each species must be considered both in the liquid and solid phase, because the

liquid component Ck, k = CF, CQA, TR, CA, AA, TA, FA, LP, accounts for the

amount of that species which is affected by the diffusion and transport phenomena,

while the solid component Cs
k, k = CF, CQA, TR, CA, AA, TA, FA, LP accounts

for the amount of the same species bound to the porous matrix.

The numerical approximation of model (2.75) is based on the Galerkin method

presented in Section 3.2. In the following, we briefly present such a scheme

considering a representative PDE for the flow and transport processes: the advection-

dispersion equation for the scalar state variable ϕ endowed with the boundary and
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initial conditions of interest, that is

∂ϕ

∂t
+ qqq · ∇ϕ−∇ · (DDD · ∇ϕ) + ϕ∇ · qqq −Q = 0, in Ω, t ∈ [0, τ ],

ϕ = ϕD, on ΓD, t ∈ [0, τ ],

∇ϕ · n = qN on ΓN , t ∈ [0, τ ],

− (D · ∇ϕ) · n = −Φmin{ϕc − ϕ, 0}, on ΓC , t ∈ [0, τ ],

ϕ = ϕ0, on Ω, t = 0,

(4.25)

where Ω is the spatial domain, Q is a source/sink term, ϕD is the known value of ϕ

on the Dirichlet boundary ΓD, qN is the flux at the Neumann boundary ΓN , Φ, ϕc

are the transfer coefficient and a reference value for ϕ, respectively, prescribed on

the Cauchy boundary ΓC , finally, ϕ0 is the value of the initial condition for ϕ. We

suppose that the spatial domain Ω is discretised through an unstructured mesh

made of Ne triangular prisms Ωe, e = 1, . . . , Ne. The solution ϕ is approximated by

ϕ̂:

ϕ(xxx, t) ≈ ϕ̂(xxx, t) =

ND∑
i=1

Bi(xxx)ϕ
D
i (t) +

N∑
i=1

Bi(xxx)ϕi(t), (4.26)

where Bi, i = 1, . . . , N, denote the basis functions that vanish on the Dirichlet

boundary, BD
i , i = 1, . . . , ND denote the basis functions not vanishing on the

Dirichlet boundary, and ϕi, i = 1, . . . , N, denote the unknown coefficients. The

number of nodes is N ; it includes the nodes on boundaries except for the Dirichlet

one where the function ϕ is known. In fact, ϕD
i (t) = ϕD(xxxi, t) for nodes xxxi in the

Dirichlet boundary, where it is supposed that BD
i (xxxj) = Bi(xxxj) = δi,j. We suppose

that the basis functions in (4.26) are piecewise linear functions, continuous in Ω

and continously differentiable in each prism Ωe. The problem is reformulated in its

weak form. So, we multiply Eq. (4.25) with the base element Bi, i = 1, . . . , N and,

by using the integration by parts, we obtain
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Ne∑
e=1

∫
Ωe

Bi
∂

∂t

(∑
j

Bjϕj

)
dΩe +

Ne∑
e=1

∫
Ωe

Biqqq · ∇

(∑
j

Bjϕj

)
dΩe+

Ne∑
e=1

∫
Ωe

∇Bi ·

(
DDD · ∇

(∑
j

Bjϕj

))
dΩe +

Ne∑
e=1

∫
Ωe

Bi

(
∇ · qqq

(∑
j

Bjϕj

)
−Q

)
dΩe+

Ne∑
e=1

∫
Γe
N

BiqNdΓ
e −

Ne∑
e=1

∫
Γe
C

BiΦ

(
ϕC −

(∑
j

Bjϕj

))
dΓe = 0, 1 ≤ i, j ≤ N,

(4.27)

where Γe
N ,Γ

e
C are the Neumann and Cauchy boundaries within the prism Ωe,

respectively. Note that the boundary with Dirichlet condition does not appear since

there the basis functions Bi, i = 1, . . . , N , vanish.

We chose only one set of basis functions Bi ∈ C0, since in (4.25) the only

unknown function is ϕ. However, we need to calculate the Darcy velocity and the

mass and heat flux in the solving procedure. If we consider for instance the flux

jjj = −DDD · ∇ϕ, the discrete flux is obtained as

ĵjj = −
N∑
i=1

DDD · ∇Bi(xxx)ϕj(t),

where the first derivatives in ∇Bi(xxx) are no continuous since the shape function Bi

is continuous in Ω and continuously differentiable only in each element Ωe. Thus,

no unique fluxes result at nodal points; this creates inconveniences in the simulation

results. To avoid this problems we reformulate Eq. (4.25) and we choose both ϕ and

jjj are unknowns. Usually, the flux jjj is interpolated by piecewise quadratic shape

functions and ϕ by piecewise linear shape functions. This ensures the stability, since

the Babuška-Brezzi condition is satisfied [85], [86]. Unfortunately, this procedure

increases the computational effort, and it is usually avoided. However, the software

used for the simulations also implements some smoothing strategies for the fluxes

to avoid the second order interpolation and to reduce the computational effort [33].

The Galerkin approximation of system (2.75) leads to a semi-discrete system,

which is fully approximated by a time marching scheme. In particular, a 2nd-order

accurate predictor-corrector (Adams-Bashforth/Crank-Nicolson) method is used.
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For each time step, the final algebraic linear system has a sparse coefficient matrix

and it is solved by using a standard iterative method.

4.2.2 Experimental measurements

Extraction Procedure 3. Two types of coffee were selected for this study, i.e.,

Arabica and Robusta. Arabica coffee was a blend from Perfero caffè (Fermo, Italy)

composed of 50% of natural coffee, Geisha from Peru, variety typica, caturra and

50% of natural coffee from Guatemala (Batch 12-221, Perfero caffè), with a medium

roasting degree for EC. Robusta coffee was a blend from Perfero caffè constituted

by 50% of Uganda coffee and 50% of Indonesia (Flores island) coffee (Batch 10-221,

Perfero caffè), with a medium roasting degree for EC. For the present research,

about 4 kg (kilogram) of coffee beans Arabica and 4 kg of Robusta have been used.

Coffee beans were ground by Mythos 1 grinder (Simonelli Group S.p.A., Belforte

del Chienti, Italy) [87] and the coffee powder was tamped by the automatic tamping

machine PuqPress M2 [88]. The preparation of EC samples was performed by a

professional barista using the VA388 Black Eagle espresso coffee machine from

Victoria Arduino (Simonelli Group S.p.A.) [89]. The EC extraction was carried

out by keeping constant the amount of coffee (20 ± 0.1 g) added in the VST©

Competition filter basket and the amount of EC obtained in the cup (40 ± 2 g).

The tamping force (20 kgF – kilogram-force) was kept constant for each sample as

well. Then, the experiment was focused on varying three extraction parameters, i.e.,

granulometry (O, optimal; C, coarse; F, fine), temperature of water (88, 93.4 and

98 ◦C) and pressure of water (6, 9 and 12 bar), resulting in a grid of 27 different EC

samples for Arabica and 27 for Robusta. The time of extraction was fixed at 25 ± 1

s for EC samples considered optimal (optimal granulometry, water temperature of

93.4 ◦C and water pressure of 9 bar) and was different for EC samples prepared at

different conditions than those optimal, since the brew ratio between mass of coffee

pod and mass of EC was kept constant, 1:2. Moreover, other six EC samples were

prepared by setting different conditions than those occurring in the previous grid.

Hence, a total of 33 EC samples were prepared for Arabica and 33 for Robusta
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coffee. Table 4.15 summarises the extraction conditions for each EC sample. All

the extractions were performed in duplicate.

The EC samples were analysed for the contents of the aformentioned compound,

i.e., total lipids, bioactive compounds such as alkaloids (caffeine and trigonelline),

chlorogenic acids (3-caffeoylquinic acid, 3-CQA, 5-caffeoylquinic acid, 5-CQA and

3,5-dicaffeoylquinic acid, 3,5-diCQA), phenolic acids (ferulic acid) and organic acids

(acetic, citric and tartaric acid). These classes of compounds affect the coffee taste

and flavour hence they participate at the final cup quality. The analysis of total

lipids and contents of these different classes of compounds were also performed in

roasted and ground (R&G) coffee for both Arabica and Robusta. All the performed

analyses were carried out almost in duplicate since the acceptable Relative Standard

Deviation (% RSD) was fixed to 20%. The materials and methods used in the

laboratory analyses are illustrated in [24], Here, only the obtained results are

reported. In more details, Table 4.16 shows the content of total lipids in the analysed

espresso samples. The averages of total lipids content in Arabica and Robusta

samples are 0.466 g/100 mL and 0.080/100 mL, respectively, which correspond to 93

and 20 mg per cup (20 mL), respectively. These results are in agreement with those

reported in the literature (45.0-146.5 mg per cup in Arabica and 13.6-119.2 mg per

cup in Robusta) [13]. The lipid content increased with finer particle sizes (0.448 and

0.515 g/100 mL for optimal and fine granulometry in Arabica and 0.068 and 0.094

g/100 mL for optimal and fine granulometry in Robusta) while it is hard to describe

how diverse temperatures and pressures of extraction affected the lipid contents in

EC. The total content of lipids was also evaluated in R&G coffee. Arabica sample

contains 13.87 g/100g (3.4% RSD) while Robusta coffee 9.32 g/100g (2.3% RSD).

