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Via Madonna delle Carceri 9, 62032 Camerino, Italy.
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We study the entanglement production for Dirac and Klein-Gordon fields in an expanding space-
time characterized by the presence of torsion. Torsion is here considered according to the Einstein-
Cartan theory with a conformally flat Friedmann-Robertson-Walker spacetime. In this framework,
torsion is seen as an external field, fulfilling precise constraints directly got from the cosmological
constant principle. For Dirac field, we find that torsion increases the amount of entanglement. This
turns out to be particularly evident for small values of particle momentum. We discuss the roles of
Pauli exclusion principle in view of our results, and, in particular, we propose an interpretation of
the two maxima that occur for the entanglement entropy in presence of torsion. For Klein-Gordon
field, and differently from the Dirac case, the model can be exactly solved by adopting the same
scale factor as in the Dirac case. Again, we show how torsion affects the amount of entanglement,
providing a robust physical motivation behind the increase or decrease of entanglement entropy. A
direct comparison of our findings is also discussed in view of previous results derived in absence of
torsion. To this end, we give prominence on how our expectations would change in terms of the
coupling between torsion and the scale factor for both Dirac and Klein-Gordon fields.

PACS numbers: 98.80.-k, 98.80.Qc, 04.62+v, 03.67.Bg

I. INTRODUCTION

Our current understanding of the universe is under-
going a new revolutionary phase in which observations
provide precise measurements that fix bounds on the cos-
mological parameters characterizing the standard cosmo-
logical model [1, 2]. In this respect, the interplay between
quantum world and gravitation is an ambitious challenge
for theoretical physics as it sheds light on how early-
phases evolve when general relativity breaks down [3].
Applications to quantum gravity could open new win-
dows on the properties of the initial singularity, inflation
[4] and likely on the existence of both dark energy [5] and
matter [6]. It is therefore of interest to explore different
scenarios, choosing them through helpful guiding princi-
ples that make use of a minimal number of assumptions
and ingredients. All these scenarios lie on postulating
the cosmological principle, i.e. essentially the key in-
gredient that assumes the universe to be homogeneous
and isotropic [7]. In this framework, it is interesting to
consider the Einstein-Cartan (EC) theory [8] in which
the role of torsion represents the simplest modification of
Einstein’s gravity [9, 10]. The torsion is assumed not to
vanish as in general relativity, enabling one to match its
existence to particle spin. Here, spin plays a dynamical
role [11–13], in fact we assume the torsion field to couple
with the spin of particles, giving rise to interacting terms
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that act on the overall dynamics. For these considera-
tions, it is natural to work on particle production and on
its applications to quantum cosmology when EC theory
is accounted.

Indeed, an intriguing topic that is currently object of
speculation in cosmology is represented by entanglement
production in asymptotic phases [14]. Entanglement is
a fundamental property of quantum systems implying
the existence of global states of composite systems which
cannot be written as a product of the states of indi-
vidual subsystems [15]. It recently started to be a re-
source in quantum information theory, with several ap-
plications that span from quantum communication [16],
quantum cryptography [17], quantum teleportation [18]
up to quantum computation [19] and, more recently, to
its characterization in relativistic frameworks [20, 21],
such as in curved spacetime [22–25].

Spacetime curvature has nontrivial effects on quantum
fields living on the spacetime when compared with their
flat-spacetime counterparts [26]. This is especially inter-
esting in the case of dynamical spacetime backgrounds
because the gravitational interaction may induce quan-
tum correlations in the field state in scenarios such as
expanding universes [22–25, 27, 28]. This is related to
the long known phenomenon of particle-antiparticle pro-
duction from vacuum [29]. It was shown that Dirac and
KG field have different momentum distribution of entan-
glement [27]. Within the Dirac field no qualitative differ-
ence appear in the dependence of entanglement from the
number of created particles at fixed momentum in going
from 1 + 1 spacetime to 3 + 1 spacetime, hence includ-
ing spin [30, 31]. However all these studies were confined

ar
X

iv
:2

10
1.

11
56

7v
1 

 [
gr

-q
c]

  2
7 

Ja
n 

20
21

mailto:alessio.belfiglio@studenti.unicam.it
mailto:orlando.luongo@unicam.it
mailto:stefano.mancini@unicam.it


2

to torsion-less spacetimes. The inclusion of torsion can
shed further light on the differences between the entan-
glement of bosonic and fermionic fields, and in particular
concerning the role the spin plays in its generation.

