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Abstract: Recently, nanotechnology has become an important research field involved in the improve-
ment of animals’ productivity, including aquaculture. In this field, silver nanoparticles (AgNPs) have
gained interest as antibacterial, antiviral, and antifungal agents. On the other hand, their extensive
use in other fields increased natural water pollution causing hazardous effects on aquatic organisms.
Quercetin is a natural polyphenolic compound of many plants and vegetables, and it acts as a potent
antioxidant and therapeutic agent in biological systems. The current study investigated the potential
mitigative effect of quercetin nanoparticles (QNPs) against AgNPs-induced toxicity in Nile tilapia via
investigating liver function markers, hepatic antioxidant status, apoptosis, and bioaccumulation of
silver residues in hepatic tissue in addition to the whole-body chemical composition, hormonal assay,
intestinal enzymes activity, and gut microbiota. Fish were grouped into: control fish, fish exposed to
1.98 mg L−1 AgNPs, fish that received 400 mg L−1 QNPs, and fish that received QNPs and AgNPs
at the same concentrations. All groups were exposed for 60 days. The moisture and ash contents
of the AgNP group were significantly higher than those of the other groups. In contrast, the crude
lipid and protein decreased in the whole body. AgNPs significantly increased serum levels of ALT,
AST, total cholesterol, and triglycerides and decreased glycogen and growth hormone (*** p < 0.001).
The liver and intestinal enzymes’ activities were significantly inhibited (*** p < 0.001), while the
oxidative damage liver enzymes, intestinal bacterial and Aeromonas counts, and Ag residues in the
liver were significantly increased (*** p < 0.001, and * p < 0.05). AgNPs also significantly upregulated
the expression of hepatic Hsp70, caspase3, and p53 genes (* p < 0.05). These findings indicate the
oxidative and hepatotoxic effects of AgNPs. QNPs enhanced and restored physiological parameters
and health status under normal conditions and after exposure to AgNPs.

Keywords: antioxidant capacity; intestinal bacteria; silver nanoparticles; Nile tilapia; oxidative
stress; quercetin

1. Introduction

Thanks to nanotechnology, it has been possible to manage compounds with smaller
dimensions (less than 100 nm) that facilitated their pickup by cells and made them effec-
tive in small doses. Recently, nanotechnology applications have increased in veterinary
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medicine [1–3] and particularly in aquaculture [4–6], ranging from nutrient and vaccine deliv-
ery to health management, water purification, pollution remediation, and fish breeding [4,7].

One of the highly demanded industrial materials are silver nanoparticles (AgNPs) [8].
AgNPs can be easily synthesized by different technologies, such as chemical, physical, and
green or biological techniques [9]. Recently, AgNPs have been widely implemented in
many industries, such as textiles, electronics, health care, and medical uses, because of their
antimicrobial and antifungal activities [10,11]. AgNPs are used in aquaculture sectors for
aquatic animal nutrition, disease control, and water treatments [12,13]. The extensive use
of AgNPs in different industries increases the risk of environmental pollution as it may
leak into natural water bodies during disposal, production, transportation, storage, and
washing effect of the rain [14]. The aquatic ecosystem is highly sensitive to Ag+ ions, which
dissociate from AgNPs, resulting particularly toxic [15]. The AgNPs can enter the animal
bodies via endocytosis or diffusion and pass through the blood barriers affecting almost
all the body organs of animals [16]. The toxicity of AgNPs has been claimed in various
aquatic species, including Daphnia magna [17], algae [18], and fishes [19–22]. The AgNPs
also altered the histological structure of the liver and gills of fish, impaired the functions
of mitochondria, hampered the production of energy, induced apoptotic and oxidative
damage with sublethal exposure [19,23–25].

Although alterations in organ histology may go unnoticed, remarkable mitochondrial
changes were noticed after six months following nanoparticle exposure [26,27], suggesting
long-term oxidative stress. Additionally, nanomaterials can cross the cellular membranes
and, after reaching the nuclei, damage the genetic material [28], induce chromosomal
aberrations and micronuclei onset in vitro and in vivo [29,30]. Exposure to AgNPs for
60 days caused high mortalities, reaching 50% (LC50) at 5 mg L−1. This was accompanied
by a low-growth rate and delayed metamorphosis of the tadpole, Polypedates maculatus [31].

Oxidative stress and immune impairment are major obstacles in aquatic farming [32,33].
Stress induces a set of physiological responses that are compensatory or adaptive to main-
tain normal homeostasis [33]. Under acute or chronic stress, living organisms may lose
their adaptability and balance, leading to oxidative stress, increased susceptibility to dis-
eases, and impaired growth and reproduction [34–36]. The fullerene and AgNPs induced
disruption of the bacterial communities (pathogenic Vibrio was the most prevalent genus)
and antioxidant capacity of the mucus of the polychaete Laeonereis acuta (Nereididae) [37].
Furthermore, the AgNPs altered fish immunity and performance and induced metabolic
disorders, inflammation, and biochemical disturbances depending on the size and con-
centration of nanoparticles and the exposure duration [38,39]. Therefore, it is crucial to
overcome AgNPs-associated toxicity.

