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ON THE PONTRYAGIN MAXIMUM PRINCIPLE

UNDER DIFFERENTIAL CONSTRAINTS OF HIGHER ORDER

FRANCO CARDIN CRISTINA GIANNOTTI ANDREA SPIRO

Abstract. Exploiting our previous results on higher order controlled Lagrangians in

[Nonlinear Anal. 207 (2021), 112263], we derive here an analogue of the classical first

order Pontryagin Maximum Principle (PMP) for cost minimising problems subjected

to higher order differential constraints dkxj

dtk
“ f j

`
t, xptq, dx

dt
ptq, . . . , dk´1x

dtk´1
ptq, uptq

˘
, t P

r0, T s, where uptq is a control curve in a compact set K Ă R
m. This result and its proof

can be considered as a detailed illustration of one of the claims of that previous paper,

namely that the results of that paper, originally established in a smooth differential

geometric framework, yield directly properties holding under much weaker and more

common assumptions. In addition, for further clarifying our motivations, in the last

section we display a couple of quick indications on how the two-step approach of this

paper (i.e., a preliminary easy-to-get differential geometric discussion followed by a

refining analysis to weaken the regularity assumptions) might be fruitfully exploited

also in the context of control problems governed by partial differential equations or in

studies on the dynamics of controlled mechanical systems.

1. Introduction

In our previous paper [6], we considered the notion of controlled Lagrangians of higher

order and, developing the differential geometric approach proposed in [5], we proved

that – under certain strong regularity assumptions – a generalised version of the classical

Pontryagin Maximum Principle (PMP) holds for control problems with higher order con-

straints of Euler-Lagrange type. Roughly speaking, on the one hand the results of [6] can

be considered as generalisations to controlled Lagrangians of arbitrary order of certain

facts on the first order Lagrangians, which were established by Ioffe and Tihomirov in

their elementary proof of the PMP [9]. On the other hand, the results in [6] stem from a

fresh differential geometric approach to variational problems – rooted in Stokes’ Theorem

– which we think will reveal to be a fruitful addition to the traditional Hamiltonian tool

box of control theory. In fact, our differential geometric approach, involving controlled

Lagrangians rather than controlled Hamiltonians, admits straightforward generalisations

in settings where several independent variables are involved [11] and/or lead to appli-

cations of the Noether Theorem on differential constraints with symmetries [12]. We

therefore consider it much better suited than the traditional Hamiltonian approach for

dealing with control problems in Continuum Mechanics (where systems are governed by
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partial differential equations) or for discussions on the dynamics of controlled systems,

where information on symmetries and conservation laws can be exploited.

In this paper we use the above mentioned results of [6] to derive in a direct way an

analogue of the classical PMP for cost minimising problems subjected to higher order

differential constraints of the form dkxj

dtk
“ f j

`
t, xptq, dx

dt
ptq, . . . , dk´1x

dtk´1 ptq, uptq
˘
, t P r0, T s,

with uptq control curve in a compact set K Ă R
m. The contents of this paper can be

taken as a detailed illustration of a claim we made in [6] (see also [5]), namely that,

despite the fact that those results were established under strong regularity assumptions

on solutions and control curves, they can be nonetheless used to directly derive results

that hold under much weaker regularity conditions.

The class of controlled problems to which this paper is devoted is described in detail

as follows. Consider the evolutions x “ pxiq : r0, T s Ñ Q “ R
n of a controlled dynam-

ical system on a fixed time interval r0, T s and the cost minimising problem, which is

determined by the following three ingredients:

– a family of (possibly measurable) curves u : r0, T s Ñ K Ă R
m, uptq “ puaptqq with

values in a compact set K Ă R
m, playing the role of the control curves for the system;

– a system of k-th order differential constraints of the form

dkxj

dtk
“ f j

ˆ
t, xptq, dx

dt
ptq, . . . , d

k´1x

dtk´1
ptq, uptq

˙
(1.1)

and a set Ainit of standard pk ´ 1q-th order initial conditions s such that the following

holds: for each pair U “ puptq, sq there exists a unique associated solution xpUqptq on

r0, T s satisfying (1.1) and the initial condition s;

– a C1 terminal cost function C “ C

´
xpT q, dx

dt
pT q, . . . , dk´1x

dtk´1 pT q
¯
, which depends on the

pk ´ 1q-th order jets at the final time t “ T of the solutions xpUqptq.

For a fixed so P Ainit, a curve uoptq in K, for which xoptq “ xpuoptq,soqptq has minimal cost

among the controlled curves with identical initial condition so, is called optimal control.

If k “ 1 and f “ pf ipt, x, uqq is a function on a set of the form r0, T sˆΩˆK, with Ω Ă R
n

open, which is continuous and continuously differentiable with respect to x, the described

problem of determining optimal controls is one of the Mayer problems, to which the

classical Pontryagin Maximum Principle (PMP) applies (see e.g. [13, 2, 4, 7, 8, 9, 17] and

references therein). Let us briefly recall it. If k “ 1, given a pair Uo “ puoptq, soq, let us
denote by xoptq “ xpUoqptq P Q the corresponding controlled curve and by poptq “ ppoiptqq,
t P r0, T s, the unique curve in Q˚ » Rn satisfying the linear differential equations

9pj ` pi
Bf i
Bxj

ˇ̌
ˇ
pt,xoptq,uoptqq

“ 0 with the terminal condition pjpT q “ ´ BC
Bxj

ˇ̌
ˇ
xopT q

(1.2)

(here and throughout the paper we follow the Einstein convention on summations). Fur-

ther, for any fixed τo P r0, T s, let H “ Hpso,uo,τoq : K Ñ R be the Pontryagin function

defined by

Hpso,uo,τoqpωq :“ poipτoqf ipτo, xopτoq, ωq . (1.3)

The classical PMP states that if uoptq is an optimal control for the considered cost prob-

lem, then Hpso,uo,τoqpuopτoqq “ maxωPK Hpso,uo,τoqpωq for almost all choices of τo P r0, T s.
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In many interesting cases this famous necessary condition is so restrictive that can be

used to completely determine the optimal controls.

It is quite simple to check that, given a pair Uo “ puoptq, soq, at a fixed choice of time

to P r0, T s, the equations which give the differential constraints on the x and the associ-

ated system on the p coincide with the Euler-Lagrange equations at to of the (degenerate)

first order Lagrangian

Lpuo,toqpt, x, 9x, pq :“ pjp 9xj ´ f jpt, x, uoptoqqq .

The function Lpt, x, 9x, p, uq “ pjp 9xj ´ f jpt, x, uqq, which gives the Lagrangians Lpuo,toq,

is called the controlled Lagrangian of the considered control problem ([5, 6]). We also

recall that for any fixed τo P r0, T s, the Pontryagin function H “ Hpso,uo,τoq is maximised

exactly where the function

Ppso,uo,τoqpωq :“ ´L
`
τo, xopτoq, 9xopτoq, popτoq, ω

˘
(1.4)

is maximised. Indeed, the difference Ppso,uo,τoqpωq ´ Hpso,uo,τoqpωq is equal to

´pojpτoq 9x
j
opτoq, a real number which is independent of ω. This remark is at the

basis of the so-called Lagrangian version of the PMP (see e.g. [9]).

We may now present the higher order analog of all this. Consider a con-

trol problem with differential constraints of the form (1.1) and a cost function

C “ C

´
xpT q, dx

dt
pT q, . . . , dk´1x

dtk´1 pT q
¯
. Assume that f “ pf iq satisfies the following

conditions:

(α) it is Ck´1;

(β) its partial derivatives of order k ´ 1 are continuously differentiable with respect to

each argument different from t and u “ puaq

(note that pαq and pβq reduce to the assumptions of the classical PMP when k “ 1).

Then, consider n auxiliary dual variables p “ ppiq P Q˚ » R
n and the controlled

Lagrangian of order k on the jets of curves in Q ˆ Q˚ » R
2n defined by

L

ˆ
t, x,

dx

dt
, . . . ,

dkx

dtk
, p, u

˙
:“ pj

ˆ
dkxj

dtk
´ f j

´
t, x,

dx

dt
, . . . ,

dk´1x

dtk´1
, u
¯˙

. (1.5)

As before, for each fixed pair Uo “ puoptq, soq, given by a control curve uoptq and an

initial condition so, we denote by pxoptq, poptqq P Q ˆ Q˚ the unique curve which solves

the Euler-Lagrange equations of the Lagrangian

Lpuo,toq

ˆ
t, x,

dx

dt
, . . . ,

dkx

dtk
, p

˙
:“ L

ˆ
t, x,

dx

dt
, . . . ,

dkx

dtk
, p, uoptoq

˙

at each fixed to P r0, T s (they are explicitly given in (1.1) and (2.6)) and satisfying the

end-point conditions defined as follows. The curve xoptq satisfies the initial condition at

t “ 0 given by so, while poptq satisfies the terminal conditions at t “ T listed below (here,

xpsq stands for the s-th order derivative xpsq :“ dsx
dts

and D
Dt

denotes the total differential
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derivative with the term in du
dt

removed – see (2.2) for the explicit definition):

pi|t“T “ BC
Bxipk´1q

ˇ̌
ˇ̌
ˇ
jk´1
T pxoq

, (1.6)

...

dℓpi

dtℓ

ˇ̌
ˇ̌
t“T

“
˜

p´1qℓ BC
Bxipk´1´ℓq

`
ℓ´1ÿ

h“0

p´1qℓ`h Dh

Dth

˜
pm

Bfm
Bxipk´ℓ`hq

¸¸ˇ̌
ˇ̌
ˇ
j2k´3
T pxoq

, (1.7)

...

dk´1pi

dtk´1

ˇ̌
ˇ̌
t“T

“
˜

p´1qk´1 BC
Bxi `

k´2ÿ

h“0

p´1qk´1`h Dh

Dth

˜
pm

Bfm
Bxiph`1q

¸¸ˇ̌
ˇ̌
ˇ
j2k´3
T pxoq

. (1.8)

We remark that, for each curve xoptq solving the equations (1.1), the corresponding

differential problem on the pjptq is meaningful provided that all derivatives of xoptq up to

order 2k´2 are at least almost everywhere defined. This is trivially true when k “ 1 and

uoptq is measurable, but when k ą 1 other assumptions are needed. For this reason, we

impose the following condition, which implies the desired property for any k (see Lemma

5.4):

(γ) uoptq is measurable and, if k ą 1, it satisfies the additional requirements:

– it is piecewise Ck´1;

– each derivative uopℓqptq, 1 ď ℓ ď k´1, takes values in a fixed compact setKpℓq Ă R
m.

Finally, for any fixed τo P r0, T s, we define

Hpso,uo,τoq : K Ñ R , Hpso,uo,τoqpωq :“ pojpτoqf j
`
τ, xopτoq, . . . , xopk´1qpτoq, ω

˘
. (1.9)

We may now state the result we are interested in:

Theorem 1.1. Assume that f satisfies pαq and pβq and that uoptq satisfies pγq. Then

uoptq is an optimal control only if for almost all τo P r0, T s

Hpso,uo,τoqpuopτoqq “ max
 
Hpso,uo,τoqpωq , ω P K

(
. (1.10)

If f is C8 and the family of the control curves in which uptq is allowed to vary is assumed

to be the class of the C8 curves, the proof of (1.10) is very short and elementary – it is

essentially a direct consequence of [6, Cor.7.7].

An alternative way (but undoubtfully not direct) to prove Theorem 1.1 demands a

translation of the whole setting into a corresponding problem with first order constraints,

to which the classical PMP can be applied. More precisely, one first needs to introduce

n ˆ pk ´ 1q auxiliary variables, say y1 “ pyi1q, . . . , yk´1 “ pyik´1q, and translate the

constraints (1.1) into the system of first order constraints

dxi

dt
“ yi1 ,

dyi1
dt

“ yi2 ,
dyi2
dt

“ yi3 , . . .
dyik´2

dt
“ yik´1 ,

dyik´1

dt
“ f i pt, xptq, y1, . . . , yk´1, uptqq .

(1.11)
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Then, by introducing another set of additional variables

rp0 “ prp0|iq , rp1 “ prp1|iq , . . . , rpk´1 “ prpk´1|iq ,

(dual to the variables y0 “ pyi0 “ xiq, y1 “ pyi1q, . . . , yk´1 “ pyik´1q), one may con-

siders an appropriate Pontryagin function H1pso,uo,τoq and a set of necessary conditions

on optimal controls, which are directly implied by the classical PMP with first order

constraints. Such conditions turn out to be different from those of Theorem 1.1. In fact,

they involve a larger number auxiliary variables in the definition of the testing function

(1.9). Nonetheless, with little additional effort, one can come back to the differential

constraints on the auxiliary functions and replace each of them in an appropriate way.

At the end one reaches a testing function involving a minimal set of auxiliary variables,

namely the above defined function (1.10).

The main purpose of this paper is to show that, instead of adopting the above men-

tioned back and forth type argument (namely, introducing new auxiliary variables with

the purpose of completely removing them in a second time) Theorem 1.1 can be proved

in a direct way, by just extending to low regularity settings the simple differential geo-

metric arguments – based on Stokes’ Theorem and of the Principle of Minimal Labour

[5] – that hold when there are no restrictions on the level of regularity. In this paper the

extensions to low regularity settings are reached by standard approximation techniques

(similar to those considered by Gamkrelidze for first order control problems, see e.g. [8])

together with a couple of ad hoc lemmas for estimating variations of costs. All arguments

are in principle quite simple but demand a number of tedious checks. Aiming to make

the proof self-contained and ready to be used in future works, all proofs are presented

in great detail. This is done also with the hope the proof can be taken as a convincing

illustration that an approach to control problems, structured into

‚ a preliminary easy-to-get differential geometric proof, made under strong regularity

assumptions, followed by

‚ a second step in which the previous claims are improved to new statements that are

true under a minimal set of regularity assumptions,

can be fruitfully exploited in much more involved contexts of control theory. A couple of

examples of settings where such two-step approach might provide interesting results are

given in the last section.

Remark 1.2. The approach we followed for our proof of Theorem 1.1 made us aware

that the minimal (or, more precisely, very close to the minimal) set of regularity con-

ditions to be imposed is that the function f “ pf iq satisfies the conditions pαq and pβq
and the control curve uoptq satisfies pγq. Such conditions become progressively weaker if

the order of the system is reduced by introducing auxiliary variables. This phenomenon

can be synthesised by saying that the stronger are the regularity properties of the differ-

ential constraints, the fewer auxiliary variables need to be considered. This property was

unexpected to us and can be taken as an interesting by-product of our approach.

The paper is structured as follows. After a preliminary section, in § 3 we review certain

basic notions and results given in [6]. In § 4 we present the two main lemmas that allow

using approximations to extend the results of [6] to problems with weaker regularity
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assumptions. The proofs of Theorem 1.1 and of parts of the two main lemmas are given

in § 5 and § 6, respectively. Suggestions for further investigations are given in §7.

Acknowledgements. We are sincerely grateful to the referee for her/his accurate reading

and very nice and useful suggestions to improve the presentation.

2. Preliminaries

2.1. Notational issues. The standard coordinates of the ambient space Q “ R
N are

usually denoted by q “ pqiq. When Q is even dimensional and of the form Q “ Q ˆ Q˚

for some Q “ R
n, the coordinates are indicated as pairs q “ px, pq, with x “ pxiq P Q

and p “ ppjq P Q˚. The elements of the controls set K Ă R
m are m-tuples u “ puaq.

Given a k-times differentiable curve qptq P Q, t P I Ă R, its r-th order derivative is often

indicated with the short-hand notation

qprqptq :“
´
qiprqptq

¯
“
ˆ
drqi

dtr

ˇ̌
ˇ̌
t

˙
. We also set qp0qptq :“ qptq .

Accordingly, the r-th order jet of a curve γptq :“ pt, qptqq P R ˆ Q is denoted by

jrt pγq “ pt, qptq, qp1qptq, . . . , qprqptqq “ pt, qpsqptqq . (2.1)

The manifold of all r-th order jets of curves, i.e. the jet bundle of order r of the (trivial)

bundle R ˆ Q over R, is denoted by JrpQ|Rq.
If g : JrpQ|Rq ˆK Ñ R is a smooth function of pairs pjrt pγq, uq, formed by a r-th order

jet of a curve γptq :“ pt, qptqq and a control u P K, we denote by Dg
Dt

the smooth real

function on Jr`1pQ|Rq ˆK defined by

Dg

Dt

ˇ̌
ˇ̌
pjk`1

t pγq,uq

:“ Bg
Bt

ˇ̌
ˇ̌
pjrt pγq,uq

`
rÿ

ℓ“0

Nÿ

i“1

qipℓ`1q

Bg
Bqipℓq

ˇ̌
ˇ̌
pjrt pγq,uq

. (2.2)

Note that D
Dt

differs from the total derivative for the sections of π : JrpQ|Rq ˆ K Ñ R

only because the term uap1q
B

Bua is missing. We can also say that the operator D
Dt

is the

pull-back on JrpQ|Rq ˆK of the classical total derivative operator d
dt

of JrpQ|Rq.