In this paper, we face the problem of investigating
entanglement production for bosonic and fermion par-
ticles in an expanding spacetime with the presence of
nonzero torsion. To do so, we consider the Dirac and
Klein-Gordon (KG) field and the role of spin in view of
EC theory. In this respect, we investigate entanglement
for Dirac and KG field within the EC theory. Thus, as-
suming the cosmological principle to hold, we adopt the
Friedmann-Friedmann-Robertson-Walker (FRW) space-
time, fulfilling constraints for the torsion provided by
recent observations [32] and we notice the effect of the
torsion appears in the dependence of the particle den-
sity from momentum. Thus, invoking a generic torsion
source, reinterpreted as an external geometrical source,
we describe how Dirac field are minimally coupled to tor-
sion and how a non-minimal coupling of torsion to KG
field is plausible, both introducing significant curvature
effects. Afterwards, we show how the presence of torsion
affects entanglement, in both the cases. In particular,
we show how to get from the Dirac equation physical
solutions in presence of torsion in particular spacetime
regions. These solutions are not analytical as well as
the corresponding entanglement entropy. However, by
assuming small corrections due to torsion we get approx-
imate classes of solutions that resemble previous results
developed in the literature where torsion was not taken
into account. As a consequence, we underline how tor-
sion deviates the standard expectations and under which
conditions torsion can increase or decrease particle and
entanglement productions. The opposite happens for KG
field. There, although the torsion effect is modeled in a
more complicated way, i.e. adopting two sources instead
than one as for Dirac, exact solutions can be argued. Ac-
cording to our findings, we show under which properties
torsion can increase the amount of entanglement and how
much it is mode dependent. We underline the entangle-
ment increase is particularly marked for small values of
the particle momentum. Consequences in cosmology and
imprints on observations are discussed. In particular, we
interpret our findings in view of the Pauli exclusion prin-
ciple, explaining the presence of a relative maximum for
the Dirac field.

The paper is structured as follows. In Sect. II, ba-
sic notions of EC theory are reported, giving emphasis
on how to fuel torsion by means of the most generic ap-
proach. Thus, in Sect. III we discuss how to relate EC
gravity to Dirac and how torsion modifies the entangle-
ment production. The same is faced for KG field in Sect.
IV. A comparison of both the frameworks is extensively
discussed throughout Sect. V. In the same section, we
also give a physical interpretation of our results and we
stress how to relate our torsion fields to Pauli exclusion
principle. Finally, in Sect. VI we discuss conclusions and
perspectives of our work.

II. THE EC THEORY

The EC theory can be introduced starting from the
action

LEC = − 1

2κc

∫
R(Γ)

√
−g d4x+

∫
Lm
√
−g d4x, (1)

where κ ≡ 8πG and g is the determinant of the space-
time metric tensor gµν . The Lagrangian Lm represents
a generic matter contribution. This action is defined in
a spacetime with curvature and torsion, usually called
Riemann-Cartan (RC) spacetime. The curvature scalar
R(Γ) := gµνRµν is constructed out of the Ricci-Cartan
tensor Rµν(Γ) ≡ Rαµαν(Γ), while the torsion tensor Tαµν
is defined as the antisymmetric part of the affine connec-
tion

Tαµν := Γα[µν] =
1

2

(
Γαµν − Γανµ

)
. (2)

Accordingly, the affine connection can be written as the
sum of two contributions [33]:

Γαµν = Γ̃αµν +Kα
µν , (3)

where Γ̃αµν is the usual Levi-Civita spin connection of
general relativity and Kα

µν is the contorsion tensor, re-
lated to torsion via the formula

Kαµν := Tαµν + 2T(µν)α. (4)

In the EC theory we deal with a set of two field equa-
tions: the first Einstein-Cartan equation relates the cur-
vature of spacetime to the energy-momentum density
of matter, described by the tensor Tµν . This equation
maintains the same form of standard general relativity,
i.e. Rµν − 1

2Rgµν = κTµν , but without having the a
priori symmetry of both the Ricci-Cartan and energy-
momentum tensors.

The second Einstein-Cartan equation couples the
spacetime torsion to the matter spin. It can be written
as

Tαµν − Tµδαν + Tνδ
α
µ = −κ

2
s α
µν , (5)

where

s µν
α =

2√
−g

δLm
δKα

µν

(6)

is the spin tensor of matter.

