
Future Generation Computer Systems 147 (2023) 219–234

o
g
s
d
f
r
t
o
T

a
(
(

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A Flexible Approach toMulti-party Business Process Execution on
Blockchain
Flavio Corradini a, Alessandro Marcelletti a, Andrea Morichetta a,∗, Andrea Polini a,
Barbara Re a, Francesco Tiezzi b
a University of Camerino, Camerino, Italy
b Università degli Studi di Firenze, Florence, Italy

a r t i c l e i n f o

Article history:
Received 11 November 2022
Received in revised form 28 April 2023
Accepted 5 May 2023
Available online 12 May 2023

Keywords:
Multi-party business process
BPMN
Blockchain
Smart contracts
Flexibility
Drools

a b s t r a c t

In modern business scenarios, more and more organisations have to deal with the critical requirements
of trustworthiness and flexibility, when collaborating in multi-party business processes. This calls for
new kinds of systems able to manage collaborative processes in untrusted and dynamic environments.
Concerning the collaborative perspective, the Business Process Management discipline has provided
effective and standardised solutions for a long time, now. Regarding the trustworthiness perspective,
blockchain is advocated as one of the most prominent technologies to guarantee trust in a multi-
party setting. However, while the immutability of blockchain provides transparent and secure proof of
past business interactions, it hinders the flexibility of the business process execution, as the business
logic regulating the process execution is immutably stored in the blockchain. On the other hand,
flexibility is a property that is becoming crucial in such a setting due to the high dynamism of the
business scenarios. In fact, it permits to modify a process at run-time to deal with internal or external
changes. In this paper, we face this issue by proposing an architecture for the flexible blockchain-
based execution of multi-party business processes. In our approach, business processes are modelled
by BPMN choreography diagrams translated into code, whose execution state is then stored in the
blockchain. Flexibility is achieved by decoupling the business process’s logic from its execution state,
thus allowing run-time changes to the process execution without losing the fundamental properties of
trust provided by the blockchain. To show the effectiveness of our approach, we provide a prototypical
implementation, called FlexChain, and we use it on a case study from the healthcare application
domain. The results obtained by the analysis of cost for the reported case study show the feasibility
of the approach. In particular, major costs to sustain relate to one-time operations, such as the
deployment and the run-time update of the model, while the most frequent actions are quite efficient.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Nowadays, the success of enterprises increasingly depends
n their capacity to interact with each other to achieve their
oals collaboratively and to create new forms of business. To
upport these scenarios, the Business Process Management (BPM)
iscipline provided in the last two decades well-established, ef-
ective and standardised solutions, which come as a result of
esearch activities and are largely adopted by the industry. In
his respect, multi-party business processes can be considered
ne of the instruments permitting this technology revolution.
he Business Process Modelling Notation (BPMN) [1] standard

∗ Corresponding author.
E-mail addresses: flavio.corradini@unicam.it (F. Corradini),

lessand.marcelletti@unicam.it (A. Marcelletti), andrea.morichetta@unicam.it
A. Morichetta), andrea.polini@unicam.it (A. Polini), barbara.re@unicam.it
B. Re), francesco.tiezzi@unifi.it (F. Tiezzi).
ttps://doi.org/10.1016/j.future.2023.05.006
167-739X/© 2023 The Authors. Published by Elsevier B.V. This is an open access ar
permits to represent business processes with different diagrams.
Among them, the choreography diagram describes the interactions
between multiple parties of a collaborative system in terms of
the exchange of messages from a global perspective, without
exposing the internal behaviour of the participants.

In collaborative systems, one of the most critical require-
ments is trustworthiness, given that such interactions have to
occur in a distributed environment where trust cannot be typ-
ically assumed and is generally difficult to guarantee. In the
BPM field, a well-established solution to this issue relies on
the integration of blockchain technology, as also envisioned in
[2–4]. The blockchain, indeed, guarantees the storage of data
in an immutable and transparent form through a decentralised
infrastructure. At its turn, this enables the auditing of all activities
and data resulting from the process execution. In this respect,
many technical solutions have been proposed [5–9]. They aim at

regulating the interactions between parties using smart contracts

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2023.05.006
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.05.006&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:flavio.corradini@unicam.it
mailto:alessand.marcelletti@unicam.it
mailto:andrea.morichetta@unicam.it
mailto:andrea.polini@unicam.it
mailto:barbara.re@unicam.it
mailto:francesco.tiezzi@unifi.it
https://doi.org/10.1016/j.future.2023.05.006
http://creativecommons.org/licenses/by/4.0/

F. Corradini, A. Marcelletti, A. Morichetta et al. Future Generation Computer Systems 147 (2023) 219–234

t
p
i
c
i
t
g

n
e
r
c
t
u
t
h
i
b
u
s
d
b
i
t
p
n
i
p
a
a
b
r
b
c
a

(i.e., code running in the blockchain) automatically generated
from BPMN diagrams.

However, while the immutable nature of blockchain permits
o achieve trustworthiness by providing transparent and secure
roof of past interactions, at the same time it hinders the flexibil-
ty of the business process execution [10]. Flexibility, in fact, is a
rucial property in such a setting due to the high dynamism of the
nteractions in business scenarios permitting, e.g., an enterprise
o be competitive in the market and succeeds in its business
oals [11].
With the term flexibility, the BPM community indicates the

eed for business processes that are not static, and that instead
mbed mechanisms permitting to react to changes occurring at
un-time. In particular, in this work, we refer to flexibility by
hange, which is the ability to modify a business process defini-
ion at run-time and migrate the current execution to the newly
ploaded definition [11]. The flexibility property is a relevant ac-
ivity for aligning business processes [12–14], and many solutions
ave been proposed for traditional (not based on blockchain)
mplementations, like those surveyed in [15]. However, flexi-
ility is still an open challenge when blockchain technology is
sed to support the execution [2]. Flexibility is indeed a de-
irable property in such a context, and it could be required to
eal with factors exogenous and endogenous to the blockchain-
ased business process (new laws, market dynamics or changes
n customers’ attitudes). An example of an exogenous cause is
he Covid-19 pandemic, which forced in 2020 many private and
ublic organisations to change their processes guaranteeing busi-
ess continuity. Instead, an example of an endogenous cause
s the change in the internal organisation model of one com-
any involved in a partnership, which requires the companies to
dapt their behaviours in the collaboration. In these situations,
blockchain-based implementation does not provide the possi-
ility of updating the underlying running smart contracts, thus
equiring the modelling and deployment of a new process. This
rings additional costs in terms of time and money, and the loss of
onnection between the data already registered in the blockchain
nd the new smart contracts.
In this work, we propose a flexible approach to the execution

of multi-party business processes on blockchain. In particular,
we introduce an architecture based on a public permissionless
blockchain, which is the most used technology for addressing
trust in distributed and unsafe environments. Our prototypical
implementation uses Ethereum, which provides an expressive
language (Solidity) for writing smart contracts. The proposed
approach exploits BPMN choreography models for the specifica-
tion of multi-party business processes. A model is automatically
translated in an on-chain smart contract, representing the cur-
rent execution state, and a rule-based program, corresponding
to the choreography’s logic which is executed in an off-chain
processor. This has several advantages. Firstly, we decouple the
business logic of the choreography from its execution state to
enable changes at run-time of the logic without interrupting the
execution. Secondly, the off-chain execution of the choreography
and the storage of logic in the InterPlanetary File System (IPFS)
reduces the execution costs and overcomes the limited storage
capacity of the blockchain [16,17], thus mitigating the scalability
issues of public blockchains. Thirdly, the rule-based implementa-
tion allows achieving the modularisation of the code in terms of
rules, each one corresponding to single business activity. Indeed,
since the rules are decoupled from the contract, their execution
and update are independent of other code, avoiding additional
complexity and potential errors.

To show the feasibility and effectiveness of our approach, we
provide a prototypical implementation, called FlexChain. We used
FlexChain to tackle a case study dealing with a healthcare system
for the booking of X-rays analysis.
220
The work is a revised and extended version of the one pro-
posed in [18]. In particular, we have:

• revised and improved the methodology introducing a new
on-chain smart contract structure; specifically, a factory
contract is introduced to reduce the costs, and to improve
the efficiency of the system;

• introduced a voting system for the contract update, directly
managed on-chain;

• included an external repository to store rules, hence reduc-
ing costs;

• provided a new tool, implementing all the functionalities of
the new methodology, designed with a more user-friendly
interface integrating also the modeller.

The rest of the paper is organised as follows. Section 2 in-
cludes a general presentation of the BPMN choreography nota-
tion, blockchain, IPFS technology, and rule-based systems. Sec-
tion 3 introduces the proposed approach of flexible execution,
with a focus on the main phases, while Section 4 shows the
translation approach for the rules generation and the structure of
the smart contracts with their functionalities. Section 5 reports
the implementation details of the framework by resorting to
the case study. Section 6 reviews relevant related works. Finally,
Section 7 concludes the paper by touching upon directions for
future work.

2. Background notions

In this section we introduce the main concepts and technolo-
gies on which the FlexChain approach relies on.

2.1. BPMN choreography diagrams

The BPMN standard [1] permits the representation of multi-
party business processes with different perspectives. In particular,
we rely on choreography diagrams, as they allow to express
the interactions among different parties without exposing their
internal behaviour. Using choreographies is indeed possible to
focus only on the interaction protocols specified in the corre-
sponding business contracts. Moreover, compared to other kinds
of notation, BPMN choreographies provide a more intuitive and
high-level specification of business contexts. Let us consider, for
example, the Petri Net notation. On the one hand, this notation
has formally defined semantics that enables verification via many
available tools (see, e.g., [19,20]). Moreover, over the years, var-
ious extensions (e.g., Coloured Petri Nets) were made available
for using Petri Nets in different contexts, enriching their expres-
siveness. On the other hand, Petri Nets, and their variants, do
not provide an adequate level of abstraction for a model-driven
approach, especially in the business domain. Indeed, Petri Nets
may be too technical to be used by users not familiar with for-
malisms, and multi-party business scenarios may lead to Petri Net
models being too complex and difficult to understand by business
experts. Instead, BPMN choreographies permit the development
of multi-party systems making the approach accessible, to some
extent, also to non-technical users.