Similar levels are presented in literature such as about 15 g/100g in Arabica and

10 g/100g in Robusta [13]. In addition, the analysis of 9 bioactive compounds such

as alkaloids (caffeine and trigonelline), chlorogenic acids (3,5-dicaffeoylquinic acid

– 3,5-diCQA, 3-caffeoylquinic acid – 3-CQA and 5-caffeoylquinic acid – 5-CQA),

phenolic acids (ferulic acid) and organic acids (acetic, citric and tartaric acid) has

been performed by HPLC-DAD instrument in both EC and R&G coffee. The
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content of bioactive compounds in the samples prepared by varying three variables

is presented in Tables 4.17, 4.18. The average contents of caffeine, chlorogenic acids,

ferulic acid, organic acids and trigonelline are 5.18, 8.35, 0.28, 24.77 and 3.39 g/L,

respectively, which correspond to 103.5, 166.9, 5.7, 495.3 and 67.8 mg per cup of

Arabica; while in Robusta samples the average contents of the same compounds are

7.48, 6.09, 0.40, 32.33 and 2.74 g/L which coincide to 149.6, 121.8, 8.0, 646.7 and

54.8 mg per cup. Similar levels are reported in literature [12], [90]. For instance,

in [12], in espresso coffees prepared by changing perforated disk height, filter basket

design and amount of R&G coffee, caffeine and 5-CQA levels go from 3.2 to 5.7

g/L and from 1.8 to 5.0 g/L for Arabica, while from 4.8 to 12.1 g/L and 2.1-6.1

g/L for Robusta. In [90], which analysed 20 commercial coffee samples, the caffeine

amount goes from 116.9 to 199.7 mg per cup, while trigonelline from 28.2 to 65.1

mg per cup. On the other hand, higher levels of organic acids are found in the

current work with respect to [12], [91] but these variations can be attributed to

the complexity of the coffee supply chain. In fact, several factors related to species

and plant cultivation, harvesting and processing methods, roasting, grinding and

preparation techniques play an important role in coffee quality and its content of

volatile and non-volatile compounds [14], [92].

As for total lipids, the content of bioactive compounds increases when finer

particles are used. For instance, the averages of caffeine content obtained in all

ECs prepared with coarse, optimal and fine granulometry are 4.82, 5.24 and 5.58

g/L in Arabica while 6.86, 7.63 and 7.98 g/L in Robusta. The same behaviour has

been observed for all analytes and this inverse increment of compounds levels, with

respect to particle sizes, were found also in other scientific papers [15], [16], [93].

Instead, the contribution of water temperature and pressure on the extraction of

bioactive compounds is extremely complex and it is not possible to describe it as

a linear increment or decrement. However, some small variations in compounds

contents have been found. For instance, preparing espresso at 9 bar with optimal

particle sizes, higher contents of caffeine, chlorogenic acids and organic acids are

obtained at 88 and 93.4 ◦C.

The contents of bioactive compounds were evaluated in R&G coffee as well. In
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Arabica, the following contents are obtained: 12.54 g/kg (7.2%, RSD) of caffeine,

22.13 g/kg (8.6%) of chlorogenic acids, 59.54 g/kg (11.7%) of organic acids, 0.79

g/kg (15.7%) of ferulic acid and 7.97 g/kg (0.2%) of trigonelline; while in Robusta:

18.58 g/kg (9.1%) of caffeine, 16.08 g/kg (8.9%) of chlorogenic acids, 74.79 g/kg

(13.1%) of organic acids, 1.06 g/kg (1.5%) of ferulic acid and 5.96 g/kg (6.7%) of

trigonelline.
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Arabica sample T [◦C] p [bar] r Robusta sample T [◦C] p [bar] r

A1 93.4 9 O R1 93.4 9 O
A2 93.4 6 O R2 93.4 12 O
A3 93.4 12 O R3 93.4 6 O
A4 88 9 O R4 88 9 O
A5 88 6 O R5 88 12 O
A6 88 12 O R6 88 6 O
A7 98 12 O R7 98 9 O
A8 98 9 O R8 98 12 O
A9 98 6 O R9 98 6 O
A10 96 9 O R10 96 9 O
A11 91 8 O R11 91 8 O
A12 93.4 9 C R12 93.4 9 C
A13 93.4 6 C R13 93.4 12 C
A14 93.4 12 C R14 93.4 6 C
A15 98 9 C R15 88 9 C
A15 98 9 C R15 88 9 C
A15 98 9 C R15 88 9 C
A16 98 12 C R16 88 12 C
A17 98 6 C R17 88 6 C
A18 88 9 C R18 98 9 C
A19 88 12 C R19 98 12 C
A20 88 6 C R20 98 6 C
A21 89 10 C R21 97 7 C
A22 97 7 C R22 89 10 C
A23 93.4 9 F R23 93.4 9 F
A24 93.4 6 F R24 93.4 12 F
A25 93.4 12 F R25 93.4 6 F
A26 98 12 F R26 88 9 F
A27 98 6 F R27 88 12 F
A28 98 9 F R28 88 6 F
A29 88 9 F R29 98 6 F
A30 88 12 F R30 98 9 F
A31 88 6 F R31 98 12 F
A32 90 8 F R32 95 11 F
A33 95 11 F R33 90 8 F

Table 4.15: Extraction conditions of each EC sample. r denotes the type of

granulometry: optimal (O), coarse (C), fine (F).
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Arabica Total lipids RSD Robusta Total lipids RSD

sample [g/100 mL] [%] sample [g/100 mL] [%]

A1 0.45 6.6 R1 0.07 16.8
A2 0.53 14.8 R2 0.11 17.1
A3 0.55 16.9 R3 0.14 15.7
A4 0.59 19.2 R4 0.06 13.1
A5 0.38 17.4 R5 0.11 12.0
A6 0.47 15.8 R6 0.08 8.8
A7 0.39 16.0 R7 0.10 6.4
A8 0.41 12.3 R8 0.10 9.6
A9 0.38 18.1 R9 0.06 4.2
A10 0.30 14.5 R10 0.03 19.0
A11 0.29 19.2 R11 0.07 6.5
A12 0.33 11.5 R12 0.11 20.0
A13 0.34 9.0 R13 0.10 8.5
A14 0.44 12.1 R14 0.12 19.9
A15 0.43 17.9 R15 0.07 5.2
A16 0.52 8.3 R16 0.11 18.7
A17 0.55 12.9 R17 0.08 16.9
A18 0.29 3.5 R18 0.09 19.0
A19 0.65 1.1 R19 0.08 1.8
A20 0.43 18.2 R20 0.04 14.2
A21 0.36 0.0 R21 0.06 0.6
A22 0.35 12.1 R22 0.09 10.4
A23 0.52 12.2 R23 0.09 13.1
A24 0.45 8.7 R24 0.07 15.3
A25 0.45 2.1 R25 0.07 18.0
A26 0.41 12.8 R26 0.02 16.2
A27 0.68 4.6 R27 0.09 12.1
A28 0.69 18.2 R28 0.07 17.4
A29 0.66 19.5 R29 0.05 11.5
A30 0.47 8.4 R30 0.05 1.3
A31 0.62 17.8 R31 0.08 9.4
A32 0.59 4.8 R32 0.09 5.4
A33 0.47 14.8 R33 0.09 7.9

Table 4.16: Lipid contents [g/100 mL] found in different EC samples, Arabica and

Robusta.
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Sample TR TA AA CA 3-CQA 5-CQA CF FA
3,5- Tot Tot

