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Brain functional network (BFN) has become an increasingly important tool to understand
the inherent organization of the brain and explore informative biomarkers of neurological
disorders. Pearson’s correlation (PC) is the most widely accepted method for
constructing BFNs and provides a basis for designing new BFN estimation schemes.
Particularly, a recent study proposes to use two sequential PC operations, namely,
correlation’s correlation (CC), for constructing the high-order BFN. Despite its empirical
effectiveness in identifying neurological disorders and detecting subtle changes of
connections in different subject groups, CC is defined intuitively without a solid and
sustainable theoretical foundation. For understanding CC more rigorously and providing
a systematic BFN learning framework, in this paper, we reformulate it in the Bayesian
view with a prior of matrix-variate normal distribution. As a result, we obtain a
probabilistic explanation of CC. In addition, we develop a Bayesian high-order method
(BHM) to automatically and simultaneously estimate the high- and low-order BFN based
on the probabilistic framework. An efficient optimization algorithm is also proposed.
Finally, we evaluate BHM in identifying subjects with autism spectrum disorder (ASD)
from typical controls based on the estimated BFNs. Experimental results suggest that
the automatically learned high- and low-order BFNs yield a superior performance over
the artificially defined BFNs via conventional CC and PC.

Keywords: brain functional network, high-order network, Pearson’s correlation, Bayesian statistics, matrix-
variate normal distribution, autism spectrum disorder

INTRODUCTION

Resting-state functional magnetic resonance imaging (rs-fMRI)-based brain functional network
(BFN) analysis without a specific task, has shown a great potential to discover biomarkers for
identifying neurological/mental disorders, such as autism spectrum disorder (ASD) (Wang et al.,
2019), major depressive disorder (MDD) (Long et al., 2020), schizophrenia (Ariana and Cohen,
2013), Parkinson’s disease (PD) (Baggio et al., 2014), Alzheimer’s disease (AD) (Hahn et al.,
2013), and its early stage, namely, mild cognitive impairment (MCI) (Jiang et al., 2019). However,
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the identification of brain disorders based on the BFN
remains a critical challenge, since its great performance
depends on multiple interactive factors including reasonable
brain parcellation, well-parametrized network estimation,
discriminative feature selection/extraction, and powerful
classifier design (Dadi et al., 2019; Pervaiz et al., 2020). Instead
of considering all these aspects that have been empirically
evaluated in recent studies (Dadi et al., 2019; Pervaiz et al., 2020),
in this paper, we mainly focus on the BFN estimation issue.
Recently, more advanced studies (Yu et al., 2017; Zhang et al.,
2017; Mahjoub et al., 2018) have proposed the brain functional
connectivity representations for estimating BFN at different
connectivity levels, including low-order, high-order, etc. Low-
order methods are designed to characterize the synchronization
of blood oxygen level dependent (BOLD) signals and are
insufficient to characterize a high level of interaction. Recent
literature (Chen et al., 2016; Zhang et al., 2016) presented high-
order methods to measure the relationship between the BFN
connectivity. This paper specifically aims to capture the brain
connectivity that is supposed to exist in a higher-order form.

Owing to its non-invasiveness and easy reproducibility, rs-
fMRI (Wang et al., 2020) has become a widely used technique
to estimate BFN whose nodes correspond to spatial regions
of interest (ROIs) and edges describe the relationship (e.g.,
similarity, correlation, synchronism, etc.) between the rs-fMRI
signals associated with these ROIs. In the past decades,
researchers have developed many BFN estimation methods,
including Pearson’s correlation (PC) (Biswal et al., 1995; Eguiluz
et al., 2005), partial correlation (Marrelec et al., 2006), regularized
full/partial correlation (Friedman et al., 2008; Jie et al., 2009;
Li et al., 2017), structural equation modeling (Mclntosh and
Gonzalez-Lima, 1994), and dynamic causal modeling (Friston
et al., 2003), etc. According to a recent comparative study
(Smith et al., 2013), the correlation-based approaches are “quite
successful” for estimating informative BFNs. Particularly, PC
is the fundamental and most widely used correlation-based
method for BFN estimation. Despite its empirical effectiveness,
PC only considers a pair of ROIs at a time, and thus suffers
the confounding effect from other ROIs. Partial correlation can
tackle this problem by regressing out the confounding variables.
However, that may lead to an ill-posed estimation since the
partial correlation is usually calculated by inverting a covariance
matrix that may be singular. In practice, a regularizer is generally
introduced into the partial correlation model, which not only
deals with the ill-posed problem but also provides a natural
way to introduce topological priors of the brain network into
the estimation models. Specifically, L1-norm is commonly used
to encode the sparsity prior of the BFN (Lee et al., 2011), a
weighted version of the L1-norm to capture the hub structure
(prior) (Li et al., 2017), the L2,1-norm to model group sparsity
(or population prior) that imposes all the subjects share the same
BFN topology (Zhang, 2010), and a combination of L1-norm with
trace-norm to encode the modularity (prior) of the BFN (Qiao
et al., 2016), to just name a few.

No matter which prior or regularizer is introduced, most of the
correlation-based methods only estimate low-order BFNs whose
edges are the full or partial correlation of the rs-fMRI time series.