A. The cosmological principle in theories with
torsion

Now we want to specify to the case of a spatially homo-
geneous and isotropic spacetime, described by the con-
formal FRW line element

ds2 = a2(τ)(−dτ2 + dx2 + dy2 + dz2). (7)
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Here a(τ) is the scale factor, determining the spacetime
expansion rate, while τ is the conformal time, related to
the cosmological time t by τ =

∫
a−1(t)dt. Given the

high symmetry of such a spacetime, the torsion tensor
has to satisfy certain constraints. We follow the ansatz
of [32] and assume that the only non-zero components of
the torsion tensor are1

Tαµν = f(τ)εαµν , Tαµ0 = h(τ)δαµ , (8)

where f(τ) and h(τ) are arbitrary functions of the con-
formal time, while εαµν and δαµ are the three-dimensional
Levi-Civita and Kronecker symbols, respectively. Using
the definition (4), from (8) we obtain

Kαµν = f(τ)εαµν , K0µν = −Kµ0ν = 2h(τ)gµν . (9)

This ansatz is valid for any gravity theory in a RC space-
time, if one applies the cosmological principle to the tor-
sion tensor. In doing this, we drop any assumptions
about the source of torsion.

In the next sections we describe the coupling of Dirac
and KG field to torsion and discuss entanglement in both
cases.

III. DIRAC EQUATION IN PRESENCE OF
TORSION

The Dirac Lagrangian in a RC spacetime can be writ-
ten as

LD = −1

2

[
ψ̄γ̃µDµψ − (Dµψ̄)γ̃µψ

]
−mψ̄ψ, (10)

where the covariant derivatives of spinors ψ and their
complex conjugates ψ̄ are defined as [32, 33]

Dµψ = D̃µψ −
1

4
Kαβµγ̃

αγ̃βψ , (11)

Dµψ̄ = D̃µψ̄ +
1

4
Kαβµψ̄γ̃

αγ̃β . (12)

Here Kαβµ is the contorsion tensor in the fully covariant

form and D̃µ is the covariant derivative of a spinor in a
torsionless spacetime. Choosing the FRW metric from
(7) and introducing the tetrad field2

eµi =
1

a(τ)
δµi , (13)

we have that [36]

D̃µψ =

(
∂µ +

1

4

ȧ

a
[γµ, γ

0]

)
ψ, (14)

1 We are assuming that torsion is invariant under conformal trans-
formations. For an introduction to conformal properties of tor-
sion see, for example, [34].

2 A tetrad is needed when dealing with spinors in a curved space-
time. See, for example, [35].

where the dependence of the scale factor a on τ is under-
stood from now on. Here γµ are the flat gamma matrices,
chosen according to the notation of [37]. The curved
gamma matrices are defined as γ̃µ := eµi γ

i = a−1γi.
Moreover, in a FRW spacetime the torsion tensor as-
sumes the form (8).

Accordingly, from the Lagrangian (10) we obtain the
Dirac equation in a FRW spacetime with torsion [32][

γµ

a

(
∂µ +

1

4

ȧ

a
[γµ, γ

0]

)
+m

]
ψ = −3i

2
f(τ)aγ0γ5ψ.

(15)
Using the ansatz [31]

ψ = a−3/2(γν∂ν −M)ϕ (16)

with M = ma, we obtain

(ηµν∂µ∂ν − γ0Ṁ −M2)ϕ = −3i

2
F (τ)γ0γ5(γν∂ν −M)ϕ,

(17)
where F (τ) = f(τ)a2 and ηµν is the Minkowski metric
tensor. Eq. (17) can be solved, in principle, upon spec-
ification of the torsion function f and the scale factor
a.

We assume now an asympotically flat spacetime, with
a scale factor of the form

a(τ) = A+B tanh(ρτ), (18)

widely used for the properties of controlling both the vol-
ume and the expansion of the universe [37]. In fact, here
A and B are parameters controlling the volume of the
universe and ρ the rapidity of expansion. In the asymp-
totic (in and out) regions, Eq. (17) can be solved with
the ansatz

ϕin/out = Nin/oute
−iEin/outτeip·x

(
ud
vd

)
, (19)

where Nin/out is a normalization factor and ud, vd
(d =↑,↓) are two-component spinors, so that

γ0ud = −iud, γ0vd = ivd. (20)

Inserting (19) into (17) we obtain the equation

(E2
in/out − |p|

2 −M2
in/out)

(
ud
vd

)
=

3

2
Fin/out

(
σ · p −Ein/out +Min/out

−Ein/out −Min/out σ · p

)(
ud
vd

)
,

(21)

where σ = (σ1, σ2, σ3) is the set of Pauli matrices and

Min/out = ma(τ → −/+∞) , (22)

Fin/out = f(τ → −/+∞)a2(τ → −/+∞) . (23)

From Eq. (21) we can derive the spinor solution with
positive energy, that is found to be

wd =

(
ud

[(E2
in/out−|p|

2−M2
in/out)− 3

2Fin/out(σ·p)]
3
2Fin/out(−Ein/out+Min/out)

ud

)
(24)
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and similarly for the solution with negative energy, with
the substitution pµ → −pµ. Accordingly, the complete
positive-energy solution of the Dirac equation (17) in the
asymptotic regions can be written as

Uin/out(x,p, d, τ) = Nin/out(γ
ν∂ν−M)e−iEin/outτeip·xwd.