diCQA CQA OA

A1 3.41 3.45 7.27 16.18 2.95 5.89 5.27 0.27 0.30 9.13 26.89
A2 3.55 3.53 6.98 17.92 3.05 5.74 5.45 0.32 0.32 9.11 28.43
A3 3.55 3.56 7.94 17.40 3.11 6.01 5.40 0.29 0.32 9.44 28.89
A4 3.54 3.54 7.55 16.56 2.94 5.95 5.44 0.30 0.30 9.20 27.66
A5 3.47 3.47 7.75 14.86 2.86 5.44 5.19 0.30 0.30 8.59 26.07
A6 3.28 3.29 5.34 15.58 2.69 5.21 4.77 0.30 0.28 8.17 24.21
A7 3.52 3.53 4.52 11.25 3.02 5.71 5.34 0.34 0.31 9.04 19.31
A8 3.39 3.38 6.11 14.08 2.82 5.24 5.20 0.28 0.30 8.36 23.57
A9 3.36 3.35 7.02 13.65 2.81 5.20 5.10 0.28 0.30 8.31 24.02
A10 3.19 3.19 6.50 13.01 2.66 5.00 4.85 0.27 0.28 7.94 22.70
A11 3.86 3.84 4.67 8.89 3.18 5.93 5.80 0.32 0.32 9.42 17.40
A12 3.13 3.17 6.83 12.98 2.47 4.53 4.76 0.25 0.27 7.26 22.98
A13 3.37 3.38 10.97 16.04 2.58 4.79 5.00 0.27 0.27 7.65 30.39
A14 3.53 3.53 7.12 10.73 2.73 5.00 5.24 0.27 0.29 8.02 21.38
A15 3.20 3.21 3.80 6.32 2.44 4.62 4.85 0.25 0.27 7.32 13.33
A16 3.12 3.11 8.04 10.50 2.37 4.37 4.61 0.23 0.25 7.00 21.65
A17 3.19 3.18 5.92 13.10 2.45 5.76 4.79 0.23 0.21 8.42 22.19
A18 3.23 3.21 11.69 15.90 2.43 4.51 4.71 0.25 0.25 7.19 30.80
A19 2.99 2.98 7.55 13.53 2.26 4.14 4.41 0.23 0.23 6.64 24.07
A20 3.39 3.37 4.57 11.46 2.55 4.77 5.00 0.24 0.27 7.59 19.40
A21 3.32 3.31 13.09 16.42 2.53 4.83 4.82 0.27 0.26 7.62 32.81
A22 3.00 3.01 6.64 10.19 2.37 4.43 4.45 0.24 0.25 7.05 19.84
A23 3.48 3.50 5.42 11.40 2.97 5.51 5.43 0.30 0.32 8.80 20.32
A24 3.54 3.54 4.47 7.94 2.96 5.64 5.53 0.32 0.32 8.93 15.95
A25 3.49 3.48 8.04 16.56 2.93 5.50 5.44 0.31 0.32 8.75 28.08
A26 3.49 3.49 5.53 18.06 2.99 5.64 5.50 0.33 0.33 8.95 27.09
A27 3.71 3.72 7.07 20.49 3.20 5.99 5.98 0.33 0.32 9.51 31.28
A28 3.48 3.49 13.28 17.08 2.98 5.54 5.41 0.32 0.31 8.84 33.86
A29 3.38 3.35 9.53 16.36 2.87 5.30 5.65 0.30 0.30 8.47 29.24
A30 3.46 3.45 5.53 16.51 2.96 5.53 5.49 0.29 0.30 8.80 25.49
A31 3.70 3.69 6.25 18.78 3.15 5.91 5.83 0.34 0.33 9.38 28.73
A32 3.71 3.69 5.68 18.44 3.17 5.88 5.73 0.30 0.32 9.37 27.80
A33 2.75 2.77 4.67 14.02 2.36 4.52 4.40 0.24 0.26 7.14 21.46

Average 3.39 3.39 7.07 14.31 2.78 5.27 5.18 0.28 0.29 8.35 24.77

Table 4.17: Contents of bioactive compounds [g/L] found in Arabica EC samples.

TR denotes trigonelline, TA tartaric acid, AA acetic acid, CA citric acid, CF

caffeine, FA ferulic acid, CQA chlorogenic acid, OA organic acid. % RSD for all

compounds are from 0.3 to 19.7%.
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Sample TR TA AA CA 3-CQA 5-CQA CF FA
3,5- Tot Tot

diCQA CQA OA

R1 2.83 2.75 15.06 18.93 2.28 3.41 7.88 0.39 0.45 6.14 36.74
R2 2.79 2.58 11.55 17.02 2.19 3.21 7.46 0.36 0.48 5.88 31.15
R3 2.66 2.59 7.17 19.07 2.23 3.26 7.46 0.35 0.47 5.96 28.83
R4 2.90 2.72 9.86 20.26 2.44 4.40 8.35 0.42 0.57 7.42 32.84
R5 2.62 2.51 7.17 19.22 2.08 3.01 6.98 0.37 0.45 5.54 28.90
R6 3.17 3.06 14.43 17.95 2.56 4.85 8.54 0.42 0.60 8.01 35.44
R7 2.64 2.52 7.46 18.21 2.09 3.00 6.97 0.36 0.46 5.55 28.18
R8 2.73 2.65 10.01 21.04 2.20 4.27 7.58 0.35 0.50 6.97 33.69
R9 2.76 2.66 10.10 21.15 2.24 3.22 7.48 0.41 0.48 5.95 33.91
R10 2.45 2.41 8.90 19.19 2.02 3.47 6.92 0.39 0.48 5.97 30.50
R11 2.93 2.86 16.94 23.81 2.39 3.46 8.12 0.46 0.51 6.35 43.60
R12 2.50 2.43 13.38 18.44 1.93 2.79 6.82 0.33 0.40 5.12 34.25
R13 2.48 2.40 12.85 18.50 2.23 2.65 6.44 0.36 0.36 5.24 33.74
R14 2.67 2.64 12.32 15.64 2.23 3.15 7.37 0.37 0.44 5.82 30.59
R15 2.68 2.69 11.84 21.81 2.21 3.13 7.22 0.37 0.42 5.75 36.34
R16 2.93 2.75 15.73 19.16 2.23 3.31 7.20 0.38 0.40 5.95 37.64
R17 2.50 2.41 9.57 15.78 2.19 2.87 6.53 0.37 0.39 5.46 27.77
R18 2.56 2.41 9.67 15.73 2.05 2.95 6.57 0.33 0.37 5.36 27.81
R19 2.30 2.26 11.35 14.17 1.93 2.67 6.22 0.32 0.35 4.94 27.79
R20 2.70 2.55 11.14 17.64 2.25 3.04 7.33 0.40 0.44 5.73 31.33
R21 2.67 2.60 12.75 16.10 2.26 3.16 7.31 0.36 0.43 5.84 31.45
R22 2.57 2.56 13.62 16.30 2.40 2.83 6.99 0.35 0.38 5.61 32.48
R23 3.17 2.99 6.54 18.41 2.64 3.92 8.36 0.54 0.51 7.07 27.95
R24 2.82 2.79 12.51 19.56 2.48 3.57 8.28 0.44 0.53 6.58 34.87
R25 2.99 2.40 8.37 16.30 2.21 3.17 7.39 0.45 0.40 5.78 27.08
R26 3.19 3.19 12.70 21.47 3.09 3.85 8.80 0.51 0.52 7.46 37.36
R27 2.85 2.71 14.29 18.76 2.35 3.48 7.81 0.42 0.49 6.32 35.76
R28 3.19 3.14 16.36 20.66 2.83 3.96 9.15 0.46 0.53 7.32 40.16
R29 2.59 2.45 8.71 16.76 2.26 2.99 7.39 0.42 0.51 5.77 27.92
R30 2.70 2.52 10.97 17.52 2.26 3.34 7.51 0.41 0.48 6.08 31.01
R31 2.57 2.46 11.74 16.71 2.33 3.19 7.10 0.42 0.44 5.96 30.90
R32 2.54 2.49 8.80 18.06 2.30 3.26 7.68 0.40 0.45 6.01 29.35
R33 2.78 2.64 9.00 18.09 2.22 3.33 7.58 0.41 0.49 6.05 29.73

Average 2.74 2.63 11.30 18.41 2.29 3.34 7.48 0.40 0.46 6.09 32.33

Table 4.18: Contents of bioactive compounds [g/L] found in Robusta EC samples.

TR denotes trigonelline, TA tartaric acid, AA acetic acid, CA citric acid, CF

caffeine, FA ferulic acid, CQA chlorogenic acid, OA organic acid. % RSD for all

compounds are from 0.1 to 19.2%.
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4.2.3 Numerical simulation settings

The numerical and laboratory experiment are performed under the same condi-

tions of the extraction campaign, reported in Table 4.15, and the same extraction

protocol: 20 ± 0.1 g in and 40 ± 2 g out; so the parameters of the model used in

the numerical simulations are consistent with the corresponding real EC extraction

used for laboratory analyses. Starting from the extraction grid used for the model

calibration, the same four variables are taken into account: the temperature of the

water entering the coffee basket Tz0 – 88, 93.4, 98 ◦C; the pressure of the water

entering the basket pz0 – 6, 9, 12 bar; the granulometry r of the coffee powder –

optimal (O), coarse (C) and fine (F); the coffee variety v – Arabica (A) and Robusta

(R). Regarding the model validation, the extractions keep the same granulometries

and varieties used for the calibrations but take scattered points for temperature

and pressure. So the validation is performed on off-grid points to give proof of

the model robustness, however, on such points laboratory analyses are clearly

available. The extraction is also influenced by other relevant physical or geometrical

variables, such as the tamping pressure and extraction equipment, which have been

maintained constant. The tamping pressure is fixed at 20 kgF. We note that the

tamping operation affects the extraction because together with the granulometry

it determines a key feature of the solid matrix, i.e., the porosity ε. Nevertheless,

the value considered for the tamping pressure corresponds to the mean tamping

usually exerted by a skilled barman, thus we assumed the porosity is only affected

by granulometry, which highly influences both the porosity and the accessibility of

chemical substances for dissolution. Equipment, common in the world of specialty

coffee, has been employed for all the extractions, in particular, the filter basket

is the cylindrical VST© with a capacity of 20 g, inner radius R = 29.25 mm and

height 26 mm. Thus, the domain of the percolation problem is a cylinder with

fixed radius R but height H depending on the granulometry of the coffee pod.