2.2. Generalised Mayer problems with constraints of variational type. As we

mentioned in the Introduction, any k-th order control system (1.1) on curves xptq can be

considered as a sub-system of the Euler-Lagrange equations of an appropriate controlled

k-th order Lagrangian for curves of the form t ÞÑ pxptq, pptqq “ pxiptq, pjptqq with the

curve t ÞÑ pptq in an appropriate auxiliary space. Despite of the fact that (1.1) has order

k, the full Euler-Lagrange system contains equations of order 2k (see §2.3). Moreover,

a solution t ÞÑ pxptq, pptqq, t P r0, T s, of the controlled Euler-Lagrange equations is

determined not only by the pk ´ 1q-th order jet σpxq of xptq at t “ 0 and by the control

curve uptq, but also by the p2k´1q-th order jet σppq at t “ 0 of the curve pptq. Since in the

curve pxptq, pptqq only the part xptq is relevant for the cost problem, the part of the initial

datum σ for the curve pxptq, pptqq, which is not determined by xptq, is freely specifiable

and can be considered as an additional “controlling datum” for the problem on the curves

pxptq, pptqq. In [6] we developed a theory of control problems with (smooth) differential

constraints of variational type, which not only works for the classical first order Mayer
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problems and the cost problems of this paper, but it is designed to be applicable to other

contexts. With such second aim in mind and on the basis of the previous observation, in

[6] we were naturally led to consider the following definition (see also [5]).

A generalised Mayer problem with smooth constraints of variational type of order k (for

short, generalised Mayer problem) is a cost minimising problem determined by a triple

pK, L,Cq of the following kind.

‚ K is a set of control pairs U “ puptq, σq, given by:

a) a smooth curve u : r0, T s Ñ K Ă R
m with values in a compact subset K Ă R

m;

b) a p2k ´ 1q-jet σ “ j2k´1
t“0 pγq at t “ 0 of a smooth curve t ÞÑ γptq “ pt, qiptqq.

The jets σ of these pairs are constrained to be elements of a fixed set Ainit ‰ H.

‚ A (smooth) controlled Lagrangian L “ Lpt, qpsq, uq of order k, i.e. a C8 function

L : JkpQ|Rq ˆK Ñ R

for which the following property holds: for each control pair U “ puptq, σq P K, there

exists exactly one curve γptq “ pt, qiptqq, t P r0, T s, with j2k´1
t“0 pγq “ σ and satis-

fying the Euler-Lagrange equations of the higher-order Lagrangian Lpu,toqpt, qpβqq :“
Lpt, qpβq, uptoqq at each time to P T , i.e. the equations

EipLq|pj2kpγptqq,uptqq :“

“ BL
Bqi

ˇ̌
ˇ̌
pj2kpγptqq,uptqq

`
kÿ

β“1

p´1qβ
ˆ
D

Dt

˙β
˜

BL
Bqipβq

¸ ˇ̌
ˇ̌
pj2kpγptqq,uptqq

“ 0 , i “ 1, . . . , N , (2.3)

where D
Dt

is the operator defined in (2.2). This curve is denoted γpUqptq.
‚ A (smooth) terminal cost function C : J2k´1

t“T pQ|Rq Ñ R.

The equations (2.3) are called differential constraints of the triple pK, L,Cq and the curves

γpUq, with U “ puptq, σqq P K, are called K-controlled curves.

A triple pK, L,Cq as above is called a defining triple. The problem of determining

the K-controlled curves γpUoq, Uo P K, for which the terminal cost Cpj2k´1
t“T pγpUoqqq is

minimal, is called the generalised Mayer problem corresponding to the triple. The pairs

Uo “ puoptq, σoq giving the cost minimisation curves are called optimal controls.

In the next section §2.3, we explain how these notions are well fitted with the cost

problems described in the Introduction.

Throughout the paper we restrict our discussion to the defining triples pK, L,Cq satis-
fying the following additional technical hypothesis. We assume that there exists an open

convex superset pK Ľ K such that, denoting by pK Ľ K the family of pairs U “ puptq, σq
with uptq in pK but initial condition σ as in K, there still exists a unique solution to (2.3)

for any U P pK. The curves of this larger family are called pK-controlled.

2.3. Defining triples for the cost problems of this paper. Assume that all data

of one of the cost minimisation problem of the Introduction are of class C8. We claim

that in this case it is equivalent to the generalised Mayer problem given by the following

defining triple pK, L,Cq. Consider the configuration space Q “ Q ˆ Q˚ with Q “ R
n and
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coordinates px, pq “ pxi, pjq, as specified in §2.1. The controlled Lagrangian L and the

cost function C are the maps

Lpt, x, xp1q, . . . , xpkq, p, uq “ pj

ˆ
x
j
pkq ´ f jpt, x, xp1q, . . . , xpk´1q, uq

˙
and

C “ C
`
xpT q, xp1qpT q, . . . , xpk´1qpT q

˘
, (2.4)

where f “ pf jq is the function that gives the constraints (1.1) and C is the cost of the

Introduction, which depends only on the pk ´ 1q-th order jet at t “ T of the part xptq of

the γptq “ pt, xptq, pptqq P r0, T s ˆ Q ˆ Q˚. Note that, even if C depends only on the jets

of order k ´ 1, it can be trivially considered as a function on the space of p2k ´ 1q-jets
and hence is subsumed by the general notion of terminal cost function considered in [6].

Finally, the set K consists of the pairs U “ puptq, σ “
`
s,rsq

˘
where: (a) s is an initial

condition in a prescribed set Ainit Ă Jk´1pQ|Rq|t“0 for the curve xptq; (b) rs is an initial

condition (which can be freely chosen) for the curve pptq.

To show that the problem determined by pK, L,Cq is equivalent to our original cost

minimising problem, we first observe that the differential constraints determined by

pK, L,Cq are given by the controlled Euler-Lagrange equations (which are of normal

type)

EpipLq|pt,j2kt pγq,uptqq :“

“ BL
Bpi

ˇ̌
ˇ̌
pt,j2kt pγq,uptqq

`
kÿ

β“1

p´1qβ
ˆ
D

Dt

˙β ˆ BL
Bppβqi

˙ ˇ̌
ˇ̌
pt,j2kt pγq,uptqq

“

“ xipkq ´ f ipt, xi, xip1q, . . . , x
i
pk´1q, u

aq “ 0 , (2.5)

ExipLq|pt,j2kt pγq,uptqq :“

“ BL
Bxi

ˇ̌
ˇ̌
pt,j2kt pγq,uptqq

`
kÿ

β“1

p´1qβ
ˆ
D

Dt

˙β
˜

BL
Bxipβq

¸ ˇ̌
ˇ̌
pt,j2kt pγq,uptqq

“

“ p´1q´k

#
pj

Bf j
Bxi ´ D

Dt

˜
pj

Bf j
Bxip1q

¸
` D2

Dt2

˜
pj

Bf j
Bxip2q

¸
`

` . . . ` p´1qk´1 D
k´1

Dtk´1

˜
pj

Bf j
Bxipk´1q

¸+ ˇ̌
ˇ̌
pt,j2k´2

t pγq,uptqq

´ ppkqi “ 0 . (2.6)

We immediately see that (2.5) coincides with the differential constraints (1.1). This fact

together with the fact that C is independent of pptq “ ppjptqq implies the claimed equiv-

alence between our cost minimising problem and the problem determined by pK, L,Cq –

at least in the case of smooth data.

In the next sections, we establish some preliminary results on generalised Mayer prob-

lems. We will come back to this specific one in §5.

2.4. Differential constraints of normal type. The smooth higher order constraints

(2.3) of a generalised Mayer problem are called of normal type if, using an appropriate
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number of auxiliary variables, they can be reduced to a first order system of the type

dyA

dt
“ gApt, yB , uaptqq , 1 ď A ď rN , (2.7)

where the gA are functions uniquely determined by the L of the defining triple. For such

constraints, we denote by pKmeas (Ľ pK) the set of the pairs U “ puptq, σq, in which the

control curve uptq in pK is merely measurable. The corresponding curves γpUq (they exist

by well known facts on first order equations) are called pKmeas-controlled.

Some well-known properties of controlled first order differential equations (see e.g. [4,

Ch. 3]) have useful direct counterparts for the higher order constraints of this kind. We

collect them in the next lemma, where we prove a Gronwall-type result for generalised

Mayer problems of normal type, namely that two controlled curves are close whenever

their initial conditions and controls are close. In the statement the following notation is

used. For any pair of measurable control curves u, u1 : r0, T s Ñ pK we denote by distpu, u1q
the distance

distpu, u1q :“ µLeb
`  

t P r0, T s : uptq ‰ u1ptq
( ˘

, (2.8)

where µLeb is the Lebesgue measure on the subsets of r0, T s. We also use the jets coordi-

nates (2.1) to identify J2k´1pQ|Rq|t“0 » R
2kN`1 and we use the classical Euclidean norm

of R2kN`1 to define distances |σ ´ σ1| between initial conditions σ, σ1 P Ainit.

Lemma 2.1. Let pK, L,Cq be a defining triple, giving differential constraints of order

2k of normal type, i.e. equivalent to first order equations of the form (2.7). Assume also

that the initial conditions in Ainit are in bijection with a set rAinit of initial conditions for

the problem (2.7) by means of a Lipschitz continuous map.

Given a pKmeas-controlled curve γoptq “ γpUoqptq “ pt, qoptqq, with Uo “ puoptq, σoq P
pKmeas, there exist constants ρ, κ,C, C1 ą 0 such that for any U “ puptq, σq, U 1 “
pu1ptq, σ1q P pKmeas with

|σ ´ σo|, |σ1 ´ σo| ă ρ , distpu, uoq, distpu1, uoq ă ρ ,

the corresponding curves γpUq, γpU 1q : r0, T s Ñ r0, T s ˆ Q are such that

}γpUq ´ γpU 1q}C2k´1 ď c distpu, u1q ` κ|σ ´ σ1| with c :“ 4Ce2C
1T . (2.9)

The constants ρ, κ,C, C1 depend only on

(a) the Lipschitz constant of the bijection between Ainit and rAinit;

(b) the function g “ pgAq and thus the controlled Lagrangian L;

(c) the choice of a cut-off function ϕ : R ˆ R
rN Ñ R, which is identically equal to 1 on

a relatively compact neighbourhood N Ă R
rN`1 of the trace of the curve rγo : r0, T s Ñ

r0, T s ˆ R
rN , which solves (2.7) and corresponds to γoptq “ pt, qoptqq in r0, 1s ˆ Q.

Proof. Let rγo “ pt, yAo ptqq, N and ϕ as in (c) and denote by rσo :“ pyAo p0qq the initial

condition of rγo. The curve rγo is a solution not only to (2.7), but also to the system

dyA

dt
“ hApt, yB , uaptqq where hApt, yB , uaptqq :“ ϕpt, yBq gApt, yB , uaptqq . (2.10)
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By construction, h|N “ g|N and there are constants C,C1 ą 0 (depending on g and ϕ)

such that

sup
pt,y,ωqPR1`ĂN ˆ pK

|hApt, y, ωq| ď C , sup
pt,y,ωqPR1`ĂN ˆ pK

›››››
BhA
ByB

ˇ̌
ˇ̌
pt,y,ωq

››››› ď C1 .

By classical arguments based on Gronwall Lemma (see e.g. [4, Prop. 3.2.2]), for any

two solutions rγpu,rσqptq “ pt, ypu,rσqptqq and rγpu1,rσ1qptq “ pt, ypu1,rσ1qptqq of (2.10), which are

determined by pairs pu, rσq, pu1, rσ1q, given by measurable curves uptq, u1ptq P pK and initial

conditions rσ, rσ1 P rAinit, we have that

}ypu,rσq ´ ypu1,rσ1q}C0 ď c distpu, u1q ` |rσ ´ rσ1| with c :“ 4Ce2C
1T .

Therefore if distpu, uoq, distpu1, uoq, |rσ´ rσo| and |rσ1 ´ rσo| are sufficiently small, then both

curves rγpu,rσq, rγpu1,rσ1q have trace in N and are solutions to (2.7). Since the bijection from

Ainit to rAinit is Lipschitz, there is a κ ą 0 such that |rσ ´ rσ1| ď κ|σ ´ σ1| and the lemma

follows.

Remark 2.2 (Stability under perturbation). The claim of Lemma 2.1 has the following

extension, which is later used in the proof of our main result. Consider a one-parameter

family of defining triples pK, Lpδq, Cpδqq, each of them with the same set of control pairs

K, but with (smooth) Lagrangians and cost functions, depending on a real parameter

δ P p0, δos. Assume that all of such triples give generalised Mayer problems of normal

type and that the associated equivalent first order constraints

dyA

dt
“ gpδqApt, yB , uaptqq , (2.11)

are such that the functions gpδq tend uniformly on compacta, together with their first

derivatives in the yB, to a limit map gpt, yB , uq “ limδÑ0 g
pδqpt, yB , uq. This limit map is

clearly continuous and continuously differentiable with respect to the yB.

Consider now a pair Uo “ puoptq, σoq P pKmeas and the uniquely associated solution

rγoptq “ pt, yAo ptqq to

dyA

dt
“ gApt, yB , uaoptqq , (2.12)

with initial condition given by the point rσo corresponding to σo. Considering a neigh-

bourhood N and a cut-off function ϕ as in (c) of Lemma 2.1 and setting

hpδqpt, yB , uaq :“ ϕpt, yBq gpδqApt, yB , uaptqq , hpt, yBq :“ ϕpt, yB , uaq gApt, yB , uaptqq ,

we have that also the hpδq and their first derivatives with respect to the yB tend uniformly

on compacta to h and to its corresponding first derivatives. Due to this, for any suffi-

ciently small interval p0, δos, it is possible to select δ-independent constants ρ, κ,C, C1 ą 0

such that the claim of Lemma 2.1 holds with such constants for any triple pK, Lpδq, Cpδqq,
δ P p0, δos.
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3. The generalised PMP for Mayer problems with smooth differential

constraints of variational type

Let pK, L,Cq be a defining triple for a generalised Mayer problem with differential

constraints of normal type. Given a control pair Uo “ puoptq, σoq P K, with associ-

ated K-controlled curve, and a triple pτo, ωo, εq P p0, T q ˆ K ˆ p0,`8q with 0 ă ε ă
min

 
1, τo

2
, T ´ τo

(
, we define

upτo,ωo,εq : r0, T s Ñ K , upτo,ωo,εqptq :“

$
’&
’%

uoptq if t P
“
0, τo ´ ε

˘
,

ωo if t P
“
τo ´ ε, τo

˘
,

uoptq if t P
“
τo, T

‰
.

(3.1)

We also select a constant 0 ă h ă 1
2
(1) and with the (in general discontinuous) curve

(3.1), we associate a smooth curve qupτo,ωo,εq : r0, T s Ñ pK satisfying the condition

qupτo,ωo,εqptq “ upτo,ωo,εqptq for any t R rτo ´ ε´ hε2, τo ´ εs Y rτo, τo ` hε2s . (3.2)

We assume that the smoothing algorithm which determines the smooth qupτo,ωo,εqptq from

the non-smooth upτo,ωo,εq is fixed (the choice of the algorithm does not matter).

We call upτo,ωo,εq the needle modification of uoptq with peak time τo, ceiling value ωo and

width ε. The associated smooth curve qupτo,ωo,εq is called the smoothed needle modification

of upτo,ωo,εq (see Fig. 1 and Fig. 2).

τo ´ ε τo T τo´ε´hε
2

τo`hε
2 T

ω ω

uoptq
uoptq

upτo,ωo,εq

uoptq
uoptq

qupτo,ωo,εq

Fig. 1 Needle modification Fig. 2 Smoothed needle modification

The (non-smooth and smoothed) needle modifications are essential ingredients for

the following definition, in which we combine the classical notion of needle variation,

developed by Boltyanski for the original proof of the classical PMP, and the concept of

homotopy variation.

Definition 3.1. Given a controlled curve γpUoqptq and a triple pτo, ωo, εoq as above, con-

sider a continuous map Σ : r0, εos ˆ r0, 1s Ă R
2 Ñ Ainit Ă J2k´1pQ|Rq|t“0 such that

Σpε, 0q “ Σp0, sq “ σo for any ε and s. Moreover, for any s P r0, 1s and ε P r0, εos, let us
denote by upε,sq (resp. qupε,sq) the control curve in the convex set pK defined by

upε,sqptq “ p1 ´ squoptq ` supτo,ωo,εqptq , s P r0, 1s (3.3)
´
resp. qupε,sqptq “ p1 ´ squoptq ` squpτo,ωo,εqptq , s P r0, 1s

¯
. (3.4)

1From now till almost to the end, such an h is a fixed number, say e.g. h “ 1

4
. Only at the very end

of §5.2, where a δ-parameterised family of Mayer problems is taken into account, this constant h will be

taking depending on δ and tending to 0 for δ Ñ 0.
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The needle variation (resp. smoothed needle variation) of γpUoq associated with pτo, ωo,

Σ, εoq is the one-parameter family of maps

Needlepτo,ωo,Σ,εoqpγpUoqq :“ t F pτo,ωo,Σqpεq : r0, T s ˆ r0, 1s Ñ r0, T s ˆQ , ε P p0, εos u (3.5)

´
resp. qNeedlepτo,ωo,Σ,εoqpγpUoqq :“ t qF pτo,ωo,Σqpεq : r0, T s ˆ r0, 1s Ñ r0, T s ˆ Q , ε P p0, εos u

¯
,

(3.6)

given by the homotopies of controlled curves

F pτo,ωo,Σqpεqpt, sq “ γpUεpsqqptq , U εpsq :“
`
upε,sqptq,Σpε, sq

˘

˜
resp. qF pτo,ωo,Σqpεqpt, sq “ γpqUεpsqqptq , qU εpsq :“

`
qupε,sqptq,Σpε, sq

˘
¸

The class of needle variations of a fixed controlled curve contains the following impor-

tant subclass, which plays a crucial role in the generalised PMP established in [6].