Beyond these traditional low-order correlations, researchers
found that some forms of high-order correlations may contain
useful feature information for BFN analysis and classification
(Chen et al., 2016; Zhang et al., 2016; Zhou et al., 2018a,b). For
example, Chen et al. (2016) defined the high-order correlation
as the dependency between functional connectivity fluctuation,
with clustered mean correlation time series as input. Different
from characterizing a temporal correlation, Zhang et al. (2016)
proposed to construct the high-order BFN to examine spatial
properties of the functional connectivity network. Specifically,
such a scheme is achieved by two sequential PC operations, where
the first PC operation is used to construct a traditional low-
order BFN, and the ensuing PC operation is conducted on the
edge weights of the estimated BFN to generate the high-order
BFN. Despite encoding the network information from different
dimensions, the above methods are uniformly called correlation’s
correlation (CC) (Zhang et al., 2017) since they both involve two
PC operations in the high-order BFN construction. However,
the CC-based high-order BFNs are estimated intuitively and
heuristically without the support of any strong theoretical basis.

Toward a better understanding of CC, in this paper, we
reformulate it in the Bayesian framework with a prior that
the low-order BFN follows the matrix-variate normal (MVN)
distribution. As a result, we obtain a probabilistic explanation
for CC and develop a new method that both learns low- and
high-order BFNs from data based on the rigorous theoretical
framework. In brief, we summarize the main contributions of this
paper as follows.

1. We reformulate PC from a statistical point of view. Based
on this, a regularized statistical framework is derived by
introducing Gaussian distribution to the error term, which
provides a more flexible modeling idea.

2. A mathematical model for a high-order learning method
based on CC is developed by assuming the adjacency
matrix of low-order brain networks follows an aprior
normal distribution.

3. Based on the probabilistic framework derived above, an
automatic learning model, namely, BHM, is proposed.
Compared with the traditional high-order network learning
method (i.e., CC), the model simultaneously learns low-order
and high-order brain networks. In the learning process, the
direct information of the low-order network and the indirect
information of the high-order network complement each
other toward more reliable/discriminative brain networks.

4. Finally, we empirically verify that the automatically learned
BFNs outperform the artificially defined ones via CC and
other baselines in the identification of ASD, even with a simple
feature selection method and classifier.

For a consistent expression throughout the paper, we first
describe the basic notations as follows. Scalars involving the
variables, parameters, and constants are denoted by italic
lowercase letters, e.g., x. Vectors are denoted by bold lowercase
letters and the elements inside are stored in a column, e.g.,
x = (x1, x2, · · · , xn)T . Matrices are denoted by bold uppercase
letters such as X.
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The rest of the paper is organized as follows. In Section
“Related Works,” we review the related works including PC,
sparse representation (SR), and CC. In Section “High-Order
Correlation Learning,” we first introduce a theoretical framework
for explaining CC and then develop a new framework for learning
high-order BFN by reformatting CC in a view of the maximal
posterior probability. In Section “Experiments and Results,”
we conduct experiments to evaluate the discrimination of the
automatically learned high-order BFNs. In Section “Discussions,”
we discuss the main findings. Finally, the conclusion are reported
in Section “Conclusion.”

RELATED WORKS

In this section, we review three related works: PC, SR, and CC.
As discussed previously, PC and SR are used to construct the
traditional low-order BFNs, while CC as a two-step sequential
PC method is used to estimate the high-order BFNs.

Pearson’s Correlation
Suppose xi is the multivariate random variable (random vector)
associated with the ith ROI. Then, the observed rs-fMRI signals1

xi = (x1i, x2i, · · · , xni)T, i = 1, 2, · · · , p can be considered as
a sampling of the multivariate random variable (or population)
xi, where p is the number of ROIs and n is the number of time
points. Since our goal is to estimate the edge weights of the
BFN, the simplest and empirically effective way is to calculate the
sample PC coefficient ŵij

(
i, j = 1, 2, · · · , p

)
of pair-wise ROIs,

as follows.

ŵij =
(xi − xi)T

(
xj − xj

)√
(xi − xi)T (xi − xi)

√(
xj − xj

)T (xj − xj
) (1)

where xi is the mean vector corresponding to xi. Under
Gaussian assumption, Eq. 1 gives an asymptotically unbiased
estimation for the population PC coefficient. Without loss

of generality, we redefine xi , (xi − xi)/
√
(xi − xi)T (xi − xi).

Then, the estimator of population PC coefficient can be simplified
as follows:

ŵij = xTi xj or Ŵ = XTX (2)

where X =
[
x1, x2, · · · ,xp

]
is the rs-fMRI data matrix whose

columns are the rs-fMRI time series associated with different
ROIs. Therein, Ŵ is the generalized estimator in matrix form.

Sparse Representation
Sparse representation is one of the commonly used methods
for calculating partial correlation among ROIs. A regularization
term encoding sparsity prior is introduced into the BFN

1Note that the rs-fMRI signals have been preprocessed as described in Section
“Data Acquisitions and Processing.”

estimation model. Specifically, the mathematical model of SR is
given by:

min
W

p∑
i=1

∣∣∣∣∣∣
∣∣∣∣∣∣xi −

∑
j6=i

wijxj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+ λ
∑
j6=i

∣∣wij
∣∣ (3)

where W is the edge weight matrix of BFN.
Similar to PC, we can rewrite SR in matrix form:

min
W
||X−XW||2F = λ ||W||1

s.t. wii = 0, ∀i = 1, 2, · · · , p (4)

where the constraint wii = 0 plays a role in removing xi from X
to avoid the trivial solution.