After measuring the mean height of the coffee pods for each granulometry and

each variety, fixed the tamping pressure, it comes out that the different heights

have maximum distance less than a millimeter. Besides, using a constant height
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H = 13.88 mm that corresponds to the mean value, neglecting the phenomena of

grain swelling and consolidation occurring at the wetting of ground coffee, very

similar results are obtained. The spatial domain C has been discretised by a mesh

made of 3486 triangular prisms and 2160 total nodes, equally distributed on 8

circular cross sections.

The simulation settings are based on the following real data. In more detail, the

extraction pressure determines the initial condition and the boundary condition

on Γ1 for the hydraulic head (2.76), and we suppose that the incoming pressurised

water imposes the same pressure at the top of the tamped coffee. Besides, we

assume that, at the beginning of the extraction, the pressure profile goes from the

prescribed value at the top of the coffee powder to the atmospheric pressure value

at the bottom by linearly decreasing, that is

p0(z) =
z

−H
(1− pz0) + pz0,

where pz0 is the incoming water pressure. The values of the other parameters

occurring in (2.76) are displayed in Table 4.19. Concerning the boundary and

p [bar]

6 9 12

hz0 [m] 61.18 91.78 122.37

Φh [1/s] 6.5 · 10−5 6.5 · 10−5 6.5 · 10−5

hC [m] 0 0 0

Table 4.19: Parameters in the initial and boundary conditions (2.76) of the hydraulic

head depending on the pressure of the incoming water.

initial conditions of the temperature in (2.79), the values of the incoming water

temperature Tz0 have been reported above in the definition of the extraction grid,

while T0 = 70 ◦C is the value for the initial condition that is constant for all the

cases. Regarding the boundary conditions (2.77) and the initial condition (2.78)

for the chemical species, the required parameters are given in Table 4.20. The
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CF CQA TR CA AA TA FA LP

Φk [mm/s] 30 30 30 30 30 30 30 30

CkC [mg/l] 0 0 0 0 0 0 0 0

Cs
k0A [mg/l] 12540 22130 7970 39970 11870 7700 790 138700

Cs
k0R [mg/l] 18580 16080 5960 40920 27910 5970 1060 96200

Table 4.20: Parameters in the initial and boundary conditions (2.77),(2.78) of the

chemical species. Cs
k0A, C

s
k0R are the initial concentrations for Arabica and Robusta,

respectively.

solid concentration at t = 0 for Arabica and Robusta, Cs
k0A, C

s
k0A, respectively, has

been taken from the analysis of the ground coffee reported above. Note that the

equivalence 1 kg = 1 L is assumed to work.

The remaining parameters have been set by the calibration procedure, exploiting

the calibration grid described at the opening of this section. In more detail, these

parameters have been fine-tuned relying on the results of the chemical analyses and

then an approximation problem has been solved to find the laws that reproduce

them properly. Also for the estimation of the admittance Φk and the concentration

threshold CkC , reported in Table 4.20, a trial-and-error calibration process has

been applied. Furthermore, when simulating a percolation process, it is essential

to correctly formulate the dissolution or erosion from the porous medium of the

chemical species. In system (2.75), the reaction terms Rk, R
s
k account for such

modelling. Inspired by groundwater flows and the related dissolution processes, we

defined such terms as follows:

Rk = −αk (1− ε)Cs
k, Rs

k = αk (1− ε)Cs
k, (4.28)

where αk is the dissolution rate. The formulation of the dissolution rate αk depends

on the granulometry r and the coffee variety v in such a way:

αr,v
k = A0 + aTz0 + bpz0 + cT 2

z0 + dp2z0 + fTz0pz0 + lT 2
z0pz0 +mTz0p

2
z0, (4.29)

for k = CF, CQA, TR, CA, AA, TA, FA, LP, r = O, C, F, v = A, R, where also
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the coefficients A0, a, b, c, d, f, l,m depend on k, r, v and are listed in Tables 4.22-

4.27.

Another pivotal parameter for a porous medium is the porosity ε, which is

largely influenced by the grain size of the coffee powder. As reference value for the

optimal granulometry, we choose εO = 0.305, which is a mean value among the

ones reported in literature [13], [18], [23]. Then, the porosity values εg, g = C, F,

for the remaining granulometries are computed with this simple rule:

εg = εO
VO

Vg
,

where Vg, g = O, C, F, is the volume percentage associated to the peak of fines

in the particle size distribution (PSD) curve. To do this, we assume that the

particle size where the peak occurs is almost the same for different granulometries.

Considering the PSD curves of some samples with similar granulometries, reported

in Figure 4.12, we obtain εC = 0.330 and εF = 0.276. The hydraulic conductivity

tensor K is another parameter that strongly influences fluid flow; we assume that

the coffee pod is an isotropic porous medium, so the tensor K is associated to a

constant diagonal matrix whose elements kr depend on the pressure of the incoming

water pz0 and vary with the granulometry r:

kr(pz0) =


2.60 · 10−9p2z0 − 6.50 · 10−8pz0 + 5.08 · 10−7, r = O,

3.90 · 10−9p2z0 − 1.05 · 10−7pz0 + 8.50 · 10−7, r = C,

1.20 · 10−9p2z0 − 3.17 · 10−8pz0 + 2.56 · 10−7, r = F.

We note that this law for the elements of K has been calculated by interpolating

proper values to match the numerical flow rate with the real flow rate. Other

simulation parameters are reported in Table 4.21. For some parameters, we have

taken our cue from the standard values used in hydrogeology transport processes [33],

[94], such as for the molecular diffusivities Dk, the specific storage coefficient

S0, the longitudinal and transverse dispersion coefficients βL, βT . Besides, the

transverse dispersivity is smaller than the longitudinal dispersivity for 1 or 2 orders

of magnitude, as empirically prescribed [95]. Finally, in the heat equation, the

choice of the involved parameters resembles the one used in [23], thus more details

can be found there.
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Figure 4.12: Particle size distributions of the ground coffee for Arabica variety (a)

and Robusta variety (b).
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S0 1 · 10−3 1/m

βL, βT 1, 0.1 m

Dk 1 · 10−9 m2/s

T0 100◦C

ρc 4.18 MJ/m3 K

ρscs 3.184 MJ/m3 K

Λ 0.673 W/m K

Λs 0.337 W/m K

γL , γT 0.5, 0.05 m

τO, τC, τF 20, 13, 35 s

Table 4.21: Parameters of model (2.75)-(2.79) varying the species k, k =

CF, CQA, TR, CA, AA, TA, FA, LP. These parameters are independent of gran-

ulometry, except for the extraction time τ .

CF CQA TR CA AA TA FA LP

A0−6.0 · 104−5.8 · 104 3.8 · 104−4.4 · 105−8.2 · 105−2.7 · 104 1.5 · 105 −1.2 · 104

a 1.5 · 103 5.9 · 102−5.7 · 102 9.4 · 103 1.9 · 104 8.4 · 102−2.8 · 103 2.6 · 102

b −1.0 · 103 2.3 · 103−1.6 · 103 1.9 · 103−6.3 · 103−1.6 · 103−2.8 · 103 6.6 · 101

c −8.5 7.0 · 10−1 2.6−5.0 · 101−1.1 · 102 −5.2 1.4 · 101 −1.4

d −1.3 · 101−1.1 · 103 2.6 · 101 −6.5 4.4 · 101 7.4 5.6 · 101−9.3 · 10−1

f 1.3 · 101 1.4 · 102 1.2 · 101−1.9 · 101 5.4 · 101 1.5 · 101 2.0 · 101−5.1 · 10−1

l 0 −1.8 0 0 0 0 0 0

m 0 1.1 · 101 0 0 0 0 0 0

Table 4.22: Coefficients of the dissolution rate αr,v
k , k =

CF, CQA, TR, CA, AA, TA, FA, LP, for the optimal granulometry r = O

and Arabica variety v = A.
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CF CQA TR CA AA TA FA LP

A0−1.9 · 105 7.6 · 105−2.3 · 105−2.9 · 105−4.7 · 106−1.7 · 105−1.7 · 105 2.9 · 104

a 4.3 · 103−1.8 · 104 5.4 · 103 6.1 · 103 1.0 · 105 4.2 · 103 3.8 · 103−6.3 · 102

b −1.9 · 103−5.6 · 104−2.9 · 103 3.4 · 103−6.1 · 103−2.2 · 103−6.4 · 102 1.1 · 102

c −2.4 · 101 1.1 · 102−3.0 · 101−3.2 · 101−5.5 · 102−2.3 · 101−2.1 · 101 3.6

d 2.8 · 101−2.4 · 103 5.7 · 101 3.1 · 101 7.3 · 102 4.8 · 101 9.3 1.2 · 101

f 1.4 · 101 1.7 · 103 2.0 · 101−4.4 · 101−8.6 · 101 1.4 · 101 5.0 −3.3

l 0−1.2 · 101 0 0 0 0 0 0

m 0 2.5 · 101 0 0 0 0 0 0

Table 4.23: Coefficients of the dissolution rate αr,v
k , k =

CF, CQA, TR, CA, AA, TA, FA, LP, for the coarse granulometry r = C

and Arabica variety v = A.