(25)
Imposing the normalization as in [30], namely ŪU =
iU†γ0U = δd,d′ , one finds

N =
3
2F (E −M)

(E2 −M − |p|2)

√(
3
2F
)2

+ 3F |p|+ |p|2 − (E −M)2
,

(26)
where the subscripts in/out have been omitted for
brevity.

The only missing element is now the energy correction
due to the presence of torsion. We write the total energy
as

Ein/out = E0 + x =
√
|p|2 +Min/out + x (27)

where E0 is the energy when torsion is not present and x
is the correction due to the torsion contribution. Insert-
ing (27) into (21) and computing the determinant of the
corresponding matrix, one finds

E± =

√√√√
|p|2 +M2 +

(
3
2F
)2 ±√( 32F )4 + 8|p2|

(
3
2F
)2

2
,

(28)
where again we have omitted the subscript in/out to sim-
plify the notation. Since we expect that energy correc-
tions due to torsion are typically small, the expression
(28) can be simplified to

E± = E0 +

(
3
2F
)2 ±√( 32F )4 + 8|p2|

(
3
2F
)2

4E0
. (29)

Clearly, for anti-particles the ansatz would be Ein/out =
−E0+x and so one finds the opposite of Eq. (29). More-
over, if we assume a positive torsion field, the solution
E+ should be excluded, in order to assure that (24) is a
positive-energy spinor. Analogously, if we assume a neg-
ative torsion field, we should exclude E− for the same
reason.

A. Particle creation and entanglement

To study entanglement for Dirac field in a FRW space-
time with torsion, we should be able to compute the Bo-
golyubov coefficients that relates the in and out regions
[30, 31, 37]. However, this cannot be done analytically,
since the Dirac equation (15) can be solved only in the
two asymptotic regions separately.

In order to qualitatively understand how entanglement
is affected by torsion, we can imagine that the torsion

field f(τ) is not involved in the dynamics of Dirac field,
i.e., it becomes negligible during the expansion of the uni-
verse. This assumption can be justified if we recall that
torsion is typically relevant only when high mass densi-
ties are present [38], as happened in the early universe.
Accordingly, a suitable form for torsion function might
be

F (τ) = F0 a
−n, n ∈ N (30)

and so

f(τ) = f0 a
−k, k ∈ N, k ≥ 3. (31)

The constant f0 should assume values much smaller than
the mass m (natural units). Moreover, we assume charge
and angular momentum conservation, as in [31]. With
this assumption, the Bogolyubov transformations that
relate the in and out creation and destruction operators
can be written as [31]

ain(p, d) = A∗(p)aout(p, d) + β∗d,−d(p)b†out(p,−d)

b†in(−p, d) = −β−d,d(p)aout(p,−d) +A(p)b†out(−p, d)
(32)

where p ≡ |p|. Here ain, bin and aout, bout are the anni-
hilation operators of particles and anti-particles in the
in and out regions, respectively. The coefficient A(p)
becomes [37]

A(p) =

√
Min

Mout

Ein

Eout

Nin

Nout
A(p) (33)

and it can be considered real, without loss of generality
[31]. Moreover, from the algebra of fermionic operators
it turns out that |A(p)|2 + |βd,−d(p)|2 = 1.

