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Abstract:We consider Hamiltonian functions of the classical type, namely, even and convex with respect to
the generalized momenta. A brake orbit is a periodic solution of Hamilton’s equations such that the
generalized momenta are zero on two different points. Under mild assumptions, this paper reduces the
multiplicity problem of the brake orbits for a Hamiltonian function of the classical type to the multiplicity
problem of orthogonal geodesic chords in a concave Finslerian manifold with boundary. This paper will be
used for a generalization of a Seifert’s conjecture about the multiplicity of brake orbits to Hamiltonian
functions of the classical type.

Keywords: Hamiltonian systems, brake orbits, Finsler metric, variational methods

MSC 2020: 70H12, 70G75, 70H05, 58E10, 53B40

1 Introduction

Let � �→H : n2 be an autonomous Hamiltonian function of class C2. A curve �( ) [ ] →q p T, : 0, n2 is a
solution of Hamilton’s equations if

( ) ( )=

∂

∂

= −

∂

∂

q H
p

q p p H
q

q p˙ , , and ˙ , . (1.1)

Since the Hamiltonian is autonomous, the conservation law of the energy holds. More formally, if
�( ) [ ] →q p T, : 0, n2 is a solution of Hamilton’s equations, then there exists a real number E, called energy,

such that

( ( ) ( )) [ ]= ∀ ∈H q t p t E t T, , 0, .

Let � �→K : n2 and � �→V : n be two functions such that the Hamiltonian can be written as follows:

( ) ( ) ( )= +H q p K q p V q, , ,

and � �( )⋅ →K q, : n is even and strictly positive unless =p 0. Then, whenever the set �{ ( ) }∈ <q V q E:n

is non-empty, it can be thought as a potential well.
This paper concerns the multiplicity of the brake orbits in a bounded potential well. Roughly speaking,

a brake orbit is a periodic solution of Hamilton’s equations with energy E that oscillates back and forth
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between two points of the boundary of the potential well (Figure 1). When the Hamiltonian is natural,
hence, given by

( ) ( ) ( )∑= +

=

H q p a q p p V q, 1
2

,
i j

n
ij

i j
, 1

where ( ( ))a qij is a positive definite quadratic form on �n, and the potential well is homeomorphic to the
n-dimensional disk in�n, Seifert conjectured the existence of at least n brake orbits (cf. [1]). This conjecture
has motivated an extensive literature on the subject (e.g., [2–10]), and it has been recently proved in [11],
exploiting some partial results given by the authors in different previous papers (cf. [12–17]). This work
points towards a generalization of Seifert’s conjecture, looking for the multiplicity of brake orbits when the
Hamiltonian function is of the classical type (see Definition 1.1). Indeed, the present paper includes some
results that will be exploited in the future to generalize the Seifert’s conjecture for Hamiltonian systems of
the classical type. In particular, we show that the brake orbits in a bounded potential well for a Hamiltonian
function of the classical type have a one–one correspondence with the orthogonal geodesic chords in a
strictly concave Finsler manifold with boundary (see Theorem 1.9). Different generalizations of Seifert’s
conjecture have been analyzed in the last decades. The papers with the most similar setting to the present
one are [18] and [19], where the existence of one brake orbit is proved for Finsler mechanical systems and
Hamiltonian systems of the classical type, respectively.

Before formally stating our main result, we need the following definitions (cf. [19]).