In this way, in a distributed environment, parties can refer
to specific choreographies for collaborating, describing how the
interaction should happen so as to achieve common objectives.
This results in a peer-to-peer collaboration, in which each in-
dividual node has to take responsibility for its execution steps.
Consequently, in a choreography approach, each participant is
responsible for partial orchestration, based on its rules and with-
out relying on a central coordinator, with final behaviour being

expressed as a family of permitted message exchange sequences.

F. Corradini, A. Marcelletti, A. Morichetta et al. Future Generation Computer Systems 147 (2023) 219–234

d
l
T
a
S
o
i
p
e
w
e
o
i
a
e
o
d
t
T
i
d
n
b
c
p

2

t
a
A
n
o
t
b
a
a
p
f
c
s
c
n
n
e
i
t
i
l
t
g
t
t
o

Fig. 1. BPMN choreography elements.

Fig. 1 shows the most relevant elements used in choreography
iagrams. The business process’s control flows are shown on the
eft side, while communication elements are on the right one.
he main elements composing a choreography model are gener-
lly (i) events, (ii) gateways, (iii) sequence flows, and (iv) tasks.
tart and End events represent the starting and ending points
f the choreography. Gateways act as either split nodes (forking
nto outgoing edges) or join nodes (merging incoming edges). A
arallel gateway (AND) in the split case initiates all the outgoing
dges simultaneously, while in the join mode, the gateway has to
ait to be reached by all its incoming edges to be activated. An
xclusive gateway (XOR) represents choices; it activates exactly
ne outgoing edge in split mode and it acts as a pass-through
n join mode. In the event-based gateway, the outgoing branch
ctivation depends on the reception of a message; the message
vents connected to the gateway are in race condition: the first
ne that is triggered activates the corresponding branch and
isables the other ones. Sequence Flows are edges used to specify
he execution flow by connecting choreography elements. Finally,
asks allows defining the message exchanges between the parties
nvolved in the choreography. They are represented as rectangles
ivided into three bands: the central one contains the task’s
ame, while the others refer to the involved parties (the white
and is the initiator, and the grey one is the recipient). Messages
an be sent either by one party (One-Way tasks) or by both
arties (Two-Way tasks).

.2. Blockchain

A blockchain is a distributed ledger composed of a set of
ransactions organised in blocks that are linked together, forming
chain structure, by the use of cryptography-based mechanisms.
distributed ledger is an append-only data structure, where each
ew block is added to the tail of the chain at regular intervals
f time. The process of generating new blocks is the result of
he miners work that are computational nodes composing the
lockchain network. Thanks to this mining process and the use of
consensus protocol, the blockchain guarantees trustworthiness
nd decentralisation, without the need of introducing a third-
arty trusted authority. Initially, the blockchain was mainly used
or payment purposes due to its adoption to create and manage
ryptocurrencies, but in the last years, with the introduction of
mart contracts, the application scenarios have drastically in-
reased. From healthcare [21] to IoT [22] domains, blockchain is
ow creating opportunities for innovative applications bringing
ew research challenges [23]. These contracts can be consid-
red special software programs, written by developers, that are
nstalled (i.e., deployed) and executed over the blockchain infras-
ructure. The main characteristic of smart contracts relies on the
mmutability of code, as well as on their results that are stored
ike public transactions in the blockchain, making such informa-
ion available for auditing purposes. Each blockchain technology
enerally provides a native language for specifying smart con-
racts. Such languages somehow reflect the characteristics and
he mechanisms embedded in the corresponding blockchain. In
ur case, we rely on Solidity1 for writing smart contracts for

1 https://solidity.readthedocs.io/.
221
Ethereum. When a smart contract is created and executed inside
the Ethereum blockchain, it is possible to program the so-called
events. In certain parts of the Solidity code is indeed possible to
program the emitting of those events that can contain different
types of data. The result is the writing of this information in the
events part inside the transaction log allowing external software
to capture it.

The execution of smart contract operations, like other
blockchain transactions, in Ethereum, has an associated cost
measured in terms of gas. The total fee that the user has to pay
is calculated by multiplying the amount of used gas with the
gas price that defines the amount of Ether (i.e., the Ethereum
cryptocurrency) to be paid for each unit of gas. This price can
be specified by the user and a higher value guarantees a faster
inclusion of the transaction in the blockchain. These execution
fees encourage mining activities by network participants and,
hence, permit to keep the overall system to work. Indeed, for
each block mined, nodes are rewarded with a default amount of
Ether plus the sum of the transaction fees included in the block.
Notice, each user account in the Ethereum network is identified
by a unique hex address that we exploited in our approach for
identifying participants during the execution of the choreography
instances. From a technical point of view, blockchain provides
a direct communication environment between business partic-
ipants, without the need for a trusted third party, or a central
authority. Furthermore, the secure consensus algorithm and the
transparency of a public blockchain provide participants with
the guarantee of non-repudiable and auditable information. The
aforementioned characteristics of the public blockchain make it
the most recommended solution for the trustworthy execution
of business processes in trustless contexts. Among the most
known public blockchain implementations, we selected Ethereum
since is one of the most stable and used technology. It is worth
mentioning that currently, this technology results to be rather
demanding in relation to requirements connected to time per-
formance and financial costs so its adoption should be carefully
assessed depending on each specific scenario. Anyway, being the
Ethereum Virtual Machine (EVM) used by newly emerging solu-
tions addressing those lacks, the choice of Ethereum allows high
portability among the newly proposed technologies according to
different needs.

2.3. Drools

Rule-based systems [24,25] are systems that manipulate data
through condition-action rules expressed in a declarative way.
They are evaluated by a rules engine that automatically executes
the triggered actions.

In this work, we rely on the Drools2 system, which is made
up of the following components. The Knowledge Base represents
the rules to evaluate. The Database stores the data matched by
the conditions of the rules. The Rules Engine is the component
that processes the knowledge base and executes the triggered
actions. The User interface is the component that allows the users
to interact with the engine and the knowledge. The execution of
a rule-based program consists of the evaluation of the knowl-
edge base rules against the data stored in the database by the
rule engine. If a condition is satisfied, the engine executes the
corresponding actions producing new results. One of the main
advantages of these systems is that they allow the automation of
many actions defined by domain experts. Indeed, the use of rules
makes transparent the execution, thanks also to the structure of
the rules that are easy to understand due to their human-oriented
form.

2 https://www.drools.org/.

https://solidity.readthedocs.io/
https://www.drools.org/

F. Corradini, A. Marcelletti, A. Morichetta et al. Future Generation Computer Systems 147 (2023) 219–234

t
b
a
t
t
t
u
t

2

s
p
f
b
t
D
n
A
t
m
b
t
w
t
i
r

3

o
f
i
a
a
e

3

t
p
p

f
p
m
C
i
T
p
a

c
t
a
m
c
r
r
o

In our work, we use Drools for representing and executing
he business logic, thanks to the specific characteristics provided
y this rule engine. In particular, the main advantage of Drools,
nd that has mainly driven our choice, is the flexibility of this
echnology, which permits decoupling the business logic from
he application code, with high benefits in terms of code main-
enance and adaptation to changes. Other advantages are the
nderstandability of rules, the separation of responsibilities and
he reusability of the produced code [26].

.4. IPFS

The InterPlanetary File System (IPFS) [27] is a distributed
ystem for storing different types of data. It is based on a peer-to-
eer network where each peer stores some information accessible
rom anywhere. Through the hashing of the information, IPFS
inds data with a unique Content Identifier (CID) formed by
he hash of the content itself. It uses the Interplanetary Linked
ata (IPLD) ecosystem for formatting and storing data across the
etwork. The used data structure corresponds to Merkle Directed
cyclic Graphs where each piece of information stored through
he IPFS is split inside blocks. This makes the data versioning
ore efficient since it allows to update only part of the content,
y uploading the new data and receiving back the new CID. In
he querying phase, IPFS uses the Distributed Hash Table (DHT),
hich is a table that uses a key–value format to store the informa-
ion and is distributed over the network. Using the libp2p project3
s then possible to query those peers and those DHTs in order to
etrieve the needed information.

. The FlexChain approach

Our approach aims at guaranteeing the flexible execution
f smart contracts following a model-driven technique. Starting
rom BPMN choreography diagrams, representing the business
nteractions between parties, the FlexChain framework generates
n infrastructure based on a public blockchain. This guarantees
t the same time a high level of trust and the flexibility useful to
nable changes at run-time.

.1. Architecture

The FlexChain’s architecture is reported in Fig. 2. It is based on
he pattern proposed in [28] and is divided into four main com-
onents: (i) Frontend component (ii) Blockchain, (iii) Off-chain
rocessor, and (iv) IPFS.
The Frontend component is a sort of fat client providing

unctionalities to interact with the user (User interface) and to
rovide all the functionalities used for managing a choreography
odel and interacting with the blockchain. In particular, the
ore sub-component exposes the model design, choreography
nstantiation, update and execution of a choreography instance.
hanks to this component, and our automatic translation ap-
roach, the end user does not need any technical knowledge
bout blockchain and its implementation.
The blockchain component is composed of two main smart

ontracts: the choreography instance smart contract and the fac-
ory contract. The former has a generic structure and is deployed
utomatically by the factory contract, which instead facilitates the
anaging of instances and acts as a monitor of each generated
ontract instance. The choreography instance smart contract is
esponsible for storing the current execution state of a choreog-
aphy instance. This guarantees a trusted and reliable exchange
f information among parties during the choreography execution.