Consider a K-controlled curve γo “ γpUoq and a smoothed needle variation
qNeedlepτo,ωo,Σ,εoqpγoq as above. We introduce the following notation. For each homotopy
qF pτo,ωo,Σqpεq, ε P r0, εos, we denote

‚ by qF pτo,ωo,Σqpεqp2k´1q the homotopy of the curves in J2k´1pQ|Rq ˆ pK, given by the

s-parameterised family of maps t Ñ pj2k´1
t pγpε,sqq, qupε,sqptqq, made of the p2k ´ 1q-jets

j2k´1
t pγpε,sqq of the curves γpε,sqptq :“ qF pτo,ωo,Σqpεqpt, sq and the control curves qupε,sqptq;

‚ by Spεq “ qF pτo,ωo,Σqpεqp2k´1qpr0, T s ˆ r0, 1sq the 2-dimensional submanifold of

J2k´1pQ|Rqˆ pK spanned by the traces of the curves of the homotopy qF pτo,ωo,Σqpεqp2k´1q;

‚ by Y pεq “ Y
pεqi

pℓq
B

Bqi
pℓq

` Y pεqa B
Bua the field of tangent vectors of Spεq defined by

Y pεq| qF pτo,ωo,Σqpεqp2k´1qpt,sq
:“ B qF pτo,ωo,Σqpεqp2k´1q

Bs

ˇ̌
ˇ̌
pt,sq

. (3.7)

We are now ready to define the particular class of needle variations, which are essential

for our proof. In the subsequent Remark 3.3, a short explanation of the main ideas which

motivates this definition is given (see [5, 6] for a discussion in greater detail).

Definition 3.2. A good needle variation of γo “ γpUoq is a smoothed needle variation
qNeedlepτo,ωo,Σ,εoqpγoq which satisfies the following inequality for any ε P r0, εos:
ż T

0

˜
L
ˇ̌
qF pτo,ωo,Σqpεqp2k´1qpt,1q

´ L
ˇ̌
j

p2k´1q
t pγoq

¸
dt`

ż 1

0

˜
´ BC

Bqi
pβq

Y
pεqi

pβq

ˇ̌
ˇ̌
qF pτo,ωo,Σqpεqp2k´1qpT,sq

´

´
kÿ

α“1

α´1ÿ

β“0

p´1qβ d
β

dtβ

˜
BL

Bqipαq

¸
Y

pεqi
pα´pβ`1qq

ˇ̌
qF pτo,ωo,Σqpεqp2k´1qpT,sq

¸
ds`

`
ż 1

0

kÿ

α“1

α´1ÿ

β“0

p´1qβ d
β

dtβ

˜
BL

Bqipαq

¸
Y

pεqi
pα´pβ`1qq

ˇ̌
qF pτo,ωo,Σqpεqp2k´1qp0,sq

ds ě 0 . (3.8)

With a small abuse of language, we sometimes call good also the (non-smooth) needle

variations, for which the associated smoothed ones are good.
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Remark 3.3. One of the key ideas of the approach developed in [6] (see in particular

Sect. 2 of that paper) is the observation that the terminal cost of a K-controlled curve

γ “ γpUqptq, U “ puptq, σq, is equal to the integral along the curve t ÞÑ pj2k´1
t pγq, uptqq

in J2k´1pQ|Rq ˆ K of the 1-form rLdt` d rC, where rL is an appropriate modification of L

and rC is a smooth extension of the original cost function C : J2k´1pQ|Rqt“T Ñ R over

the whole space J2k´1pQ|Rq ˆK, which vanishes at the submanifold J2k´1pQ|Rqt“0 ˆK.

The modification rL of L is built in a way that it produces the same Euler-Lagrange

equations of L but has also the additional property of being identically equal to 0 along

the solutions of the equations (for the cost problems of this paper, the Lagrangian (2.4)

has already this second property and one can just take rL “ L). The equality between

the terminal cost of γ and the integral of rLdt` d rC along the curve pj2k´1
t pγq, uptqq is an

immediate consequence of the fact that rL vanishes along the solutions.

This crucial observation implies that the difference between the terminal costs of two

homotopic controlled curves is equal to the integral of ´prLdt`d rCq along two arcs out of

the four counter-clockwise oriented boundary of the surface S Ă J2k´1pQ|RqˆK spanned

by the jets and the controls of the curves of the homotopy. By Stokes’ Theorem, the

integral along those two arcs (that is, the difference between the terminal costs) equals

the sum of the integral of the 2-form ´dprLdt` d rCq “ ´drL^ dt on S and the integral of
rLdt ` d rC along the other two oriented arcs of the boundary. Let us call such two arcs

the “vertical part of the boundary” of the homotopy.

The condition (3.8) is equivalent to requiring that the integral of the 1-form rLdt` d rC
along the (oriented) vertical part of the boundary is non-positive for any homotopy of a

good needle variation.

Due to this, the difference between the terminal costs of two controlled curves related

by an homotopy of a good needle variation is non-negative only if the integral of ´drL^dt
on the corresponding surface S is non-negative. This implies that a necessary condition

for a controlled curve to be a solution to the cost problem is that, for any good needle

variation, the limit for ε Ñ 0 of the integral of the 2-form ´drL ^ dt on the surfaces

spanned by homotopies is non-negative. In [5] and [6] we made this necessary condition

explicit and show that it reduces to the classical PMP in case of Mayer problems with

smooth data and first order constraints. In the setting of this paper, the same necessary

condition gives Theorem 3.4 below.

We finally remark that (3.8) is basically a condition on the vector fields Y pεq we as-

sociated above with the homotopies qF pτo,ωo,Σqpεqp2k´1q. The existence of good needle

variations depends on the existence of a sufficient amount of freedom for constructing

homotopies with such a property. In the next Lemma 5.1) it is shown that such a nec-

essary freedom is granted for the cost problems of this paper. Roughly speaking this is

essentially due to the fact that only the derivatives with respect to the xipsq-variables are

relevant for the terminal cost, while the auxiliary variables pi and their derivatives are

freely specifiable. We expect that this is a general property, i.e. that the existence of

good needle variations is always related with the existence of a sufficiently large number

of (auxiliary and ineffective) variables.
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Now, for any control pair Uo “ puoptq, σoq, with corresponding curve γo “ γpUoq, and

for any τo P p0, T q, we define

Ppσo,uo,τoq : K ÝÑ R , Ppσo,uo,τoqpωq :“ ´Lpjkτopγoq, ωq . (3.9)

By [6, Cor.7.7] the following holds:

Theorem 3.4 (Generalised PMP). If Uo “ puoptq, σoq is an optimal control, then

Ppσo,uo,τoqpuopτoqq ě Ppσo,uo,τoqpωq (3.10)

for any pair pτo, ωq P p0, T q ˆK, for which there is at least one good needle variation of

the form qNeedlepτo,ωo,Σ,εoqpγoq for γo.

4. Two lemmas for the approximation technique

According to Theorem 3.4, if there is a pair pτo, ωoq P p0, T q ˆ K for which there

exists an associated good needle variation for the K-controlled curve γo “ γpUoq and such

that the strict inequality Ppσo,uo,τoqpuopτoqq ă Ppσo,uo,τoqpωoq occurs, then Uo cannot be an

optimal control, i.e. there must exist an alternative K-controlled curve γ ‰ γo with a

strictly smaller terminal cost. The proof in [6] of this is constructive and provides an

explicit construction of curves with smaller costs.

In the next two lemmas, we present such a construction and we make explicit its de-

pendence on the data of the Mayer problem and on the considered good needle variation.

The first lemma holds for any generalised Mayer problem, with no particular assumptions

on the controlled Lagrangian L. It consists of two claims: The first says that, for all suffi-

ciently small widths ε, the jets of the controlled curves in the homotopies of a fixed good

needle variations are in a prescribed neighbourhood of the jets of the undeformed curve;

The second (and more important) claim gives an estimate for the terminal costs of the

deformed curves of the needle variation, which depends on the value of the Pontryagin

function at the parameter ωo of the needle variation.

The second lemma holds only when the controlled Lagrangian and the good needle

variations have very special forms and shows that certain constants, appearing in the

statement of the first lemma, actually depend on much fewer data. Both lemmas apply

to the cost minimising problems, on which we focus in this paper, and play a crucial role

in the proof of our main result.
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For the first lemma, we need to start introducing some useful notation. Given a

K-controlled curve γo :“ γpUoq, Uo “ puoptq, σoq P K, and a relatively compact neighbour-

hood N Ă J2k´1pQ|Rq of the p2k ´ 1q-jets of γo, for any r P N we denote

|||L|||r,N :“ sup
pj2k´1

t pγq,uqPNˆK

0ďℓďr , 0ďℓ1ďℓ

$
&
%

ˇ̌
ˇ̌
ˇ̌

BℓL
pBtqℓ1 Bqi1

pm1q
¨ ¨ ¨ Bqiℓ´ℓ1

pmℓ´ℓ1 q

ˇ̌
ˇ̌
ˇ̌

,
.
- ,

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌BL
Bu

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
r,N

:“ sup
pj2k´1

t pγq,uqPNˆK

0ďℓďr , 0ďℓ1ďℓ

$
&
%

ˇ̌
ˇ̌
ˇ̌

Bℓ`1L

pBtqℓ1 Bqi2pm2q ¨ ¨ ¨ Bqiℓ´ℓ1

pmℓ´ℓ1 qBua

ˇ̌
ˇ̌
ˇ̌

,
.
- ,

}C}C1,N :“ sup
j2k´1
T pγqPN

˜
ˇ̌
Cpj2k´1

T pγqq
ˇ̌

`
ÿ

i,s

ˇ̌
ˇ̌ BC
Bqipsq

ˇ̌
ˇ̌
pj2k´1

T pγqq

››››

¸
.

(4.1)

Further, given a continuous two-parameters family of initial conditions Σ “ Σpε, sq P
Ainit, pε, sq P r0, εos ˆ r0, 1s, we denote by diampΣq the diameter of the set of all such

initial conditions. We finally recall that h denotes a fixed constant, smaller than 1
2
, which

appears in the definition of the smoothed needle modifications.

Lemma 4.1. Let γo :“ γpUoq and N Ă J2k´1pQ|Rq be a K-controlled curve and a relatively

compact neighbourhood of the p2k ´ 1q-jets of γo as above and assume that there is at

least one good needle variation ČNeedle “ qNeedlepτo,ωo,rΣ,rεoqpγoq for a given choice of

pτo, ωoq P p0, T q ˆ K. Let also ρ, κ, C, C1 be the constants that are determined as in

Lemma 2.1 by L, the Lipschitz bijection between Ainit and rAinit and a cut-off function

with support in the open set rN Ă R
rN`1 corresponding to N Ă J2k´1pQ|Rq (so that (2.9)

holds for the controlled curves, which are sufficiently close to γo). We finally assume

that the map ε ÞÑ diamtΣpε, ¨q, s P r0, 1su is continuous in the argument ε and that there

exists a constant KpN,Lq, depending on L and N, satisfying the following condition: the

first order system (2.7) in normal form, which is equivalent to (2.3), is such that

sup
pt,y,uqPrNˆK

››››
BgA
Bua

›››› ă KpN,Lq

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌BL
Bu

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
k`1,N

, sup
ppt,x,uqPrNˆK

››››
BgA
Byℓ

›››› ă KpN,Lq|||L|||k`2,N .

(4.2)

Then:

(1) There is a good needle variation qNeedlepτo,ωo,Σ,εoqpγoq (obtained from ČNeedle “
qNeedlepτo,ωo,rΣ,rεoqpγoq by appropriately reducing the width rεo to a smaller one εo) such

that:

(a) diamΣ and the distances between any two control curves uptq, u1ptq, correspond-
ing to two curves in a common homotopy F pτo,ωo,Σqpεq, ε P p0, εoq, of the family
qNeedlepτo,ωo,Σ,εoqpγoq, are less than or equal to ρ;

(b) any p2k´1q-th order jet of a control curve in the homotopies of qNeedlepτo,ωo,Σ,εoqpγoq
is in N.
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(2) If κo “ Ppσo,uo,τoqpωoq ´ Ppσo,uo,τoqpuopτoqq ą 0, then there exists a constant M ,

depending on N, τo, ωo, Σ, |||L|||k`2,N,
ˇ̌̌̌ ˇ̌

BL
Bu

ˇ̌̌̌ ˇ̌
k`1,N

, }C}C1,N and the infinitesimal (2)

V pεq :“ 1

ε

ż τo

τo´ε

´
Ppσo,uo,tqpuopτoqq ´ Ppσo,uo,tqpuoptqq

¯
dt (4.3)

such that the controlled curve γ “ γpU q, determined by the pair U “ puptq, σq P Kmeas

with σ :“ Σ
`

1
2M

, 1
˘
and

uptq :“

$
&
%

uoptq if t P r0, T s zpτo ´ 1
2M

, τos ,

ωo if t P pτo ´ 1
2M

, τos ,
(4.4)

has a terminal cost that satisfies

Cpγq ď Cpγoq ´ κo

4M
ă Cpγoq . (4.5)

There also exists a constant |M ą 0, for which (4.5) holds for the smooth K-controlled

curve qγ, determined by the same initial condition and the smoothed version quptq of uptq.

Proof. (1) Given a good needle variation ČNeedle “ qNeedlepτo,ωo,Σ,εoqpγoq “
t qF pτo,ωo,Σqpεq, ε P r0, εosu, for any pε, sq P r0, εos ˆ r0, 1s we denote by γpε,sqptq and

qγpε,sqptq the controlled curves

γpε,sqptq :“ F pτo,ωo,Σqpεqpt, sq , qγpε,sqptq :“ qF pτo,ωo,Σqpεqpt, sq .
We also use the short notation γpεqptq :“ γpε,1qptq and qγpεqptq :“ qγpε,1qptq. By construction

‚ γpε,sqptq is the pKmeas-controlled curve determined by U pε,sq :“ pupε,sqptq,Σpε, sqq with

upε,sqptq “ p1 ´ squoptq ` supτo,ωo,εqptq , upτo,ωo,εqptq :“

$
&
%

uoptq if t R pτo ´ ε, τos ,

ωo if t P pτo ´ ε, τos .
(4.6)

‚ qγpε,sqptq is the pK-controlled curve determined by the same initial condition and the

smoothed version qupτo,ωo,εqptq of upτo,ωo,εqptq, defined in (4.6).

We now replace the good needle variation ČNeedle, given in the statement, by a new one,

in which the homotopies of curves are the same, but where the maximum value for the

parameter ε is changed into a new value εo ď rεo. This εo is chosen small enough to

make the family of initial conditions Σ “ rΣ|r0,εosˆr0,1s such that diampΣq ă ρ and, for

any pε, sq P r0, εos ˆ r0, 1s,

distpqupε,sq, upε,sqq ď 2hε2 ă ρ , distpqupε,sq, uoq ď ε ` 2hε2 ă ρ ,

In this way (a) is satisfied. From Lemma 2.1, by the fact that Σp0, sq “ σo for any s and

from the Lipschitzian assumption on Σ, it follows that for a sufficiently small εo

}qγpε,sq ´ γo}C2k´1 ď cpε ` 2hε2q ` κ|Σpε, sq ´ Σp0, sq| ă p2c ` κCqε , (4.7)

}qγpε,sq ´ γpε,sq}C2k´1 ď 2hcε2 ă cε2 , (4.8)

for a constant C determined by Σ. By possibly taking a smaller εo, also (b) is satisfied.

2We use the short expression “infinitesimal” to mean that limεÑ0 V pεq “ 0.
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(2) Consider the good needle variation determined in (1) and its smoothed version.

For any ε P r0, εos, we denote qCpεq :“ Cpj2k´1
t“T pqγpεqqq and Cpεq :“ Cpj2k´1

t“T pγpεqqq. By [6,

Cor. 6.5] we know that

Cp0q ´ qCpεq “ qCp0q ´ qCpεq “

“
ż T

0

¨
˝
ż 1

0

Y pεqa BPpΣpε,sq,qupε,sq,tq

Bua

ˇ̌
ˇ̌
ˇ
qupε,sqptq

ds

˛
‚dt´

ż T

0

˜ż 1

0

B2pµ
Bt Bs

ˇ̌
ˇ̌
pt,sq

ds

¸
dt (4.9)

where Y pεqa are the B
Bua -components of the vector field (3.7) and pµ : r0, T s ˆ r0, 1s Ñ

R is an appropriate function, which is completely determined by the needle variation

considered. For our purposes, there is no need to recall the detailed definition of pµ, but

only to know that, since the needle variation is good, the value of

ż T

0

˜ż 1

0

B2pµ
Bt Bs

ˇ̌
ˇ̌
pt,sq

ds

¸
dt

is non-positive ([6, Lemma 7.6]). In addition, the next sublemma, whose proof is quite

technical and is postponed to § 6.1, gives an estimate for the first term in (4.9).