Definition 1.1. A Hamiltonian function ( )H q p, on � n2 is of the classical type if, for each �∈q n
0 , the

function ( )↦p H q p,0 is even and ( )( )∂ /∂H p q p,2 2
0 is strictly positive definite for all p, namely, there exists

a continuous function � �→ν : n such that, for all �∈q n, ( ) >ν q 0 and

�( )[ ] ( )
∂

∂

≥ ‖ ‖ ∀ ∈

H
p

q p ξ ξ ν q ξ p ξ, , , , .n
2

2
2 (1.2)

Remark 1.2. If H is a Hamiltonian of the classical type, by (1.2), the inverse of ( )( )∂ /∂ ⋅H p q, is well defined
for all ∈q D . Hence, with a slight abuse of notation, we will say that a curve [ ] →q T D: 0, is a solution of
the Hamilton’s equations if �( ) [ ] →q p T, : 0, n2 is a solution of (1.1), where p is implicitly defined by

( ) ( ( ) ( )) [ ]=

∂

∂

∀ ∈q t H
p

q t p t t T˙ , , 0, .

Definition 1.3. Let � �→H : n2 be a Hamiltonian function of the classical type. We define the potential
energy function � �→V : n as follows:

�( ) ( )= ∀ ∈V q H q q, 0 , ,n

Figure 1: Projection on the configuration space of a break-orbit. The periodic solutionq t( ) oscillates back and forth between the
two points q q T0 ,( ) ( ) that lies on the boundary of the potential well D q V q E:2�{ ( ) }= ∈ < .
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and the kinetic energy function � �→K : n2 as

( ) ( ) ( )= −K q p H q p V q, , .

By Definitions 1.1 and 1.3, a Hamiltonian of the classical type can be written as follows:

( ) ( ) ( )= +H q p K q p V q, , ,

where ( )K q p, is even with respect to p, strictly positive unless =p 0 and, for each �∈q n,

�( )[ ] ( )
∂

∂

≥ ‖ ‖ ∀ ∈

K
p

q p ξ ξ ν q ξ p ξ, , , , .n
2

2
2

Definition 1.4. Let H be a Hamiltonian function of the classical type. A potential well for H is an open set
�⊂D n with boundary ∂D of class C2 such that, for some real number E, the followings hold:

– ( ) <V q E on D;
– ( ) =V q E on ∂D;
– ( )∇ ≠V q 0, for all ∈ ∂q D.

Definition 1.5. Let �⊂D n be a potential well for a Hamiltonian H , with ( ) =V q E on ∂D. A solution
( ( ) ( ))q t p t, of Hamilton’s equations for H is called brake orbit if it has energy E, and there exists >T 0
such that ( ) ∈q t D for < <t T0 , while ( ) ( ) ∈ ∂q q T D0 , .

Following the notation of Remark 1.2, we say that [ ] →q T D: 0, is a brake orbit if it is a solution of (1.1)
with energy E, (] [) ⊂q T D0, and ( ) ( ) ∈ ∂q q T D0 , .

Remark 1.6. By the conservation law of the energy, if ( ( ) ( ))q t p t, is a brake orbit, then ( )p 0 and ( )p T must
be zero. Since H is of the classical type (hence, even in p), the solution can be continued so that it will be
periodic. In other words, ( )q t oscillates back and forth along a curve in D with endpoints in ∂D.

Let us introduce the following notation. Let �( )F, be a Finsler manifold of class C3 and let �⊂Ω be
an open subset with boundary ∂ ∈ CΩ 2 (we refer to [20,21] for a background material about Finsler
geometry).

Definition 1.7. A curve [ ] →γ a b: , Ω is a Finsler geodesic chord if
– It is a geodesic with respect to the Finsler metric F ;
– ( ) ( ) ∈ ∂γ a γ b, Ω and (] [) ⊂γ a b, Ω.

If ( )γ a˙ and ( )γ b˙ are orthogonal, with respect to the Finsler metric F , to ( )∂T Ωγ a and ( )∂T Ωγ b , respectively,
namely,

( ( ) ( ))[ ] ( ( ) ( ) )
∂

∂

≔ + =

=

F
v

γ t γ t ξ
s

F γ t γ t sξ, ˙ d
d

, ˙ 0,
s

2
2

0
(1.3)

for all ( )∈ ∂ξ T Ωγ t , with =t a b, , then γ is called the orthogonal Finsler geodesic chord.