If the torsion term is negligible during the expansion,
the coefficient A(p) can be determined resorting to Hy-
pergeometric functions [37, 39]. One thus gets

A(p) =
Γ(1− (i/ρ)Ein)Γ(−(i/ρ)Eout)

Γ(1− (i/ρ)E+ − imB/ρ)Γ(−(i/ρ)E+ + imB/ρ)
,

(34)
where Γ(x) is the usual gamma function and

E± ≡
1

2
(Eout ± Ein). (35)

Inverting Eq. (32), we can compute the number n of
particles per mode, created due to the universe expansion
[31]

np(p, ↑) = 〈0in|a†out(p, ↑)aout(p, ↑)|0in〉 = |β↓↑|2, (36)

np(p, ↓) = 〈0in|a†out(p, ↓)aout(p, ↓)|0in〉 = |β↑↓|2, (37)

and analogously for anti-particles. The unitary operator
acting on the Fock space and representing the transfor-
mation (32) has been derived in [31] and so, applying it
to the out vacuum state, we get
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|0p; 0−p〉in = A2

(
|0p; 0−p〉out −

β∗↑↓
A
|↑p; ↓−p〉out −

β∗↓↑
A
|↓p; ↑−p〉out +

β∗↑↓β
∗
↓↑

A2
|↑↓p; ↑↓−p〉out

)
. (38)

The particle-antiparticle density operator correspond-
ing to Eq. (38) in the out region will be

ρ
(out)
p,−p = |0p; 0−p〉in〈0p; 0−p|, (39)

and taking the partial trace over anti-particles we obtain
the reduced density operator

ρ(out)p =Tr−p(ρ
(out)
p,−p ) = A4|0p〉〈0p|+A2|β↑↓|2|↑p〉〈↑p|

+A2|β↓↑|2|↓p〉〈↓p|+ |β↑↓|2|β↓↑|2|↑↓p〉〈↑↓p|.
(40)

If we assume now that

np(p, ↑) = np(p, ↓) = na(p, ↑) = na(p, ↓) =
n(p)

4
, (41)

we obtain that the coefficients in Eq. (40) solely depend
on n, that is

A2 =
4− n(p)

4
, |β↑↓|2 = |β↓↑|2 =

n(p)

4
. (42)

To evaluate the amount of particle-antiparticle entangle-
ment of Eq. (40), we can use the subsystem entropy [31],
since the state (39) is pure. Accordingly, we can write

S
(
ρ(out)p

)
=− 2

(
4− n

4

)
log2

(
4− n

4

)
− 2

(n
4

)
log2

(n
4

)
, (43)

where the dependence of n on the momentum p is under-
stood.

Plotting the entropy S as p varies, we see that torsion
is expected to increase the amount of entanglement for
Dirac field. This is true in particular for small values of
the momentum p.

When the mass m increases, the corrections to S due
to torsion are almost indistinguishable, as can be seen
from Fig. 2. This happens because in this case the en-
ergy corrections due to torsion becomes even smaller with
respect to the energy without torsion E0.

IV. KG EQUATION IN PRESENCE OF
TORSION

In a curved spacetime, described by the metric gµν ,
the Lagrangian leading to KG equation can be written
as [37]

LKG = −1

2
gµν∂µφ ∂νφ−

1

2
(m2 + ξR)φ2. (44)

FIG. 1: Entanglement entropy for Dirac field in presence of
torsion. The values of the parameters are: m = 0.01, A = 3,
B = 2, ρ = 1 and k = 6.

FIG. 2: Entanglement entropy when both the field parameters
m and |p| = p are varied. The other parameters are: f0 =
10−6, A = 2, B = 3, ρ = 1 and k = 6.

Here m is the mass of the bosonic field φ, while the term
ξRφ2 describes the coupling of the field to the curvature
of spacetime. Two values of ξ are of particular inter-
est: ξ = 0 (minimal coupling) and ξ = 1/6 (conformal
coupling).

The Lagrangian (44) leads to the KG equation

1√
−g

∂µ
(√
−g gµν∂νφ

)
−
(
m2 + ξR

)
φ = 0. (45)
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As expected, torsion cannot be minimally coupled to KG
field, since the covariant derivatives of general relativity
reduces to partial derivatives in the scalar case. However,
torsion appears implicitly in the Ricci-Cartan scalar cur-
vature R.

Specializing now to the case of our conformally flat
metric (7), we obtain

1

a2
�φ− 2ȧ

a3
φ̇−

(
m2 + ξR

)
φ = 0, (46)

where � is the usual D’Alembertian operator. If torsion
is present, in the form described by Eq. (8), we can use
Eq. (3) to obtain the scalar curvature in FRW spacetime
with torsion,

R = 6

[
ä

a3
− f2(τ)

a6
− 2ḣ(τ)

a2
− 4ȧ

a3
h(τ) +

4h2(τ)

a2

]
. (47)

Assuming now that conformal coupling holds (ξ = 1/6),

Eq. (46) becomes

1

a2
�φ− 2ȧ

a3
φ̇−

[
m2 +

ä

a3
− f2(τ)

a6
− 2ḣ(τ)

a2

−4ȧ

a3
h(τ) +

4h2(τ)

a2

]
φ = 0. (48)