3 https://libp2p.io/.
 B

222
Fig. 2. Component diagram of the FlexChain’s architecture.

Furthermore, the contract provides an immutable track of the
execution history and all the choreography instance updates.

In such architecture, flexibility is achieved by implementing
the execution logic of the choreography using Drools rules. The
rules are generated automatically by the FlexChain framework
and they have been deployed on the IPFS repository. The result-
ing hash is successively stored inside the on-chain choreography
instance smart contract by the Frontend component4 to have a
certified reference of the rules during the execution. The benefit
of using a rule-based technique comes from the possibility of hav-
ing a direct representation of a choreography message as a rule
that is executed independently from the others. This, combined
with the off-chain storage, allows overcoming the restrictions
of the blockchain, since in this way it is possible to update at
run-time only the targeted rules, without being limited by the
immutability of smart contracts. The other advantage of storing
rules inside the IPFS regards the costs. Indeed, with this approach,
for each update in the choreography, the smart contract has to
change only the reference to the final IPFS hash. This reduces
costs with respect to storing the whole set of rules inside the
smart contract on-chain.

The off-chain processor is used to execute rules. Its behaviour
is triggered directly by an event emitted by the choreography in-
stance smart contract and caught by the event listener component.
This component exploits the Ethereum API and waits for every
event emitted by the smart contracts. In particular, its main role
is to listen for message execution events, invoking then the Rules
engine component by forwarding the necessary data. The event
contains the necessary information regarding the rule to execute
on the rules engine and the relative parameters. The off-chain
processor is a component outside the control of the participants,
indeed, only the smart contract can trigger the execution of tasks.
Furthermore, the operations performed off-chain are auditable
by all the participants since the operations are registered in the
smart contract before and after their execution. To notice, at
each execution the off-chain processor will always check the
latest version of the rule present in the IPFS according to the
registered id stored in the choreography smart contract. The use
of an off-chain practice is nowadays widely common [29,30], in
particular when combined with the blockchain to address storage
and performance limitations. In these situations, the trust the
blockchain provides derives from the capability to possibly run
auditing sessions on the resulting execution traces. Indeed, in our
case the smart contracts trigger the execution of the off-chain
rules, receiving back the final status. All this information is stored
on the blockchain, thus making it visible and verifiable by every
participant. In this way, we can provide a balanced approach in
terms of performance and trustworthiness.

To facilitate user interactions, in the Flexchain tool we also
provide a graphical user interface that takes in input information

4 For this reason, in Fig. 2 there is no direct connection between IPFS and
lockchain.

https://libp2p.io/

F. Corradini, A. Marcelletti, A. Morichetta et al. Future Generation Computer Systems 147 (2023) 219–234

f
t
i
r
i
c
s
v
a
e

3

(
a
t
t
o
c
r
s
t
s
R
t
p
t
i
w
T
k

o
p
a
a
b
s

Fig. 3. The FlexChain approach.
rom the end user and forwards them to the smart contract. From
here, the smart contract and the off-chain processor automat-
cally carry out all subsequent steps connected to the message
eception. This kind of interaction is, indeed, the one considered
n the case study in Section 5, where the participants of the
horeography are humans. However, the framework can also
upport a fully-automatic form of interaction (via, e.g., REST ser-
ices). In this case, the Flexchain user interface can be bypassed,
nd messages can be automatically executed by connecting an
xternal application to the smart contracts.

.2. Phases

The FlexChain approach is composed of three main phases
Fig. 3): the instantiation, the update and the execution of the
ctivities. The instantiation is the first phase and it starts with
he user uploading a choreography model using a dedicated in-
erface. This model is then automatically translated into a set
f rules and produces an on-chain smart contract instance. This
ontract is deployed through the use of the factory contract and
epresents the choreography instance state. The rules instead are
tored inside the IPFS and they represent the execution logic of
he process. In particular, they specify how a message can be
ent, under which conditions and results the execution produces.
ules are automatically derived by a translation performed on
he messages of the model and they are executed by an off-chain
rocessor. The decoupling of the state from its logic is an impor-
ant aspect of the proposed approach; it allows the use of the
mmutability of the blockchain for storing business information,
hile the logic and its constraints can be maintained off-chain.
hanks to this solution, we are able to achieve flexibility while
eeping the immutability property of blockchain technology.
The update phase is similar to the previous one and it consists

f the willingness of a participant to perform changes to a running
rocess instance. In particular, in the FlexChain approach, changes
re isolated and affect only the running instance to which they are
pplied. Indeed, we do not want to assume that the motivation
ehind a run-time change is valid for all the current active in-
tances, as they may involve different participants with different
 t

223
needs and contexts. It is worth noting that the update of the
rules does not affect the current instance state stored on-chain,
permitting the new rules to continue operating in the current
state. The willingness for a change in the process instance is
expressed with the proposal of an updated model. The FlexChain
system this time will produce neither a new contract nor a new
instance version, but only a new set of translated rules derived
from the updated model. Before being part of the effective exe-
cution, these rules are stored in a new IPFS location and the hash
is stored on-chain in the running smart contract instance. At this
point, the participants can use the instance contract for voting on
the update. In case the quorum5 is reached, the smart contract
automatically replaces the old hash with the one just voted. In
this way, we do not need to modify directly the smart contract
code, since it contains only the current state of the process.

The last phase regards the execution of a message and the
consequent state update. In this case, to start the execution, the
user needs to select through the frontend interface the message
to send to the counterpart inserting also the required parameters.
The frontend then invokes the smart contract instance passing
this information. The contract will successively emit an event that
the off-chain processor will catch about the operation to perform.
The processor retrieves the corresponding rule from the IPFS and,
after executing it, will return the result to the smart contract.

3.3. FlexChain security aspects

It is worth mentioning that most of the security properties
connected to the FlexChain approach are inherited from the un-
derlying blockchain technology. The literature is plenty of works
focusing on the security aspects of blockchain technologies [31].
Once assumed the security aspects of the blockchain, we need
to discuss how the peculiarities of our approach could introduce
possible threats. To this aim, the main aspects to consider are
related to the potential malicious behaviour of participants during

5 The quorum refers to the minimum number of choreography participants
hat need to accept and commit an updated proposal.

F. Corradini, A. Marcelletti, A. Morichetta et al. Future Generation Computer Systems 147 (2023) 219–234

t
m
r
e

4

a
i
t
e
e
a
c
a
a
o
p

a
o
t
g
f
w
e
t
t
t
e
o
i
r
t
o

i
t
p
s
s
i
b

the update and/or execution phases. In the former case, a par-
ticipant could propose a malicious update of the choreography
without the consensus of the counterparts. Here, thanks to the
use of an on-chain voting mechanism, all the participants need
to vote on the proposal previously stored in the smart contract.
Then, only in case the quorum is reached the smart contract will
adopt the new rules. The assumption is that every party involved
in the choreography is interested in continuing the correct exe-
cution and that they vote fairly during an update; otherwise, the
proposal can be rejected, thus interrupting the update procedure.
In the latter case, the introduction of an off-chain engine opens
to new possible attacks leading to corrupted execution results.
However, the use of blockchain makes it possible for the involved
parties to monitor the current execution [32] and to assess when-
ever something does not abide by the initial agreement defined
in the choreography. This could result in an interruption of the
collaboration and the consequent execution.

4. Translation approach: rules and smart contracts

In this section, we provide the details for the generation of
he rules and the smart contracts starting from choreography
essages and control flow elements supported by BPMN. We

eport here the different translations according to the different
lements and their connections.

.1. Approach for rules generation

Our approach is based on a direct translation that starts from
BPMN choreography model and generates Drools rules. The

nput of the translation is a choreography model compliant with
he BPMN standard, and that can include anyone of the BPMN
lements reported in Fig. 1, which correspond to the most used
lements in BPMN choreography diagrams [33]. Hence, no further
dditions to the input language are required for dealing with
ommon application scenarios. If a new element is needed, the
lgorithm should be modified to include it. In fact, our work
ims to demonstrate the feasibility of the approach, trying to
ptimise the code resulting from the translation as much as
ossible without the need to provide an extensible framework.
Messages are the only elements requiring direct enforcement

nd regulation. In fact, during the execution of a choreography,
nly the messages can actively modify the current state due to
he participants’ actions. Other directly connected elements, like
ateways and events, are translated as conditions to be veri-
ied internally to messages. In this way, we are able to check
henever a decision derived by a gateway must be taken. For
xample, in an exclusive gateway, a boolean expression allows
he rule to evaluate the right path to be followed. Also, to enforce
he right execution sequence, an execution status is attached
o each message and its related rule. Indeed, a message can be
nabled, disabled, or completed; thus, depending on the status,
nly a certain action can be performed. For example, if a message
s completed it cannot be executed again, and its corresponding
ule will always fail if invoked. Notice that, in case of a loop in
he model, the same message can be re-activated many times, in
rder to re-execute it.
To sum up, the translation of the choreography model encodes

n the generated rules the model’s control-flow, thus providing
he choreography execution with an enforcing mechanism. In
articular, to prevent unexpected execution, each rule checks the
tatus of the involved elements according to the state variables
tored in the smart contract. Moreover, the data exchanged dur-
ng the execution is stored in the blockchain and can be audited
y all the participants.
224
Translation algorithm. The FlexChain translator generates rules
from a BPMN choreography diagram according to the following
translation algorithm. The algorithm iterates over the list of all
choreography messages and, for each of them, a new rule is
created. For rule generation, the algorithm considers the paths
leading to the corresponding message. Indeed, for each element
in these paths, a condition is added inside the rule. If the element
is an exclusive gateway, the related conditions are extracted
from the sequence flow of the element, and added to the rule.
If instead the element is a message, a check on the completion
of this message is added inside the rule and the exploration of
that path stops. Finally, after all the incoming paths connected to
the considered message are explored, the code for pushing state
variables to the smart contract state is added inside the ‘Then’
part of the rule.