AgNPs-associated toxicities can be hindered by means of the application of different
natural antioxidant alternatives to inhibit oxidative damage and improve fish resistance
and health.

Quercetin is a promising antioxidant polyphenolic flavonoid compound of various
vegetables and fruits that can protect tissues from the oxidative damaging effect of free
radicals [40]. It can effectively treat a wide array of allergies, metabolic disorders, inflam-
mations, and cardiovascular disturbances owing to its antioxidant, antiviral, antimicrobial,
antidiabetic, anticancer, and antiatherosclerotic properties [41]. In Nile tilapia, the use of
quercetin as a dietary supplement could improve performance, health, antioxidant mech-
anisms, and immune system [42]. It can also lower serum and whole body lipids, and
modulate heavy metal toxicities [42]. Moreover, it showed antibacterial activity against
Pseudomonas aeruginosa [43], A. hydrophila in Nile tilapia [40], and common carp (Cyprinus
carpio) [44]. Despite these effective activities, the use of quercetin is restricted because
of poor bioavailability and instability. Thus, quercetin nanoparticles (QNPs) have been
developed with effective characteristics and a higher bioavailability [40]. Consequently, the
current study aimed at evaluating the impact of QNPs dietary supplementation, alone or
combined with AgNPs aqueous exposure, on liver function markers, hepatic antioxidant
status, bioaccumulation of silver residues in hepatic tissue, whole-body chemical compo-
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sition, hormonal assay, intestinal enzymes’ activity, and gut microbiota. In addition, the
relative mRNA levels of some stress and apoptosis-related genes were investigated in Nile
tilapia (Oreochromis niloticus), the predominant and most commonly cultured species in
many countries, especially for intensive aquaculture.

2. Materials and Methods
2.1. AgNPs and QNPs Preparation

To obtain AgNPs, the Bacillus subtilis MT38 isolate was inoculated in Luria Bertani
broth (LB) medium and incubated at 35 ◦C for 24 h. Twenty milliliters of the bacterial
suspension, obtained after centrifugation at 8000 rpm for 20 min, were added to 80 mL of
AgNO3 (3 mM) at pH 6, 30 ◦C, and subjected to an agitation speed of 150 rpm for 24 h. All
chemicals were purchased from Sigma-Aldrich International GmbH (St. Louis, MO, USA).

To obtain QNPs, a solution with 50 mL of ethanol containing 100 mg of quercetin was
prepared. The internal organic phase solutions were quickly injected into a 150 mL external
aqueous solution containing the appropriate amount of polyvinyl alcohol (PVA), and then
the solutions were homogenized at 20,000 rpm for 30 min. The ethanol was evaporated
using a rotary vacuum evaporator at 45 ◦C, and the obtained material was lyophilized
using a freeze dryer.

The obtained AgNPs and QNPs were characterized using UV–Vis Spectrophotometer
(UV–Vis; LaxcoTM dual-beam spectrophotometer, Lake Forest, Il, USA), dynamic light
scattering (DLS, Malvern Hills, Worcestershire, UK), which is a technique used to study
size and charge of suspended nanoparticles, and transmission electron microscopy (TEM,
JEOL 1010, Tokyo, Japan) to measure the AgNPs size in colloidal solution. Zeta potential
analysis was carried out to determine the surface charge of the nanoparticles.

2.2. Fish and Diet Formulations

Two hundred and forty O. niloticus (40 ± 0.45 g body weight) were purchased from a
hatchery (El-Abbassa Fish Hatchery, El-Abbassa, Al-Sharkia, Egypt) and subjected to an
acclimatization period of 14 days in dechlorinated tap water in glass aquaria.

Fish were fed 3 times daily a basal diet (without AgNPs or QNPs) corresponding to
a 5% of their biomass. The recommendations of the American Public Health Association
regarding water quality parameters were followed [45]. The same rearing conditions were
adjusted in all glass aquaria, including temperature, pH, ammonia, and dissolved oxygen,
with a photoperiod of 10 h: 14 h (light: dark).

The QNPs (400 mg/kg) were mechanically mixed with the basal diet ingredients,
pelletized, and left to dry at 25 ◦C for 24 h. The prepared diet was kept in the refrigerator at
4 ◦C until use. The composition of the basal diet was 32% crude protein, 45.5% fat, 42.50%
fiber, 73% ash, and 518% nitrogen-free extract.