Correlation’s Correlation
Despite its popularity and effectiveness, the traditional PC can
only construct the low-order BFN. That is, the connection
between two ROIs is determined by the correlation of the
corresponding rs-fMRI time series. However, in practice, a
connection can be described in both low-order and high-order
views. For example, we can directly define a connection between
ROI i and j if there is a relationship. Besides, if ROIs i and j are
connected to the same brain region, we can infer with a great
possibility that there is a connection between ROI i and j. The
former corresponds to the correlation in the traditional low-order
view, while the latter can be considered as CC in a high-order
perspective. This results can be achieved by a two-step procedure.
First, the low-order BFN is estimated via PC. According to the
formula in Eqs 1 or 2, the adjacency matrix Ŵ =

(
ŵij
)
p = p of

the PC-based BFN can be calculated as follows.

ĥij = ŵT
i ŵj (5)

where ŵi and ŵj are the ith and jth columns of Ŵ, respectively.
For simplicity, in Eq. 5, ŵi and ŵj has been centralized and
normalized as the case in Eq. 2. As a result, the CC-based
high-order BFN is defined as follows,

Ĥ =
(
ĥij
)
p × p

= ŴTŴ (6)

HIGH-ORDER CORRELATION LEARNING

As described previously, CC constructs the high-order BFN based
on two sequential correlation operations. Despite its empirical
effectiveness in identifying neuro-disorders (Chen et al., 2016;
Zhang et al., 2016), CC is a measure defined intuitively without
a clear mathematical/probabilistic explanation. Therefore, in this
section, we will construct a more rigorous mathematical model
for CC, in order to provide a better understanding of the CC-
based high-order BFN.

Since CC is based on the PC variant, in the following
Section “Pearson’s Correlation-Based Brain Functional Network
Learning Framework in Bayesian View,” we first reformulate PC

Frontiers in Neuroscience | www.frontiersin.org 3 April 2022 | Volume 16 | Article 872848

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-872848 April 26, 2022 Time: 10:1 # 4

Jiang et al. Estimating BFN in Bayesian View

into a more flexible BFN estimation framework. Then, based on
the framework, we establish a theoretical model for CC in Section
“Learning High-Order Brain Functional Network With a Matrix-
Normal Penalty.” Finally, we design an algorithm for learning
the high-order BFN based on the theoretical model of CC in
Section “Algorithm”.

Pearson’s Correlation-Based Brain
Functional Network Learning Framework
in Bayesian View
As we know, PC is a measure of the linear correlation between
pair-wise rs-fMRI time series associated with the ROIs. In other
words, a time series xi = (x1i, x2i, · · · , xni)T can be linearly
represented by other time series xj =

(
x1j, x2j, · · · , xnj

)Tas

xi = aijxj + εi (7)

where aij is the representative coefficient, and
εi = (ε1i, ε2i, · · · , εni)

T is the random error vector. That
is, for each variable, we have:

xki = aijxkj = εki
(
k = 1, 2, · · · , n; ; i, j = 1, · · · , p

)
(8)

Generally, we assume that the random variable εki follows
a normal distribution with mathematical expectation 0, i.e.,
εki ∼ N

(
0, σ2) . Therefore, given xkj and aij are constants, xki

follows the normal distribution xki ∼ N
(
aijxkj, σ2). Then, The

following formula can be obtained by the maximum likelihood
estimation of xki (see Appendix A for details).

max
aij
−n log

(√
2πσ

)
−

∣∣∣∣xi − aijxj
∣∣∣∣2

2σ2 (9)

Note that Eq. 9 can be equivalently written as the following
least-squares problem:

min
aij

∣∣∣∣xi − aijxj
∣∣∣∣2 (10)

The optimal solution to Problem (10) is given by

âij =
(

xTj xj
)−1

xTj x
i
= xTi xj = ŵij, considering that all

of time series xi, i = 1, 2, · · · , p have been normalized by xi
||xi|| .

This means that the solution of Eqs 9, 10 is the same as PC shown
in Eq. 2. Therefore, in what follows, we only use wij instead of aij
for the consistency of mathematical notations.

To provide a more flexible framework for BFN estimation, we
further generalize PC in Bayesian view by introducing a prior
distribution on wij. Although various distributions can be used as
the prior, here we first consider the standard normal distribution,
i.e., wij ∼ N (0, 1), since it provides a basis for understanding
more complex cases. However, in practice, the entries wij in
W may not be apriori independent of each other, but exist a
relationship. Due to wij ∼ N (0, 1), the edge weight wij of BFN
has the following prior probabilistic density:

P
(
wij
)
=

1
√

2π
e−

wij
2

2 (11)

Next, a maximal posterior estimation of wij (see Appendix B
for details) can be obtained as follows,

max
wij
− (n + 1) log

(√
2π
)
= (−n) log−

∣∣∣∣xi − wijxj
∣∣∣∣2 + σ2wij

2

2σ2

(12)

The above problem is equivalent to the regularized least-
squares problem:

min
wij

∣∣∣∣xi − wijxj
∣∣∣∣2 + λw2

ij (13)

where λ = σ2 in the case of standard normal distribution.
In practice, λ , σ2/σ0

2 is a hyper-parameter that controls the
balance between the two terms in Eq. 13, where σ0

2 corresponds
to the variance of normal distribution of the edge weight wij.
Setting the gradient of the objective function to zero, we obtain
the optimal solution of Eq. 13 as follows:

ŵij =
(

xTj xj + λ
)−1

xTj x
i
= (1 + λ)−1xTi xj (14)

We find that it is a shrinkage of the original estimation of PC
which helps remove the weak connections in BFN.