4.2. Examples of translation results

To clarify how the translation algorithm described in Sec-
tion 4.1 operates, we report here some translation examples
resulting from applying the algorithm to typical excerpts of BPMN
choreography models.

For each element, we show the corresponding pseudo-code of
the rule and we discuss then the main peculiarities. As previously
mentioned, the approach directly translates a BPMN choreogra-
phy message into a Drools rule while the start and end events
are not considered. Indeed, they only define the starting and
ending points of the choreography without actively influencing
the execution. For this reason, we transfer these behaviours to
the initial and ending messages, without explicitly considering
the events.

One-way task. The simplest element is represented by the one-
way task shown in Fig. 4. Its translation generates the rule re-
ported in Listing 1. The general formatting is composed of the
rule name (Line 1), corresponding to a unique message-id, the
When part (Line 2), containing the conditions to evaluate, and
the Then part (Line 6), defining the actions to perform. Inside
the When clause, different types of conditions are verified. Firstly,
the statuses of the previous connected messages are checked
(Line 3). Then, the rule checks the current element status, which
must be enabled (Line 4). Line 5 reports the constraints derived
from the guards of the exclusive gateways. Finally, in the Then
clause, the state variable var1 is pushed to the smart contract
(Line 7) updating the contract state. This variable corresponds to
the argument of the message, whose value is set by the user when
the message is sent.

Listing 1: Rule of a one-way task.
1 Rule " message1 "
2 When
3 <conditions on previous messages > &&
4 message1 == enabled &&
5 <conditions from exclusive gateways>
6 Then
7 push var1
8 End

It is worth noticing that, after the rule action (in the Then
clause) is executed, the message status is automatically set to
completed in the smart contract.

Sequence flow. Sequence flow connectors are used to specify the
execution order of activities in a choreography. To exemplify how
sequence flows affect the conditions of a rule, we consider the
simple case in Fig. 5, where two one-way tasks are connected.
The generated rule for message message1 is as in Listing 1, while
the rule for messagemessage2 is reported in Listing 2. In theWhen

F. Corradini, A. Marcelletti, A. Morichetta et al. Future Generation Computer Systems 147 (2023) 219–234
Fig. 4. One-way task.

Fig. 5. Sequence flow.

Fig. 6. Two-way task.

clause, the rule contains two conditions (Lines 11–12), expressing
that the state of the previous message message1 must be com-
pleted and the current state of message2 must be enabled. This
check is really important to enforce the execution of messages
in the right sequence. If both conditions are satisfied, the var2
variable is written in the blockchain (Line 14).

Listing 2: Rule of a task following another one.
9 Rule " message2 "

10 When
11 message1 == completed &&
12 message2 == enabled
13 Then
14 push var2
15 End

Two-way task. The two-way task, depicted in Fig. 6, represents
two one-way tasks in sequence. Therefore, it is translated as two
rules, one for each message, as in Listings 1 and 2.

Gateways. We describe now how gateways affect the conditions
of a rule when a message is directly connected to them. As
the first case (reported in Fig. 7a) we consider a split exclusive
gateway in which outgoing sequence flows contain boolean ex-
pressions on the var1 variable. In Listing 3 we report the gateway
translation example referring to the connected message2. The rule
contains an additional boolean expression referring to the condi-
tion of the exclusive gateway (Line 20). Depending on the type,
the compare operator inside the expression can be on integer,
string or boolean values.

Listing 3: Rule of a message after a split exclusive gateway.
16 Rule " message2 "
17 When
18 message1 == completed &&
19 message2 == enabled &&
20 expression1_on_var1 == true
21 Then
22 push var2
23 End
225
Fig. 7. Exclusive gateway elements.

Another case considering the exclusive gateway is the join one
(Fig. 7b). This time there is no expression to verify, therefore the
rule ofmessage4, reported in Listing 4, contains only the execution
status to control before the execution. Indeed message4 requires
that only one betweenmessage2 andmessage3 is completed (Lines
26–27).

Listing 4: Rule of a message after a join exclusive gateway.
24 Rule " message4 "
25 When
26 (message2 == completed
27 || message3 == completed) &&
28 message4 == enabled
29 Then
30 push var4
31 End

The next case regards the parallel gateway element that is divided
again into a split and a join. The split gateway (Fig. 8a), enables
the execution of all successive messages without any restriction.
This behaviour does not affect directly any rule, neither of the
messages before the gateway nor the ones after. All the messages
on the right-hand side of the gateway are enabled after the
completion of the previous one. For this reason, in Listing 5 the
rule of message2 does not contain any particular condition but it
works as two directly connected messages.

F. Corradini, A. Marcelletti, A. Morichetta et al. Future Generation Computer Systems 147 (2023) 219–234

D
m

e
o

4

r
t
p
b
m
a

Fig. 8. Parallel gateway elements.

Listing 5: Rule of the message after the split parallel gateway.
32 Rule " message2 "
33 When
34 message1 == completed &&
35 message2 == enabled
36 Then
37 push var2
38 End

ifferent is the case for the parallel join (Fig. 8b). In this case, the
essage4 requires that all the previous elements are completed

before its execution. This semantics affects the initial check of the
rule associated with message4. Specifically, Listing 6 shows (Lines
41–42) the parallel check in the condition for the execution status
of the previous messages message2 and message3, that need to be
both completed.

Listing 6: Rule of a message after the join parallel gateway.
39 Rule " message4 "
40 When
41 (message2 == completed
42 && message3 == completed) &&
43 message4 == enabled
44 Then
45 push var4
46 End

The last case reported in Fig. 9 shows an event-based gateway.
The gateway as shown in Listing 7 requires that message2 is
nabled and, at the same time, message3 is disabled, since only
ne message can be executed according to the one that is first
226
Fig. 9. Event-based case.

chosen. This is reflected in the inclusion of an extra condition
requiring that the status of the other message connected to the
gateway is disabled. Lines 49–50 report the example for message2
in which the check is done also on the status of message3.

Listing 7: Rule of a message after event-based gateway.
47 Rule " message2 "
48 When
49 (message1 == completed
50 && message3 == disabled) &&
51 message2 == enabled
52 Then
53 push var2
54 End

.3. Smart contract

The FlexChain approach relies on two different smart contracts
egulating the on-chain behaviour. The first is the Factory contract
hat is invoked by the FlexChain tool every time a choreogra-
hy model is uploaded and a new choreography instance must
e created. This acts also as a register since it maintains in
emory the name of the choreography instance and its related
ddress. The second is the Instance contract and it is used as a

template for instantiating a model. The code is composed of a
set of state variables, that are used to manage the process, and
some utility functions for the different operations. In particular,
in FlexChain we have a single Factory contract that deploys an
Instance contract for each model instance generated by the user.
This architecture provides a general and reusable infrastructure
dealing with flexibility requirements. Notably, the translation
examples shown in Section 4.2 do not produce smart contracts
code, since the Drools rules generated from the BPMN elements
are stored inside the IPFS and just referred to in the Instance
contract.

Factory contract. Listing 8 reports the main functionalities for in-
stantiating new contract instances. Line 56 contains the mapping
used to associate the instance name (in bytes) to its address. In
this way, it is possible to track the entire history of generated
choreography contract instances. The instantiateProcess function
(Lines 57–63) generates a new contract starting from the tem-
plate one. The new contract requires two inputs, (i) the creator,
automatically taken from the sender of the invocation, and (ii)
the quorum, required for an update. After this step, the newly
generated address is stored in the state mapping.

Listing 8: Factory Smart Contract.
55 contract ProcessMonitor{
56 mapping(bytes32 => address) processes;
57 function instantiateProcess(

F. Corradini, A. Marcelletti, A. Morichetta et al. Future Generation Computer Systems 147 (2023) 219–234

t
I
e
c
f
v
t
t
r
f
r
t
T
f

2

58 bytes32 processName ,
59 uint _quorum) public{
60 processes[processName] =
61 address(new ProcessTemplate(
62 msg.sender, _quorum));
63 }
64 ...
65 }

Instance contract. Listing 9 reports the code for the smart con-
tract representing the choreography instance. In particular, in
Line 67 the enum variable for managing the execution status of
the rules is defined. Then, the hash location of the rules inside
the IPFS is stored in a separate bytes32 variable (Line 68). The
next mappings are used instead to associate the messages to an
execution status (Line 69) and to store the input variables of
the messages with their name (Line 70). Finally, two structures
are used to manage the voting system for updating the process.
The first (Line 71) represents the participants that vote for an
update, while the second (Lines 72–76) handles the proposal. This
contains indeed the new hash of the updated rules, the required
quorum, and the actual votes received for that proposal. The
next part of the contract defines the execution of the process
instance. In Line 77 the executeMessage function is used to emit
he event corresponding to the messageToExecute and its inputs.
n the FlexChain approach, the above event is used to trigger the
xecution of the message rule; after this step, the result of the off-
hain computation is pushed to the contract using the setVariables
unction (Line 82). Here the names and the values of the output
ariables are updated in the contract state and the message is set
o the COMPLETED state. The function defined in Line 88 manages
he creation of an update proposal, requiring the hash of the new
ules location and the IDs of the corresponding messages. The last
unction in Line 93 permits to vote for the update proposal and it
equires only the vote that will be associated automatically with
he sender of the transaction (i.e., the choreography participant).
he remaining part of the contract defines all the getter functions
or reading the contract state and other information.