Nile tilapias were allocated into four groups (n = 60/group), each with four replicates
(fifteen fish/replicate). Fish were kept in glass aquaria (100 × 50 × 40 cm) containing 160 L
of dechlorinated tap water. The first group (control) did not receive AgNPs or QNPs in
the water or the diet. The second group was fed a basal diet supplemented with 400 mg
QNPs per kg diet (QNPs-supplemented group). The third group was fed a basal diet
and exposed to AgNPs (1.98 mg/L; corresponding to 1/10th LC50). The fourth group
(AgNPs/QNPs co-administered group) received QNPs and was exposed to AgNPs at the
previously mentioned concentration. The daily feeding regime was performed three times
at 7:00 a.m., 11:00 a.m., and 4:00 p.m. throughout the experimental period (60 days), and
the amount of feed was adjusted every two weeks according to the body weight.

2.3. Chemical Composition of the Whole Body

On the 60th day of the experiment, five fishes were randomly selected (n = 5/replicate)
from each group to estimate the proximate chemical composition of the whole body,
represented as percentages of the wet weight [46]. The crude protein was estimated by the
Kjeldahl method (Velp Scientifica, Usmate Velate, MB, Italy). The moisture was estimated
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by a natural convection oven (JSON-100, Gongju-City, Republic of Korea). Ash and fats
were estimated by muffle furnace and Soxhlet extraction (Thermo Scientific, Greenville,
NC, USA), respectively.

2.4. Blood and Tissue Sampling

Blood samples were collected from the caudal blood vein by sterile syringes and
then placed in sterile tubes (free from anticoagulant). The samples were left to coagulate,
centrifuged at 1075 g for 20 min to separate the serum, and then stored at −20 ◦C until
physiological, biochemical, and hormonal analyses. Fish from the different groups were
sacrificed by spinal cord sectioning, and the liver and whole intestine were collected. The
collected organs (100 mg each) were homogenized in 10 mM phosphate/20 mM Tris-pH
7.0 using a mechanical homogenizer at 600× g for 3 min at 4 ◦C, and the supernatant was
collected after centrifugation. Intestinal and liver enzymes’ activity was also analyzed.

Parts of livers were frozen until the determination of silver residues. Another set of
liver tissue samples was quickly transferred to liquid nitrogen and then stored at −80 ◦C
until RNA extraction. Other intestine samples were used for the bacterial count.

2.5. Serum Physiological Assays

The indices of hepatic injury, including aspartate aminotransferase (AST), alanine amino-
transferase (ALT), and alkaline phosphatase (ALP), as well as total cholesterol (TC) and triglyc-
erides (TG), were determined according to their related literature protocols [47–51]. Liver
glycogen was determined by commercial kits (Cayman Chemical Company, Ann Arbor,
MI, USA) [30].

2.6. Oxidative Injury Assays and Antioxidant Status

The activities of the antioxidants catalase (CAT) and superoxide dismutase (SOD), the
concentration of reduced glutathione (GSH), and the oxidative injury marker malondialde-
hyde (MDA) were assessed in the liver tissue using a colorimetric method [52–55]. The
same method was also used to monitor the protein carbonyl (PC) content in hepatic tissue
(Cayman Chemical Company, Ann Arbor, MI, USA).

2.7. Expression of Liver Apoptosis and Stress-Related Genes

RNA was extracted from the hepatic tissue, and its integrity and concentration were
checked by 1% agarose and spectrophotometry. First-strand cDNA was synthesized using
a QuantiTect RT kit (Qiagen, Hilden, Germany). The primers of the tested genes (cas-
pase3, casp3; heat shock protein 70, Hsp70; tumor suppressor protein, p53; the internal
housekeeping gene β-actin) are presented in Table 1.

Table 1. Primer sequences (forward and reverse) used for expression analysis.

Gene Symbol Sequence (5’-3’) Gene Name Accession
Number Reference

p53 F: GCATGTGGCTGATGTTGTTC
R: GCAGGATGGTGGTCATCTCT Tumor suppressor protein FJ233106.1 Farag, et al. [56]

casp3 F: GGCTCTTCGTCTGCTTCTGT
R: GGGAAATCGAGGCGGTATCT Caspase3 GQ421464.1 Standen, et al. [57]

Hsp70 F- CTCCACCCGAATCCCCAAAA
R: TCGATACCCAGGGACAGAGG Heat shock protein 70 EU816596.1 Hassan, et al. [58]

β-actin F: AGCAAGCAGGAGTACGATGAG
R: TGTGTGGTGTGTGGTTGTTTTG Beta-actin XM-003455949.2 Pang, et al. [59]

Real-time PCR was performed using a QuantiTect SYBR Green PCR kit (Qiagen,
Hilden, Germany) and a Rotor-Gene Q apparatus. The thermocycler conditions were 95 ◦C
for 10 min, followed by 40 cycles of 95 ◦C for 15 s, 60 ◦C for 30 s and 72 ◦C for 30 s. The
relative expression of the studied genes was analyzed using the 2−∆∆Ct equation [60].
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2.8. Intestinal Enzyme Activities

The intestinal lipase and α-amylase activities were estimated with a fast colorimetric
kit (Spectrum Diagnostic Co., Cairo, Egypt) [61,62], according to the manufacturer’s direc-
tives. The intestinal protease activity was estimated according to the method proposed by
Bezerra et al. [63].