Sublemma 4.2. In the hypotheses of the lemma, there exists a constant n “ npτo,N,L, BL
Bu

q,

depending on τo, N, |||L|||k`2,N and
ˇ̌̌̌ ˇ̌

BL
Bu

ˇ̌̌̌ ˇ̌
k`1,N

, such that for any ε P r0, εos

ż T

0

¨
˝
ż 1

0

Y pεqa BPpΣpε,sq,qupε,sq,tq

Bua

ˇ̌
ˇ̌
ˇ
qupε,sqptq

ds

˛
‚dt ą

ą
ż τo`hε2

τo´ε´hε2

´
Ppσpεq,qupεq,tqpqupτo,ωo,εqptqq ´ Ppσo,uo,tqpuoptqq

¯
dt´ nε2 (4.10)

where σpεq :“ Σpε, 1q and qupεq “ qupε,1q

Let us now focus on the right hand side of (4.10). The first integral decomposes into

ż τo`hε2

τo´ε´hε2

´
Ppσpεq ,qupεq,tqpqupτo,ωo,εqptqq ´ Ppσo,uo,tqpuoptqq

¯
dt “

“
ż τo´ε

τo´ε´hε2

´
Ppσpεq,qupεq,tqpqupτo,ωo,εqptqq ´ Ppσo,uo,tqpuoptqq

¯
dt`

`
ż τo

τo´ε

´
Ppσpεq,qupεq,tqpωoq ´ Ppσo,uo,tqpuoptqq

¯
dt`

`
ż τo`hε2

τo

´
Ppσpεq,qupεq,tqpqupτo,ωo,εqptqq ´ Ppσo,uo,tqpuoptqq

¯
dt (4.11)

Since L is continuous, for any pt, ωq P r0, T sˆ pK, we have that
ˇ̌
ˇPpΣpε,sq,qupε,sq,tqpωq

ˇ̌
ˇ ă c2

pN,Lq,

with c2
pN,Lq :“ }L}8,NˆK , and the sum of the first and the third terms in (4.11) is bounded
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by 4c2
pN,Lqhε

2. On the other hand, the second decomposes into

ż τo

τo´ε

´
Ppσpεq,qupεq,tqpωoq ´ Ppσo,uo,tqpuoptqq

¯
dt “

“
ż τo

τo´ε

´
Ppσpεq ,qupεq,tqpωoq ´ Ppσo,uo,τoqpωoq

¯
dt`

`
ż τo

τo´ε

´
Ppσo,uo,τoqpωoq ´ Ppσo,uo,τoqpuopτoqq

¯
dt

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon
“εκo

`

`
ż τo

τo´ε

´
Ppσo,uo,τoqpuopτoqq ´ Ppσo,uo,tqpuopτoqq

¯
dt`

`
ż τo

τo´ε

´
Ppσo,uo,tqpuopτoqq ´ Ppσo,uo,tqpuoptqq

¯
dt (4.12)

By (4.7) the integrands of the first and the third terms are bounded by
ˇ̌
ˇPpσpεq,qupεq,tqpωoq ´ Ppσo,uo,τoqpωoq

ˇ̌
ˇ ,

ˇ̌
ˇPpσo,uo,τoqpuopτoqq ´ Ppσo,uo,tqpuopτoqq

ˇ̌
ˇ ă c3

pN,L,Σqε

(4.13)

for some c3
pN,L,Σq depending on |||L|||1,N and the constants c, κ, C. On the other hand, by

continuity, the fourth term is an infinitesimal of higher order than ε, that is (see (4.3))
ż τo

τo´ε

´
Ppσo,uo,tqpuopτoqq ´ Ppσo,uo,tqpuoptqq

¯
dt “ V pεqε . (4.14)

Combining (4.9) with Sublemma 4.2 and the above discussion, we obtain that

Cp0q ´ qCpεq ě εpκo ´ 4c2
pN,Lqhε ´ 2c3

pN,L,Σqε´ |V pεq| ´ nεq . (4.15)

On the other hand, by (4.7) and the smoothness of the cost function, there is a constant

m “ mpΣ,Cq, depending on }C}C1,N, such that for all sufficiently small ε

| qCpεq ´ Cpεq| ă m}qγpεq ´ γpεq}C2k´1 ď cmε2 . (4.16)

Hence, from (4.15) and (4.16) we get

Cpεq ď Cp0q ´ εpκo ´ dε´ |V pεq|qq ,
where d “ dpτo,uo,N,L,Σ,Cq :“ p4c2

pN,Lqh ` 2c3
pN,L,Σq ` cm ` nq .

(4.17)

Since the map ε ÞÑ dε ` |V pεq| is infinitesimal for ε Ñ 0`, there exists M ą 0 such that

κo ´ pdε ` |V pεq|q ą κo

2
for all ε P

„
0,

1

M


.

Thus, setting ε :“ 1
2M

, we have Cpεq ď Cp0q ´ εκo

2
“ Cp0q ´ κo

4M
, that is (4.5). The last

claim is proved similarly, using just (4.15) in place of (4.17).

We now present the second advertised lemma, which gives a radical improvement

of Lemma 4.1 under additional assumptions on L and on the considered good needle

variation. More precisely, we assume that the configuration space has the form Q “ QˆQ˚

for an n-dimensional affine space Q “ R
n (the coordinates are thus pairs q “ px, pq with

x “ pxiq P Q and p “ ppjq P Q˚) and L has the form

L “ pi
`
xipkq ´ f i

`
t, xi, xip1q, . . . , x

i
pk´1q, u

a
˘˘
. (4.18)
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Lemma 4.3. Assume the hypotheses of Lemma 4.1 with the exception of the condition

(4.2) and let Q “ Q ˆ Q˚ and L are as above. Moreover, for any ε P r0, εos, let Gpt, sq :“´
j2k´1
t pqγpε,sqq, upε,sqptq

¯
and Y the field of tangent vectors to the surface S :“ Gpr0, T s ˆ

r0, 1sq defined by Y |Gpt,sq “ BG
Bs

ˇ̌
pt,sq

.

If the family of initial conditions Σ, occurring in the definition of Needlepτo,ωo,Σ,εoqpγoq,
is such that

kÿ

δ“1

δ´1ÿ

η“0

p´1qη
ż 1

0

dη

dtη

˜
BL

Bqipδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gp0,sq

ds “

“
kÿ

δ“1

δ´1ÿ

η“0

p´1qη
ż 1

0

dη

dtη

˜
BL

Bqipδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
GpT,sq

ds “ 0 , (4.19)

then claim (2) of Lemma 4.1 holds with constants M, |M that depend just on τo, ωo, N,

|||L|||1,N and }C}C1,N and not on |||L|||k`2,N and
ˇ̌̌̌ ˇ̌

BL
Bu

ˇ̌̌̌ ˇ̌
k`1,N

.

Due to the technicalities in the arguments, the proof is given later in § 6.2.

Remark 4.4. Let pK, Lpδq, Cpδqq, δ P p0, δos be a one-parameter family of defining triples

as in Remark 2.2. Assume that all associated generalised Mayer problems are with

smooth data and of normal type and that, for δ tending to 0, the Lagrangians Lpδq and

the cost functions Cpδq tend uniformly on compacta to continuous functions Lp0q and

Cp0q. Assume also that:

(A) The partial derivatives

BℓLpδq

Bqi1pα1q . . . Bq
iℓ
pαℓq

,
BℓLpδq

pBtqℓ1 Bqi1pα1q . . . Bq
iℓ´ℓ1

pαℓ´ℓ1 q

with 1 ď ℓ ď k ` 2

and
Bℓ`1Lpδq

BuaBqi1pa1q . . . Bq
iℓ
pαℓq

,
Bℓ`1Lpδq

BuapBtqℓ1 Bqi1pα1q . . . Bq
jℓ´ℓ1

pαℓ´ℓ1 q

with 1 ď ℓ ď k ` 1

tend uniformly on compacta to the corresponding partial derivatives of Lp0q;

(B) There is a one-parameter family U pδq “ pupδq
o ptq, σpδq

o q P K, whose associated con-

trolled curves γpδqptq :“ γpU pδqq converge in the norm of Ck´1pr0, T sq to a curve γp0qptq
such that: (a) it is a solution to the differential constraints determined by Lp0q, (b)

it has σ
p0q
o “ limδÑ0 σ

pδq
o as initial condition; (c) it is determined by a measurable

control curve u
p0q
o ptq P K with u

p0q
o ptq “ limδÑ0 u

pδq
o ptq a. e.;

(C) There exists a δ-parameterised family of initial data maps Σpδqpε, sq, converging uni-

formly on r0, εosˆr0, 1s to a limit map Σp0qpε, sq, and a corresponding δ-parameterised

family of good needle variations, determined by the maps Σpδq and a pair pτo, ωoq, in
which τo is one of the points where u

p0q
o pτoq “ limδÑ0 u

pδq
o pτoq;

(D) The real value

κp0q
o :“

´
Ppσ

p0q
o ,u

p0q
o ,τoqpωoq ´ Ppσ

p0q
o ,uo,τoqpup0q

o pτoqq
¯

“ lim
δÑ0

κpδq
o

is strictly positive;
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(E) The functions V pδqpεq, ε P p0, εos, which are defined by (4.3) for each δ, tend uniformly

on compacta to a function rV pεq : p0, εos Ñ R, which is an infinitesimal for ε Ñ 0.

Note that the δ-parameterised family of control pairs U pδqpε, sq :“
`
upδqpε,sqptq,Σpδqpε, sq

˘
,

which determine the curves γpδqpε,sqptq of the needle variation in (C), have the following

property: for any pε, sq P r0, εos ˆ r0, 1s, the a.e. limit curve

up0qpε,sqptq :“ lim
δÑ0

upδqpε,sqptq

is a needle modification of uoptq. We may therefore consider also the following additional

assumptions:

(F) For any ε P r0, εos the controlled curves γpδ;εqptq :“ γpδqpε,1qptq converge uniformly

to the solution of the differential constraints for δ “ 0, which is determined by the

control pair
`
up0qpε,1qptq,Σp0qpε, 1q

˘
:

(G) There is a relatively compact neighbourhood of the set

Ends :“ tj2k´1
T pγpδqpε,sqq, pδ, ε, sq P r0, δos ˆ r0, εos ˆ r0, 1s u ,

given by the p2k ´ 1q-jets at t “ T of the controlled curves of the needle variations,

on which Cpδq tend to Cp0q in the C1-norm.

For each of the above Lagrangian Lpδq, we may follow the proof of Lemma 4.3 and

derive the inequality (4.17) for any sufficiently small ε, i.e. the inequality

Cpδqpεq ď Cpδqp0qq ´ εpκpδq
o ´ dpδqε ´ |V pδqpεq|q (4.20)

relating the cost Cpδqp0q of the controlled curve γpδqptq with the cost Cpδqpεq of the con-

trolled curves γpδ;εqptq. Notice that, under the assumptions (A) – (G), for δ sufficiently

small, we may assume that the constants dpδq are independent of δ, say dpδq “ d, so that,

letting δ Ñ 0,

Cpδ“0qpεq ď Cpδ“0qp0q ´ εpκp0q
o ´ dε ´ |rV pεq|qq , (4.21)

where Cpδ“0qpεq is the terminal cost of the controlled curve γpδ“0,εqptq. From this, using

the same concluding argument of the proof of Lemma 4.1, we obtain the existence of a

constant M ą 0 and an associated needle modification for the (merely measurable) limit

curve u
p0q
o ptq, such that the corresponding cost satisfies

Cpδ“0qpεq ď Cpδ“0qp0q ´ κ
p0q
o

4M
. (4.22)

This fact is crucially exploited in the proof of our main result, given in the last section.

We finally observe that, by Lemma 4.3, if the Lagrangians Lpδq have the special form

(4.18) and all maps Σpδq satisfy the condition (4.19), the above conclusion on the costs of

the limit controlled curve γ
p0q
o and of its needle modifications holds also if (A) is replaced

by the following weaker assumption:

(A’) the partial derivatives BLpδq

Bqi
pαq

, BLpδq

Bt tend uniformly on compacta to the corresponding

partial derivatives of Lp0q.
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5. The proof of Theorem 1.1

5.1. A preliminary “smooth” version of the main result. As we pointed in §2.3,

when all of its data are of class C8, the cost problem presented in the Introduction is

equivalent to the generalised Mayer problem determined by a the defining triple pK, L,Cq
given in that section. We recall that the configuration space has the form Q “ Q ˆ Q˚,

Q “ R
n, the controlled Lagrangian L and the cost function C are given in (2.4), and the

set K consists of the pairs U “ puptq, σ “
`
s,rsq

˘
where (a) s is an initial condition in a

prescribed set Ainit Ă Jk´1pQ|Rq|t“0 for the curve xptq and (b) rs is an initial condition,

which can be arbitrary, for the curve pptq. We finally recall that the controlled Euler-

Lagrange equations are of normal type and are given in (2.5) and (2.6).

Let us now consider the following subset of K. Given s P Ainit and a control curve

uptq P K, we denote by xpu,sqptq the unique solution to (2.5) with initial condition s. We

then denote by ppu,sqptq the unique solution to (2.6) with xptq “ xpu,sqptq, that satisfies

the terminal conditions (1.6) – (1.8). Finally, we set rspu,sq to be the initial jet rspu,sq “
jk´1
t“0 pppu,sqq of ppu,sqptq. By construction, the pair

U pu,sq :“
´
uptq, σ “ ps,rspu,sqq

¯
, (5.1)

has γpUqptq :“
`
t, xpu,sqptq, ppu,sqptq

˘
as associated K-controlled curve. The pairs (5.1) and

the corresponding controlled curves are called good. The subset of the good pairs in K,
pK, pKmeas are denoted by Kgood, pKgood, pKgood meas, respectively.

Our interest in the good K-controlled curves comes from the following lemma.

Lemma 5.1. Let γo “ γpUoq be a Kgood-controlled curve and Needlepτo,ωo,Σ,εoqpγoq a

needle variation, whose associated smoothed needle variation qNeedle
pτo,ωo,Σ,εoqpγoq :“

t qF pτo,ωo,Σqpεq, ε P r0, εosu satisfies the following two conditions:

(a) all control pairs Ups, εq that determine the pK-controlled curves γps,εq “
qF pτo,ωo,Σqpεqp¨, sq are good;

(b) the initial conditions for the x-components xps,εqptq of the curves γps,εq are constant

and independent of ps, εq P r0, 1s ˆ r0, εos.

Then qNeedle
pτo,ωo,Σ,εoqpγoq is a good needle variation in the sense of Definition 3.2.

Proof. First of all, we claim that if a controlled curve γptq :“
`
t, xpu,sq, ppu,sqptq

˘
is good,

then

˜
BC

Bxipβq

`
k´β´1ÿ

ℓ“0

p´1qℓ d
ℓ

dtℓ

˜
Bppmpxmpkq ´ fmqq

Bxipβ`ℓ`1q

¸¸ˇ̌
ˇ̌
ˇ
j2k´2
t“T pxpu,sqq

“ 0

for 0 ď β ď k ´ 1 and 0 ď i ď n . (5.2)
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This is a consequence of the fact that, setting ρ :“ k´β´1, the conditions (5.2) become
˜

BC
Bxipk´ρ´1q

`
ρÿ

ℓ“0

p´1qℓ dℓ

dtℓ

˜
Bppmpxmpkq ´ fmqq

Bxipk´ρ`ℓq

¸¸ˇ̌
ˇ̌
ˇ
j2k´2
t“T pxpu,sqq

“

“
˜

BC
Bxipk´ρ´1q

`
ρ´1ÿ

ℓ“0

p´1qℓ dℓ

dtℓ

˜
pm

Bfm
Bxipk´ρ`ℓq

¸
´ p´1qρ pipρq

¸ˇ̌
ˇ̌
ˇ
j2k´2
t“T pxpu,sqq

“ 0 ,

(5.3)

and these are precisely the conditions (1.6) – (1.8). Consider now an arbitrary needle

variation Needlepτo,ωo,Σ,εoqpγoq of γo :“ γpUoq with Uo “ puoptq, soq. By the particular

form of the differential constraints, the value of the controlled Lagrangian L is 0 at all

pk ´ 1q-th order jets of the pK-controlled curves. Hence, using the short-hand notation

γps,εqpk´1qptq :“ jk´1
t pγps,εqq, we may write

ż T

0

˜
L
ˇ̌
γps,εqpk´1qptq

´ L
ˇ̌
γ

pk´1q
o ptq

¸
dt “ 0 for any s P r0, 1s . (5.4)

From this and the fact that the only non-trivial derivatives BL
Bqi

pαq

with respect to the jet

coordinates qpαq “ pxipαq, ppαqjq, α ě 1, are those with qipαq “ xipαq, it follows that (3.8) is

satisfied if and only if

ż 1

0

˜
´

k´1ÿ

β“1

BC
Bxipβq

Y
pεqxi

pβq

ˇ̌
ˇ̌
γps,εqpk´1qpT q

´

´
kÿ

δ“1

δ´1ÿ

η“0

p´1qη d
η

dtη

˜
BL

Bxipδq

¸
Y

pεqxi

pδ´pη`1qq

ˇ̌
γps,εqp2k´1qpT q

¸
ds`

`
ż 1

0

kÿ

δ“1

δ´1ÿ

η“0

p´1qη d
η

dtη

˜
BL

Bxipδq

¸
Y

pεqxi

pδ´pη`1qq

ˇ̌
γps,εqp2k´1qp0q

ds “

“ ´
ż 1

0

kÿ

β“0

˜˜
BC

Bxipβq

`
k´β´1ÿ

ℓ“0

p´1qℓ d
ℓ

dtℓ

˜
Bppmpxmpkq ´ fmqq

Bxipβ`ℓ`1q

¸¸ˇ̌
ˇ̌
ˇ̌
j2k´2
t“T pxpuo,soqq

¨

¨Y pεqxi

pβq

ˇ̌
ˇ̌
γps,εqpk´1qpT q

¸
ds`

`
ż 1

0

kÿ

δ“1

δ´1ÿ

η“0

p´1qη d
η

dtη

˜
BL

Bxipδq

¸
Y

pεqxi

pδ´pη`1qq

ˇ̌
γps,εqpk´1qp0,sq

ds ě 0 . (5.5)

From (5.2) and the definition of Y , if the needle variation satisfies (a) and (b), both

integrals in (5.5) are zero and the inequality is satisfied.