Listing 9: Choreography Instance Smart Contract.
66 contract ProcessTemplate{
67 enum State { ENABLED, DISABLED , COMPLETED }
68 bytes32 rules_ipfs;
69 mapping(bytes32 => State) elements;
70 mapping(bytes32 => bytes32) allValues;
71 struct Voter{bool voted; bool vote;}
72 struct Proposal{
73 bytes32 proposedHash;
74 uint quorum;
75 uint actualVotes;
76 }
77 function executeMessage(
78 string memory messageToExecute ,
79 string[] memory inputs
80) public{...}
81
82 function setVariables(
83 bytes32[] memory names,
84 bytes32[] memory values,
85 string memory messageID
86) public{...}
87
88 function createProposal(
89 string memory _proposalHashRules ,
90 string memory _proposalHashIds
91) public{...}
92
93 function voteProposal(
94 bool _vote
95) public{...}
96 ...
97 }
 a

227
For interested readers, we provide the full code6 of the factory
and instance smart contracts.

5. FlexChain demonstration

In this section, we demonstrate the feasibility of the approach
using the FlexChain tool to execute a healthcare-related case
study. We provide a description of the X-rays exam process
before and after the updated laws about Covid restrictions. Then,
we show the instantiation, updating, and execution phases high-
lighting the main functionalities of the tool.

5.1. Case study

Fig. 10 shows the process that a patient must follow to sched-
ule and do the X-rays examination. The patient, owning the
related medical prescription, asks for an appointment with the
radiology department that will check the availability of the ward.
If there is a free date, the appointment is confirmed and the
response is sent to the patient; otherwise, the availability is
checked again. The patient can perform the physical check-in by
providing the appointment identifier that is controlled by the
radiology. If the appointment is confirmed, the X-rays exam is
done and the results are provided to the ward that will compile
a final report.

Fig. 11 reports instead the updated process dealing with the
restrictions imposed by national law after the Covid pandemic.
In particular, the main change regards the physical check-in that
must follow additional steps. This requires verification of the
temperature and of the vaccine certification. If the temperature
is under the threshold and the certification is valid, the radiology
will finally check the appointment identifier of the patient and
return back the confirmation. The last phase is similar to the
previous version of the model, where the exam report is analysed
and provided to the patient.

5.2. The FlexChain tool

We report here the description of the FlexChain tool7 by
providing an example of the different phases of the approach.

Instantiation phase. The first operation in the proposed approach
is the instantiation of a model. This functionality can be triggered
directly from the FlexChain frontend (Fig. 13) after the design
of the model using the provided modeller based on the Chor-
js implementation [34]. The modeller, indeed, permits to create,
upload, download and deploy a choreography model. Using the
deploy button on the interface, the instantiation process starts
as reported in Fig. 12. The first step consists of the automatic
generation of the corresponding rules and their storage inside
the IPFS. This generates the hash of the rules that is sent back to
the frontend. At this point, the factory smart contract is invoked
passing the generated IPFS hash and the quorum that must be
reached in an eventual update phase. The factory contract will use
a fixed template to generate a new instance contract containing
all the information relative to the uploaded model, such as the
list of the choreography elements. The address of the newly
generated contract is then stored in the factory terminating the
instantiation phase.

6 https://bitbucket.org/proslabteam/flexchain_v2/src/master/Smart%
0Contracts/.
7 The tool is available at https://pros.unicam.it/flexchain/ while its code is
ccessible at https://bitbucket.org/proslabteam/flexchain_v2/.

https://bitbucket.org/proslabteam/flexchain_v2/src/master/Smart%20Contracts/
https://bitbucket.org/proslabteam/flexchain_v2/src/master/Smart%20Contracts/
https://pros.unicam.it/flexchain/
https://bitbucket.org/proslabteam/flexchain_v2/

F. Corradini, A. Marcelletti, A. Morichetta et al. Future Generation Computer Systems 147 (2023) 219–234

U

Fig. 10. X-rays exam process.
Fig. 11. X-rays exam process updated with Covid procedure.
Fig. 12. Sequence diagram of the instantiation phase.

pdate phase. In the update phase, it is possible to make run-
time changes in order to react to unexpected situations or to
optimise the running process. The FlexChain tool provides a ded-
icated page (Fig. 15) where the user can design the updates.
The first step consists to upload the model corresponding to
the original choreography to change; the model will be then
visualised inside the two panels of the page. The upper one is a
viewer and it only contains the imported choreography, the lower
one instead is a modeller and it can be used by the proposer user
to change the BPMN elements creating the updated version of the
model. After this, it is possible to click the View Changes button
to show the differences between the two models that will be
coloured in green (added elements) or in red (removed elements).
To effectively upload the changes in the blockchain, first, the user
has to select the related smart contract using the drop-down
list. This is possible thanks to the factory contract that during
the instantiation associates the process names to their addresses
(acting as a monitor) so as to be easily retrieved. After selecting
the contract, a first control comparing the imported choreography
elements (not the updated ones) with those stored inside the
228
instance contract is made. In case they do not match, an error is
shown to the user, otherwise, the Update rules button is enabled
to activate the update process described in Fig. 14. The frontend
generates the new rules for the updated elements and stores
them inside the IPFS. After that, the voting procedure starts for
approving the new rules and adopting them. Indeed, whenever
a new update is made in the blockchain, it does not immediately
change the state of the contract but it comes as an update proposal
that must be approved by the other voter participants. When a
proposal is created, an event is emitted and it is captured by the
other participants that can vote using their frontend to approve,
or not, the proposal. When the quorum is reached, the previously
created IPFS hash is permanently written in the blockchain and
the participants are informed.

Execution phase. In the execution phase (Fig. 16), the participants
of a choreography instance can interact by sending messages
according to the flow prescribed by the model. Fig. 17 shows
the execution page, where the user can select the choreography
to execute from the list of the available ones. At this point, the
user can select one message to execute from the list of available
ones reported in the drop-down menu (automatically retrieved
from the blockchain). The required parameters can be inserted
in the dedicated form provided by the FlexChain user interface.
Finally, the button Execute message sends the request to the smart
contract that emits an event containing the message to execute,
the IPFS hash of the rules, and the inserted inputs. The off-chain
processor captures this event, reads the rules from the IPFS, and
executes the one related to the message. If the conditions are suc-
cessfully evaluated, the inputs are written in the smart contract
producing an instance state update. This returns also feedback to
the user informing them about the status of the execution. To
notice, in the proposed scenario we have implemented the off-
chain processor as a Spring Boot server while the user interface
is a React application. However, this is only one of the possible
implementations since our approach fits also other technological
choices.

Case study cost analysis. We report in Table 1 the cost analysis
made on the execution of the proposed case study.8 In particular,

8 The entire execution is available at https://bit.ly/3wfKm8U.

https://bit.ly/3wfKm8U

F. Corradini, A. Marcelletti, A. Morichetta et al. Future Generation Computer Systems 147 (2023) 219–234
Fig. 13. Modelling page.
Fig. 14. Sequence flow of the updating phase.

we notice that the main costs are related to the deployment of
the factory contract (around 1,8 million units of gas) and to the
instantiation of the template for a new choreography (around
1,2 million units of gas). However, the factory is deployed only
once since it is responsible for deploying choreography contracts.
The choreography contract, instead, is deployed every time a new
choreography is uploaded and it will store the identifier of the
IPFS location of the rules. This step requires a transaction con-
suming a significantly lower amount of gas (around 158,000 units
of gas). Once the choreography is deployed, it can be changed by
means of an updated proposal to the contract (around 212,000
units of gas) that must be approved by the other participants
229
Table 1
Cost analysis for the X-rays process.
Transaction name Gas used

Factory contract deploy 1,879,537
Template contract instantiation 1,229,125
IPFS hash upload 158,776
Update proposal 212,114
Vote for proposal 77,758
Average message execution 53,309

(around 77,000 units of gas). Compared to the deployment opera-
tions, the update one comes with lower gas consumption. Indeed,
thanks to our approach, instead of deploying new contracts every
time a change is done, it is only necessary to complete the
voting mechanism storing the new IPFS referrals. Finally, users
can participate in the execution phase by sending messages. This
is the less consuming action since it requires only around 53,000
units of gas. Indeed, it is important to maintain low consump-
tion due to the high frequency of exchanged messages regarding
the deployment operations. In general, we consider the overall
approach gas efficient, since only one-time operations require a
major consumption of gas, in favour of more efficient execution.

6. Related works

The challenge of providing flexibility during the execution of
process-aware information systems is largely discussed in the
literature and many process management systems supporting
flexibility are currently developed [15,35]. Also, different ap-
proaches are provided in many contexts; for example, in [36]
the authors proposed a real-time system for dealing with the
flexibility of cloud service workflows. In particular, they com-
bine BPMN and UML (Unified Modeling Language) that are used

F. Corradini, A. Marcelletti, A. Morichetta et al. Future Generation Computer Systems 147 (2023) 219–234

t
w
d
a

e
a
i
p
c

a
a

Fig. 15. Updating page.
Fig. 16. Sequence flow of the execution phase.

o represent the functional and behavioural views of the cloud
orkflows. During the execution phase, the proposed system uses
efined QoS (Quality of Service) attributes to detect and correct
n anomaly whenever it occurs.
Differently, support for flexibility in business process mod-

lling and execution can be achieved in different ways. In [37] the
uthors proposed an extension for BPMN, whose main objective
s to obtain controlled flexibility. By exploiting this extension,
rocess designers can model which business process element can
hange and under which conditions, by using specific expressions.
The work in [38], instead, focuses on versioning. It proposes

n approach supporting dynamic changes in business processes,
nd discusses issues on version management for process changes.
230
The proposed solution is based on change patterns that are con-
cretely supported by a process designer extending BPEL (Business
Process Execution Language).