2.9. Hormonal Assay

Fish GH, T3, T4, and glucagon were estimated in the serum using ELISA kits (catalog
numbers MBS701414, MBS2700145, MBS701162, MBS034316, respectively; MyBioSource,
San Diego, CA, USA).

2.10. Determination of Aeromonas Counts and Total Intestinal Bacteria

Intestine samples were taken from 5 fish/group to enumerate Aeromonas and to-
tal bacteria. The samples were homogenized in sterile saline peptone water (8.5 gL−1

NaCl and 1 gL−1 peptone), followed by serial dilution up to 107. The total bacteria and
Aeromonas were counted after incubation at 37 ◦C for 24 h on plate count agar [64] and agar
medium [65], respectively.

2.11. Determination of Silver Residues

The liver samples were exposed to digestion by acids [66]. One gram of each sample
was transported to a screw-capped glass bottle and exposed to a 4 mL digestion solution
of nitric and perchloric acid (1:1). The samples were left at room temperature for 24 h
for an initial digestion and then heated for 2 h at 110 ◦C. After that, the samples were
cooled, and deionized water was added. Then, the solutions were warmed in a water bath
for 1 h to eliminate nitrous gases. The digestion products were filtered, and deionized
water was added up to 25 mL. Silver residues were determined by flame atomic absorption
spectrophotometer (FAAS).

2.12. Statistical Analysis

The obtained data were statistically analyzed by SPSS (version 16.0, SPSS Inc., Chicago,
IL, USA). All data are presented as means ± standard deviation. One-way analysis of
variance (ANOVA) with Tukey’s multiple comparison post hoc test was applied to compare
means among groups (* p < 0.05).

3. Results
3.1. AgNPs and QNPs Characterization (Surface Chemistry)

The results of the characterization of AgNPs are presented in Figure 1. UV–Vis
spectroscopy results showed the maximum peak at 420 nm. TEM analysis revealed a
spherical shape with an average size of 30–60 nm and a net surface charge of −22 mV.
According to the DLS analysis, the exact size was 59 nm.

Regarding the QNPs, TEM analysis revealed a spherical shape absorbing UV at 310 nm,
an average size of 45–65 nm, and a net surface charge of −23 mV. DLS analysis showed an
exact size of 77 nm (Figure 2).
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3.2. Whole-Body Chemical Composition

The moisture percent of fish that received AgNPs was significantly higher than that
of the other groups by approximately 3.5% (Table 2). The same trend was also observed
in the ash, which recorded an increase of 1.8% compared to the QNPs and control groups.
Fish that received AgNPs and QNPs showed increased ash percentages; however, these
increases were nonsignificant and lower than those in the AgNP group.

Table 2. Effect of QNPs on whole-body composition (% wet weight basis) in AgNPs-induced toxicity
in Nile tilapia.

Control QNPs AgNPs AgNPs + QNPs p-Value

Moisture (%) 76.17 ± 0.38 b 75.81 ± 0.45 b 79.48 ± 0.14 a 75.93 ± 0.43 b <0.001
Ash (%) 4.41 ± 0.23 4.34 ± 0.15 6.25 ± 0.24 5.14 ± 0.17 0.814

Crude lipid (%) 6.19 ± 0.03 a 5.07 ± 0.03 b 4.14 ± 0.04 d 4.84 ± 0.04 c <0.05
Crude protein (%) 14.02 ± 0.45 a 14.44 ± 0.17 a 11.30 ± 0.07 c 12.58 ± 0.16 b <0.001

Values are presented as mean ± SEM. Values with common superscript letters (a, b, c, d) significantly differ (p < 0.05).

The crude lipid percentage showed significant changes among the treated groups; the
lowest and highest values were observed in the AgNPs and control groups. The crude
lipid percentage of groups that received AgNPs + QNPs or AgNPs was around 5%. AgNPs
markedly reduced the crude protein percentage, and such a decrease remained significantly
lower than those of the QNPs and control groups.

3.3. Serum Physiological Assays

AgNPs notably increased serum levels of ALT and AST, with values double to triple
those of the control; while QNPs significantly reduced these close to those of the control
(Table 3). The glycogen level was significantly low in the AgNP group; however, this effect
was rescued in the AgNPs + QNPs group.