Remark 5.2. By definition, for any control curve uoptq in pK and any so P Ainit, there

exists a uniquely associated good pair U puo,soq :“
´
uoptq, σo “ pso, rsopuo,soqq

¯
. Then for

any good pK-controlled curve γo and any pτo, ωoq P p0, T s ˆK, it is possible to construct

a smoothed needle variation qNeedle
pτo,ωo,Σ,εoqpγoq satisfying both conditions of Lemma
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5.1. This means that for any good controlled curve γo and any pτo, ωoq P p0, T sˆK, there

is a good needle variation qNeedle
pτo,ωo,Σ,εoqpγoq associated with pτo, ωoq.

Remark 5.2 and Theorem 3.4 easily imply the following C8 version of Theorem 1.1.

Theorem 5.3. Let f “ pf iq and C of class C8 and Uo “ puoptq, pso,rspuo,soqqq P Kgood with

uoptq smooth. If Uo is an optimal control, then (1.10) holds for any pτo, ωoq P p0, T q ˆK.

More precisely, for any such pτo, ωoq, there exist constants M , |M , which depend on f ,

C, τo and ωo, such that if

κo :“ Hpuo,so,τoqpωoq ´ Hpuo,so,τoqpuopτoqq ą 0 , (5.6)

then there is a needle modification uptq of uoptq, with associated smoothed needle modifi-

cation quptq, such that

Cpjk´1
t“T pxpu,soqqq ď Cpjk´1

t“T pxpuo,soqqq ´ κo

4M
ă Cpjk´1

t“T pxpuo,soqqq ,

Cpjk´1
t“T pxpqu,soqqq ď Cpjk´1

t“T pxpuo,soqqq ´ κo

4|M
ă Cpjk´1

t“T pxpuo,soqqq .
(5.7)

Proof. If Uo “ puoptq, pso,rspuo,soqqq is good, the function (3.9) is equal to

Pppso,rspuo,soqq,uo,τoqpωq “ ´ppuo,soq
i pτoq xpuo,soqi

pkq pτoq `

` p
puo,soq
i pτoqf ipτ, xpuo,soqpτoq, xpuo,soq

p1q pτoq, . . . , xpuo,soq
pk´1q pτoq, ωq “

“ ´ppuo,soq
i pτoq xpuo,soqi

pkq pτoq ` Hpuo,so,τoqpωq . (5.8)

Thus ω is a maximum point for Pppso,rspuo,soqq,uo,τoq if and only if it is a maximum point for

Hpuo,so,τoq. The claim then follows from Theorem 3.4, Lemma 4.1 and Remark 5.2.

5.2. The proof of Theorem 1.1. First of all, we assume the following condition, which

causes no loss of generality. Let B rR Ă R
m and B1 rR Ă R

mk be two closed balls centred

at the origin and of radius rR, which contain the compact sets K Ă R
m and

Kďpk´1q :“ K ˆKp1q ˆ . . . Kpk´1q Ă R
mk ,

respectively. Then, we set pK :“ B
2 rR,

pK 1 :“ B
3 rR and pK2 :“ B

4 rR. We also assume that f

is extended to a map on Ω ˆ pK2, which still satisfies pαq and pβq.

As a preliminary step, we need the following lemma.

Lemma 5.4. For each pair puoptq, soq, with so P Ainit and uo : r0, T s Ñ pK Ă R
m

satisfying the condition pγq of the Introduction, there exist:

– A unique solution xpuo,soq : r0, T s Ñ R
n to (2.5) with initial condition jk´1

t“0 pxpuo,soqq “
so. If k “ 1, this solution is C0 with bounded measurable first derivative. If k ě 2, the

solution is piecewise C2k´2.

– A unique solution ppuo,soq : r0, T s Ñ R
n to (2.6) with terminal conditions (1.6) –

(1.8). This solution is of class Ck´1 and with bounded measurable k-th derivative.
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Proof. Consider the auxiliary variables xiℓ, 1 ď ℓ ď k ´ 2, 1 ď i ď n, and the first order

differential problem

dxi

dt
“ xi1 ,

dxi1
dt

“ xi2 , . . . ,
dxik´2

dt
“ xik´1 ,

dxik´1

dt
“ f ipt, xj , xj, . . . , xjk´1, u

a
optqq ,

(5.9)

with initial conditions pxi, xiℓq|t“0 determined by the jet so “ pxi, xipℓqq|t“0. This problem

is equivalent to the system (2.5) with initial condition jk´1
t“0 pxpuo,soqq “ so. Hence the

existence and uniqueness of a Ck´1 solution xpuo,soq is a consequence of a well-known

result on first order differential systems with control parameters in normal form (see e.g.

[4, Th. 3.2.1]). The pk ´ 1q-th derivative of this solution is absolutely continuous with

bounded derivative. Moreover, for k ě 2, on each subinterval on which uoptq is Ck´1, the

curve xk´1ptq is Ck´1. It follows that xpuo,soq is piecewise C2k´2.

The existence and uniqueness of ppuo,soq is checked by considering (2.6) as

a system of equations on the functions pjptq, depending on the control curve

uptq :“ puoptq, j2k´2
t pxpuo,soqqq taking values in K ˆ J2k´2pQ|Rq. Since the curve uoptq is

bounded and measurable and xpuo,soq is of class C2k´2, the result follows from the above

mentioned facts on systems with control parameters.

We are now ready to prove the following crucial result, which implies Theorem 1.1.

Theorem 5.5. Let uo : r0, T s Ñ K be a measurable control curve and so P Ainit, as in

Theorem 1.1, and assume that pτo, ωoq P p0, T q ˆ K is a pair, in which τo satisfies the

following condition:

‚ if k “ 1, the time τo is one of the points for which

lim
εÑ0`

1

ε

ż τo

τo´ε

ˇ̌
ˇfpt, xpso,uoqptq, uoptqq ´ fpτo, xpso,uoqpτoq, uopτoqq

ˇ̌
ˇ dt “ 0 , (5.10)

i.e. τo is a density (Lebesgue) point of the map fpt, xptq, uptqq;
‚ if k ě 2, τo is an inner point of a subinterval I Ă r0, T s on which uoptq is Ck´1.

Then there is a constant M “ Mpf,C,τo,ωoq ą 0, depending on f , C, τo, ωo, such that if

κo :“ Hpuo,so,τoqpωoq ´ Hpuo,so,τoqpuopτoqq ą 0 , (5.11)

then there is a needle modification u1ptq of uoptq with peak time τo and ceiling ωo, satisfying

Cpjk´1
T pxpu1,soqqq ď Cpjk´1

T pxpuo,soqqqq ´ κo

4M
ă Cpjk´1

T pxpuo,soqqqq (5.12)

and Uo “ puoptq, soq cannot be an optimal control.

Proof. The proof is based on a three-step approximation procedure, which allows infer-

ring the theorem from its previous “smooth” version, Theorem 5.3. For reader’s conve-

nience, here is an outline of the arguments which we are going to use in case k ě 2.

(I) First we introduce a one-parameter family of globally Ck´1 curves vpηq : r0, T s Ñ pK,

which tends to the piecewise Ck´1 curve uoptq for η Ñ 0 with respect to the distance

(2.8). This family is constructed in such a way that: (1) vpηqptq coincides with uoptq
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on a neighbourhood of τo for any η; (2) the associated controlled curves with initial

datum so tend to the curve xpuo,soq in C2k´2 norm.

(II) Second, for any fixed value δ1 for the parameter η and the corresponding curve

vpη“δ1qptq of step (I), we consider a one-parameter family of polynomials (in the t-

variable) vpδ1,rηq : r0, T s Ñ pK 1, which converge to vpδ1qptq in the Ck´1-norm for rη Ñ
0 and such that, the associated controlled curves xpvpδ1, rηq,soqptq and ppvpδ1, rηq,soqptq,
defined in Lemma 5.4, converge to the curves xpvpδ1q,soqptq and ppvpδ1q,soqptq in the

C2k´2 and Ck´1 norm, respectively.

(III) Third, for any fixed choice of δ1, δ2 ą 0, we consider a one parameter family of

smooth functions f pδ1,δ2, rrηq : Ω ˆ pK 1 Ñ R
n, which converges in the Ck´1 norm to the

function fpt, jk´1
t pxq, uq for rrη Ñ 0. The family is constructed in such a way that the

smooth solutions xpδ1,δ2, rrηqptq to the constraint given by f pδ1,δ2, rrηq, the polynomial

control curve vpδ1, rη“δ2qptq and the initial datum so, tend in the C2k´2 norm to the

solution of the constraint determined by f , vpδ1,δ2qptq and so.

After these preliminary constructions, we show that:

(a) For any triple pδ1, δ2, δ3q, the controlled curve xpδ1,δ2,δ3qptq, determined by the smooth

constraint given by f pδ1,δ2,δ3q, the smooth control curve vpδ1,δ2qptq and the initial

datum so satisfies the hypotheses of Theorem 5.3. This implies the existence of

an appropriate needle modification vpδ1,δ2,εqptq of the control curve vpδ1,δ2qptq (with

ε “ εpδ3q depending on δ3), which determines a controlled curve with a smaller

terminal cost.

(b) We then show that the δ-parameterised family of needle modifications vpδ,δ,εpδqqptq
converges in the L1 norm to a needle modification u1ptq of uoptq, whose associated

controlled curve xpu1,soqptq gives a terminal cost satisfying (5.12)

The scheme of the proof for the case k “ 1 is similar, but requires a preparatory

additional step. Before starting with the whole construction, we replace uoptq by the

curve upδ0q : r0, T s Ñ pK, which is constant and equal to the value uopτoq on the interval

rτo´δ0, τo`δ0s and is equal to uoptq at all other points. Then, working with the modified

curve upδ0q, we perform the analogs of the three steps (I), (II) and (III). This leads to the

construction of a δ-parameterised family of needle modifications of the smooth control

curves, which converge in L1-norm to a needle modification u1ptq of uoptq with associated

controlled curve xpu1,soq with terminal cost satisfying (5.12), as desired.

Let us now proceed with the proof for the case k ě 2. Let us consider the following

derived system of order 2k ´ 1 associated with (2.5). It is the system of equations which

can be obtained from (2.5) by differentiating k´1 times with respect to t and by replacing
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any k-th order derivative xipkq by f ipt, jk´1
t pxq, uoptqq at all places:

xipkq “ f i ,

xipk`1q “ Bf i
Bt `

k´2ÿ

r“0

x
j
pr`1q

Bf i

Bxj
prq

` f j
Bf i

Bxj
pk´1q

` Bf i
Buau

a
op1q ,

...

xip2k´1q “ Bk´1f i

Btk´1
` . . . .

(5.13)

Let us synthetically denote these equations by

xipℓq “ F i
pℓqpt, jk´1

t pxq, jk´1
t puoqq , k ď ℓ ď 2k ´ 1 . (5.14)

Then, consider the analogue of the first order system (5.9) that gives the reduction to

the first order of the last line of (5.13). Using the shorter notation y :“ pxijq, this system
can be written as

9y “ gpt, yptq, uoptq, uop1qptq, . . . uopk´1qptqq (5.15)

where g is a map g : rΩˆKďpk´1q Ñ R
np2k´1q, for an appropriate open set rΩ Ă R

np2k´1q`1,

which is uniquely determined by f : Ω ˆ K Ñ R
n. By the above described technical

assumptions on f , we may assume that g is defined on a larger domain rΩˆ pKďpk´1q with
pKďpk´1q Ľ Kďpk´1q. Such extension is continuously differentiable in each variable yA.

Finally, for any pair puptq, sq, let us denote by ypu,sq : r0, T s Ñ R
np2k´1q the unique so-

lution to (5.15), which is controlled by uptq and with the initial condition that correspond

to the initial condition s for xptq.

We may now construct the one-parameter family described in (I), using the following

Lemma 5.6. Let pt0 “ 0, t1q, pt1, t2q, . . . , ptP´1, tP “ T q be the intervals on which uoptq
is Ck´1. Given η ą 0 there exists a Ck´1 curve vpηq : r0, T s Ñ pK, which coincides with

uoptq on the subintervals pti´1 ` η
4P
, ti ´ η

4P
q (and, in particular, on some neighbourhood

of τo) and such that

}xpuo,soqptq ´ xpvpηq,soqptq}C2k´2 , }ppuo,soqptq ´ ppvpηq,soqptq}Ck´1 ă η . (5.16)

Proof. It is almost immediate to realise that, for any choice of δ, there exists a curve

rvptq which is Ck´1 over the whole domain r0, T s and coincides with uoptq on the subinter-

vals pti´1 ` δ
4P
, ti ´ δ

4P
q. This implies that all distances distpuo, rvq, distpuop1q, rvp1qq, . . . ,

distpuopk´1q, rvpk´1qq are less than δ. Now, by the assumptions on f and on its derivatives

(which completely determine the function g in (5.15)), there exists a unique solution to

the reduced-to the-first-order system (5.15) for the pair prv, soq. Furthermore, by Lemma

2.1, there are constants ρ ą 0 and c (depending on f “ pf iq and on a cut-off function ϕ

as described in the statement of that lemma) such that, if δ ď ρ, then

sup
tPr0,T s

|ypuo,soqptq ´ yprv,soqptq| ă cdistpuo, rvq ă cδ

with distp¨, ¨q given by (2.8). Selecting a δη such that δη ă min
 
η
c
, ρ, η

(
, we get

suptPr0,T s |ypuo,soqptq ´ yprv,soqptq| ă η, meaning that vpηqptq :“ rv satisfies the first upper

bound in (5.16). By considering a possibly smaller δη also the second bound is satisfied.
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This is because pprv,soq is a solution of a system of controlled differential equations, where

the controls are given by the curve rvptq and the curve of the p2k´ 2q-jets of xprv,soqptq.

Let us now fix a control curve vpδ1q as in the previous lemma. The family of polynomials

control curves in (II) is constructed using the next

Lemma 5.7. Given η ą 0, there exists a polynomial curve vpδ1,ηqptq in pK 1 Ą pK with

|vpδ1,ηqpτoq ´ vpδ1qpτoq| “ |vpδ1,ηqpτoq ´ uopτoq| ă η (5.17)

and such that the solutions xpvpδ1q,soq and xpvpδ1,ηq,soq to the differential problem (1.1)

(which is the same of (2.5)) and the associated curves ppvpδ1q,soqptq and ppvpδ1,ηq,soqptq,
defined in Lemma 5.4, satisfy

}xpvpδ1q,soq ´ xpvpδ1,ηq,soq}C2k´2 , }ppvpδ1q,soq ´ ppvpδ1,ηq,soq}Ck´1 ă η . (5.18)

Proof. By a well known result on interpolation of continuous functions (see e.g. [14, Thm.

7.1.6]), we may consider a family of Bernstein polynomials converging to vpδ1qptq in Ck´1

norm. Thus, for any choice of a sufficiently small rδ ą 0, we may select a polynomial

rvpδ1qptq which satisfies (5.17), takes values in pK 1 and such that
ż

r0,T s
|vpδ1q

pℓq ptq ´ rvpδ1q
pℓq ptq|dt ă rδ , 0 ď ℓ ď k ´ 1 . (5.19)

Now, by [4, Prop. 3.2.5 (i)], there exists a rδ ą 0 (depending on η) such that (5.19) implies

that the corresponding solutions ypvpδ1q,soqptq and yprvpδ1q,soqptq of the reduced-to-the-first-

order system (5.15) satisfy the inequality suptPr0,T s |ypvpδ1q,soqptq´yprvpδ1q,soqptq| ă η. Hence,

the polynomial vpδ1,ηqptq :“ rvpδ1qptq is such that the first upper bound in (5.18) holds.

Using the same arguments for the equations on the pptq, the second bound of (5.18) can

be satisfied as well.

It is now the turn to present the family of functions described in (III).

Lemma 5.8. Let vpδ1,δ2q : r0, T s Ñ pK 1 be one of the polynomials described in Lemma 5.7,

converging to the Ck´1 control curve vpδ1q. Let also xpvpδ1,δ2q,soqptq be the unique solution

to (1.1) determined by the pair pvpδ1,δ2qptq, soq, as discussed in Lemma 5.4.