Finally, similar to our work, in [39] dynamic business pro-
cesses are executed using rules that are selected dynamically
based on the surrounding context. In this way, it is possible to
support changes at run-time by executing new actions and rules
coming from the updated context.

All the approaches described above show how it is possible to
obtain flexibility in different kinds of business processes. How-
ever, all of them significantly differ from our proposal, since our
main focus concerns the execution of blockchain-based processes.
In fact, we aim at guaranteeing trust while we achieve flexibility.
This topic is still almost unexplored, only a few approaches are
available.

In [40] the authors propose a dynamic role binder for run-
time choice of sub-processes. They provide functionalities for the
binding and unbinding of actors to a role in a dynamic way,
supported by consistency verification and based on agreements.
However, the proposal is mainly a run-time selection of already
designed situations, with a focus on dynamic role-binding. Our
approach, instead, wants to provide flexibility during the execu-
tion of the business process, without the need of specifying in
the modelling phase the elements of the model that could be
modified at execution time.

In [41], the work focuses on reaching flexibility on the tech-
nologies executing business processes. The resulting system is
indeed developed with on-chain and off-chain components based

on federated blockchains. However, here the focus is on the

F. Corradini, A. Marcelletti, A. Morichetta et al. Future Generation Computer Systems 147 (2023) 219–234

i
s
p
o
s
i
m
r
a

i
(
(
a
t
t
a
a
m
t
t
t
t

Fig. 17. Execution page.
Table 2
Table of identified related works and their characteristics.
Source BPMN Blockchain Flexibility

[36] ✓ ✗ Scaling deployed services during the workflow
[37] ✓ ✗ Modelling and executing controlled flexibility
[38] ✗ ✗ Dynamic process version selection
[39] ✓ ✗ Rule- and context-based modelling and

simulation
[40] ✓ ✓ Run-time selection of predesigned elements
[41] ✓ ✓ Dynamic blockchain selection
[42] ✓ ✓ Upgradeability and versioning approach

flexible interactions between different technologies. In our case,
instead, we want to achieve flexibility in the execution of the
business process itself and not in the underlying technologies.

Finally, in [42] the issue of upgradeability is faced. The authors
nvestigate how, starting from a collaboration diagram, it is pos-
ible to upgrade the smart contracts representing the business
rocess, its state and its participants. They use a combination
f static and dynamic contracts for the storage of logic and
tates bringing high costs and a high level of complexity. Also
n this case, the main difference with our work consists in the
otivation. Indeed, we aim at providing a flexible execution at

un-time of active instances of business processes, while these
uthors focused on the dynamic versioning of inactive instances.
In Table 2, we summarise the analysed works concerning flex-

bility and, in particular, we consider three main characteristics:
i) if the work explicitly uses BPMN diagrams for modelling,
ii) if the work relies on blockchain, and (iii) which flexibility
spects the work supports, and how it implements them. The
able shows that in most cases flexibility is achieved in a setting
hat does not rely on blockchain technology, hence without facing
ll issues raised by the immutability of the blockchain. In the
pproaches that, instead, adopt blockchain for a trusted environ-
ent, the concept of flexibility they consider differs from work

o work. In [41], the authors consider flexibility as the possibility
o select different blockchains, while in [40] the authors provide
he possibility to bind actors and control-flow decisions at run-
ime. In [42], the work focuses on the smart contract upgrading
231
mechanism, thus proposing a versioning approach. Differently,
in our work we focused on a richer flexibility mechanism for
business processes, whose business logic and execution state is
stored in the blockchain, supporting a voting mechanism that
permits arbitrary changes in the model at run-time.

Contributions. This work extends and improves the FlexChain
approach and tool proposed in [18]. We have significantly revised
the methodological phases, by adding some core components,
such as IPFS, and introducing a factory contract to replace the
old one. In particular, the introduction of the IPFS as external
storage reduces costs, thus optimising the overall approach. The
factory smart contract, instead, allows generating new instance
contracts, facilitating their management and acting also as a mon-
itor. Furthermore, from a methodological point of view, we have
introduced a quorum mechanism, supported by the smart con-
tracts and by the FlexChain tool. The quorum allows preventing
the creation of unauthorised and malicious changes by requiring
approval from the participants of the process. All these novelties
were also supported by the new FlexChain tool, which has been
re-implemented as a web application available online. Inside
it, we have integrated a modeller for choreographies and sev-
eral panels containing functionalities for creating, interacting and
modifying a choreography instance. Finally, we have extended
the discussion of related works, by adding new comparisons and
enriching the already existing ones.

7. Conclusion

In this work, we propose an approach for the flexible execu-
tion of multi-party business processes based on blockchain. In
these last years, more and more works exploited blockchain tech-
nology for the development of multi-party business processes.
Indeed, thanks to its characteristics of disintermediation, trans-
parency and distribution, blockchain is seen as disruptive in many
different scenarios. However, while traditional (non-blockchain-
based) business processes are supported by a large variety of
frameworks that implement their entire life cycle, the introduc-
tion of blockchain brings many new challenges. In particular, this

F. Corradini, A. Marcelletti, A. Morichetta et al. Future Generation Computer Systems 147 (2023) 219–234

o
p
m
o

s
p
t
i
u
o
b
c
t
E
t
c
m
m
w
t
i
r

e
t
t
t
e

C

F

works focuses on the flexible aspect of the business process exe-
cution. Indeed, it could happen that due to unexpected situations
(e.g., the pandemic or the involvement of a new stakeholder) the
process has to be changed at run-time. While many solutions
are available in traditional settings, flexibility remains almost
unexplored in blockchain-based ones. The main reason comes
from the immutability of blockchain and its programs (i.e., smart
contracts) which brings additional complexity since at run-time
it is not possible to modify already-defined business rules. For
this reason, our approach aims at providing a framework for
dealing with this challenge while maintaining the fundamental
properties of trust, transparency and decentralisation. To deal
with the immutability of the blockchain, the proposed solution
decouples the state of the process (stored on-chain) from the
execution logic (stored off-chain). Indeed, while the first is a set
of data stored in a smart contract, the second one is expressed as
rules and they are stored in the IPFS. This allows to change them
at run-time without having to modify the on-chain code that, in
other cases, results impossible.

To demonstrate its feasibility, we applied the approach relying
n the Ethereum blockchain. We also implemented a tool sup-
orting the entire life-cycle of BPMN choreographies, from their
odelling to their execution and update, and we experimented
n a healthcare case study.
It is worth noticing that our work does not handle time con-

traints as modelling primitives (e.g., timer events) in choreogra-
hy diagrams (see Fig. 1). As a result, FlexChain does not support
he development of real-time applications. Their implementation
n FlexChain is also limited by the latency and throughput of the
nderlined blockchain technology. In particular, the performance
f the Ethereum public blockchain used in FlexChain is affected
y many factors, such as the consensus algorithm, the network
ongestion, the size of the payload for each transaction, and
he correlated fees. However, FlexChain is not limited to the
thereum technology but is open to every EVM-based implemen-
ation. For this reason, the performance of the overall approach
ould be improved by changing the underlined technology and
oving, for example, towards a private Ethereum network or a
ore scalable platform using a Layer 2 solution. We plan as future
ork to integrate a Layer 2 technology (e.g., Polygon) in FlexChain
o improve our approach’s overall performance. We also intend to
nvestigate possible solutions for supporting the development of
eal-time applications in FlexChain.

As future work, we also plan to introduce mechanisms able to
valuate the changes proposed by a user in the model in order
o prevent the application of inconsistent updates that invalidate
he execution. Finally, we intend to define a real-time monitor
hat could help the users to reason about the current state of the
xecution, thus providing a more valuable experience.

RediT authorship contribution statement

Flavio Corradini: Conceptualization, Resources, Supervision,
unding acquisition. Alessandro Marcelletti: Conceptualization,

Methodology, Software, Validation, Investigation, Writing – orig-
inal draft, Visualization. Andrea Morichetta: Conceptualization,
Methodology, Software, Validation, Investigation, Writing – origi-
nal draft, Visualization. Andrea Polini: Conceptualization,
Methodology, Resources, Writing – review & editing, Supervision,
Project administration. Barbara Re: Conceptualization, Methodol-
ogy, Resources, Writing – review & editing, Supervision, Project
administration. Francesco Tiezzi: Conceptualization, Methodol-
ogy, Resources, Writing – review & editing, Supervision, Project
administration.
232
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgment

This work was partially supported by the project SERICS
(PE00000014) under the NRRP MUR program funded by the EU -
NextGenerationEU.

References

[1] OMG, Business process model and notation (BPMN), 2011, URL https:
//www.omg.org/spec/BPMN/2.0/PDF/.

[2] J. Mendling, I. Weber, W.M.P. van der Aalst, J. vom Brocke, C. Cabanillas, F.
Daniel, S. ren Debois, C.D. Ciccio, M. Dumas, S. Dustdar, A. Gal, L. García-
Bañuelos, G. Governatori, R. Hull, M.L. Rosa, H. Leopold, F. Leymann, J.
Recker, M. Reichert, H.A. Reijers, S. Rinderle-Ma, A. Solti, M. Rosemann, S.
Schulte, M.P. Singh, T. Slaats, M. Staples, B. Weber, M. Weidlich, M. Weske,
X. Xu, L. Zhu, Blockchains for business process management - challenges
and opportunities, ACM Trans. Manag. Inf. Syst. 9 (1) (2018) 4:1–4:16,
http://dx.doi.org/10.1145/3183367.

[3] S. Porru, A. Pinna, M. Marchesi, R. Tonelli, Blockchain-oriented software
engineering: challenges and new directions, in: Proceedings of the 39th
International Conference on Software Engineering, IEEE Computer Society,
2017, pp. 169–171, http://dx.doi.org/10.1109/ICSE-C.2017.142.