CF CQA TR CA AA TA FA LP

A0 5.5 · 104 1.0 · 105 −2.9 · 103 4.0 · 105 1.6 · 106 8.5 · 103 3.2 · 104 1.2 · 104

a −1.1 · 103 −2.1 · 103 1.2 · 102−8.6 · 103−3.8 · 104−8.8 · 101−5.1 · 102 −2.6 · 102

b −1.1 · 102 −1.0 · 104 −6.0 · 101−8.8 · 102 2.0 · 104−4.4 · 102−1.5 · 103 1.1 · 102

c 6.0 1.1 · 101−5.1 · 10−1 4.6 · 101 2.0 · 102 4.7 · 10−1 2.4 1.4

d 1.1 · 101 7.7 · 101 9.3 4.4 · 101−1.0 · 103 1.8 · 101 2.8 · 101 −3.3

f −1.4 2.0 · 102 −1.4 1.1−1.1 · 101 9.9 · 10−1 1.0 · 101−6.1 · 10−1

l 0 −1.0 0 0 0 0 0 0

m 0−6.4 · 10−1 0 0 0 0 0 0

Table 4.24: Coefficients of the dissolution rate αr,v
k , k =

CF, CQA, TR, CA, AA, TA, FA, LP, for the fine granulometry r = F and

Arabica variety v = A.
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CF CQA TR CA AA TA FA LP

A0 6.2 · 104 5.2 · 105 1.0 · 105 2.5 · 105−3.1 · 105 1.1 · 105 1.4 · 105 −4.6 · 103

a −9.2 · 102−1.2 · 104 −1.7 · 103−5.4 · 103 7.5 · 103−1.9 · 103−2.8 · 103 1.0 · 102

b −2.3 · 103−1.6 · 104 −3.3 · 103 7.8 · 102−6.3 · 103−3.2 · 103 2.0 · 102 −4.2 · 101

c 3.2 6.6 · 101 6.9 3.0 · 101−4.5 · 101 8.5 1.5 · 101−5.6 · 10−1

d −2.1 · 101−1.5 · 103 8.3 · 10−13 1.3 · 101−7.2 · 101 1.5 · 101−1.9 · 101 1.8

f 2.8 · 101 5.7 · 102 3.4 · 101−1.1 · 101 8.0 · 101 3.1 · 101 6.2 · 10−1 1.2 · 10−1

l 0 −4.3 0 0 0 0 0 0

m 0 1.6 · 101 0 0 0 0 0 0

Table 4.25: Coefficients of the dissolution rate αr,v
k , k =

CF, CQA, TR, CA, AA, TA, FA, LP, for the optimal granulometry r = O

and Robusta variety v = R.

CF CQA TR CA AA TA FA LP

A0−2.1 · 104−1.5 · 105 6.7 · 104−5.0 · 104−2.7 · 105 9.6 · 104 4.4 · 104 −1.2 · 104

a 3.8 · 102 3.1 · 103−1.6 · 103 6.0 · 102 5.3 · 103−2.3 · 103−1.0 · 103 2.7 · 102

b 2.2 · 103 2.2 · 104 4.4 · 103 8.8 · 103 7.0 · 103 4.9 · 103 1.9 · 103 −1.3 · 101

c −1.0−1.6 · 101 1.1 · 101 −1.4−2.5 · 101 1.4 · 101 6.8 −1.5

d −1.9−3.7 · 101 1.1 · 101−1.5 · 102 6.1 · 101 5.6 4.4 · 101−9.3 · 10−2

f −2.4 · 101−4.4 · 102−4.9 · 101−6.4 · 101−8.3 · 101−5.3 · 101−2.9 · 101 1.9 · 10−1

l 0 2.2 0 0 0 0 0 0

m 0 5.1 · 10−1 0 0 0 0 0 0

Table 4.26: Coefficients of the dissolution rate αr,v
k , k =

CF, CQA, TR, CA, AA, TA, FA, LP, for the coarse granulometry r = C

and Robusta variety v = R.



134 CHAPTER 4. NUMERICAL SIMULATIONS

CF CQA TR CA AA TA FA LP

A0−3.9 · 104 2.9 · 105−1.5 · 105 6.2 · 103 4.9 · 105 6.9 · 104−1.8 · 105 −1.9 · 103

a 9.6 · 102−6.9 · 103 3.6 · 103 1.6 · 102−9.7 · 103−1.2 · 103 4.0 · 103 4.3 · 101

b 3.3 · 101−3.2 · 104−8.6 · 102−1.2 · 103−6.7 · 103−9.0 · 102 2.6 · 102 −1.9 · 101

c −5.7 4.0 · 101−2.1 · 101 −2.4 4.8 · 101 4.3−2.3 · 101−2.4 · 10−1

d −2.4 · 101−1.0 · 103−5.2 · 101−4.1 · 101 8.7 · 101−7.0 · 101−7.6 · 101 6.9 · 10−1

f 4.1 9.0 · 102 1.8 · 101 2.1 · 101 5.5 · 101 2.3 · 101 1.2 · 101 7.5 · 10−2

l 0 −5.8 0 0 0 0 0 0

m 0 1.1 · 101 0 0 0 0 0 0

Table 4.27: Coefficients of the dissolution rate αr,v
k , k =

CF, CQA, TR, CA, AA, TA, FA, LP, for the fine granulometry r = F and

Robusta variety v = R.
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4.2.4 Results: comparison and discussion

Problem (2.75) and the initial and boundary conditions (2.76)-(2.79) are imple-

mented in the software FeFlow Demo 7.2 [77], which offers a complete simulation

tool for porous media and groundwater movement. FeFlow embeds the numerical

approximation of the model, some details of which are given below.

We first show and discuss the results of the model calibration, then the results

of the model validation, highlighting the comparison of chemical species between

the numerical and laboratory results. Figures 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19,

4.20 show the extracted amounts of each chemical species in a double cup of about

40 mL, for all the points of the extraction grid used in the calibration, restricting

the focus on the Arabica variety. In each figure, the red profiles with square markers

display the results from chemical laboratory analyses already described in above, see

Tables 4.16, 4.17, 4.18 for details, whereas the blue profiles with circle markers give

the results from numerical simulations based on the model (2.75)-(2.79). Besides,

in these figures, each row refers to a granulometry – optimal to coarse to fine from

top to bottom, each column refers to a temperature and the plots are a function of

pressure. The comparison between the red and blue profiles shows a good agreement,

especially for the caffeine, chlorogenic acids, trigonelline, tartaric acid and ferulic

acid. For the citric acid and the lipids, the correspondence between numerical

and analytical results is good, except for some points where peaks occur. In this

case, the numerical results give a smooth curve between the maximum and the

minimum values of laboratory results. Less correspondence is found for the acetic

acid because this species shows a definitely not smooth behaviour of the dissolution

coefficient thus the corresponding model of the reactive terms struggles to follow

the peaks. However, the general trend of these results is again to smooth the curves

of the laboratory results.

Figures 4.21, 4.22, 4.23, 4.24, 4.25, 4.26, 4.27, 4.28 show the extracted amounts

of each chemical species in a double cup of about 40 mL for all the points of the

extraction grid used in the calibration, restricting the focus on the Robusta variety.

These results show similar behaviour to the ones obtained for the Arabica coffee
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powder, with an overall correspondence between the red and blue profiles slightly

decreased, especially for the lipids, but with improved correspondence in the critical

species, like citric acid and acetic acid.

Concerning the amount of simulated liquid coffee, the volumes fall in the interval

[39.4, 40.9] cm3 for all the cases, which completely agrees with 40± 2 cm3 of coffee

in a double cup, that is what expected from the real extraction. The equivalence

between mass and volume is assumed to be valid.