Then there is a ηo ą 0 such that for η P p0, ηos there are C8 maps f pδ1,δ2,ηq : Ωˆ pK2 Ñ
R
n satisfying the following conditions: they converge uniformly on compacta to f together

with all partial derivatives up to order k´1 for η Ñ 0 and, for each η, the unique solution

xpvpδ1,δ2q,so;ηqptq to the differential problem

xpkq “ f pδ1,δ2,ηq
´
t, jk´1

t pxq, vpδ1 ,δ2qptq
¯
, jk´1

t“0 pxq “ so (5.20)

and the associated curves ppvpδ1,δ2;ηq,soqqptq defined in Lemma 5.4 satisfy

}xpvpδ1,δ2q,so;ηq ´ xpvpδ1,δ2q,soq}C2k´2 ă η , }ppvpδ1,δ2;ηq,soq ´ ppvpδ1,δ2q,soq}Ck´1 ă η ,
ˇ̌
ˇf pδ1,δ2,ηq

`
t, jk´1

t pxpvpδ1,δ2q,so;ηqq, vpδ1,δ2qptq
˘
´f

`
t, jk´1

t pxpvpδ1 ,δ2q,soqq, vpδ1 ,δ2qptq
˘ˇ̌
ˇ ă η

for any t P r0, T s .
(5.21)
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Proof. Since vpδ1,δ2qptq is a polynomial, it satisfies the condition (γ) of the Introduction

and the corresponding solution xpvpδ1,δ2q,soqptq to (1.1) determines a curve of jets and

controls

γpvpδ1,δ2q,soqpk´1qptq :“
´
t, xpvpδ1,δ2q,soqptq, xpvpδ1,δ2q,soq

p1q ptq, . . . , xpvpδ1 ,δ2q,soq
pk´1q ptq, vpδ1 ,δ2qptq

¯
P

P Jk´1pQ|Rq|r0,T s ˆ pK 1 ,

which is of course continuous and with compact image. Hence, there is a ηo ą 0 such

that the set

Πηo :“
"

pt, st, uq P Jk´1pRn|Rq|r0,T s ˆ R
m :

|st ´ jk´1
t pxpvpδ1,δ2q,soqq| ď ηo and |u ´ vpδ1,δ2qptq| ď ηo

*

is compact and with u P
Ť

vPB
2 rR

Bηopvq Ă pK2 “ B
4 rR. By the assumptions (α) and (β)

on f , there is a constant L such that

}f}Ck´1pΠηo q , max
w0`|w|`|ℓ|“k,

0ďw0`|w|ďk´1,

pt,st,uqPΠηo

$
&
%

ˇ̌
ˇ̌
ˇ̌

Bw0`|w|`|ℓ|f

pBtqw0pBuqwpBxiprqqℓ

ˇ̌
ˇ̌
ˇ
pt,st,uq

ˇ̌
ˇ̌
ˇ̌

,
.
- ă L , (5.22)

where we denote

B|w|

pBuqw “ B|w|

pBu1qw1 . . . pBumqwm
,

B|ℓ|

pBxiprqqℓ
“ B|ℓ|

pBx1p0qqℓ1|0 . . . pBxnpk´1qqℓn|k´1
,

with w and ℓmultiindices w “ pw1, . . . , wmq and ℓ “ pℓ1|0, ℓ1|1, . . . , ℓ1|k´1, ℓ2|0, ℓ2|1, . . . , ℓ2|k´1,

. . . , ℓn|0, ℓn|1, . . . , ℓn|k´1q. Moreover, for any δ ą 0, there is pf pδ1,δ2,δq P C8pJk´1pRn|Rq|r0,T sˆ
pK2q such that

} pf pδ1,δ2,δq ´ f}Ck´1pΠηo q ă δ (5.23)

(it is a consequence of a classical approximation procedure; see e.g. [19, Ch. 15]).

We now want to prove that there exists a constant C, depending on k, n, L and

sup

"
|jk´1
t pxq| : jk´1

t pxq P Bηopjk´1
t pxpvδ1,δ2q,soqq , t P r0, T s

*
, (5.24)

with the following property: for any η P p0, ηos with ηo ă e´CmaxtL,1u

4
, if δη is sufficiently

small, then the corresponding function f pδ1,δ2,ηq :“ pf pδ1,δ2,δηq satisfies (5.23) and the

associated solution xpηqptq :“ xpvpδ1,δ2qso;δηqptq to the system (5.20) satisfies (5.21).

To see this, consider the two systems of first order of the form (5.9) (obtained

by introducing the auxiliary variables yir), which correspond to the derived differ-

ential systems of order 2k ´ 1 associated with the system (1.1) and the system

xpkq “ f pδ1,δ2,δq
´
t, jk´1

t pxq, vpδ1,δ2qptq
¯
. Then, for each choice of δ, let us denote by

ypvpδ1,δ2q,soqptq “ pyiptq, yi1ptq, . . . , yi2k´2ptqq ,

ypvpδ1,δ2q,so;δqptq “ pyδiptq, yδi1 ptq, . . . , yδi2k´2ptqq
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the solutions to such two systems, corresponding to the solutions xpvpδ1,δ2q,soqptq and

xpvpδ1,δ2q,so;δqptq, respectively. We synthetically denote the two systems of equations, of

which they are solutions, by

9yiℓ´1 “ giℓpt, yjm, vpδ1,δ2qptqq , 9yiℓ´1 “ g
pδqi
ℓ pt, yjm, vpδ1,δ2qptqq

with 1 ď ℓ ď 2k ´ 1.

By construction gimpt, yjr , vpδ1,δ2qptqq “ g
pδqi
m pt, yjr , vpδ1,δ2qptqq “ yim for any 0 ď m ď

2k´2. On the other hand, the functions gi2k´1pt, yjr, vpδ1,δ2qptqq and gpδqi
2k´1pt, yjr , vpδ1,δ2qptqq

are in general different, because they are given by the pk ´ 1q-th order total derivatives

of the functions f and f pδ1,δ2,δq, respectively, evaluated at the points pt, yjm, vpδ1,δ2qptqq.
The initial values of the curves yptq :“ ypvpδ1,δ2q,soqptq and ypδqptq :“ ypvpδ1,δ2q,so;δqptq are

denoted by y “ pyi, yi1, . . . , yi2k´2q and yδ “ pyδi, yδi1 , . . . , yδi2k´2q, respectively. Note that

the components of y and yδ, determined by the derivatives up to order k ´ 1 at t “ 0

of the two curves, are the same and uniquely determined by so. By construction of the

derived system of order 2k´1, the remaining components of y and yδ might be different,

but also such that yδ Ñ y for δ Ñ 0.

Let us denote ziℓptq “ yδiℓ ptq ´ yiℓptq for any 0 ď ℓ ď 2k ´ 2. We observe that, for any

t P r0, T s

9zirptq “ zir`1ptq if 0 ď r ď 2k ´ 3 ,

9zi2k´2ptq “ g
pδqi
2k´1pt, yδptq, vpδ1 ,δ2qptqq ´ gi2k´1pt, yptq, vpδ1 ,δ2qptqq

and therefore

| 9zirptq| ď
ÿ

ℓ,i

|ziℓptq| , 0 ď r ď 2k ´ 3 ,

| 9zi2k´2ptq| ď
ˇ̌
ˇ̌gpδqi

2k´1pt, yδptq, vpδ1 ,δ2qptqq ´ gi2k´1pt, yδptq, vpδ1,δ2qptqq
ˇ̌
ˇ̌`

`
ˇ̌
ˇ̌gi2k´1pt, yδptq, vpδ1,δ2qptqq ´ gi2k´1pt, yptq, vpδ1,δ2qptqq

ˇ̌
ˇ̌ ď

ď Constpδ ` L
ÿ

ℓ,i

|ziℓptq|q ,

d

dt

ÿ

i,ℓ

|ziℓptq| ď
ÿ

i,ℓ

| 9ziℓptq| ď Cpδ ` maxtL, 1u
ÿ

i,ℓ

|ziℓptq|q ,

where Const is a constant, which depends only on L and (5.24), and C :“ np2k´1qConst.

Hence if we take δ “ δη so that
ř

i,ℓ |ziℓp0q| ď η2 ď ηηo and δη ď ηe´CmaxtL,1uT

4CT
, then by

Gronwall’s inequality we obtain that

|j2k´2
t pxpvpδ1,δ2q,so;δηqq ´ j2k´2

t pxpvpδ1,δ2q,soqq| ď
ÿ

i,ℓ

|ziℓptq| ď

ď pδηCT `
ÿ

i,ℓ

|ziℓp0q|qqeCmaxtL,1uT ď δηCTe
CmaxtL,1uT ` ηηoe

CmaxtL,1uT ď η

2
ă η .

From this and (5.23), all three estimates in (5.21) follow.
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We are now ready to conclude the proof following the arguments described in (a) and

(b) above. Using Lemmas 5.6, 5.7 and 5.8, we may consider the families of control curves

and functions, parameterised by a positive δ tending to 0,

vδptq :“ vpδ,δqptq , f δpt, xℓprq, uq :“ f pδ,δ,δqpt, xℓprq, uq .
They have the following properties:

‚ each map vδ : r0, T s Ñ pK 1 is polynomial, it satisfies |vδpτoq ´ uopτoq| ă δ and the

corresponding solution xpvδ ,soqptq to the equations (1.1) satisfies

}xpuo,soq ´ xpvδ ,soq}C2k´2 ă δ ; (5.25)

‚ f δ : Ωˆ pK2 Ñ R
n is a smooth function and the solution xpvδ ,so;δqptq to the differential

problem

xipkqptq “ f δ i
´
t, jk´1

t pxq, vδptq
¯
, jk´1

t“0 pxq “ so (5.26)

satisfies

}xpvδ ,so;δqptq ´ xpuo,soqptq}C2k´2 ă δ and
ˇ̌
ˇf δpt, jk´1

t pxpvδ ,so;δqq, vδpτoqq ´ fpt, jk´1
t pxpuo,soqq, uopτoqq

ˇ̌
ˇ ă δ .

(5.27)

Therefore, for any sufficiently small δ, ε ą 0 we may also consider:

‚ the real function Hδ : K Ñ R which is defined by

Hδpωq :“ p
pvδ ,so;δq
i pτoqf δ ipτo, jk´1

τo pxpvδ ,so;δqq, ωq , (5.28)

where we denote by ppvδ ,so;δqptq the solution to (2.6) with f replaced by the smooth

f δ and determined by the control curve vδ and the initial value so;

‚ the needle modification vδ,ε :“ vδpτo,ωo,εq of the polynomial curve vδptq, with peak

time τo, ceiling value ωo and width ε;

‚ the needle modification uεo :“ u
pτo,ωo,εq
o of the (merely piecewise Ck´1) uoptq, also with

peak time τo, ceiling value ωo and width ε.

By the Lemmas 5.6, 5.7 and 5.8, for δ Ñ 0 the functions f δ, the curves ppvδ ,so;δqptq and

the curves of jets jk´1
t pxpvδ ,so;δqq tend uniformly on compacta to the map f , to the curve

ppuo,soqptq and to the curve of jets jk´1
t pxpuo,soqq, respectively. Therefore, if we set

κδo :“ Hδpωoq ´ Hδpvδpτoqq (5.29)

we have that limδÑ0 κδo “ κo ą 0 and hence there is δo ą 0 such that κδo ą 0 for any

δ P p0, δos.

We now observe that the (restrictions to an appropriate relatively compact neighbour-

hood of the k-jets of the curve γoptq “ pt, xpuo,soqptq, ppuo,soqptqq of the) Lagrangians

Lpδqpt, xℓ, . . . , xℓpkq, pj, uq :“ pj
`
x
j
pkq ´ f δ jpt, xℓ, . . . , xℓpk´1q, uq

˘
(5.30)

and the one-parameter families of control pairs U pδq “ pvδ , pso,rspvδ ,soq
o qq are such that

the conditions (A’), (B) and (D) of Remark 4.4 are satisfied with σ
p0q
o :“ pso,rspuo,soq

o q,
u

p0q
o :“ uo and that the limit Lagrangian for δ Ñ 0 is

Lp0qpt, xℓ, . . . , xℓpkq, pj , uq :“ pj
`
x
j
pkq ´ f jpt, xℓ, . . . , xℓpk´1q, uq

˘
.
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Moreover, since each Lagrangian (5.30) is smooth, for each δ we may consider a one-

parameter family of good needle variations Needlepτo,ωo,Σ
pδq,εoqpγδoq for the pair pτo, ωoq

as defined in Lemma 5.1 . By definition of the good needle variations, the family of

initial data maps Σpδq converges uniformly to a limit initial data map Σp0q and satisfies

conditions (C) and (F) of Remark 4.4. We may also consider an appropriate family of

smooth cost functions Cδ, which depend on the pk ´ 1q-jets at t “ T of the controlled

curves and converge in the C1 norm to the cost function C “ Cp0q on an appropriate

relatively compact neighbourhood of the end k ´ 1-jets of the curves of the needle vari-

ations determined by Needlepτo,ωo,Σ
pδq,εoqpγδoq. This would imply that also condition (G)

is satisfied.

We finally observe that the functions V pδq, associated with the above described La-

grangians, control pairs and initial valued maps, satisfy also condition (E) of Remark

4.4. This is in fact a direct consequence of the property that, by construction of the

polynomial curves vδptq “ vpδ,δqptq, the vδptq converge in Ck´1 norm to the function uoptq
on a fixed interval containing τo. Since all conditions of Remark 4.4 are satisfied, we infer

the existence of a constant M ą 0 and a needle modification u1ptq of uoptq, with peak

time τo and ceiling ωo, such that (5.12) holds. This concludes the proof with k ě 2.

Let us now focus on the case k “ 1, i.e. on the situation in which Theorem 1.1 reduces

to the classical PMP. As the reader will shortly see, the approximation procedure which

we used for k ą 1 is valid also for k “ 1, but requires some nontrivial adjustments. We

give here such adjustments in full detail mainly with the following purposes: (a) showing

that, in the classical setting, our approximation technique has the same power of the

standard approach; (b) paving the way for future developments in different contexts –

see §7.

For the time being, we assume that fpt, x, uq is continuously differentiable not only with

respect to x but also with respect to t (we show how to remove this assumption later).

As announced above, for each sufficiently small δ0 let us denote by upδ0q : r0, T s Ñ pK the

control curve defined by

upδ0qptq “

$
&
%

uopτoq if t P rτo ´ δ0, τos ,

uoptq otherwise .
(5.31)

Note that distpuo, upδ0qq ď δ0. Hence, by the usual circle of ideas, the corresponding

control curve xpupδ0q,soqptq and the associated curve ppupδ0q,soqptq uniformly converge to the

curves xpuo,soqptq and ppuo,soqptq, respectively, for δ0 Ñ 0. So, by continuity of f and C, if

we set

κpδ0q :“

“ p
pupδ0q,soq
i pτoqf ipτo, xpupδ0q,soqpτoq, ωoq ´ p

pupδ0q,soq
i pτoqf ipτo, xpupδ0q,soqpτoq, upδ0qpτoqq “

“ p
pupδ0q,soq
i pτoqf ipτo, xpupδ0q,soqpτoq, ωoq ´ p

pupδ0q,soq
i pτoqf ipτo, xpupδ0q,soqpτoq, uopτoqq ,

(5.32)

we directly obtain that limδ0Ñ0 κ
pδ0q “ κo and limδÑ0 Cpxpupδ0q,soqpT qq “ Cpxpuo,soqpT qq.

Now, let us consider the following analog of Lemma 5.6.
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Lemma 5.9. Given the curve upδ0q, for any η ą 0, there exists a continuous curve

vpδ0,ηq : r0, T s Ñ pK, which coincides with upδ0qptq on the interval rτo ´ δ0, τos and such

that

distpupδ0q, vpδ0,ηqq ă η ,

}xpupδ0q,soq ´ xpvpδ0,ηq,soq}C0 , }ppupδ0q,soq ´ ppvpδ0,ηq,soq}C0 ă η . (5.33)

Proof. We recall that, by the Lusin Theorem (see e.g. [1, p.14]), for any choice of rδ ą 0

there exists a vprδq P C0pr0, T s,Rmq such that

sup
tPr0,T s

|vprδqptq| ď sup
tPr0,T s

|uoptq| and distpupδ0q
o , vprδqq ă rδ . (5.34)

Note that such a curve can be taken equal to upδ0qptq on the interval rτo ´ δ0, τos. Indeed,
one can start with a continuous curve rvprδqptq satisfying the first inequality in (5.34)

and with distpupδ0q
o , rvprδqq ă rδ

2
. Then one can modify rvprδqptq just on the closed interval

rτo ´ δ0 ´ rδ
4
, τo ` rδ

4
s, determining a continuous curve vprδq that satisfies also the desired

additional requirement. Now, given η, by taking rδ sufficiently small, the curve vpδ0,ηqptq :“
vprδqptq satisfies all required inequalities.

The same arguments of Lemma 5.7 imply that, for any continuous control curve

vpδ0,δ1qptq and any η ą 0 there exists a polynomial curve vpδ0,δ1,ηqptq in pK 1 Ą pK with

|vpδ0,δ1,ηqpτoq ´ vpδ0,δ1qpτoq| “ |vpδ0,δ1,ηqpτoq ´ uopτoq| ă η (5.35)

and such that the solutions xpvpδ0,δ1q,soq and xpvpδ0,δ1,ηq,soq and the associated curves

ppupδ0,δ1q,soqptq and ppvpδ0,δ1,ηq,soqptq satisfy

}xpvpδ0,δ1q,soq ´ xpvpδ0,δ1,ηq,soq}C0 , }ppvpδ0,δ1q,soqptq ´ ppvpδ0,δ1,ηq,soqptq}C0 ă η . (5.36)

This can be considered as the analog of (II) for k “ 1 and with control curve given

by upδ0qptq in place of uoptq. It is also quite immediate to check that, for any given

polynomial control curve vpδ0,δ1,δ2qptq and for any η ą 0, there exists a smooth function

f pδ0,δ1,δ2,ηq : Ω ˆ pK2 Ñ R
n, with the properties given in Lemma 5.8 for k “ 1. In other

words, the analog of (III) is also true.