This equation may be further simplified by making the
substitution φ→ χ = aφ, to give

�χ =

[
a2m2− f

2(τ)

a4
−2ḣ(τ)− 4ȧ

a
h(τ)+4h2(τ)

]
χ. (49)

The general solution of Eq. (49) can be written in the
form [37]

χp(x, τ) = eip·xχp(τ), (50)

where χp(τ) satisfies the following differential equation

χ̈p(τ) +

[
|p|2 +m2a2 − f2(τ)

a4
− 2ḣ(τ)− 4ȧ

a
h(τ) + 4h2(τ)

]
χp(τ) = 0. (51)

This equation can be solved exactly in some particular
cases. If we assume that the scale factor is (18), as in the
Dirac case, a solution can be found if we assume

f(τ) = f0a
3(τ) h(τ) = h0a(τ), (52)

with f0, h0 constants. In particular, we are interested in
the asymptotic solutions χin

p , χout
p , that can be written

as

χin
p (τ) = exp

{
−i
[
E+τ +

1

ρ
E− ln(2 cosh(ρτ)

]}
F2 1

(
1 +

i

ρ
E− −

6h0B

ρ
,
i

ρ
E− +

6h0B

ρ
; 1− i

ρ
Ein;

1 + tanh(ρτ)

2

)
, (53)

χout
p (τ) = exp

{
−i
[
E+τ +

1

ρ
E− ln(2 cosh(ρτ)

]}
F2 1

(
1 +

i

ρ
E− −

6h0B

ρ
,
i

ρ
E− +

6h0B

ρ
; 1 +

i

ρ
Eout;

1− tanh(ρτ)

2

)
,

(54)

where F2 1 is the Hypergeometric function of second kind
and we have introduced

Ein =
[
|p|2 + (m2 − f20 + 4h20)a2(τ → −∞)

]1/2
, (55)

Eout =
[
|p|2 + (m2 − f20 + 4h20)a2(τ → +∞)

]1/2
. (56)

The quantities E± are defined as in Eq. (35).

A. Particle creation and entanglement

It has already been shown that a dynamical spacetime
generates entanglement between particle (p) and antipar-
ticle (−p) modes of a KG field [40]. Here we revisit
the mechanism that leads to entanglement, assuming the
presence of torsion.

Following the standard quantization procedure, we as-

sociate to each mode χ
in/out
p (x, τ) and to its complex con-

jugate χ
in/out∗
p (x, τ) annihilation and creation operators
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ain/out(p), a†in/out(p). These operators satisfies equal-

time commutation relations [40, 41] and the two sets of
modes define two representations of the scalar field [37]

χ(x, τ) =

∫
d3p

(2π)3
1

[2Ein]1/2

[χin
p (x, τ)ain(p) + χin∗

p (x, τ)a†in(p)]

=

∫
d3p

(2π)3
1

[2Eout]1/2

[χout
p (x, τ)aout(p) + χout∗

p (x, τ)a†out(p)].

(57)

Expanding now one mode in terms of the other

χin
k (x, τ) = α(p)χout

p (x, τ) + β(p)χout∗
−p (x, τ) , (58)

and inserting this expression into Eq. (57), we obtain a
map between in and out operators:

aout(p) =

(
Eout
Ein

)1/2

[α(p)ain(p) + β∗(p)a†in(−p)]. (59)

The coefficients α(p), β(p) are the Bogolyubov coeffi-
cients for this transformation. From the commutation
relations for bosonic operators, we have [37]

|α(p)|2 − |β(p)|2 =
Ein
Eout

. (60)

Recalling the asymptotic solutions (53) and (54), the Bo-
golyubov coefficients α(p) and β(p) follow from the linear
transformation properties of Hypergeometric functions
[37]. We have

α(p) =
Γ(1− (i/ρ)Ein)Γ(−(i/ρ)Eout)

Γ(1− (i/ρ)E+ − 6hB/ρ)Γ(−(i/ρ)E+ + 6hB/ρ)
,

(61)

β(p) =
Γ(1− (i/ρ)Ein)Γ((i/ρ)Eout)

Γ(1 + (i/ρ)E− + 6hB/ρ)Γ((i/ρ)E− − 6hB/ρ)
.