Note that Eq. 13 only considers finding one edge weight at
a time. Without loss of generality, with the assumption that the
variables wij in W are independent, we can rewrite Eq. 13 in the
following matrix form:

min
W

∣∣∣∣∣∣W− XTX
∣∣∣∣∣∣2
F
+ λtr

(
WWT

)
(15)

where tr
(
WWT)

=
∑

i,j w
2
ij is the trace operator of WWT . As

a result, we achieve the estimation of BFN in a batching way as
follows,

Ŵ = (1 + λ)−1XTX (16)

This formula is essentially a generalization of Eq. 2 with a
shrinkage factor (1 + λ)−1. When λ + 0, Eq. 16 reduces to
the traditional PC.

Learning High-Order Brain Functional
Network With a Matrix-Normal Penalty
In Section “Pearson’s Correlation-Based Brain Functional
Network Learning Framework in Bayesian View,” we reformulate
PC and then generalize it in Bayesian view by introducing a
standard normal prior wij ∼ N (0, 1) for each pair of ROIs(
i, j
)
, i, j = 1, 2, · · · , p. However, in practice, the entries wij

in W may not be apriori independent of each other, but exist
a relationship. Even so, Section “Pearson’s Correlation-Based
Brain Functional Network Learning Framework in Bayesian
View” provides a flexible probabilistic framework to develop
new brain network estimation methods. Inspired by this point,
we lay down theoretical support for CC from the Bayesian
perspective. More importantly, instead of assuming that wij
in W are independent, we propose a Bayesian high-order
model (BHM) for BFN estimation by introducing the prior
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FIGURE 1 | The diagram of low- and high-order connections.

of matrix-variate normal distribution to the low-order BFN
W. BHM learns the high-order relationship from the data
automatically, rather than manually define as the case in CC.
Interestingly, such a scheme can simultaneously learn low-order
and high-order BFNs by considering the spatial structure of
network connections. To distinguish the low-order and high-
order correlations, an illustration is shown in Figure 1. The
connections among wij can be considered as a high-order
correlation hij,kl, while wij denotes the traditional low-order
linear correlation between ROIs.

Model
Since we can vectorize the low-order edge weight matrix W
into a p2

= 1 vector, the low- and high- order correlation
can be modeled by a multivariate normal distribution, vec(W ∼
)N (O, �), where W encodes the low-order relationship and� ∈
Rp

2
= p2

is the covariance matrix for modeling the relationship
between the entries in W. Despite the theoretical feasibility for
encoding the high-order relationship, W-vectorization ignores its
spatial structure as a matrix. Even worse, the estimation of � is
extremely challenging due to its high dimension. Such a scale
not only goes beyond the storage ability of the general memory
(Specifically, in our experiment, p is 160, which takes up about
4.9 GB storage), but also may lead to the overfitting problem.
Therefore, we further assume that the covariance matrix � has
the Kronecker product decomposition (Gupta and Nagar, 2000),
i.e., � = �1

⊗
�2, where �1 and �2 denote the row and

column covariance matrices, respectively. That is, W follows the
distribution W ∼MN

(
O, �1

⊗
�2
)
. As described earlier, in

this paper, we mainly focus on correlation-based methods that
generally result in the symmetric BFN. Therefore, the row and
column covariance matrices of W are the same, i.e., �1 = �2,
and without loss of generality, we define � , �1 = �2. As a
result, the matrix-variate normal distribution (Gupta and Nagar,
2000) of the low-order BFN W has a probability density:

P (W) = (2π)−
1
2 p

2
|�|−petr

{
−

1
2�
−1W�−1WT}

(17)

Similar to the formulation in Eqs 11–16, we take Eq. 17
as a prior distribution of low-order network W. Then, we can
formulate the posterior probability of W based on the Bayesian
rule (see Appendix C for details). By maximizing the posterior
probability, the low- and high-order BFN mutual learning model
can be obtained as follows:

J (W, �) = min
W,�

∣∣∣∣∣∣W − XTX
∣∣∣∣∣∣2
F
+ λ

[
1
2
tr
(
�−1W�−1WT

)
+p log (|�|)

]
(18)

where W is the Bayesian low-order BFN, � corresponds to the
Bayesian high-order BFN, p is the number of ROIs, and λ is a
hyper-parameter that controls the balance between the two terms
in the objective function.

Algorithm
The alternating optimization (AO) scheme (Bezdek and
Hathaway, 2002) is employed to solve Problem (18). More
specifically, we first initialize the low-order BFN using the PC
estimator, i.e., W = Ŵ = XTX, and then alternatively optimize
W and �.

Step 1 Fix W and solve�. The optimization problem is

min
�

tr
(
�−1W�−1WT

)
+ plog (|�|) (19)

which can be solved by the following iterative formula (Dutilleul,
1999; Zhang and Schneider, 2010)

� = WT�−1W (20)

Note that, by initializing� = I in Eq. 20, at the first iteration,
we obtain� = WTW, which reduces to the traditional CC, as Ĥ
defined in Eq. 6. In other words, the traditional CC is only a rough
estimation of the theoretical value at the first iteration. We can
continue the iteration toward a more accurate estimation of�. In
fact, with the estimated�, we can further update W according to
the AO scheme. In practice, we generally add a small quantity δI
to Eq. 20 for a more stable numerical solution where δ is a small
positive constant.