This paper reduces the multiplicity problem of the brake orbits in a bounded potential well of a
Hamiltonian of the classical type to the related problem of orthogonal geodesic chords in a Finslerian
manifold with smooth boundary.

The last ingredient to state our main theorem is the notion of strong concavity of a Finsler manifold with
boundary. We say that Ω is strongly concave with respect to the Finsler metric F if every geodesic, which is
tangent to ∂Ω on one point q, lies inside Ω on a neighborhood of q. Thus, differently from the notion of
concavity (cf. [22] for the dual notion of convexity), the strong concavity allows the geodesics tangent to the
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boundary to locally touch the boundary only in one point. We formally define the strong concavity as
follows.

Definition 1.8. Let �⊂Ω be a manifold with smooth (C2) boundary and let �� →ψ : be a function of
class C2 such that ( ) ] [⊂ ∞ψ Ω 0, , ( )∂ =ψ Ω 0, and ( ) ≠ψ qd 0 for all ∈ ∂q Ω, where ψd denotes the differ-
ential of ψ. Then, Ω is strongly concave if and only if for all ∈ ∂q Ω we have

( )[ ] ( )( )≔ ∘ > ∀ ∈ ∂ ≠H q v v v
s

ψ γ v T v, , d
d

0 0, Ω, 0,ψ q
2

2
(1.4)

where �( )− →γ ε ε: , is the unique geodesic such that ( ) =γ q0 and ( ) =γ v˙ 0 .

Now we are ready to state our main theorem.

Theorem 1.9. Let �⊂D n be a potential well for a Hamiltonian H of the classical type. If D is compact, there
exists an open set ⊂ DΩ , with a Finsler metric F on Ω, such that the following statements hold:
– ⊂ DΩ ;
– ∂Ω is of class C2;
– Ω is homeomorphic to D ;
– Ω is strongly concave with respect to the Finsler metric F ;
– If [ ] →γ : 0, 1 Ω is an orthogonal Finsler geodesic chord, then there exists [ ] [ ]⊃α β, 0, 1 and an unique

continuous extension [ ] →γ α β Dˆ : , of γ such that
– γ̂ is a geodesic in ] [α β, ;
– Up to a time reparametrization, [ ] →γ α β Dˆ : , is a brake orbit, namely, there exists a diffeomorphism

[ ] [ ]→σ T α β: 0, , such that [ ]= ∘ →q γ σ T D: 0, is a brake orbit.

Theorem 1.9 reduces the study of multiple brake orbits of a Hamiltonian of the classical type to the
study of multiple orthogonal geodesic chords in a strongly concave Finsler manifold with boundary. Given a
bounded potential well D, we will construct a Finsler manifold ( )FΩ, , with ⊂ DΩ , such that there exists a
bijection between the brake orbits in D and the orthogonal geodesic chords in ( )FΩ, . This result generalizes
the one presented in [17] for natural Hamiltonian functions, where the Finsler metric is actually a Rieman-
nian one. Some results about the multiplicity of orthogonal geodesic chords in the case of convex Finsler
manifolds with boundary and some generalizations can be found, for instance, in [23–25].

This paper is organized as follows. Some standard notations are presented at the end of this introduc-
tion. In Section 2, we present and study a Jacobi-Finsler metric F defined on the potential well such that its
geodesics are, up to a time reparametrization, the solution of the Hamiltonian system. However, F cannot
be defined on the boundary ∂D, since it degenerates to the zero function. Therefore, in Section 3, we analyze
the behavior of the solutions of Hamilton equations near the boundary. Following a variational approach,
we see the geodesics as critical points of the energy functional � of the Jacobi-Finsler metric. Through the
energy functional, in Section 4, we define the function →ψ D R: , which is the infimum of � among all
the geodesics that connect a point to the boundary of the potential well. Hence, ( ) →ψ y 0 as y approaches
the boundary ∂D, and we also prove that, if y is sufficiently near to the boundary, there exists a unique
geodesic γy connecting y and ∂D such that �( ) ( )=ψ y γy . In Section 5, we prove that ψ is of class C2 near the

boundary ∂D and that there exists a >δ̂ 0 such that ([ [)= ∞
−ψ δΩ ˆ,1 is a strongly concave set with respect to