Now, let us suppose that the KG field is in the vac-
uum state of the in modes, |0〉in, and we want to eval-
uate the expectation value of the particle number op-
erator for the out modes. We simply have to insert
Eq. (59) and its complex conjugate into the expression

in〈0|a†out(p)aout(p)|0〉in, finding

in〈0|a†out(p)aout(p)|0〉in = |β(p)|2. (62)

Thus, the vacuum in state is not empty in the out re-
gion and |β(p)|2 is interpreted as the number of detected
quanta in the mode p.

To discuss entanglement, we write the in vacuum as a
Schmidt decomposition of out states

|0p; 0−p〉in =

∞∑
n=0

cn|np;n−p〉out, (63)

where the Schmidt coefficients are [40]

cn =

(
β∗(p)

α∗(p)

)n
c0, (64)

with

c0 =

√
1−

∣∣∣∣β∗(p)α∗(p)

∣∣∣∣2. (65)

From the state (63) we can write the bipartite density
matrix

ρ
(out)
p,−p = |0p; 0−p〉in〈0p; 0−p|. (66)

Since the Schmidt coefficients (64) are non-zero, it follows
that the in vacuum is entangled from the point of view
of an out observer. As for the Dirac case, the amount of
particle-antiparticle entanglement is quantified consider-
ing the reduced density matrix

ρ(out)p = Tr−p(ρ
(out)
p,−p ) =

∞∑
m=0

out〈m−p|ρ(out)p,−p |m−p〉out.

(67)
Accordingly, the Von Neumann entropy of this state
takes the form

S(ρ(out)p ) = −Tr
(
ρ(out)p log2 ρ

(out)
p

)
= log2

γγ/(γ−1)

1− γ
, (68)

where [40]

γ =

∣∣∣∣β(p)

α(p)

∣∣∣∣2 =
sinh2(πE−/ρ)

sinh2(πE+/ρ)
. (69)

In Figs. 3 and 4 we show how KG entanglement is af-
fected by the presence of the parameters f0 and h0. In
particular, if h0 is non-zero, the amount of entanglement
is increased, while a non-zero f0 modifies the mode de-
pendence of S.

V. DISCUSSION ON PHYSICAL
CONSEQUENCES RELATED TO TORSION

In the case of Dirac field, the entanglement entropy S is
upper bounded and no divergences occur. More precisely,
S is bounded by S < log2N , where N is the Hilbert space
dimension of the partial state (reduced density operator).
In our picture, the hypothesis of charge and angular mo-
mentum conservation [40, 41] still holds, so from Eq. (40)
we see that N = 4. Accordingly, the maximum value for
the entropy is S = 2. In presence of torsion, we see
that the entropy provides two maxima: the first is ab-
solute and corresponds to p = 0, whereas the second is
relative and lies around p ' 2m. The two maxima are
portrayed in Figs. 1 and 2. The relative maximum can be
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FIG. 3: Entanglement entropy for KG particles for different
values of the torsion parameter f0. The other parameters are:
m = 0.01, h0 = 10−6, A = 3, B = 2 and ρ = 1.

FIG. 4: Entanglement entropy for KG particles for different
values of the torsion parameter h0. The other parameters are:
m = 0.01, f0 = 10−6, A = 3, B = 2 and ρ = 1.

interpreted in view of the Pauli exclusion principle. In-
deed, it is not possible to condensate fermions as p → 0
and consequently there would exist a p 6= 0 at which
the maximum occurs. The absolute maximum could be
interpreted in view of the torsion field, adopted in Eq.
(31). The function f(τ) is constructed to guarantee the
cosmological principle to hold. Even though appealing,
this choice disagrees with the case of particles with half-
integer spin that, by virtue of the Pauli exclusion prin-
ciple, cannot occupy the same quantum state within a
quantum system simultaneously. Thus, at p → 0 the
particle contribution becomes negligibly small, albeit the
torsion source due to f0 does not, by construction. This
implies that at small p the main contribution is mainly
due to torsion, interpreting such a result as direct conse-
quence of the underlying torsion field. The case without
torsion stresses our interpretation. In fact, we here have
no torsion domination at p → 0 and so S goes to zero
as expected by construction. We believe this apparent
issue can be healed if the torsion field is chosen to fulfill

simultaneously the Pauli exclusion principle and the cos-
mological principle, extending our treatment by means
of a refined one. We will face our hypothesis in future
works, proposing alternative versions of the torsion field.