[4] S. Curty, F. Härer, H. Fill, Blockchain application development using model-
driven engineering and low-code platforms: A survey, in: Enterprise,
Business-Process and Information Systems Modeling, in: Lecture Notes in
Business Information Processing, vol. 450, Springer, 2022, pp. 205–220,
http://dx.doi.org/10.1007/978-3-031-07475-2_14.

[5] F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, F. Tiezzi,
Engineering trustable and auditable choreography-based systems using
blockchain, ACM Trans. Manag. Inf. Syst. 13 (3) (2022) 31:1–31:53, http:
//dx.doi.org/10.1145/3505225.

[6] F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, F. Tiezzi,
Engineering trustable choreography-based systems using blockchain, in:
35th ACM/SIGAPP Symposium on Applied Computing, ACM, 2020, pp.
1470–1479, http://dx.doi.org/10.1145/3341105.3373988.

[7] O. López-Pintado, L. García-Bañuelos, M. Dumas, I. Weber, A. Pono-
marev, Caterpillar: A business process execution engine on the ethereum
blockchain, Softw. Pract. Exp. 49 (7) (2019) 1162–1193, http://dx.doi.org/
10.1002/spe.2702.

[8] A.B. Tran, Q. Lu, I. Weber, Lorikeet: A model-driven engineering tool for
blockchain-based business process execution and asset management, in:
Proceedings of the Dissertation Award, Demonstration, and Industrial Track
At BPM, in: CEUR Workshop Proceedings, vol. 2196, CEUR-WS.org, 2018,
pp. 56–60.

[9] F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, E. Scala, F.
Tiezzi, Model-driven engineering for multi-party business processes on
multiple blockchains, Blockchain: Res. Appl. 2 (3) (2021) 100018, http:
//dx.doi.org/10.1016/j.bcra.2021.100018.

[10] F. Stiehle, I. Weber, Blockchain for business process enactment: A taxon-
omy and systematic literature review, in: Business Process Management:
Blockchain, Robotic Process Automation, and Central and Eastern Europe
Forum - BPM 2022 Blockchain, RPA, and CEE Forum, in: Lecture Notes
in Business Information Processing, vol. 459, Springer, 2022, pp. 5–20,
http://dx.doi.org/10.1007/978-3-031-16168-1_1.

[11] R. Cognini, F. Corradini, S. Gnesi, A. Polini, B. Re, Research challenges in
business process adaptability, in: Symposium on Applied Computing, ACM,
2014, pp. 1049–1054, http://dx.doi.org/10.1145/2554850.2555055.

[12] W.M. Van der Aalst, Business process management: a comprehensive
survey, Int. Sch. Res. Not. (2013) 1–37.

[13] R. Cognini, F. Corradini, S. Gnesi, A. Polini, B. Re, Business process
flexibility-a systematic literature review with a software systems per-
spective, Inf. Syst. Front. 20 (2) (2018) 343–371, http://dx.doi.org/10.1007/
s10796-016-9678-2.

[14] M. Reichert, B. Weber, Enabling Flexibility in Process-Aware Information
Systems - Challenges, Methods, Technologies, Springer, 2012.

https://www.omg.org/spec/BPMN/2.0/PDF/
https://www.omg.org/spec/BPMN/2.0/PDF/
https://www.omg.org/spec/BPMN/2.0/PDF/
http://dx.doi.org/10.1145/3183367
http://dx.doi.org/10.1109/ICSE-C.2017.142
http://dx.doi.org/10.1007/978-3-031-07475-2_14
http://dx.doi.org/10.1145/3505225
http://dx.doi.org/10.1145/3505225
http://dx.doi.org/10.1145/3505225
http://dx.doi.org/10.1145/3341105.3373988
http://dx.doi.org/10.1002/spe.2702
http://dx.doi.org/10.1002/spe.2702
http://dx.doi.org/10.1002/spe.2702
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb8
http://dx.doi.org/10.1016/j.bcra.2021.100018
http://dx.doi.org/10.1016/j.bcra.2021.100018
http://dx.doi.org/10.1016/j.bcra.2021.100018
http://dx.doi.org/10.1007/978-3-031-16168-1_1
http://dx.doi.org/10.1145/2554850.2555055
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb12
http://dx.doi.org/10.1007/s10796-016-9678-2
http://dx.doi.org/10.1007/s10796-016-9678-2
http://dx.doi.org/10.1007/s10796-016-9678-2
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb14

F. Corradini, A. Marcelletti, A. Morichetta et al. Future Generation Computer Systems 147 (2023) 219–234

B

[15] A. Mejri, S.A. Ghanouchi, R. Martinho, Evaluation of process modeling
paradigms enabling flexibility, Procedia Comput. Sci. 64 (2015) 1043–1050,
http://dx.doi.org/10.1016/j.procs.2015.08.514.

[16] Q. Zheng, Y. Li, P. Chen, X. Dong, An innovative IPFS-based storage model
for blockchain, in: 2018 IEEE/WIC/ACM International Conference on Web
Intelligence, WI, 2018, pp. 704–708, http://dx.doi.org/10.1109/WI.2018.
000-8.

[17] Y. Chen, H. Li, K. Li, J. Zhang, An improved P2P file system scheme based on
IPFS and blockchain, in: 2017 IEEE International Conference on Big Data
(Big Data), 2017, pp. 2652–2657, http://dx.doi.org/10.1109/BigData.2017.
8258226.

[18] F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, F. Tiezzi,
Flexible execution of multi-party business processes on blockchain, in:
International Workshop on Emerging Trends in Software Engineering
for Blockchain, IEEE, 2022, pp. 25–32, http://dx.doi.org/10.1145/3528226.
3528369.

[19] E. Verbeek, D. Fahland, CPN IDE: An extensible replacement for CPN tools
that uses access/CPN, in: ICPM Doctoral Consortium and Demo Track, in:
CEUR Workshop Proceedings, vol. 3098, CEUR-WS.org, 2021, pp. 29–30.

[20] Y. Thierry-Mieg, Symbolic model-checking using ITS-tools, in: TACAS, in:
Lecture Notes in Computer Science, vol. 9035, Springer, 2015, pp. 231–237.

[21] M.S. Arbabi, C. Lal, N.R. Veeraragavan, D. Marijan, J.F. Nygard, R. Vitenberg,
A survey on blockchain for healthcare: Challenges, benefits, and future
directions, IEEE Commun. Surv. Tutor. (2022) 1, http://dx.doi.org/10.1109/
COMST.2022.3224644.

[22] S. Rani, H. Babbar, G. Srivastava, T.R. Gadekallu, G. Dhiman, Security
framework for internet of things based software defined networks using
blockchain, IEEE Internet Things J. (2022) 1, http://dx.doi.org/10.1109/JIOT.
2022.3223576.

[23] S. Hakak, W.Z. Khan, G.A. Gilkar, B. Assiri, M. Alazab, S. Bhattacharya, G.T.
Reddy, Recent advances in blockchain technology: A survey on applications
and challenges, Int. J. Ad Hoc Ubiquitous Comput. 38 (1–3) (2021) 82–100.

[24] A. Abraham, Rule-based expert systems, Handb. Meas. Syst. Des. (2005).
[25] B.G. Buchanan, R.O. Duda, Principles of rule-based expert systems, in: Adv.

Comput., Vol. 22, Elsevier, 1983, pp. 163–216, http://dx.doi.org/10.1016/
S0065-2458(08)60129-1.

[26] N. Kumar, D.D. Patil, V.M. Wadhai, Rule based programming with drools,
Int. J. Comput. Sci. Inf. Technol. 2 (3) (2011) 1121–1126.

[27] J. Benet, IPFS - content addressed, versioned, P2P file system, 2014, CoRR
abs/1407.3561.

[28] X. Xu, C. Pautasso, L. Zhu, Q. Lu, I. Weber, A pattern collection for
blockchain-based applications, in: Proceedings of the 23rd European Con-
ference on Pattern Languages of Programs, EuroPLoP ’18, ACM, 2018, pp.
3:1–3:20, http://dx.doi.org/10.1145/3282308.3282312.

[29] D. Khan, L.T. Jung, M.A. Hashmani, Systematic literature review of chal-
lenges in blockchain scalability, Appl. Sci. 11 (20) (2021) http://dx.doi.
org/10.3390/app11209372, URL https://www.mdpi.com/2076-3417/11/20/
9372.

[30] R. Mühlberger, S. Bachhofner, E.C. Ferrer, C.D. Ciccio, I. Weber, M. Wöhrer,
U. Zdun, Foundational oracle patterns: Connecting blockchain to the off-
chain world, in: Business Process Management: Blockchain and Robotic
Process Automation Forum - BPM 2020 Blockchain and RPA Forum,
Seville, Spain, September 13-18, 2020, Proceedings, in: Lecture Notes
in Business Information Processing, vol. 393, Springer, 2020, pp. 35–
51, http://dx.doi.org/10.1007/978-3-030-58779-6_3, URL https://doi.org/
10.1007/978-3-030-58779-6_3.

[31] X. Li, P. Jiang, T. Chen, X. Luo, Q. Wen, A survey on the security of
blockchain systems, Future Gener. Comput. Syst. 107 (2020) 841–853,
http://dx.doi.org/10.1016/j.future.2017.08.020.

[32] A. Bertolino, E. Marchetti, A. Morichetta, Adequate monitoring of service
compositions, in: B. Meyer, L. Baresi, M. Mezini (Eds.), Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, ESEC/FSE’13, Saint
Petersburg, Russian Federation, August 18-26, 2013, ACM, 2013, pp. 59–69.

[33] I. Compagnucci, F. Corradini, F. Fornari, B. Re, Trends on the usage of
BPMN 2.0 from publicly available repositories, in: Perspectives in Business
Informatics Research, Springer International Publishing, 2021, pp. 84–99.