Table 3. Effect of QNPs on blood parameters in AgNPs-induced toxicity in Nile tilapia.

Control QNP AgNPs AgNPs + QNPs p-Value

ALT (IU L−1) 26.98 ± 0.53 c 24.28 ± 0.12 c 92.37 ± 3.15 a 33.70 ± 1.23 b <0.001
AST (IU L−1) 53.31 ± 0.57 b 40.85 ± 0.64 c 151.66 ± 0.61 a 53.84 ± 0.92 b <0.001

Glycogen (pg mL−1) 74.42 ± 0.35 a 73.27 ± 0.87 a 44.28 ± 0.49 b 72.67 ± 1.34 a <0.001
TC (mg dL−1) 181.07 ± 9.60 b 154.76 ± 3.11 c 216.40 ± 2.39 a 175.20 ± 3.42 ab <0.001
TG (mg dL−1) 99.79 ± 6.89 b 65.92 ± 5.66 c 121.44 ± 1.88 a 89.51 ± 0.92 b <0.001

Values are presented as mean ± SEM. Values with common superscript letters (a, b, c) significantly differ (p < 0.001).

QNPs significantly reduced the levels of TG and TC in serum levels in the QNPs group
and kept them at lower values than those of the control.

3.4. Antioxidant Status and Oxidative Injury Assays

The activities of CAT, SOD, and GSH were significantly inhibited in the liver of the
AgNP group (Table 4). Notably, GSH recorded a very low activity in the AgNP group,
which reached a third of the values of the control group. MDA and PC levels were increased
in the liver in response to AgNPs exposure. QNPs improved the negative effect of AgNPs
on the activities of SOD, CAT, and GSH and, to a reasonable extent, increased the activities
of MDA and PC in the liver.
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Table 4. Effect of QNPs on oxidative stress in AgNPs-induced toxicity in liver of Nile tilapia.

Control QNPs AgNPs AgNPs + QNPs p-Value

SOD (U g−1 tissue) 5.48 ± 0.20 a 5.67 ± 0.07 a 3.13 ± 0.05 c 4.77 ± 0.15 b <0.001
CAT (U g−1 tissue) 4.45 ± 0.07 a 4.12 ± 0.01 a 3.05 ± 0.05 b 3.16 ± 0.32 b <0.001

GSH (nmol g−1 tissue) 2.77 ± 0.05 a 3.26 ± 0.26 a 0.82 ± 0.02 b 2.74 ± 0.05 a <0.001
MDA (nmol g−1 tissue) 14.57 ± 0.17 b 13.19 ± 0.09 c 18.46 ± 0.32 a 14.58 ± 0.17 b <0.001

PC (nmol g−1 tissue) 4.23 ± 0.01 c 4.19 ± 0.39 c 7.75 ± 0.37 a 5.77 ± 0.38 b <0.001

Values are presented as mean ± SEM. Values with common superscript letters (a, b, c) significantly differ (p < 0.001).

3.5. Expression of Apoptosis and Stress-Related Genes

The expression of the hepatic Hsp70, casp3, and p53 genes was significantly upregulated
in the AgNP group, with values between five- and six-fold increases (Figure 3). The
expression of these genes was unaffected by QNPs treatment. Interestingly, the expression
levels of these genes returned to the normal range in the AgNPs + QNPs group, except for
Hsp70, which decreased by two-fold and remained at higher levels than the control.
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with a common superscript letter (a, b, c) significantly differ (p < 0.05).
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3.6. Intestinal Enzyme Activity

QNPs increased intestinal enzyme activities (i.e., amylase, lipase, and protease)
(Table 5). QNPs preserved much of the reduced intestinal enzyme activities resulting
from AgNPs challenge. QNPs showed a marked effect on intestinal lipase activity in the
QNP and AgNP + QNP groups.

Table 5. Effect of QNPs on intestinal enzyme activity in AgNPs-induced toxicity in Nile tilapia.

Control QNPs AgNPs AgNPs + QNPs p-Value

Amylase (DU) 1.16 ± 0.17 a 1.37 ± 0.01 a 0.34 ± 0.02 c 0.80 ± 0.06 b <0.001
Lipase (FCCFIP) 52.54 ± 0.91 b 85.31 ± 2.61 a 27.16 ± 1.16 c 51.41 ± 0.83 b <0.001
Protease (HUT) 1.52 ± 0.01 b 3.49 ± 0.03 a 0.44 ± 0.03 d 0.93 ± 0.01 c <0.001

Values are presented as mean ± SEM. Values with common superscript letters (a, b, c, d) significantly differ (p < 0.001).

3.7. Hormonal Assay

The GH, T3, T4, and glucagon levels were lowered in the AgNP group; however,
QNPs kept them at normal levels in the AgNP + QNP group (Table 6). The changes in GH
were statistically significant, while those in T3, T4, and glucagon were not significant.