Step 2 Fix� and solve W. The optimization problem is

min
W

∣∣∣∣∣∣W−XTX
∣∣∣∣∣∣2

F
+

λ

2
tr
(
�−1W�−1WT

)
(21)

With the fixed�, the gradient of Eq. 21 with respect to W is

2W−2XTX + 2λ�−1W�−1 (22)

Setting the gradient equal to zero, we obtain:

W = XTX−�−1W�−1 (23)

We summarize the algorithm for solving Problem (18) in
Algorithm 1.
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ALGORITHM 1 | Estimating BFN with BHM model.

Input: X – data matrix
ε – iteration stopping threshold

MaxIter – maximum number of iterations
Output: W – Bayesian low-order BFN

� – Bayesian high-order BFN

Initialize W = XTX
For k = 1,2, · · · , MaxIter

Calculate � = WT�−1W = δI;
Update W = XT X−�−1W�−1;
Calculate the objective function of Eq. 18: Jk = J(W, �);
If
∣∣Jk − Jk−1

∣∣ = ε

Break and Return W, � ;
End If

End For

EXPERIMENTS AND RESULTS

Data Acquisitions and Processing
To evaluate the effectiveness of the proposed BHM, we conduct
experiments on Autism Brain Imaging Data Exchange (ABIDE)
database. The objective is to identify subjects with ASD from
typical controls (TCs). Considering the heterogeneity of multi-
site data, we only use data from the NYU site in our study. The
dataset includes 184 subjects (79 ASD patients and 105 TCs).
The detailed scan procedures and protocols are described on the
ABIDE website.2 The demographic information of all participants
is summarized and displayed in Table 1.

All rs-fMRI images were acquired using a standard echo-
planar imaging sequence on a clinical routine 3T Siemens Allegra
scanner. During the 6-min rs-fMRI scanning procedure, most
subjects were required to relax with their eyes focusing on a
white fixation cross in the middle of the black background screen
projected on a screen. A few participants close their eyes. The
functional scan parameters include the flip angle = 90

◦

, 33 slices,
TR/TE = 2000/15 ms with 180 volumes, FOV = 240 mm and voxel
size = 3 ×3 ×4 mm3. The rs-fMRI data were preprocessed by
DPARSF3 software. Specifically, to avoid the interference of early
signal instability, the first 5 rs-fMRI volumes of each subject were
discarded. The remaining volumes were calibrated as follows:
(1) Slice timing correction and head motion correction; (2)
Regression of nuisance signals (ventricle, white matter) and head-
motion with Friston 24-parameter model (Friston et al., 1996); (3)

2http://fcon_1000.projects.nitrc.org/indi/abide/
3http://rfmri.org/dpabi

TABLE 1 | Demographic information of the used dataset.

ASD (n = 79) TC (n = 105)

Gender (M/F) 68/11 79/26

Age (year SD) 14.51 ± 6.23 15.80 ± 3.23

FIQ (mean SD) 107.91 ± 16.62 113.15 ± 13.12

ADOS (mean SD) 11.3 ± 4.08 –

ASD, autism spectrum disorders; TC, typical control; FIQ, full intelligence quotient;
ADOS, autism diagnostic observation schedule.

Normalization and register to MNI space with resolution of 3 3 3
mm3; (4) Segmentation using DATTEL; (5) Spatial smoothing
by a kernel of 6 mm. After that, since our focus is functional
connectivity, the rs-fMRI time series signals were partitioned
into 160 ROIs, according to the functional atlas Dosenbach 160
(Dosenbach et al., 2010). Finally, the mean time series of the ROI
were put into a data matrix X ∈ R175 = 160, which will be used for
the subsequent BFN estimation.

Brain Functional Network Construction,
Feature Selection, and Classification
With the preprocessed rs-fMRI data, we estimate the low- and
high-order BFNs using the proposed method, i.e., Bayesian
low-order Network W and Bayesian high-order Network �,
respectively. For comparison, we also choose PC, SR, and
traditional CC as baseline methods to construct BFNs.

Once the BFNs are constructed, the next step is feature
selection and classification. In our study, we directly use edge
weights of the estimated BFN as features for ASD identification.
Despite its simplicity (without complex feature design), such
a scheme easily causes the curse of dimensionality due to
limited sample size. As described previously, the number
of ROIs is 160 and thus the estimated feature edges are
160 = (160−1)/2 = 12720, which is far greater than the
sample size (i.e., the number of subjects 184). To alleviate the
problem of small sample size, we adopt a two-sample t-test
with an empirically fixed p values to select features before ASD
classification. In our experiments, we evaluate five candidate
parametric values of p, that is [0.001,0.005,0.01,0.05,0.1]. The
specific parameter analysis results are given in Section “Sensitivity
to Network Modeling Parameters.”