Tables 4.28, 4.29 show the results of the validation process. In particular, the

extraction points are specified along the columns, and the chemical species along the

rows. In Table 4.28 for Arabica variety, apart from the citric acid, the acetic acid

and the lipids, which have the worst performance even in the calibration process,

the other species have most of the percentage errors (shown in brackets) less than

10% (these values are in bold type), some around 20% and very few greater than

20%. Table 4.29 shows the corresponding results for Robusta variety. If we discard

the lipids at the point (96, 9,O), the percentage errors are slightly higher on average

(but their dispersion is smaller) than in Arabica variety and very high errors are

not reached. To sum up, Table 4.30 gives an overview of the predictivity of the

model, showing the mean percentage error of each species, averaged over all the

validation points.
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Figure 4.13: Comparison between the caffeine extracted through numerical simu-

lations (blue profile with circles) and laboratory measurements (red profile with

squares), with different inlet water temperatures and pressures and different grain

size of Arabica coffee powder. Figures (a)-(c) show the results of optimal granulom-

etry, Figures (d)-(f) of coarse granulometry, Figures (g)-(i) of fine granulometry.
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Figure 4.14: Comparison between the chlorogenic acids extracted through numerical

simulations (blue profile with circles) and laboratory measurements (red profile

with squares), with different inlet water temperatures and pressures and different

grain size of Arabica coffee powder. Figures (a)-(c) show the results of optimal

granulometry, Figures (d)-(f) of coarse granulometry, Figures (g)-(i) of fine granu-

lometry.
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Figure 4.15: Comparison between the trigonelline extracted through numerical

simulations (blue profile with circles) and laboratory measurements (red profile

with squares), with different inlet water temperatures and pressures and different

grain size of Arabica coffee powder. Figures (a)-(c) show the results of optimal

granulometry, Figures (d)-(f) of coarse granulometry, Figures (g)-(i) of fine granu-

lometry.
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Figure 4.16: Comparison between the citric acid extracted through numerical simu-

lations (blue profile with circles) and laboratory measurements (red profile with

squares), with different inlet water temperatures and pressures and different grain

size of Arabica coffee powder. Figures (a)-(c) show the results of optimal granulom-

etry, Figures (d)-(f) of coarse granulometry, Figures (g)-(i) of fine granulometry.
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Figure 4.17: Comparison between the acetic acid extracted through numerical

simulations (blue profile with circles) and laboratory measurements (red profile

with squares), with different inlet water temperatures and pressures and different

grain size of Arabica coffee powder. Figures (a)-(c) show the results of optimal

granulometry, Figures (d)-(f) of coarse granulometry, Figures (g)-(i) of fine granu-

lometry.
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Figure 4.18: Comparison between the tartaric acid extracted through numerical

simulations (blue profile with circles) and laboratory measurements (red profile

with squares), with different inlet water temperatures and pressures and different

grain size of Arabica coffee powder. Figures (a)-(c) show the results of optimal

granulometry, Figures (d)-(f) of coarse granulometry, Figures (g)-(i) of fine granu-

lometry.
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Figure 4.19: Comparison between the ferulic acid extracted through numerical

simulations (blue profile with circles) and laboratory measurements (red profile

with squares), with different inlet water temperatures and pressures and different

grain size of Arabica coffee powder. Figures (a)-(c) show the results of optimal

granulometry, Figures (d)-(f) of coarse granulometry, Figures (g)-(i) of fine granu-

lometry.
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Figure 4.20: Comparison between the lipids extracted through numerical simulations

(blue profile with circles) and laboratory measurements (red profile with squares),

with different inlet water temperatures and pressures and different grain size of

Arabica coffee powder. Figures (a)-(c) show the results of optimal granulometry,

Figures (d)-(f) of coarse granulometry, Figures (g)-(i) of fine granulometry.
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Figure 4.21: Comparison between the caffeine extracted through numerical simu-

lations (blue profile with circles) and laboratory measurements (red profile with

squares), with different inlet water temperatures and pressures and different grain

size of Robusta coffee powder. Figures (a)-(c) show the results of optimal granu-

lometry, Figures (d)-(f) of coarse granulometry, Figures (g)-(i) of fine granulometry.
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Figure 4.22: Comparison between the chlorogenic acids extracted through numerical

simulations (blue profile with circles) and laboratory measurements (red profile

with squares), with different inlet water temperatures and pressures and different

grain size of Robusta coffee powder. Figures (a)-(c) show the results of optimal

granulometry, Figures (d)-(f) of coarse granulometry, Figures (g)-(i) of fine granu-

lometry.
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Figure 4.23: Comparison between the trigonelline extracted through numerical

simulations (blue profile with circles) and laboratory measurements (red profile

with squares), with different inlet water temperatures and pressures and different

grain size of Robusta coffee powder. Figures (a)-(c) show the results of optimal

granulometry, Figures (d)-(f) of coarse granulometry, Figures (g)-(i) of fine granu-

lometry.
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Figure 4.24: Comparison between the citric acid extracted through numerical

simulations (blue profile with circles) and laboratory measurements (red profile

with squares), with different inlet water temperatures and pressures and different

grain size of Robusta coffee powder. Figures (a)-(c) show the results of optimal

granulometry, Figures (d)-(f) of coarse granulometry, Figures (g)-(i) of fine granu-

lometry.
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Figure 4.25: Comparison between the acetic acid extracted through numerical

simulations (blue profile with circles) and laboratory measurements (red profile

with squares), with different inlet water temperatures and pressures and different

grain size of Robusta coffee powder. Figures (a)-(c) show the results of optimal

granulometry, Figures (d)-(f) of coarse granulometry, Figures (g)-(i) of fine granu-

lometry.
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Figure 4.26: Comparison between the tartaric acid extracted through numerical

simulations (blue profile with circles) and laboratory measurements (red profile

with squares), with different inlet water temperatures and pressures and different

grain size of Robusta coffee powder. Figures (a)-(c) show the results of optimal

granulometry, Figures (d)-(f) of coarse granulometry, Figures (g)-(i) of fine granu-

lometry.
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Figure 4.27: Comparison between the ferulic acid extracted through numerical

simulations (blue profile with circles) and laboratory measurements (red profile

with squares), with different inlet water temperatures and pressures and different

grain size of Robusta coffee powder. Figures (a)-(c) show the results of optimal

granulometry, Figures (d)-(f) of coarse granulometry, Figures (g)-(i) of fine granu-

lometry.
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Figure 4.28: Comparison between the lipids extracted through numerical simulations

(blue profile with circles) and laboratory measurements (red profile with squares),

with different inlet water temperatures and pressures and different grain size of

Robusta coffee powder. Figures (a)-(c) show the results of optimal granulometry,

Figures (d)-(f) of coarse granulometry, Figures (g)-(i) of fine granulometry.
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(91, 8,O) (96, 9,O) (89, 10,G) (97, 7,G) (90, 8,F) (95, 11,F)

CF 215.2 (7.2) 216.0 (11.4) 186.9 (3.0) 192.0 (7.9) 221.2 (3.5) 213.9 (21.5)

CQA 369.6 (1.9) 351.4 (10.6) 324.8 (6.6) 304.5 (8.0) 347.6 (7.3) 349.5 (22.4)

TR 135.4 (12.2) 136.1 (6.5) 125.8 (5.4) 126.9 (5.7) 140.3 (5.3) 140.2 (27.2)

CA 697.2 (96.1) 634.2 (21.8) 542.2 (17.4) 493.4 (21.1) 523.2 (29.0) 541.4 (3.5)

AA 297.8 (59.6) 275.2 (5.9) 299.0 (42.9) 298.8 (12.5) 336.3 (48.1) 321.4 (72.2)

TA 138.4 (10.0) 138.8 (8.6) 123.8 (6.5) 123.4 (2.5) 138.1 (6.4) 137.6 (24.3)

FA 10.5 (17.2) 10.8 (0.3) 9.8 (9.7) 9.7 (0.2) 12.0 (1.4) 12.3 (30.0)

LP 207.0 (76.0) 188.9 (55.8) 151.9 (6.7) 172.2 (24.6) 232.4 (1.2) 188.5 (0.9)

Table 4.28: Amount [mg] of the chemical species at the end of the percolation

process for Arabica variety. The percentage error between numerical and laboratory

results is in brackets. The extraction point is denoted by (T, p, r).

(91, 8,O) (96, 9,O) (89, 10,G) (97, 7,G) (90, 8,F) (95, 11,F)

CF 322.5 (0.7) 303.3 (9.6) 261.2 (6.6) 264.0 (9.7) 362.0 (19.4) 336.1 (9.4)

CQA 270.6 (6.4) 228.5 (4.3) 208.4 (7.1) 207.0 (11.5) 318.1 (31.7) 290.4 (20.8)

TR 115.1 (1.8) 109.6 (11.8) 99.8 (2.9) 96.5 (9.7) 136.7 (22.9) 122.7 (20.8)

CA 729.5 (23.4) 763.7 (0.5) 772.4 (18.4) 648.3 (0.7) 844.9 (16.8) 781.6 (8.2)

AA 520.9 (23.1) 465.3 (30.7) 505.1 (7.3) 453.7 (11.0) 503.4 (39.8) 370.3 (5.2)

TA 108.9 (4.8) 104.0 (7.9) 99.7 (2.6) 92.6 (10.9) 131.7 (24.7) 115.3 (15.8)

FA 15.6 (15.2) 15.3 (1.8) 13.2 (5.8) 13.8 (3.9) 21.6 (31.9) 19.8 (23.6)

LP 34.9 (29.1) 34.4 (157) 38.9 (14.6) 30.8 (24.5) 24.9 (30.0) 30.0 (18.0)

Table 4.29: Amount [mg] of the chemical species at the end of the percolation

process for Robusta variety. The percentage error between numerical and laboratory

results is in brackets. The extraction point is denoted by (T, p, r).
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CF CQA TR CA AA TA FA LP

A 9.1 9.4 10.4 31.0 40.2 9.7 9.8 27.5

R 9.2 13.6 11.7 11.3 19.5 11.1 13.7 45.5

Table 4.30: Mean percentage error among the numerical and laboratory results for

each chemical species and Arabica (A) and Robusta (R) varieties.