Table 6. Effect of QNPs on hormones in AgNPs-induced toxicity in Nile tilapia.

Control QNPs AgNPs AgNPs + QNPs p-Value

GH (pg mL−1) 560.07 ± 5.18 a 560.17 ± 1.64 a 344.09 ± 6.06 b 539 ± 8.02 a <0.001
T3 (pg mL−1) 302.00 ± 13.58 301.33 ± 12.25 241.10 ± 28.12 301.67 ± 29.07 0.214
T4 (ng mL−1) 133.27 ± 2.58 94.00 ± 4.26 77.97 ± 3.77 134.48 ± 2.50 0.199

Glucagon (pg mL−1) 4.59 ± 0.05 4.58 ± 0.04 4.59 ± 0.05 4.58 ± 0.8 0.999

Values are presented as mean ± SEM. Values with common superscript letters (a, b) significantly differ (p < 0.001).

3.8. Total Intestinal Bacteria and Aeromonas Counts

Notably, AgNPs markedly increased the total intestinal bacteria and Aeromonas count
in the AgNP group (Figure 4). However, QNPs significantly decreased the total intestinal
bacterial and Aeromonas counts in the QNP and AgNP + QNP groups compared to the
control and AgNP groups.
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and AgNP + QNP group (QNPs and AgNPs). Values are presented as mean ± SEM. Values with a
common superscript letter (a, b, c, d) significantly differ (p < 0.05).
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3.9. Silver Residues

The highest level of silver residues was detected in the liver of the AgNP group
compared to other groups (Figure 5). QNPs lowered the silver residues in the liver.
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Values with a common superscript letter (a, b, c, d) significantly differ (p < 0.05).

4. Discussion

The rapid expansion in the applications of engineered nanomaterials showed environ-
mental impacts that are gaining greater and greater attention, associated with their novel
advantages and potential hazards to living creatures. The AgNPs’ toxicity was investigated
and found to be dependent on the shape, coating material, size, dose, duration of exposure,
and species differences [9,67].

Characterization of AgNPs showed a spherical shape with an average size of 30–60 nm
under TEM. UV–Vis spectroscopy showed the maximum peak at 420 nm with −22 mV net
surface charge by zeta potential analysis, while the DLS analysis showed the hydrodynamic
size of 59 nm. AgNPs have been already characterized for size and dispersity using UV–Vis
spectroscopy and TEM, showing a peak at 431 nm with the size distribution ranging from
60 to 80 nm, respectively [68]. Shaluei et al. (2013) reported an average nanoparticle size of
61 nm [69]. The morphological characteristics of AgNPs by TEM showed mono-dispersed,
roughly spherical with average sizes from 80 to 90 nm without any agglomeration. The
spherical configuration of AgNPs under TEM was also observed by Srinonate et al. [70].
The data of DLS analysis showed that the Z-average was 32.20 nm [71]. Sibiya et al. (2022)
reported a typical high-pitched peak of absorbance recorded on UV–Vis spectrophotometer
at 450 nm due to the absorption of AgNPs surface plasmon resonance which confirmed the
reduction of silver nitrate [72]. The same authors examined the size, shape, and morphology
of AgNPs using TEM proving that AgNPs were globular in shape. other studies reported
spherical and scattered smaller-sized AgNPs with approximately 20 nm in size [73,74]. The
variations among previous studies and the present one might be ascribed to the different
method of AgNPs synthesis.

AgNPs significantly increased serum ALT and AST, with double to triple values
compared to the control. Indeed, elevated serum ALT and AST levels are considered as
liver injury and stress markers [75,76]. Indeed, both regulate the transamination process,
particularly during stress, to fulfill the increased energy requirement of the body [77], and
modulate the metabolism of carbohydrates and proteins [78–80]. Thus, the activities of
ALT, AST, but also ALP are highly indicated to measure the fish toxicity and recovery
pattern [81].

In accordance, the ALT and ALP activities in common carp and ALP and acid phos-
phatase in Labeo rohita were significantly enhanced following exposure to AgNPs [22,82].
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This increased activity could be ascribed to disruption of hepatocyte membranes and leak-
age of such enzymes from the hepatic cells into the bloodstream [25]. At the same time, the
liver is an early target of detoxification and accumulation of various toxic substances [21].
The exposure to AgNPs enhanced the reactive oxygen species (ROS) production in the hep-
atoma cell line derived from fish [83], which is also confirmed by the increased MDA and
PC levels in our findings. This oxidative stress could disrupt the function of mitochondria
and lead to toxic effects by decreasing the integrity of the cell membrane and oxidizing the
constituents of the cell [84].