At this point, if for any δ “ δ0 ą 0 we define

uδoptq :“ upδ0qptq , puδoptq :“ vpδ,δqptq ,
vδptq :“ vpδ,δ,δqptq , f δpt, x, uq :“ f pδ,δ,δ,δqpt, x, uq , (5.37)

then, for all δ sufficiently small, we have:

‚ each uδo : r0, T s Ñ K is a measurable curve which coincides with uoptq outside of

rτo ´ δ, τos and it is constant and equal to uopτoq on such interval;

‚ each puδo : r0, T s Ñ pK is a continuous curve which is constant equal to uopτoq on

rτo ´ δ, τos and with distppuδo, uδoq ă δ;

‚ each vδ : r0, T s Ñ pK 1 is a polynomial with |vδpτoq ´ puδopτoq| “ |vδpτoq ´ uopτoq| ă δ;

‚ f δ : Ω ˆ pK2 Ñ R
n is a smooth function and the solution xpvδ ,so;δqptq to

xip1qptq “ f δ i
´
t, xptq, vδptq

¯
, xp0q “ so (5.38)
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satisfies

}xpvδ ,so;δqptq ´ xppuδ
o,soqptq}C0 , }xpvδ ,so;δqptq ´ xpuo,soqptq}C0 ă δ ,

ˇ̌
ˇf δpt, xpvδ ,so;δqptq, vδptqq ´ fpt, xppuδ

o,soqptq, puδoptqq
ˇ̌
ˇ ă δ , for any t P r0, T s ,

ˇ̌
ˇf δpt, xpvδ ,so;δqptq, ωq ´ fpt, xpuo,soqptq, ωq

ˇ̌
ˇ ă δ , for any ω P K .

(5.39)

Therefore, for any sufficiently small δ, ε ą 0 we may consider:

‚ the real function Hδ : K Ñ R defined by

Hδpωq :“ p
pvδ ,so;δq
i pτoqf δ ipτo, xpvδ ,so;δqpτoq, ωq , (5.40)

where, as usual, we denote by ppvδ ,so;δqptq the solution to (2.6) with f replaced by

the smooth f δ and determined by the control curve vδ and the initial value so;

‚ the needle modification vδ,εptq :“ vδpτo,ωo,εqptq of the polynomial curve vδptq, with
peak time τo, ceiling value ωo and width ε;

‚ the needle modification uδ,εo ptq :“ u
δpτo,ωo,εq
o ptq of uδoptq with peak time τo, ceiling

value ωo and width ε;

‚ the needle modification uεoptq :“ u
pτo,ωo,εq
o ptq of uoptq with peak time τo, ceiling

value ωo and width ε.

Note that for δ ă ε, the needle modifications uδ,εo ptq and uεoptq coincide.

By the Lemmas 2.1, 5.9 and the above remarks, for δ Ñ 0 the functions f δ, the curves

xpvδ ,so;δqptq and ppvδ ,so;δqptq tend uniformly on compacta to the map f and to the curves

xpuo,soqptq and ppuo,soqptq, respectively. Therefore, setting κδo as in (5.29), we have that

limδÑ0 κδo “ κo ą 0 and hence there is δo ą 0 such that κδo ą 0 for any δ P p0, δos.

As for the previous case, it is straightforward to check that the conditions (A’), (B),

(C), (D) and (F) of Remark 4.4 are satisfied also for the new δ-parameterised family

of control curves and Lagrangians Lpδq, determined by the functions f δ. As before, we

can also consider an appropriate family of smooth cost functions Cpδq which converge in

the C1 norm to C “ Cp0q on an appropriate relatively compact neighbourhood of the

endpoints of the curves of the needle variations. So, in order to conclude, it remains to

prove that also condition (E) is satisfied, i.e. that the functions V pδqpεq tend to some

function, which is an infinitesimal for ε Ñ 0. In fact, we claim that the V pδqpεq tend

uniformly on compacta of p0, εos to the function Vopεq defined by

Vopεq “ 1

ε

ż τo

τo´ε

ˆ
p

puo,soq
i ptqf ipt, xpuo,soqptq, uopτoqq ´ p

puo,soq
i ptqf ipt, xpuo,soqptq, uoptqq

˙
dt

(5.41)

and that such a function is an infinitesimal for ε Ñ 0, as required.

To prove this, on a fixed interval rρ, εos, ρ ą 0, we need to show that

|V pδqpεq ´ Vopεq| “

“ 1

ε

ˇ̌
ˇ̌
ż τo

τo´ε

"
p

pvδ ,so;δq
i ptqf δ ipt, xpvδ ,so;δqptq, vδpτoqq ´ p

pvδ ,so;δq
i ptqf δ ipt, xpvδ ,so;δqptq, vδptqq´

´ p
puo,soq
i ptqf ipt, xpuo,soqptq, uopτoqq ` p

puo,soq
i ptqf ipt, xpuo,soqptq, uoptqq

*
dt

ˇ̌
ˇ̌ (5.42)
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is uniformly bounded by some constant Cδ tending to 0 for δ Ñ 0. In this regard, we

recall that:

‚ puδopτoq “ uδopτoq “ uopτoq for any δ and vδpτoq tends to uopτoq for δ Ñ 0;

‚ the maps xpvδ ,so;δqptq, ppvδ ,so;δqptq and f δpt, x, uq converge to xpuo,soqptq, ppuo,soqptq and

fpt, x, uq, respectively, in the C0 norm.

Due to this, it suffices to check that the function ∆V pδq : rρ, εos Ñ R defined by

∆V pδqpεq:“1

ε

ˇ̌
ˇ̌
ż τo

τo´ε

"
p

puo,soq
i ptqf ipt, xpuo,soqptq, uopτoqq´ppuo,soq

i ptqf ipt, xpuo,soqptq, puδoptqq´

´ p
puo,soq
i ptqf ipt, xpuo,soqptq, uopτoqq ` p

puo,soq
i ptqf ipt, xpuo,soqptq, uoptqq

*
dt

ˇ̌
ˇ̌ “

“ 1

ε

ˇ̌
ˇ̌
ż τo

τo´ε

"
p

puo,soq
i ptqf ipt, xpuo,soqptq, puδoptqq ´ p

puo,soq
i ptqf ipt, xpuo,soqptq, uoptqq

*
dt

ˇ̌
ˇ̌

(5.43)

is such that supεPrρ,εos ∆V
pδqpεq tends to 0 for δ Ñ 0. In order to prove this, we first

observe that, since puδoptq differs from uδoptq just on a set of measure less than δ, we may

replace puδoptq by uδoptq and get the inequality

∆V pδqpεq ď 1

ε

ˇ̌
ˇ̌
ż τo

τo´ε

"
p

puo,soq
i ptqf ipt, xpuo,soqptq, uδoptqq´

´ p
puo,soq
i ptqf ipt, xpuo,soqptq, uoptqq

*
dt

ˇ̌
ˇ̌ ` Const δ (5.44)

for an appropriate constant Const. Secondly, we recall that
 
uδoptq ‰ uoptq

(
“ rτo´δ, τos

and that uδo|rτo´δ,τos ” uopτoq. Hence, if we set ČConst :“ maxtPr0,T s |ppuo,soqptq| and take

δ ă ρ ď ε, we get

∆V pδqpεq ď 1

ε

ż τo

τo´ε

ˇ̌
ˇ̌ppuo,soq

i ptq
ˆ
f ipt, xpuo,soqptq, uδoptqq ´ f ipt, xpuo,soqptq, uoptqq

˙ˇ̌
ˇ̌dt`

` Const δ ď

ď
ČConst
ε

ż τo

τo´ε

ˇ̌
ˇ̌fpt, xpuo,soqptq, uδoptqq ´ fpt, xpuo,soqptq, uoptqq

ˇ̌
ˇ̌dt`

` Const δ “

“
ČConst
ε

ż τo

τo´δ

ˇ̌
ˇ̌fpt, xpuo,soqptq, uopτoqq ´ fpt, xpuo,soqptq, uoptqq

ˇ̌
ˇ̌dt` Const δ ď

ď
ČConst
ε

ż τo

τo´δ

ˇ̌
ˇ̌fpt, xpuo,soqptq, uopτoqq ´ fpτo, xpuo,soqpτoq, uopτoqq

ˇ̌
ˇ̌dt`

`
ČConst
ε

ż τo

τo´δ

ˇ̌
ˇ̌fpτo, xpuo,soqpτoq, uopτoqq ´ fpt, xpuo,soqptq, uoptqq

ˇ̌
ˇ̌dt`

` Const δ .
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It follows that

∆V pδqpεq ď
ČConst
δ

ż τo

τo´δ

ˇ̌
ˇ̌fpt, xpuo,soqptq, uopτoqq ´ fpτo, xpuo,soqpτoq, uopτoqq

ˇ̌
ˇ̌dt`

`
ČConst
δ

ż τo

τo´δ

ˇ̌
ˇ̌fpτo, xpuo,soqpτoq, uopτoqq ´ fpt, xpuo,soqptq, uoptqq

ˇ̌
ˇ̌dt`

` Const δ

and the right hand side can be assumed to be smaller than any desired quantity because

of the continuity of f and xpuo,soqptq and the condition (5.10).

This proves that for any choice of ρ P p0, εoq, the restriction ∆V pδq|rρ,εos converges

uniformly to 0. Note also that, by a similar argument, the assumption (5.10) and the

continuity of ppuo,soqptq, xpuo,soqptq and fpt, x, uq imply that the function

Vopεq :“ 1

ε

ż τo

τo´ε

"
p

puo,soq
i ptqf ipt, xpuo,soqptq, uopτoqq´ppuo,soq

i ptqf ipt, xpuo,soqptq, uoptqq
*
dt

(5.45)

is an infinitesimal for ε Ñ 0. This concludes the proof that also condition (E) is satisfied.

By Remark 4.4, we conclude that the theorem holds also in case k “ 1 and under the

additional assumption that f is continuously differentiable with respect to t.

In order to conclude, it is now necessary to remove this assumption. This can be done

by noting that the term (4.12) considered in the proof of Lemma 4.1, can be written as
ż τo

τo´ε

´
Ppσpεq,qupεq,tqpωoq ´ Ppσo,uo,tqpuoptqq

¯
dt “ εκo ` εW pεq (5.46)

with

W pεq :“ 1

ε

ż τo

τo´ε

´
Ppσpεq ,qupεq,tqpωoq ´ Ppσo,uo,τoqpωoq

¯
´

´
´
Ppσo,uo,tqpuoptqq ´ Ppσo,uo,τoqpuopτoqq

¯
dt . (5.47)

Considering this new function instead of the function V pεq, the family of control curves

and differential constraints defined in (5.37) satisfies the following analogs of the (4.20),

which involve the δ-parametrised family of new functions W pδqpεq instead of the V pδqpεq:
C

pεq
δ ď C

p0q
δ ´ εpκpδq

o ´ rdpδqε ´ |W pδqpεq|q (5.48)

where rdpδq is now a constant which does not depend on the derivative Bfδ

Bt . The explicit

expression of the function W pδqpεq can be directly derived from (5.47). One finds

W pδqpεq :“

:“ 1

ε

ż τo

τo´ε

"
p

pqvδ
pεq

,spεq;δq

i ptq
ˆ
x

pqvδ
pεq

,spεq;δqi

p1q ptq ´ f δ ipt, xpqvδpεq ,spεq;δqqptq, ωoq
˙

´

´ p
pvδ ,so;δq
i pτoq

ˆ
x

pvδ ,so;δqi
p1q pτoq ´ f δ ipτo, xpvδ ,so;δqqpτoq, ωoq

˙*
´

´
"

´ppvδ,so;δq
i ptqf δ,ipt, xpvδ ,so;δqqptq, vδptqq`ppvδ ,so;δq

i pτoqf δ,ipτo, xpvδ ,so;δqqpτoq, vδpτoqq
*
dt ,

(5.49)
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where, according to the notational conventions of Lemma 4.1, qvδpεq is the smoothed needle

variation of the polynomial curve vδptq of width ε and peak time τo, while spεq is the

corresponding initial datum for the curve γptq “ pxptq, pptqq. This initial datum spεq

is determined so that the initial value for xptq is so, while the initial value for pptq is

prescribed in order to have the usual terminal conditions at t “ T . We also assume that

the constant h, used in the definition of the smoothed needle modifications (see (3.2)) is

chosen differently for each value of δ and in a way that h “ hpδq tends to 0 for δ Ñ 0. In

order to conclude, it is now sufficient to show (in analogy with what we did above for the

functions V pδqpεq) that the function W pδqpεq converge uniformly on compacta on p0, εos
to a function W p0qqpεq and that the limit function W p0qpεq is an infinitesimal for ε Ñ 0.

This can be checked directly. More precisely, following the same circle of ideas as above,

one can see that on any interval rρ, εos, ρ ą 0 the function W pδq converges in C0 norm to

the function

W p0qpεq :“ 1

ε

ż τo

τo´ε

"
p

pupεq,spεqq

i ptq
ˆ
x

pupεq,spεqqi

p1q ptq ´ f ipt, xpupεq,spεqqqptq, ωoq
˙

´

´ p
puo,soq
i pτoq

ˆ
x

puo,soqi
p1q pτoq ´ f ipτo, xpuo,soqqpτoq, ωoq

˙*
´

´
"

´ p
puo,soq
i ptqf ipt, xpuo,so;δqqptq, uoptqq ` p

puo,soq
i pτoqf ipτo, xpuo,soqqpτoq, uopτoqq

*
dt

(5.50)

and that such a function is an infinitesimal. For brevity, we omit the details.

6. The proofs of Sublemma 4.2 and Lemma 4.3

6.1. The proof of Sublemma 4.2. Let us denote by ωi
pδq the 1-forms on the manifold

J2k`1pQ|Rq ˆ R
M defined by

ωi
pδq :“ dqipδq ´ qipδ`1qdt , δ “ 0, . . . , 2k . (6.1)

Using these 1-forms, we can introduce the controlled Poincaré-Cartan form βPC associ-

ated with the controlled Lagrangian L ([6, Sect. 5])

βPC :“ Ldt`
kÿ

δ“1

δ´1ÿ

η“0

p´1qη d
η

dtη

˜
BL

Bqipδq

¸
ωi

pδ´pη`1qq . (6.2)

By basic facts on variationally equivalent 1-forms (see e.g. [16, Prop. A2] and [6, Proof

of Lemma 5.2]), the exterior differential dβPC has the form

dβPC“EpLqiωi
p0q ^ dt ` BL

Bua du
a ^ dt`

` linear combinations of wedges of pairs of 1-forms of the kind (6.1) ,
(6.3)

where the functions EpLqi are the controlled Euler-Lagrange expressions defined in (2.3).

Consider the (smooth) map

G “ Gpεq : r0, T sˆr0, 1s Ñ J2k`1pQ|RqˆR
M , Gpt, sq :“

´
j2k`1
t pqγpε,sqq, upε,sqptq

¯
. (6.4)
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and the fields of tangent vectors of the surface S :“ Gpr0, T s ˆ r0, 1sq defined by

X|Gpt,sq :“
BG
Bt

ˇ̌
ˇ̌
pt,sq

“ G˚

˜
B
Bt

ˇ̌
ˇ̌
pt,sq

¸
, Y |Gpt,sq “ BG

Bs

ˇ̌
ˇ̌
pt,sq

“ G˚

˜
B
Bs

ˇ̌
ˇ̌
pt,sq

¸
. (6.5)

By construction, each vector X|Gpt,sq has the first components that are tangent to the

curve of jets, determined by a K-controlled curve qγpε,sqptq “ pt, qpε,sqptqq. In particular,

the B
Bt -component of X|Gpt,sq is 1 for any pt, sq. By the same reason the B

Bt -component of

Y |Gpt,sq is identically 0. Due to this and the vanishing of the 1-forms (6.1) on the tangent

vectors of curves of jets given by curves in QˆR, we have that for any pt, sq P r0, T s ˆr0, 1s

βPCpX|Gpt,sqq “ L
ˇ̌
jkt pGp¨,sqq

,

dβPCpX|Gpt,sq, Y |Gpt,sqq “ ´ BL
Bua

ˇ̌
ˇ̌
jkt pGp¨,sqq

Y a|Gpt,sq , with Y a|Gpt,sq :“ duapY |Gpt,sqq .
(6.6)

We also have that

βPCpY |Gpt,sqq “
kÿ

δ“1

δ´1ÿ

η“0

p´1qη d
η

dtη

˜
BL

Bqipδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gpt,sq

, (6.7)

where Y i
pαq, 0 ď α ď k´1, are the B

Bqipαq

-components of Y . From (6.6), (6.7), the definition

of PpΣpε,sq,qupε,sq,tq and Stokes’ Theorem, we have

ż T

0

¨
˝
ż 1

0

Y a BPpΣpε,sq,qupε,sq,tq

Bua

ˇ̌
ˇ̌
ˇ
qupε,sqptq

ds

˛
‚dt “

“ ´
ĳ

rτo´ε´hε2,τo`hε2sˆr0,1s

BL
Bua

ˇ̌
ˇ̌
Gpt,sq

Y adtds “
ĳ

rτo´ε´hε2,τo`hε2sˆr0,1s

dβPCpX|Gpt,sq, Y |Gpt,sqqdtds “

“
ż τo`hε2

τo´ε´hε2

ˆ
L|pjkt pγoq,upτo,ωo,0qptqq ´ L|pjkt pqγpεqq,upτo,ωo,εqptqq

˙
dt`

`
kÿ

δ“1

δ´1ÿ

η“0

p´1qη
ż 1

0

˜
dη

dtη

˜
BL

Bqipδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gpτo`hε2,sq

´

´ dη

dtη

˜
BL

Bqipδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gpτo´ε´hε2,sq

¸
ds “

“
ż τo`hε2

τo´ε´hε2

´
Ppσpεq,qupεq,tqpupτo,ωo,εqptqq ´ Ppσo,uo,tqpuoptqq

¯
dt`

`
kÿ

δ“1

δ´1ÿ

η“0

p´1qη
ż 1

0

˜
dη

dtη

˜
BL

Bqipδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gpτo`hε2,sq

´

´ dη

dtη

˜
BL

Bqipδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gpτo´ε´hε2,sq

¸
ds. (6.8)
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The claim is therefore proven if we can show that for any s P r0, 1s the absolute value
ˇ̌
ˇ̌
ˇ
dη

dtη

˜
BL

Bqipδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gpτo`hε2,sq

´ dη

dtη

˜
BL

Bqipδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gpτo´ε´hε2,sq

ˇ̌
ˇ̌
ˇ

is bounded above by ε2 times a constant depending on τo, N, |||L|||k`2,N and
ˇ̌̌̌ ˇ̌

BL
Bu

ˇ̌̌̌ ˇ̌
k`1,N

.