4.3 Towards a customisation tool for coffee taste

In this section we present an RBF-based numerical approximation for the three

dimensional model. In particular, we focus on the prediction of the flow and we

consider the equation describing the hydraulic head dynamics.

Section 4.3.1 describes an RBF-based numerical approximation of the three

dimensional model discussed in Section 2.3. More precisely, we focus on the

equation predicting the water dynamics. This approximation scheme is the same

used in the RBF-based approximation scheme of Section 4.1.2 for the reduced

percolation model (2.80), (2.81). Then, the reliability of the proposed solving

strategy is experimentally assessed through numerical simulations of the hydraulic

head behaviour, whose results are shown in Section 4.3.2.
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4.3.1 An RBF approximation for the flow prediction in the

espresso extraction

For the reader’s convenience we recall the problem modelling the water dynamics

in the espresso extraction;

S0
∂h

∂t
+∇ · qqq = 0, in C, t ∈ [0, τ ],

qqq = −Kfµ · (∇h+ χeee), in C, t ∈ [0, τ ],

h = hz0 , on Γ1, t ∈ (0, τ ],

∂h

∂n
= 0, on Γ2, t ∈ (0, τ ],

qqq · n = −Φhmin{hC − h, 0}, on Γ3, t ∈ (0, τ ],

p = p0(x3), in C, t = 0,

(4.30)

with the same notation introduced in Section 2.3.

The numerical approximation of problem (4.30)is based on the Crank-Nicolson

method, where the spatial derivatives are approximated via RBFs.

Let X̄ = X ∪X1∪X2∪X3 = {xj}j=1,2,...,N ⊆ C be the set of distinct discretisation

nodes, where we denoted with X the nodes in the interior of C and with Xi the

nodes belonging to its surfaces Γi, i = 1, 2, 3, respectively. Let A be the PA-RBF

interpolation matrix associated with the interpolation nodes X̄ , then equation (3.40)

holds with d = 3, f(x) = h(x, t) and t ∈ [0, τ ]. Thus, for a fixed t, if h(t) is the

column vector of the values of the hydraulic head h(xxx, t) calculated at the points

of X̄ , that is h(t) = (h(xxxj, t))
T
j=1,2,...,N , the analogue of equation (3.43) for the

hydraulic head h, is:

Lh̃(xxx, t) =
(
b(xxx)LA−1

)
1:N
h(t). (4.31)

We denote with L0 the identity operator, with L1,i, i = 1, 2, 3 the first derivative

operator respect to the i-th component of x and with L2,i,s the second derivative

operator respect to the components i and s, i, s = 1, 2, 3. For each of these operators,
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we can impose equation (4.31) at each point of X . For i, s = 1, 2, 3 we obtain:(
L0h̃(xxxj, t)

)T
j=1,2,...,N

= (AA−1)h(t) ≡ Ih(t),(
L1,ih̃(xxxj, t)

)T
j=1,2,...,N

= (D1,iA
−1)h(t) ≡ D1,ih(t),(

L2,i,sh̃(xxxj, t)
)T
j=1,2,...,N

= (D2,i,sA
−1)h(t) ≡ D2,i,sh(t),

(4.32)

where D1,i ≡
(
b(xxxj)

L1,i
)
j=1,2,...,N

denotes the differentiation matrix associated to

L1,i and similarly for the other operators in (4.32). With the above described

notation we have that the matrix associated to the Laplacian operator is

L = D2,1,1 +D2,2,2 +D2,3,3. (4.33)

We define some useful notations for the systems below. A matrix equipped with

the subscript I is the sub-matrix that consists of all the rows of the corresponding

original matrix related to the points in X . Similarly, a matrix endowed with

the subscript i = 1, 2, 3 is the sub-matrix that consists of all the rows of the

corresponding original matrix related to the point in Xi, i = 1, 2, 3. In addition, for

i = 1, 2, 3 we denote with ni the vector containing the i-th components of the unit

vectors which are normal to the surface Γ2 on a point xxxi ∈ X2, and Ni denotes the

diagonal matrix with components ni. We note that, ni has a number of components

equal to the number of points in X2. Moreover, for each xxx ∈ X3, n(xxx) = (0, 0,−1)T .

With these notations the spatial discretisation of problem (4.30) is:

S0II
∂h(t)

∂t
−KfµLIh(t) = 0,

I1h(t) = h0,(
N1D

1,1
2 +N2D

1,2
2 +N3D

1,3
2

)
h(t) = 0,

KfµD
1,3
3 h(t) = −Φh min{hC − I3h(t), 0} −Kfµχe,

Ih(0) =
p0
ρ0g

+ xxx3,

(4.34)

where xxx3 = ((xxxj)3)
T
j=1,2,...,N , and (·)3 selects the third component of · and p0 = p0(xxx3).

Now we can apply the time discretisation to problem (4.34). We use the Crank-

Nicolson scheme in the aforementioned spatial discretisation made through RBFs.



4.3. TOWARDS A CUSTOMISATION TOOL FOR COFFEE TASTE 157

The boundary conditions are implemented at the new time level. Note that to

state a discrete time level, we use the time index as a superscript. In particular,

this procedure for the time discretisation is implemented in the first equation of

system (4.34). Let Nt be a positive integer and ht = τ/Nt, for k = 0, 1, . . . , Nt − 1,

for the first equation in (4.34), we have:

S0II
(
hk+1 − hk

)
=
ht
2

(
KfµLIh

k+1 +KfµLIh
k
)
, (4.35)

where hk ≈ h(tk). Thus, for k = 0, 1, . . . , Nt − 1, we get:

(
II −

htKfµ
2S0

LI

)
hk+1 =

(
II +

htKfµ
2S0

LI

)
hk,

I1h
k+1 = h0,(

D1,1
2 .∗n1 +D1,2

2 .∗n2 +D1,3
2 .∗n3

)
hk+1 = 0,

KfµD
1,3
3 h

k+1 = −Φhmin{hC − I3h
k, 0} −Kfµχe,

Ih0 =
p0
ρ0g

+ xxx3.

(4.36)

4.3.2 Numerical Experiment

The numerical solution of problem (4.30) is obtained by the approximation

scheme described in (4.36). This method has been implemented in MATLAB.

Table 4.31 shows the value of the physico-chemical parameters used in the numerical

simulations. They are the same used in [23] and they are in good agreement with

those used in [24]. Besides, we have chosen the hydraulic conductivity tensor K as

H [m] 13.77 · 10−3 S0 [1/m] 1 · 10−5

ΦH [1/s] 2.2 · 10−5 fµ [ ] 1

τ [s] 20 χ [ ] 0

ρ0 [kg/m3] 997 hC [m] 0

Table 4.31: Parameters configuration used in the numerical experiment.

a constant diagonal matrix with elements value: K = 1.68 · 10−7. Finally, for the

pressure of the incoming water we choose p0 = 6, 9, 11bar.
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Regarding the parameters of the discretisation scheme, we choose Nt = 5000,

so that ht ≈ 4 · 10−3, and N = 310 points in X̄ . Moreover, as RBF we choose the

polyharmonic splines of exponent 3, that is: Φj(x) = φ (||x− xj||) = ||x− xj||32,
xj ∈ X̄ . The maximum degree of the polynomial basis is m = 3.

In Figures 4.29, 4.30 and 4.31 we report a graphic representation of the hydraulic

head behaviour inside the coffee pod C at time t = τ (left), and in a vertical section

of C (right) at time t = τ , for incoming water pressure value of p0 = 6, 9, 11bar,

respectively. Figure 4.29-4.31 shows that inside the coffee pod the hydraulic head

linearly decreases along the vertical direction, meaning that the pressurised water,

entering the filter at 6, 9, 11 bar, exits respectively with a pressure of 2, 3, 3.5 bar,

approximately. These are quite reasonable results that are in good agreement with

laboratory measurements and other simulation results. From this preliminary result,

we can conclude that the proposed discretisation technique is a good tool for such a

kind of problem and it deserves further explorations in two main directions: i) the

discretisation of the full espresso percolation problem, ii) a detailed validation against

laboratory measurements and simulation data obtained with other computational

tools.
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Figure 4.29: Left: representation of the simulated hydraulic head in the coffee pod

C, at time t = τ . Right: representation of the simulated hydraulic head in a vertical

section of the coffee pod C, at time t = τ . Both the figures refers to incoming water

pressurised at 6 bar.
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Figure 4.30: Left: representation of the simulated hydraulic head in the coffee pod

C, at time t = τ . Right: representation of the simulated hydraulic head in a vertical

section of the coffee pod C, at time t = τ . Both the figures refers to incoming water

pressurised at 9 bar.
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Figure 4.31: Left: representation of the simulated hydraulic head in the coffee pod

C, at time t = τ . Right: representation of the simulated hydraulic head in a vertical

section of the coffee pod C, at time t = τ . Both the figures refers to incoming water

pressurised at 11 bar.
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4.4 Analysis and comparison of the results

In this chapter, we presented the results of numerical simulations based on the

two models proposed in Sections 2.3, 2.4.