To perform the following classification task, we use a linear
support vector machine (SVM) (Chang and Lin, 2011) with
default C = 1 as the classifier. To evaluate the model, we adopt
leave-one-out cross-validation (LOOCV) in our experiments
due to the limited data samples. Specifically, a LOOCV works
in each run and only one sample is used to test while the
rest are used to train a classifier. The final performance is
obtained by the averaged results of all the runs. Note that the
model parameters are involved in certain methods, including SR
and BHM. Therefore, we additionally adopt an inner LOOCV
procedure on the training data to obtain the optimal parametric
value. Specifically, for SR, the regularization parameter λ is
set to [2−2, 2−1, 20, 21, 22

]. For the proposed BHM, the
regularization parameter λ is set to [0.0001, 0.001, 0.01, 0.1, 1].
To be consistent with the number of parameters in other
methods, the coefficient δ of the perturbation involved in Eq. 20
is set to 0.1 empirically.

Classification Results
To evaluate the classification results of different methods, we
use accuracy (ACC), sensitivity (SEN), specificity (SPE) as
performance metrics. The definition of these quantities are
reported in Table 2. Note that, in this work, we treat ASD patients
as the positive class while the NCs as the negative class.
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TABLE 2 | Different performance metrics.

Performance metrics Abbreviations Definitions

Accuracy ACC TP + TN
TP + FP + TN + FN

Sensitivity SEN TP
TP + FN

Specificity SPE TN
TN + FP

TP, TN, FP, and FN indicate true positive, true negative, false positive, and false
negative, respectively.

TABLE 3 | The classification results based on five different methods for
ASD identification.

Methods ACC SEN SPE

PC 0.6359 0.6222 0.6383

SR 0.6033 0.2658 0.8571

CC 0.6630 0.5570 0.7429

BHM-W 0.6576 0.5316 0.7143

BHM-� 0.7283 0.6329 0.8000

In Table 3, we report the ASD classification results of
five methods. It can be observed that the Bayesian low-order
network (BHM-W) and Bayesian high-order network (BHM-
�) constructed by the proposed BHM perform better than the
BFNs constructed by the traditional PC and CC, respectively.
Moreover, BHM-� achieves the best performance. Besides, the
high-order BFNs (traditional CC and BHM-�) are associated
with better recognition performance when they are compared
with the baseline methods PC, SR, and BHM-W. This means
that the high-order network structure can provide more helpful
information for BFN analysis to some extent. Furthermore, for
two corresponding low-order methods, the performance of the
traditional PC and BHM-W are approximately similar whereas
BHM-W has slightly better accuracy than the traditional PC.
This may benefit from the guidance information provided by the
Bayesian high-order network� in the optimization process.

DISCUSSION

Brain Functional Network Visualization
To evaluate the BFNs estimated by different methods, we
randomly select a subject and visualize the BFNs constructed

by PC, SR, CC, BHM, as shown in Figure 2. Specifically, the
different colors of Figure 2 indicate different weights of the
edge weights matrix (i.e., the BFN), ranging from −1 to 1. It is
observed that: (1) Compared with SR, the BFNs estimated by the
correlation-based methods (i.e., PC, CC, BHM) are denser since
the sparsity prior is introduced into SR. (2) There are fewer areas
of cold colors in the PC network heatmap, implying that the edges
with the negative weights are less. (3) Compared with PC, CC’s
network heatmap shows a sharper distinction between the areas
of warm and cold colors, indicating that the positive edge weights
of CC’s BFN are larger and the negative edge weights are smaller.
(4) The BHM-W estimated from the Bayesian perspective has a
greater distinction between positive and negative edge weights
than PC. (5) The BHM-� as a Bayesian version of the traditional
CC tends to produce a greater distinction between positive
and negative edge weights than CC. Combined with the fact
that the high classification accuracy of the BHM method, we
can infer that the negative edge weights of BFN also have
important information for classification. (6) The BFNs based on
the correlation methods show a degree of consistency., as shown
in the black box in Figure 2. Similar structures appear in the
four BFNs estimated by PC, CC, BHM, which can provide certain
support for the reliability of the three correlation methods. In
addition, we cluster the brain regions using spectral clustering
(Ng et al., 2001) and visualize the clustered adjacency matrices of
these 5 methods in Figure 3. It is observed that the BFN estimated
by BHM-� shows a more significant modular structure.

Sensitivity to Network Modeling
Parameters
As stated earlier, some methods including SR and BHM involve
optional model parameters. Different parameter values may have
a significant impact on the results. Therefore, we calculate the
accuracy of different methods under different parameter values,
as shown in Figure 4. It is worth noting that, traditional PC
and CC models do not involve optional parameters. However,
for comparison, we fix their values with the final classification
accuracy in Figure 4 for visualization. We can observe that BHM-
� and BHM-W are quite sensitive to the parameters. When λ

in BHM is set to a large real number, the accuracy of BHM-
� decreases, which may be because the large value of λ, the
algorithm has difficulties to converge. Besides, the accuracy of

FIGURE 2 | The BFN adjacency matrices of different methods. The patches marked by the black box are the consistent part of the network constructed by different
methods.
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FIGURE 3 | Five clustered edge weight matrices of the same subject estimated by different methods.

FIGURE 4 | Classification accuracy of ASD identification based on 5 BFNs estimated by PC, CC, SR, and BHM with 5 different parametric values. Although PC and
CC have no optional parameters, in order to facilitate comparison, we visualize the accuracy of PC and CC in the left chart.

BHM-W increases as λ increases. For this, we empirically tested
a larger lambda range [2−5, 2−4, · · · , 20, · · · , 24, 25

] and find
that as λ continues to increase, the accuracy decreases, which is
consistent with the performance of BHM-�. Moreover, SR is not
sensitive to different parameter values, but its accuracy performs
average in general.