To check this, we first observe that

ˇ̌
ˇ̌
ˇ
dη

dtη

˜
BL

Bqipδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gpτo`hε2,sq

´ dη

dtη

˜
BL

Bqipδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gpτo´ε´hε2,sq

ˇ̌
ˇ̌
ˇ ď

ď
ˇ̌
ˇ̌
ˇ

ˆ
dη

dtη

˜
BL

Bqipδq

¸ ˇ̌
ˇ̌
Gpτo`hε2,sq

´ dη

dtη

˜
BL

Bqipδq

¸ ˇ̌
ˇ̌
Gpτo´ε´hε2,sq

˙
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gpτo`hε2,sq

ˇ̌
ˇ̌
ˇ`

`
ˇ̌
ˇ̌
ˇ
dη

dtη

˜
BL

Bqipδq

¸ ˇ̌
ˇ̌
Gpτo´ε´hε2,sq

ˆ
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gpτo`hε2,sq

´ Y i
pδ´pη`1qq

ˇ̌
ˇ̌
Gpτo´ε´hε2,sq

˙ˇ̌
ˇ̌
ˇ

We now recall that for any pto, soq P r0, T s ˆ r0, 1s

Y i
pαq

ˇ̌
Gpto,soq

“ B
Bs

ˇ̌
ˇ̌
pto,soq

pqpε,sqi
pαq

ptqq ,

B
Bt

ˇ̌
ˇ̌
to

pY i
pαq|Gp¨,soqq “ B2

BtBs

ˇ̌
ˇ̌
pto,soq

pqpε,sqi
pαq ptqq “ B

Bs

ˇ̌
ˇ̌
pto,soq

pqpε,sqi
pα`1qptqq “ Y i

pα`1q

ˇ̌
Gpto,soq

,

(6.9)

where q
pε,sqi
pαq ptoq stands for the qipαq-component of the jet j2k´1

t“to
pqγpε,sqq of the pK-controlled

curve qγpε,sq. Combining (6.9), the differentiability of L with respect to u, the explicit

expressions of the Euler-Lagrange equations (which are obtained by taking at most k` 1

derivatives of L with respect to the jets coordinates) and a straightforward generalisation

of a classical fact on solutions to controlled differential equations (see e.g. [4, Thm.

3.2.6] and the proof of Lemma 2.1), one can check that for any 0 ď β ď k and any

pto, soq P rτo ´ ε ´ hε2, τo ` hε2s ˆ r0, 1s
ˇ̌
ˇY i

pβq

ˇ̌
Gpto,soq

ˇ̌
ˇ ď

ď pε`2hε2q
ˆ

sup
rτo´ε´hε2,τo`hε2s

ˇ̌
ˇqupτo,ωo,εqptq´uoptq

ˇ̌
ˇ
˙
epε`2hε2qKpN,Lq|||L|||k`2,NKpN,Lq

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌BL
Bu

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
k`1,N

ď

ď pε ` 2hε2qdiamp pKqepε`2hε2qKpN,Lq|||L|||k`2,NKpN,Lq

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌BL
Bu

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
k`1,N

,

where diamp pKq is the diameter of the relatively compact set pK Ă R
M . Consequently, for

any 0 ď α ď k ´ 1

ˇ̌
ˇ̌
ˇY

i
pαq

ˇ̌
Gpto,soq

´ Y i
pαq

ˇ̌
ˇ̌
Gpτo´ε´hε2,soq

ˇ̌
ˇ̌
ˇ “

ˇ̌
ˇ̌
ż to

t“τo´ε´hε2

B
Bt

ˇ̌
ˇ̌
t

Y i
pαq

ˇ̌
Gp¨,soq

dt

ˇ̌
ˇ̌ “

“
ˇ̌
ˇ̌
ż to

t“τo´ε´hε2
Y i

pα`1q

ˇ̌
Gpt,soq

dt

ˇ̌
ˇ̌ ď

ď pε ` 2hε2q2diamp pKqepε`2hε2qKpN,Lq|||L|||k`2,NKpN,Lq

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌BL
Bu

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
k`1,N

. (6.10)
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Hence, for any 0 ď α ď k ´ 1, 0 ď β ď k,
ˇ̌
ˇ̌
ˇ
dη

dtη

˜
BL

Bqipβq

¸ ˇ̌
ˇ̌
Gpτo´ε´hε2,sq

ˇ̌
ˇ̌
ˇ ¨
ˇ̌
ˇ̌
ˇ

ˆ
Y i

pαq

ˇ̌
ˇ̌
Gpτo`hε2,sq

´ Y i
pαq

ˇ̌
ˇ̌
Gpτo´ε´hε2,sq

˙ˇ̌
ˇ̌
ˇ ď

ď pε ` 2hε2q2diamp pKq|||L|||k`1,Ne
pε`2hε2qKpN,Lq|||L|||k`2,NKpN,Lq

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌BL
Bu

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
k`1,N

. (6.11)

A similar line of arguments yields to the estimate
ˇ̌
ˇ̌
ˇ

ˆ
dη

dtη

˜
BL

Bqipδq

¸ ˇ̌
ˇ̌
Gpτo`hε2,sq

´ dη

dtη

˜
BL

Bqipδq

¸ ˇ̌
ˇ̌
Gpτo´ε´hε2,sq

˙ˇ̌
ˇ̌
ˇ ¨
ˇ̌
ˇ̌
ˇY

i
pδ´pη`1qq

ˇ̌
ˇ̌
Gpτo`hε2,sq

ˇ̌
ˇ̌
ˇ ď

ď 2pε ` 2hε2q2diamp pKq|||L|||k`1,Ne
pε`2hε2qKpN,Lq|||L|||k`2,NKpN,Lq

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌BL
Bu

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
k`1,N

. (6.12)

From (6.8), (6.11), (6.12), the conclusion follows. �

6.2. The proof of Lemma 4.3. It suffices to prove that the constant npτo,N,L, BL
Bu

q of

Sublemma 4.2 is independent on |||L|||k`2,N and
ˇ̌̌̌ ˇ̌

BL
Bu

ˇ̌̌̌ ˇ̌
k`1,N

. By (6.8), this is proven if

we can show that, under the assumption (4.19), then

kÿ

δ“1

δ´1ÿ

η“0

p´1qη
ż 1

0

˜
dη

dtη

˜
BL

Bqipδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gpτo`hε2,sq

´

´ dη

dtη

˜
BL

Bqipδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gpτo´ε´hε2,sq

¸
ds “ 0 . (6.13)

For this, we observe that, by Stokes’ Theorem, (6.6) and (6.7),

kÿ

δ“1

δ´1ÿ

η“0

p´1qη
ż 1

0

˜
dη

dtη

˜
BL

Bqi
pδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gpτo´ε´hε2,sq

´

´
kÿ

δ“1

δ´1ÿ

η“0

p´1qη
ż 1

0

˜
dη

dtη

˜
BL

Bqipδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gp0,sq

“

“
ĳ

r0,τo´ε´hε2sˆr0,1s

dβPCpX|Gpt,sq, Y |Gpt,sqqdtds´

´
ż τo´ε´hε2

0

ˆ
L|pjkt pγoq,uoptqq ´L|pjkt pqγpεqq,upτo,ωo,εqptqq

˙
dt “ ´

ĳ

r0,´τo´ε´hε2sˆr0,1s

BL
Bua

ˇ̌
ˇ̌
Gpt,sq

Y adtds´

´
ż τo´ε´hε2

0

ˆ
L|pjkt pγoq,uoptqq ´ L|pjkt pqγpεqq,upτo,ωo,εqptqq

˙
dt , (6.14)

where βPC is the 1-form (6.3). We now recall that in the region r0, τo ´ ε´ hε2s ˆ r0, 1s
the components Y a of the vector field Y are identically 0. Moreover, if L has the form

(4.18), the controlled Euler-Lagrange equations imply that the value of L is 0 at all jets

of each pK-controlled curve γ, so that
ż τo´ε´hε2

0

ˆ
L|pjkt pγoq,uoptqq ´ L|pjkt pqγpεqq,upτo,ωo,εqptqq

˙
dt “ 0 .



40 FRANCO CARDIN, CRISTINA GIANNOTTI AND ANDREA SPIRO

Hence (6.14) and (4.19) imply

kÿ

δ“1

δ´1ÿ

η“0

p´1qη
ż 1

0

˜
dη

dtη

˜
BL

Bqipδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gpτo´ε´hε2,sq

“

“
kÿ

δ“1

δ´1ÿ

η“0

p´1qη
ż 1

0

˜
dη

dtη

˜
BL

Bqipδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gp0,sq

“ 0 . (6.15)

A similar argument yields

kÿ

δ“1

δ´1ÿ

η“0

p´1qη
ż 1

0

˜
dη

dtη

˜
BL

Bqipδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
Gpτo`hε2,sq

“

“
kÿ

δ“1

δ´1ÿ

η“0

p´1qη
ż 1

0

˜
dη

dtη

˜
BL

Bqi
pδq

¸
Y i

pδ´pη`1qq

ˇ̌
ˇ̌
GpT,sq

“ 0 . (6.16)

From this (6.13) follows.

7. Suggested investigations

As we mentioned in the Introduction, here we want to point out some problems of Con-

trol Theory where our two-steps approach (= a preliminary analysis based on classical

results of Differential Geometry, followed by arguments devoted to reduce the regularity

assumptions) has good chances to produce new results or to enlighten some particular as-

pects of the dynamics of controlled systems. The discussion is intentionally very sketchy,

because its purpose is merely to provide suggestions and motivations for future studies.

7.1. Maximum Principles in Continuum Dynamics. Consider the following toy

problem. Let E be an (unbounded) elastic continuum, whose elements are described by

just one space-variable, denoted by s P R, that evolves in the time t. The deformations

of such continuum are represented by functions xpt, sq of the time and space variables

and are assumed to satisfy a hyperbolic equations of the form

B2x
Bt2 ´ B2x

Bs2 “ fpt, s, upt, sqq , (7.1)

where f : R3 Ñ R is a fixed smooth function and upt, sq is a control map with values in

a compact set K Ă R. The composed map fpt, s, upt, sqq might be physically interpreted

as a (density of a) dead load attached at the elements of the continuum and varying in

time. Note also that, when fps, t, uq is linear in u, the equation (7.1) is in the class

of controlled hyperbolic equations, which is intensively studied in the theory of control

problems governed by partial differential equations (see [11, 18]).

Following our usual two-step approach, let us at first restrict the discussion of this toy

problem to deformations xps, tq and control maps ups, tq of class C8 and satisfying all

needed assumptions (as, for instance, rapidly decreasing properties for s Ñ 0) that may

guarantee that all subsequent arguments are meaningful.
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Consider the following problem: given an initial condition for xpt, sq at t “ 0

xp0, sq “ ϕpsq , Bx
Bt

ˇ̌
ˇ̌
p0,sq

“ ψpsq, (7.2)

look for a load uopt, sq such that the corresponding solution to (7.1) satisfying (7.2)

minimises the integral at t “ T (= the terminal cost)

CpxopT, sqq “
ż

R

ℓpxpT, sqqds (7.3)

where ℓpxq is a prescribed smooth real function. This can be classified as a control

problem, whose optimal controls are the loads uopt, sq satisfying the above minimising

requirement. Inspired by the discussions in [5, 6] about the control problems involving

just one independent variable, it is natural to start studying this new type of control

problem by considering the controlled Lagrangian density on the 2-jets of maps pt, sq ÞÑ
pxpt, sq, ppt, sqq, defined by

Lpupt,sqqpt, s, x, xt, xtt, xs, xss, pq :“ ppxtt ´ xss ´ f pt, s, upt, sqqq `
ˆ
ℓpxq ` t

Bℓpxq
Bx xt

˙
.

(7.4)

One can check that, for any fixed choice of the control function upt, sq,

(1) The Euler-Lagrange equations determined by Lpupt,sqq give a system of two partial

differential equations, the first equal to (7.1), the second equal to the hyperbolic

equation on ppt, sq
B2p
Bt2 ´ B2p

Bs2 “ 0 ; (7.5)

(2) If the pair pxpt, sq, ppt, sqq is a solution to the Euler-Lagrange equations in (1), then

ĳ

S“t0ďtďT,sPRu

Lpupt,sqq

ˆ
t, s, xpt, sq, Bxpt, sq

Bt ,
B2xpt, sq

Bt2 ,
Bxpt, sq

Bs ,
B2xpt, sq

Bs2 , ppt, sq
˙
dtds “

“ CpxpT, sqq .

All this shows that the new setting is extremely close to what is considered in [5, 6] for

control problems with differential constraints involving just one independent variable.

We are confident that the same line of arguments considered there (and in particular the

“road map” presented in [6, Sect. 2.2]) can be followed for this toy problem and many

other control problems with constraints given by partial differential equations. This

would lead to analogs of the PMP (compare, for instance, [11, 3]) under strong regularity

assumptions, results which can be considered as the first step of differential-geometric

type of the approach we are promoting. The direct proof of Theorem 1.1 given in this

paper can be then considered as guiding line for extending the results of the “first step”

to reach results under low regularity assumptions.

7.2. Dynamics of controlled systems with higher order constraints. Consider a

dynamical system which is subjected to a second order differential constraint in normal

form and independent on time, that is of the form

d2xj

dt2
“ f j pxptq, uptqq , 1 ď j ď n . (7.6)
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with control curve uptq “ puaptqq taking values in a relatively compact set K Ă R
m.

Following the first step of our two-step approach, let us at first assume that all data

satisfy strong regularity assumptions (i.e. assume that f is smooth, uptq varies in the class

of smooth curves, K has smooth boundary, etc.), so that the most common differential

geometric tools might be used. Let us also denote by Lpx, xp1q, xp2q, p, uq the second order

controlled Lagrangian (4.18) associated with this control problem:

Lpx, xp1q, xp2q, p, uq :“ pj

´
x
j
p2q ´ f j px, uptqq

¯
.

We remark that, for any fixed choice of a control curve uoptq, the Euler-Lagrange equa-

tions of Lpx, xp1q, xp2q, p, uoptqq for x and p coincide with the Euler-Lagrange equations

of the equivalent Lagrangian (their difference is a null Lagrangian)

rLpx, xp1q, xp2q, p, pp1q, uoptqq :“ pp1qjx
j
p1q ´ pjf

j px, uoptqq . (7.7)

If we consider the coordinates prxi, rpjq related with the pxi, pjq by

xi “ 1?
2
rxi ` 1?

2
rpi , pj “ 1?

2
rxj ´ 1?

2
rpj , (7.8)

the new Lagrangian (7.7) takes a very familiar form, namely

rLpx, xp1q, xp2q, p, pp1q, uoptqq :“ 1

2

nÿ

i“1

ˆ`
rxp1qi

˘2 ´ 1

2

`
rpp1qi

˘2
˙

` V prx, rp, uoptqq

where V prx, rp, uq :“ ´
ˆ

1?
2
rxj ´ 1?

2
rpj
˙
f j

ˆ
1?
2
rx` 1?

2
rp , u

˙
. (7.9)

This is a Lagrangian that describes the dynamics on a Lorentzian 2-manifold of a system

subjected to force with time-dependent potential V prx, rp, uoptqq. It is therefore possible

to use a variety of well known mathematical physics tools to study the dynamics of

such controlled systems. For instance, for any given choice of a smooth uoptq, studying
symmetries of V and using Noether Theorem ([12]), all conservation laws that are satisfied

(or, more interesting, violated) can be explicitly determined. In particular, in the time

intervals on which uoptq is constant (recall that, in several classical settings, the optimal

control uoptq is constant a.e.) an appropriate non-positively defined energy is conserved

by the corresponding controlled evolution.

Furthermore, if we denote by pQIq :“
ˆ
xi

pj

˙
, we may observe that the Hessian

BrL
BQI

p1q
BQJ

p1q

is non-degenerate, a property that allows a formulation of the differential con-

straints into a Hamiltonian formulation in the phase space spanned by the coordinates

Q “ pQIq “ pxi, pjq and their duals P “ pPKq. In a sense, this would be a “true

Hamiltonian presentation” of the constraints of the controlled system, very much differ-

ent from the traditional Pontryagin’s Hamiltonian type presentation. We think that it

would be quite important to get a clear view of the relations between these two distinct

Hamiltonian type presentations of the differential constraints and of their dependences

on the needle variations. As usual, answers to any question in this topic can at first be

obtained via differential geometric tools under strong regularity assumptions. Secondly

one can extend the results to the lowest possible regularity assumptions following the

ideas of this paper. Similar investigations might – and, in our opinion, should – be made
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for controlled systems with differential constraints of order higher than two and/or by

means of the alternative presentations of Lagrangian type, which are discussed in [6].
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[19] F. Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London,

1967.

Franco Cardin
Dipartimento di Matematica “Tullio Levi-Civita”
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