[34] J. Ladleif, A. von Weltzien, M. Weske, chor-js: A modeling framework
for BPMN 2.0 choreography diagrams, in: Proceedings of the ER Forum
and Poster & Demos Session, in: CEUR Workshop Proceedings, vol. 2469,
CEUR-WS.org, 2019, pp. 113–117.

[35] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, W.M.P. van der Aalst,
Process flexibility: A survey of contemporary approaches, in: Advances
in Enterprise Engineering I, in: Lecture Notes in Business Information
Processing, vol. 10, Springer, 2008, pp. 16–30, http://dx.doi.org/10.1007/
978-3-540-68644-6_2.

[36] I.B. Fraj, Y.B. Hlaoui, L.B. Ayed, A control system for managing the flexibility
in BPMN models of cloud service workflows, in: International Conference
on Cloud Computing, IEEE, 2020, pp. 537–543, http://dx.doi.org/10.1109/
CLOUD49709.2020.00081.
233
[37] R. Martinho, D. Domingos, J. Varajão, CF4BPMN: a BPMN extension for
controlled flexibility in business processes, Procedia Comput. Sci. 64 (2015)
1232–1239, http://dx.doi.org/10.1016/j.procs.2015.08.509.

[38] D. Kim, M. Kim, H. Kim, Dynamic business process management based
on process change patterns, in: International Conference on Convergence
Information Technology, IEEE, 2007, pp. 1154–1161, http://dx.doi.org/10.
1109/ICCIT.2007.91.

[39] O. Vasilecas, D. Kalibatiene, D. Lavbič, Rule-and context-based dynamic
business process modelling and simulation, J. Syst. Softw. 122 (2016) 1–15,
http://dx.doi.org/10.1016/j.jss.2016.08.048.

[40] O. López-Pintado, M. Dumas, L. García-Bañuelos, I. Weber, Controlled
flexibility in blockchain-based collaborative business processes, Inf. Syst.
104 (2022) 101622, http://dx.doi.org/10.1016/j.is.2020.101622.

[41] M. Adams, S. Suriadi, A. Kumar, A.H. ter Hofstede, Flexible integration of
blockchain with business process automation: A federated architecture, in:
International Conference on Advanced Information Systems Engineering,
in: LNBIP, vol. 386, Springer, 2020, pp. 1–13, http://dx.doi.org/10.1007/978-
3-030-58135-0_1.

[42] P. Klinger, L. Nguyen, F. Bodendorf, Upgradeability concept for collaborative
blockchain-based business process execution framework, in: Conference
on Blockchain, in: LNCS, vol. 12404, Springer, 2020, pp. 127–141, http:
//dx.doi.org/10.1007/978-3-030-59638-5_9.

Flavio Corradini is a Full Professor of Computer Science
at the University of Camerino. He received a Laurea
Degree in Computer Science from the University of
Pisa and a Ph.D. in Computer Engineering from the
University of Rome ‘‘La Sapienza’’. He has been the
Director of the Mathematics and Computer Science
Department, President of the digital services and infor-
mation systems center of the University of Camerino,
Coordinator of the Computer Science Studies of the
University of Camerino, and rector of the University
of Camerino. His main research activities are in the

area of formal specification, verification of concurrent, distributed, and real-time
systems.

Alessandro Marcelletti is Ph.D. Student in Computer
Science and Mathematics at the University of Camerino.
He received his Master’s Degree from the University
of Camerino in 2019. His research interests refer to
the area of Blockchain technology and its integration
into the business process management discipline. He
also explores the benefits of Blockchain for IoT, cre-
ating new forms of trusted systems. His main results
involve creating tools and development methodologies
based on Blockchain. He also acts as Co-Organiser
and speaker of the International Winter School on

lockchain Technology and Applications: Hyperledger.

Andrea Morichetta is an Assistant Professor of Com-
puter Science at the University of Camerino. He
received his Ph.D. in Computer Decision and Systems
Science from IMT School for Advanced Studies Lucca
in 2016. His research interests are mainly in the area
of formal methods and software engineering applied to
distributed systems, business process management, and
blockchain technologies. In the last years, Morichetta
has focused his interest on distributed ledger technolo-
gies and blockchain application development, with a
particular focus on model-driven approaches.

Andrea Polini is an Associate Professor at the Univer-
sity of Camerino (UNICAM). His research interests are
in the area of Software Engineering, in particular on
Modelling methods and Quality Assurance strategies for
Complex Software Systems. He is a coordinating mem-
ber of the PROS Lab at UNICAM. He was a researcher
at ISTI-CNR in Pisa and got a Ph.D. in Computer En-
gineering from Scuola Superiore Sant’Anna in Pisa. His
research has always been linked to his participation in
many EU research projects, and he has been Project
Scientific Leader for the EU Collaborative Project Learn

PAd.

http://dx.doi.org/10.1016/j.procs.2015.08.514
http://dx.doi.org/10.1109/WI.2018.000-8
http://dx.doi.org/10.1109/WI.2018.000-8
http://dx.doi.org/10.1109/WI.2018.000-8
http://dx.doi.org/10.1109/BigData.2017.8258226
http://dx.doi.org/10.1109/BigData.2017.8258226
http://dx.doi.org/10.1109/BigData.2017.8258226
http://dx.doi.org/10.1145/3528226.3528369
http://dx.doi.org/10.1145/3528226.3528369
http://dx.doi.org/10.1145/3528226.3528369
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb20
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb20
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb20
http://dx.doi.org/10.1109/COMST.2022.3224644
http://dx.doi.org/10.1109/COMST.2022.3224644
http://dx.doi.org/10.1109/COMST.2022.3224644
http://dx.doi.org/10.1109/JIOT.2022.3223576
http://dx.doi.org/10.1109/JIOT.2022.3223576
http://dx.doi.org/10.1109/JIOT.2022.3223576
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb23
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb23
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb23
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb23
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb23
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb24
http://dx.doi.org/10.1016/S0065-2458(08)60129-1
http://dx.doi.org/10.1016/S0065-2458(08)60129-1
http://dx.doi.org/10.1016/S0065-2458(08)60129-1
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb26
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb26
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb26
http://arxiv.org/abs/1407.3561
http://dx.doi.org/10.1145/3282308.3282312
http://dx.doi.org/10.3390/app11209372
http://dx.doi.org/10.3390/app11209372
http://dx.doi.org/10.3390/app11209372
https://www.mdpi.com/2076-3417/11/20/9372
https://www.mdpi.com/2076-3417/11/20/9372
https://www.mdpi.com/2076-3417/11/20/9372
http://dx.doi.org/10.1007/978-3-030-58779-6_3
https://doi.org/10.1007/978-3-030-58779-6_3
https://doi.org/10.1007/978-3-030-58779-6_3
https://doi.org/10.1007/978-3-030-58779-6_3
http://dx.doi.org/10.1016/j.future.2017.08.020
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb33
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb33
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb33
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb33
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb33
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb34
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb34
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb34
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb34
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb34
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb34
http://refhub.elsevier.com/S0167-739X(23)00181-4/sb34
http://dx.doi.org/10.1007/978-3-540-68644-6_2
http://dx.doi.org/10.1007/978-3-540-68644-6_2
http://dx.doi.org/10.1007/978-3-540-68644-6_2
http://dx.doi.org/10.1109/CLOUD49709.2020.00081
http://dx.doi.org/10.1109/CLOUD49709.2020.00081
http://dx.doi.org/10.1109/CLOUD49709.2020.00081
http://dx.doi.org/10.1016/j.procs.2015.08.509
http://dx.doi.org/10.1109/ICCIT.2007.91
http://dx.doi.org/10.1109/ICCIT.2007.91
http://dx.doi.org/10.1109/ICCIT.2007.91
http://dx.doi.org/10.1016/j.jss.2016.08.048
http://dx.doi.org/10.1016/j.is.2020.101622
http://dx.doi.org/10.1007/978-3-030-58135-0_1
http://dx.doi.org/10.1007/978-3-030-58135-0_1
http://dx.doi.org/10.1007/978-3-030-58135-0_1
http://dx.doi.org/10.1007/978-3-030-59638-5_9
http://dx.doi.org/10.1007/978-3-030-59638-5_9
http://dx.doi.org/10.1007/978-3-030-59638-5_9

F. Corradini, A. Marcelletti, A. Morichetta et al. Future Generation Computer Systems 147 (2023) 219–234
Barbara Re is an Associate Professor of Computer
Science at the University of Camerino. She received
her Ph.D. in Information Science and Complex Systems
from the University of Camerino. Her research interests
refer to the area of Business Process Management from
modelling to analysis. Particular attention is paid to
the use of formal methods as methodological and auto-
matic tools for developing high-quality process-aware
information systems. She was involved in multidisci-
plinary research projects collaborating with national
and international research institutes and companies.
234
Francesco Tiezzi is an Associate Professor of Computer
Science at the University of Florence. He received the
Laurea degree from the University of Florence and the
Ph.D. degree from the same university. His research
activities focus on methodologies and tools, possibly
based on formal methods, for modelling, verifying,
programming, and deploying distributed systems. Par-
ticular attention is paid to the definition of formal
bases for solutions supporting service-oriented, cloud,
and autonomic computing and, more recently, business
process management and blockchain.

	A Flexible Approach to Multi-party Business Process Execution on Blockchain
	Introduction
	Background Notions
	BPMN choreography diagrams
	Blockchain
	Drools
	IPFS

	The FlexChain approach
	Architecture
	Phases
	FlexChain security aspects

	Translation approach: rules and smart contracts
	Approach for rules generation
	Examples of Translation Results
	Smart contract

	FlexChain demonstration
	Case Study
	The FlexChain tool

	Related works
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References