FIGURE 5 | Classification accuracy of ASD identification based on 5 BFNs
estimated by PC, CC, SR, and BHM for 5 different p-values.

Considering that different p-values significantly influence the
results, we show the classification accuracies of 5 methods under
different p-values in Figure 5. Note that all 5 methods are
sensitive to different p-values. We selected the optimal parameter
value for feature selection, so that different methods can get the
best classification performance.

Top Discriminative Features
In this work, for the ASD classification task, we use the edge
weights of the estimated BFN as features. With the empirically
optimal parameter, we construct the BFNs using the proposed
BHM, then apply a two-sample t-test to rearrange the features
according to the p-values. Particularly, we choose the BHM-�
since it outperforms the BFNs estimated by the other methods.
As a result, we obtain the discriminative edge connections with
a threshold value p < 0.001 as shown in Figure 6. Here, the
thickness of each arc represents the discriminative power that is
inversely proportional to the corresponding p-value. The colors
of each arc are assigned randomly for better visualization.

In Figure 6, the top discriminative features and the
corresponding brain regions, that may contribute to ASD
identification include occipital lobe, post-cingulate, dorsal frontal
cortex, inferior parietal lobule, precuneus, anterior prefrontal
cortex, lateral cerebellum, temporal lobe, fusiform gyrus, mid
insula, etc. in order of discriminant ability. The findings are
consistent with previous studies (Nickl-Jockschat et al., 2012;
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FIGURE 6 | The most discriminative edge features of the BHM-� involved in
the ASD classification task by using a t-test (p < 0.001). This figure is created
by the circularGraph tool, which is designed by Paul Kassebaum and can be
downloaded from http://www.mathworks.com/matlabcentral/fileexchange/
48576-circulargraph.

Hashem et al., 2020; Lau et al., 2020). We visualize the ROIs using
the Brainmesh of Ch2 with Cerebellum in Figure 7, where the
size of node spheres depends on the original value in the node file
provided by the Dosenbach 160 template.

Other Distribution Priors
As described before, we first give an equivalent probability
explanation for PC by introducing a normal distribution for the
rs-fMRI signal values. Then we reformulate PC with Bayesian
rule, thus getting two perspectives of PC. This provides a platform
for generalizing PC to CC by assuming that the edge weight
matrix W follows the MVN distribution prior. As a result, we
derive a probabilistic explanation of CC and develop a high-
order BFN estimation framework that allows the introduction of
different priors (or regularizers).

Besides the introduced normal distribution prior on W for
BFN estimation, we can also introduce other priors on W. For
example, considering Laplacian distribution prior for wij, e.g.,

P
(
wij
)
=

1
2β
e−
|wij|

β where β is a scale parameter. In this way,
the regularized least square problem is

min
wij

∑
ij

(∣∣∣∣xi − wijxj
∣∣∣∣2 + λ

∣∣wij
∣∣) (24)

We can find that the Laplacian distribution generates sparse
BFN due to the regularizer wij. Besides, we can get the optimal
solution by the soft thresholding, as follows:

ŵij =

{
xTi xj − λ, xTi xj ≥ λ

0, xTi xj < λ
(25)

Although different prior distributions can be tried to
introduce the proposed probabilistic framework, we do not

FIGURE 7 | The full view of most relevant ROI associated with the ASD classification task based on BHM-�. This visualization is created using the BrainNet Viewer
(https://www.nitrc.org/projects/bnv/).
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formulate their models in detail since this paper focuses on the
formulation of CC.

CONCLUSION

In this paper, we propose a probabilistic high-order BFN learning
framework with a matrix normal penalty for ASD identification.
As pointed out previously, CC is intuitively defined based on
two sequential PC operations and falls short of a rigorous
mathematical basis. To address this issue, we first reformulate PC
with Bayesian rule and then generalize PC to CC by assuming
that the edge weight matrix follows a matrix-variate normal
distribution prior. This work lays the theoretical foundation
for CC methods, leading to a better understanding of high-
order BFN learning. In this base, we develop a Bayesian
High-order Model to simultaneously estimate the high- and low-
order BFN. To efficiently solve the proposed objective function,
an alternating optimization algorithm is proposed. Extensive
experiments on the NYU site of ABIDE dataset demonstrate
the effectiveness of the proposed method, in comparison to the
baseline methods. Especially for the BHM-�, it achieves the
best performance. Note that we only construct high-order BFN
based on PC. In principle, any correlation-based BFN estimation
method (e.g., SR) can be embedded in the proposed probabilistic
framework. In the future, we plan to validate the scheme on the
other correlation-based BFN models.
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APPENDIX

This Appendix consists of three appendices: Appendix A gives a detailed explanation of Eq. 9, Appendix B presents a detail for Eq. 12
and Appendix C gives a detailed derivation of Eq. 18. To keep the process of derivation smooth, we write the formulas that appeared
above with the original number in the appendix, while the new formulas in the process of derivation was renumbered.