In our scenario, since m 6= 0, the fact that the relative
maximum is around p ' 2m is in agreement with our pre-
vious discussion because the relative maximum occurs in
a region that is far from p → 0. In the region far from
p = 0, the Dirac field seems to resemble the KG frame-
work. However, in the former case we have an absolute
maximum that always occurs at p = 0 and the similar-
ity between the two cases, Dirac and KG curves, is only
apparent. Indeed, we believe this apparent similitude is
a consequence of the employed torsion field whose func-
tional form is simplified to guarantee the cosmological
principle holds. Moreover, again this can be interpreted
by the fact that for bosons we do not have any Pauli ex-
clusion principle and at p = 0 bosons can condensate in
the fundamental state to provide the maximum plotted
in Figs. 3 - 4.

In the KG field, we first remark that the entanglement
entropy is not necessarily bounded, due to the infinite di-
mension corresponding to the density operator (67). At
p = 0, the effects due to the torsion field are inferred
from a non-minimal coupling between the field and tor-
sion itself. Consequently torsion does not dominate in
any regions of p space, differently from the Dirac case.

Comparing the cases with and without torsion suggests
that the shapes of each curve continue being similar, al-
beit slightly different. This is direct consequence of the
non-minimal coupling above discussed. The most impor-
tant fact is that for small values of f0, it seems that S
weakly decreases. The opposite happens for h0, i.e. for
small values of h0 the entropy appears larger than the
case without torsion. These two evidences can be inter-
preted in view of Eqs. (52). Indeed, by construction f(τ)
and h(τ) scale as the volume and radius of the universe,

respectively. Consequently, from Eq. (47) the term ∝ f2

a6

is a constant throughout the universe evolution, indicat-
ing that the curvature is weakly influenced by f0. This
implies that the entropy should be smaller for f0 6= 0
than the case without torsion. On the other hand, the
same does not happen for h since it couples to the term
∝ a−2 but also to ∝ ȧ. Moreover, the kinematic term ḣ
is also different from zero, involving the fact that as the
universe radius increases, then its contribution increases
as well. This acts on the entropy that is larger than the
case without torsion, for h0 6= 0.

In all the aforementioned cases, we underline our find-
ings are in line with previous results found in the lit-
erature, certifying that the role of torsion modifies the
entanglement measure depending on how it couples with
the universe expansion history.
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VI. FINAL REMARKS

In this paper, we investigated particle production
and entanglement in the framework of EC theory with
fermionic and bosonic fields. Thus, we considered the
Dirac and KG equations, solving them when particle spin
is not negligible. In the framework of FRW universe, we
took the most general form for the torsion source, whose
constraints are imposed in agreement with the cosmolog-
ical principle.

We showed how torsion affects entanglement in the
cases that enabled us to get analytical solutions in the KG
field. Even though we demonstrated no analytical entan-
glement entropy could be obtained for fermions, assum-
ing torsion to be small enough we got approximate solu-
tions, extending the results when torsion is zero. Accord-
ing to our findings, we showed which properties should
be fulfilled by torsion field to get entanglement increase
throughout universe’s expansion history. In particular, a
positive torsion field is required to increase the amount
of entanglement for fermions. In this case we also noticed
that the mode dependence of the entanglement entropy is
drastically modified for small values of the particle mo-
mentum. For the KG field, the amount and mode de-
pendence of entanglement is slightly modified by the two
external functions describing torsion. We interpreted the
maxima of entanglement for both Dirac and KG fields. In
particular, we showed that the Pauli principle is respon-
sible for the relative maximum in the Dirac case, while
the absolute maxima for Dirac and KG are direct conse-
quence of the torsion field, involved in our treatment.

Future works will be devoted to understand how one
can relate torsion to dark constituents. Moreover, it
would be intriguing to compare the various approaches
to torsion sources and to apply them to our quantum
scenario, checking whether entanglement is modified ac-
cordingly. Another interesting avenue of research is re-
lated to entanglement extraction from the field modes,
using local detector couplings. In particular, it has been
shown that modulating a detector’s resonance frequency
and interaction strength can be useful to optimize the
extracted entanglement [42]. In this direction, it would
be important to understand what time dependence of in-
teraction would optimize the extraction of information
about cosmological parameters and spacetime structure,
using this method. This may help to further elucidate the
relevance of torsion in the universe history. Finally, fu-
ture developments are expected from quantum emulation
of the universe expansion by means of analogue experi-
ments. In particular, using ion traps it has been shown
that ions manifest actual phonon production, if the trap
is expanded over a finite time [43]. Moreover, Bose-
Einstein condensate models have been proposed [44] to
simulate complex inflationary scenarios. There, torsion
is expected to play a relevant role and so developing a re-
liable, robust, and highly tunable laboratory testbed for
analogue inflation would be of great experimental value
to discuss the role of torsion in cosmology.
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