ALT serum levels have been shown to be associated with liver fat [85,86]. In fish
and mammals, de novo lipogenesis plays a crucial role in glucose homeostasis, in which
lipogenic enzyme activities are modulated by dietary carbohydrate intake [87–89] and thus
modulate glycogen levels [90].

Since the liver appeared to be targeted by AgNPs, hepatic glucagon signaling seemed
to be inhibited, leading to decreased serum glucagon, as seen in the present study. Glucagon
receptor signaling is linked to the metabolism of lipids [91] and amino acids [92]. Blockade
of the glucagon receptor decreased hepatic amino acid catabolism with increased serum
amino acids in animal models, including zebrafish [92–94]. Knockdown of the glucagon
receptor upregulated the expression of hepatic lipogenic genes, increased hepatic lipid
contents, and enhanced de novo lipid synthesis [95]. Glucagon inhibits hepatic de novo
lipogenesis by the cyclic AMP-responsive element-binding protein H-insulin-induced
gene-2a signaling pathway [96]. In the AgNP group, the whole body’s crude lipid and
protein percentages were lower than the control. Accordingly, AgNPs may modulate
glucagon receptor signaling. Although QNPs decreased the crude lipid content compared
to the control (i.e., by approximately 1%), they beneficially increased the protein content
in the whole body. QNPs also increased the lowered levels of the crude lipid and protein
percentages caused by AgNPs.

Glucagon is secreted to regulate blood glucose levels and is strongly suggested to
promote ureagenesis to regulate amino acid metabolism [97–99].

Hepatic knockdown of the glucagon receptor increased total plasma cholesterol and
increased triglycerides [95]. Quercetin inhibited the increases in plasma cholesterol and
protected pancreatic β-cells from oxidative stress, mitochondrial dysfunction (e.g., de-
creased ATP levels), and lipid peroxidation induced by high cholesterol treatment in vivo
and in vitro [100]. Quercetin facilitates cholesterol excretion and helps protect cells from
excessive accumulation of cholesterol by enhancing reverse cholesterol transport through
the upregulation of related protein expression [101]. Typically, our findings indicated that
QNPs decreased the TC and TG in the QNP and AgNP + QNP groups to lower levels than
in the control group.

AgNPs have a direct effect on SOD, CAT, GSH, MDA, and glutathione peroxidase
(GPx), which can change the antioxidant capacity [102]; they also initiate the production
of ROS [103]. These enzymes are responsible for the detoxification of ROS and normal
homeostasis maintenance. If the antioxidant system cannot maintain safe levels of ROS, ox-
idative stress occurs, and cellular damage may develop [32]. Mansour et al. (2021) showed
a depletion of the activities of antioxidant enzymes and significant MDA production, as
an indicator of ROS, in fish exposed to AgNPs at high levels. Similarly, O. niloticus and
Tilapia zillii exposed to AgNPs (4 mg/L) showed reduced gene expressions and activity
of antioxidant enzymes and enhanced levels of MDA in the brain of treated fish [16]. The
SOD, CAT, and GST activities were significantly reduced in different organs of Labeo rohita
following the exposure to increasing AgNPs concentrations [82].

AgNPs from wastewater led to oxidative damage and reduction of SOD activity in
rainbow trout [104]. Moreover, exposure of common carp (C. carpio) to AgNPs (12.5% of
LC50) increased the activity of CAT and SOD while exposure to 25% and 50% of LC50
showed opposite effects [22].

Sibiya et al., (2022) showed that AgNPs induced oxidative stress by increasing the
activity of PC and lipid peroxidation in the gills, and altered the antioxidants such as GPx,
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glutathione-S-transferase (GST), CAT, SOD and GSH in O. mossambicus [72]. Furthermore,
the AgNPs can interfere with the synthesis of antioxidant enzymes [105].

Therefore, the decrease in antioxidant enzyme activity observed in the present study
could be attributed to the depression of antioxidant genes expression and enzyme synthesis
process leading to the weakening of the cell antioxidant capacity [84,106]. The mechanism
behind this weakening is the nanoparticles’ metallic nature, and the existence of ionic
forms of transition metals that encourage ROS production leading to oxidative stress [107].
Our results showed that QNPs have effective antioxidant activities against the oxidative
damage induced by AgNPs in the liver. Earlier reports indicated that quercetin markedly
protected against the decreased activities of SOD and GPx induced by high cholesterol
supplementation in animal models and in vivo [100]. In zebrafish, nano-encapsulated
quercetin maintained redox status after exposure to AgNPs [108]. QNPs had moderate but
effective preservation of the MDA content; however, they could not restore the activity of
MDA to physiological levels. This finding could be explained by the variable resistance of
the antioxidant activities toward AgNPs, in which MDA showed less resistance to AgNPs
and Ag+ [102]. However, the other antioxidant enzymes had variable resistance against
AgNPs and Ag+, and SOD showed stronger resistance to both forms of silver [102].