Appendix A
Given xkj and aij are constants, xki follows the normal distribution xki ∼ N

(
aijxkj, σ2). The conditional distribution can be

written as

P
(
xki
∣∣ aij, xkj, σ2)

=
1
√

2πσ
e−

(
xki−aijxkj

)2

2σ2 (A1′)

Assuming that the variables xki of rs-fMRI time series xi, i = 1, · · · , p are independent identically distributed, the likelihood
function can be written as follows:

P
(
xi
∣∣ aij, xj, σ2)

=

n∏
k = 1

P
(
xki
∣∣ aij, xkj, σ2)

=

(√
2πσ

)−n
e−
||xi−aijxj||

2

2σ2 (A2′)

To avoid overflow caused by multiplying operations in Eq. A2′, we use the log-likelihood function and further maximize it:

max
aij

logP
(
xi
∣∣ aij, xj, σ2)

= max
aij
−nlog

(√
2π
)
−

∣∣∣∣xi − aijxj
∣∣∣∣2

2σ2 (A3′)

Appendix B
The edge weight wij of BFN has the following prior probabilistic density:

P
(
wij
)
=

1
√

2π
e−

wij
2

2 (A11)

According to Bayesian rule, the posterior distribution of wij is proportional to P
(
xi
∣∣ wij, xj

)
P
(
wij
)
:

P
(
wij

∣∣ xi, xj
)
∝ P

(
xi
∣∣ wij, xj

)
P
(
wij
)

(A4′)

where P
(
xi
∣∣ wij, xj

)
is the likelihood of wij for xi. Based on Eqs A2′, 11

P
(
xi
∣∣ wij, xj

)
P
(
wij
)
=

(√
2π
)−(n + 1)

σ−ne−
||xi−wijxj||

2

2σ
−

wij
2

2 (A5′)

Taking the logarithm on Eq. A4′, we obtain

logP
(
wij

∣∣ xi, xj, σ2)
∝ − (n = 1) log

(√
2π
)
= (−n) logσ−

∣∣∣∣xi − wijxj
∣∣∣∣2

2σ2 −
wij

2

2
(A6′)

Next, the log-posterior probability is maximized (i.e., maximal posterior estimation) as follows,

max
wij
− (n = 1) log

(√
2π
)
= (−n) logσ−

∣∣∣∣xi − wijxj
∣∣∣∣2 = σ2wij

2

2σ2 (A12)

Appendix C
As shown in Section “Learning High-Order Brain Functional Network With a Matrix-Normal Penalty,” the proposed model is
formulated as

J (W,�) = min
W,�

∣∣∣∣∣∣W− XTX
∣∣∣∣∣∣2
F
+ λ

[
1
2
tr
(
�−1W�−1WT

)
+ p log (|�|)

]
(A18)
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As described before, we assume that any time series xi from the data set X =
[
x1, x2, · · · ,xp

]T follows the conditional
distribution as:

P
(
xi
∣∣ aij, xj, σ2)

=

n∏
k = 1

P
(
xki
∣∣ aij, xkj, σ2)

=

(√
2πσ

)−n
e−
||xi−aijxj||

2

2σ2 (A2′)

Using the maximum likelihood estimation for aij, we get aij = xTi xj = wij. Therefore, we rewrite Eq. A2′ as follows.

P
(
xi
∣∣ wij, xj, σ2)

=

(√
2πσ

)−n
e−
||xi−wijxj||

2

2σ2 (A7′)

We can further convert Eq. A7′ to the matrix form:

P(X|W) =

p∏
i,j = 1

P
(
xi
∣∣ wij, xj, σ2)

= (
√

2πσ)
−p2n

e−
∑p

i,j = 1 ||xi−wijxj||
2

2σ2 (A8′)

Furthermore, as mentioned in Section “Learning High-Order Brain Functional Network With a Matrix-Normal Penalty,” we
assume that the low-order correlation matrix W follows the MVN distribution with the probabilistic density

P (W) = (2π)−
1
2 p

2
|�|−petr

{
−

1
2�
−1W�−1WT}

(A9′)

Note that the row\column variance matrix � is considered as the high-order correlation matrix between xi since it models the
relationships between wij.

Based on the Bayesian rule, the posterior probability of W is given by

P(W|X) ∝ P(X|W) · P(W) (A10′)

From Eqs A8′, A9′, we obtain

P (X |W) · P (W) = (2π)
−p2(n = 1)

2 σ−p
2n
|�|−p · etr

{
−

1
2�
−1W�−1WT}

−

∑p
i,j = 1 ||xi−wijxj||

2

2σ2 (A11′)

Taking the logarithm of the above likelihood function and then maximizing it, we get

max
W,�
−

∑p
i,j = 1

∣∣∣∣xi − wijxj
∣∣∣∣2

2σ2 = tr
{
−

1
2
�−1W�−1WT

}
− plog( |�| ) (A12′)

The above is equivalent to the optimization problem:

min
W,�

∑p
i,j = 1

∣∣∣∣xi − wijxj
∣∣∣∣2

2σ2 = tr
{

1
2
�−1W�−1WT

}
= plog( |�|) (A13′)

Consider that the solution of the former is wij = xiTxj. Note that minwij

∑p
i,j = 1

∣∣∣∣xi − wijxj
∣∣∣∣2 can be rewritten in matrix form as

minW
∣∣∣∣W− XTX

∣∣∣∣2
F . Therefore, problem (A13′) can be transformed as

min
W,�

∣∣∣∣∣∣W− XTX
∣∣∣∣∣∣2
F
= λ

[
1
2
tr
(
�−1W�−1WT

)
= plog (|�|)

]
(A14′)
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