The 3D model detailed in Section 2.3 is a complete model for the prediction

of all the main physico-chemical processes occurring during the coffee extraction.

This model can describe both the extracted substances at the end of the extraction

and the dynamics of the water flow, as well as the heat transport. Being a full

model, it has complete predictive power; however, it has the disadvantage of

being very complex to implement from scratch. On the contrary, the reduced

model described in Section 2.4, has the advantage of an easy implementation

but, on the other hand, it can only predict the amount of extracted substances.

Furthermore, this model does not take into account the pressure and temperature

of the incoming water, so it is suitable for extraction’s global predictions such as the

EY prediction. Consequently, such a model can be profitably exploited to pursue

the coffee industry’s sustainability goals. It is instead not appropriate for achieving

the beverage customisation, for which the 3D model is particularly suitable.

We proposed two different numerical approximation schemes for the reduced

percolation model, whose implementation was fully managed in MATLAB. More

precisely, in Section 4.1.1 we described a finite difference approximation scheme

and we used such a scheme for the prediction of both EY and extracted substances.

In particular, we used two types of coffee for the EY forecasting. The results of

the simulations show a quite good agreement between the numerical and real EY,

mainly for the Cibao Altura coffee. In addition, we selected two of the most famous

substances affecting the health-related properties of espresso coffee: caffeine and

chlorogenic acids. In this case, the results of the simulation are very satisfactory

showing an interesting predictive power of such a model, meaning that when

simulating more than one substance, the modelling of the reaction rate can actually

reflects the substances interactions. Then, in Section 4.1.2 we proposed a RBF-

based approximation scheme for the EY prediction. Numerical simulations were

performed with the same Modœtia coffee samples, as these are the ones for which
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the finite difference approach gave the less precise outcomes. The results of the

numerical simulations show that the RBF-based scheme provides better accuracy

in terms of extraction efficiency.

In Section 4.2 we showed the calibration and validation of the 3D model by

comparing the numerical and laboratory results of the extracted chemical species,

and using two types of different coffee (Arabica and Robusta). The numerical

simulations were performed with the software FeFlow Demo 7.2 [77]. A set of

substances between the most affecting the coffee taste and health-related properties

has been selected, i.e., caffeine, chlorogenic acids, trigonelline, citric acid, acetic

acid, tartaric acid, ferulic acid, and lipids. A large extraction campaign has been

dedicated to the model calibration. A dedicated set of extractions has been dedicated

to the model validation. The comparison between numerical and laboratory results

shows an extremely good correspondence for some species and a generally good

behaviour for all the species, with a mean error in the predictive power around 10%

in most cases.

Finally, in Section (4.3) we proposed an RBF-based approximation scheme for

the equation governing the water dynamics in the 3D study case. More precisely, we

simulated the hydraulic head behaviour with diferent values of the initial pressure

of the incoming water. The results show that the pressurised water exits the coffee

pod at approximately double or triple the atmospheric pressure. These preliminary

results are quite reasonable and they are in good agreement with numerical data

obtained with the finite element computational tool. Thus, this approximation

scheme is a promising tool for flow problems and it deserves further exploration in

order to discretise the full espresso coffee percolation problem.





Final discussion and conclusions

The thesis focuses on the study of the espresso coffee extraction process and the

corresponding modeling tools. More precisely, we discussed percolation in porous

media and we presented two model for the prediction of the coffee extraction. The

3D model takes into account the fluid flow of water into the ground coffee and the

consequent dissolution of chemical species, as well as the heat transport. This is a

full model capable to predict all the main phenomena occurring in the extraction

process. So, such a model is suitable for achieving the beverage personalisation aim

of coffee industry. In addition, we studied a reduced percolation model predicting

the amount of extracted substances. This model neglects the dynamics of the

pressure and of the temperature of the incoming water.

The numerical approximation of the reduced model is based on two different

approximation schemes. The finite difference approach is used to predict both

the EY and the extracted substances. The comparison of the numerical and real

EY shows that the model can follow the real behaviour of the extraction process

in terms of extraction efficiency, mainly for the Cibao Altura coffee. Moreover,

we predicted two of the most important substances affecting the health-related

properties of espresso coffee: caffeine and chlorogenic acids. In this case, the results

show that the model is able to predict the amount of the extracted substances with

great precision. To this aim, the strength of the reduced model is the reaction terms

where the reaction rate can actually reflects the substances interactions. In the

other approach, the RBF-based approximation scheme is used to predict the EY on

the Modœtia coffee samples for which the finite difference approach gave the less

precise results. The results obtained with this second approach show an improved

163
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accuracy in terms of extraction efficiency with respect to the results obtained with

the finite difference scheme. Thus, the reduced model is suitable for the global

prediction of the extraction, such as the EY prediction. So that it is a good tool for

the sustainability purposes of coffee industry. Two main future refinements have to

be considered to obtain an effective and reliable simulation tool: (i) improvement of

the numerical procedure by taking into account the particular forms of the reaction

terms; (ii) improvement of the validation of the percolation model; in particular,

it would be interesting to investigate through a wider extraction campaign the

correlation between Darcy’s flux and variations in pressure and temperature, and

to observe the behaviour of the computed EY. The predictive power of the reduced

model make this simulation system a strategic tool for the coffee industry, as it

could actually support one of the main challenge of the coffee industry, that is the

sustainability of the coffee chain by reducing the amount of coffee powder needed

for an espresso.

The calibration and validation of the 3D model has been performed by comparing

the numerical and laboratory results of 8 extracted substances among the most

affecting the coffee taste and using two types of coffees. The comparison between

numerical simulations obtained with the software FeFlow Demo 7.2 and laboratory

results shows an extremely good agreement for some species and a global good

behaviour for all the chemicals, with a mean error around 10% in most cases. The

present study considered several extraction conditions and granulometries in proper

admissible ranges; however, it has some limitations that should be analysed in

future pre-commercial trials. In particular, the following factors influencing the

chemical characteristics of EC have been considered stable or of negligible influence

during the extraction campaign. The tamping pressure is fixed at a value that is the

mean value obtained during coffee preparation by skilled baristas. Coffee extraction

is also influenced by environmental factors, whose variability has been reduced as

much as possible in this study since samples have been prepared in a few hours and

with macroscopic characteristics of the laboratory fairly constant. The repeatability

of the results should be tested against larger variability of the environmental factors,

such as ambient temperature, air humidity and water quality. Of course, the
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extraction equipment also plays a relevant role and a high-quality espresso machine

and grinder have been chosen for this study, but other equipment available on the

market should also be considered. The whole extraction procedure, involving the

proper settings and treatment of the raw material, has been executed by experienced

baristas, who significantly limit human error; this is essential to ensure consistency

and repeatability of the results. Finally, only pure coffee variety are considered,

discarding blends, for which the chemical characterisation is assumed to follow the

linear interpolation of the results of this study, but also such an assumption has to

be experimentally assessed.

Future studies have to further enhance the predictability of the model by

refining some aspects: firstly, the less accurate species such as acetic acid and lipids

deserve a deeper investigation on their variability and on the modelling of the

corresponding reaction terms; moreover, an in-depth study on fines would enlarge

the applicability area of the model, giving information on the appreciated “crema”

of EC and providing the capability to simulate the creation of the compact layer

and connected critical situations, such as the clog of the filter. The good predictive

capabilities of the 3D model make this simulation system a key tool for the coffee

market, as it could actually support the one of the current main challenges of the

coffee industry, which is the personalisation of the coffee beverage.

An RBF-based approximation scheme has been also proposed and used for the

discretisation of the equation modelling the water dynamics in the 3D model. In

particular, we predicted the hydraulic head behaviour varying the initial pressure

of the incoming water. The preliminary results are quite reasonable and in good

agreement with the numerical data obtained with the finite element tool. So, this

is a promising approximation strategy that deserves further exploration in order to

obtain a proprietary computational tool for the complete 3D model of the coffee

percolation process.

Finally, the work of the present thesis, properly tested and validated, represents

a really powerful tool for the coffee industry. It paves the way for an effective control

strategy of the extraction process. Such tool constitutes the scientific basis for

the personalisation of the beverage according to the customers’ tastes and for the



166 CHAPTER 4. FINAL DISCUSSION AND CONCLUSIONS

optimisation of the consumption of raw materials in order to achieve sustainability

goals of coffee market. This, with an even more visionary outlook, can be translated

in the realisation of a digital twin controlling all the extractions; the underlying

idea of which is the control of all extractions performed by all physical extraction

machines remotely connected to the twin.
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