Quercetin protects against inflammatory/oxidative stress responses by modulating
5’adenosine monophosphate-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/nuclear
factor kappa B (NF-κB) signaling, which upregulates the expression of SIRT1 and down-
regulates NF-κB [109,110]. The induction of NF-κB prompts the expression of related
stress genes (e.g., heat shock proteins) [111]. AgNPs upregulated Hsp70 and p53 (cell cycle
checkpoint proteins that control cell division and apoptosis, respectively), inhibited the
antioxidant GSH, and enhanced MDA and the apoptosis markers casp3 and casp9, indi-
cating induced oxidative stress, nucleic acid damage, and apoptosis in the genetic model
Drosophila melanogaster [112].

According to our results, AgNPs upregulated the expression of Hsp70, p53, and casp3.
AgNPs were already shown to induce inflammatory response, oxidative stress and Hsp70
stress gene expression upregulation in Nile tilapia [8]. AgNPs toxicity also induced p53
expression in the liver tissue of adult zebrafish [74]. Moreover, p53 activation in response to
DNA damage can lead to cell cycle arrest or apoptosis preventing cell proliferation [113,114].
However, this action was rescued by QNPs, with a lesser effect on Hsp70, which showed an
antiapoptotic effect by suppressing casp3 and releasing cytochrome c [100].

In the present study, intestinal enzyme activities (i.e., amylase, lipase, and protease)
and GH, T3, and T4 were checked to assess the physiological status of the digestion process
and growth. The results of the exposure to AgNPs are consistent with the disrupted growth
performance observed after increasing the concentration of AgNPs in the Nile tilapia [71].

The findings revealed improved intestinal enzyme activities by QNPs in both the
QNP and AgNP + QNP groups. Importantly, QNPs exhibited a pronounced effect on
intestinal enzyme activities in the QNP group. This could be attributed to the protection
of quercetin against intestinal oxidative damage and the maintenance of intestinal bar-
rier function [115,116]. Furthermore, total intestinal bacteria and Aeromonas counts were
unexpectedly increased in the AgNP group owing to silver antibacterial activity [103]. A
possible explanation of this observation is that a high concentration of AgNPs negatively
modulated the intestinal microbiota and increased harmful bacteria such as Aeromonas.
Earlier studies support this hypothesis, showing that AgNPs caused gut dysbiosis in animal
models, including fish [117–120].

Silver residues were highly detected in the liver, and the current findings indicate a
primitive role of the liver in the detoxification of silver and AgNP-induced liver cell injury.
Similar results were observed in Clarias gariepinus and Indian major carp Labeo rohita, in
which AgNPs were highly detected in the liver even after 15 days of recovery [121,122].

Additionally, AgNPs were massively accumulated in the liver of common carp (C. car-
pio) [22]. Further, silver residues showed the highest levels in gills compared to other tissues
in common carp and African catfish (C. gariepinus) [22,123]. Such variations may depend
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on species-specific differences or variable experimental conditions. For instance, 15 days of
exposure to silver led to its considerable accumulation in the liver of C. gariepinus [121,122].
Treatment of the freshwater rainbow trout with AgNPs resulted in the accumulation of
great quantities of silver in the liver, intestine, muscles, and gills [124]. Moreover, 100 µg/L
of AgNPs or AgNO3, individually or combined with 10 mg/L of humic acids, bioaccumu-
lated Ag in gills and altered the antioxidant status of Piaractus mesopotamicus [125]. The
ability of freshwater fish to accumulate AgNPs and AgNO3 may impair their biochemical
and physiological parameters [126].

5. Conclusions

In conclusion, our findings showed that AgNPs (1.98 mg/L) have a deleterious effect
on the physiological status and antioxidant system of Nile tilapia. They markedly increased
serum levels of ALT, AST, TC, and TG. SOD, CAT, and GSH were significantly inhibited in
the liver, and the expression of hepatic stress-related genes was upregulated after exposure
to AgNPs. In addition, the intestinal enzyme activities and bacterial counts were disrupted.
This indicates a hepatotoxic effect of AgNPs. QNPs showed promising protective action
against the impact of AgNPs. Additionally, QNPs exhibited beneficial effects in enhancing
the physiological and health status and growth parameters of Nile tilapia when used under
normal conditions.

6. Limitations and Future Perspectives

Various reports documented the possible toxic effects of AgNPs in vitro and in vivo.
Therefore, investigating the mechanism of interaction between biological cells and AgNPs
to better understand their potential risks as antibacterial agents seems to become a sig-
nificant issue. Moreover, transforming some natural polyphenolic compounds, such as
quercetin, into QNPs may provide better physical insights, thus enhancing their pharma-
ceutical efficacy.
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