F . In Section 6, we finally give the proof of Theorem 1.9 exploiting all the previous results. In this proof, the
main idea is to connect an orthogonal geodesic Finsler chord in Ω with the unique geodesic that realizes

�( ) ( )=ψ y y to obtain a brake-orbit, up to a time reparametrization (Figure 2).
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1.1 Notation

If f is a real-valued function defined on � n2 , then ∂ /∂f q and ∂ /∂f p will denote the differentials of f with
respect to q and p, respectively. We denote by ′f the differential of f , hence, ( ) ( )′ = ∂ /∂ ∂ /∂f q p f q f p, , . We
will denote by v the conjugate variable of p via Legendre transform of a function. Hence, ∂ /∂f v will denote
the partial derivative with respect to v. We denote by � �⟨⋅ ⋅⟩ →, : n2 the Euclidean scalar product and

� �‖⋅‖ →: n2 the Euclidean norm. We denote by �( )∈
×

J M n n2 2 the symplectic matrix

⎜ ⎟
⎛

⎝

⎞

⎠
=

−

×

×

J I
I
0

0 .n n

n n

Let �[ ] →z T: 0, n2 be a curve with ( ) ( ( ) ( ))=z t q t p t, . Using this notation, (1.1) can be written as follows:

( ) ( ( ))= ′z t JH z t˙ .

For every compact interval �⊂I and every �⊂A n, we denote by ( )W I A,1,2 the Sobolev space:

�( ) { ( )}= → ∈W I A γ I A γ γ L I, : : is absolutely continuous and ˙ , .n1,2 2

2 The Jacobi-Finsler metric

Let H be a Hamiltonian of the classical type and �⊂D n be the (open) potential well such that ( ) ≡V q E on
∂D and D is compact. In this section, following the same construction of [19], we endow the potential well
with a Finsler metric whose geodesics are linked to the solution of the Hamiltonian system via time
reparametrization. Let us define

�{( ) ( ) }= ∈ ∈ =q p q D H q p EΣ , : , , .n2

If ( ) ∈q p, Σ0 0 , then ≠p 00 , and this implies that ( )′H q p,0 0 is different from zero. As a consequence, Σ is a
regular level surface for H .

Lemma 2.1. There exists a function � �× →U D: n such that
– U is of class C1;
– U is of class C2 on �( { })×D \ 0n ;
– ( )U q p, is even and homogeneous of degree 2 in p;
– ( )=

−UΣ 11 and Σ is a regular level surface for U .

Figure 2: The setting of Theorem 1.9. The orthogonal Finsler geodesic chord γ inΩ can be extended to γ̂ , which is a brake orbit in
the potential well D, up to a time reparametrization. The extension is obtained through the unique geodesics that realize
ψ γ 0( ( )) and ψ γ 1( ( )).
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Proof. Since H is convex with respect to p, for every ∈q D0 , the set

{ ( ) }=p H q p E: ,0

is a nonempty, convex, compact hypersurface in �n, symmetric about the origin. As a consequence, there
exists a unique function � �→U : n2 , which is homogeneous of degree 2 in p and which is identically 1 on
Σ. Since H is of classC2, so it isU on �( { })×D \ 0n . Moreover, the homogeneity of degree 2 in p implies both
the C1-regularity of U and that ( )′ ≠U q p, 0 for all ( ) ∈q p, Σ. □

Since Σ is a regular level surface for the Hamiltonian functions H andU , we have the following result.

Lemma 2.2. A curve �( ) [ ] → ×q p T D, : 0 : n is a solution of Hamilton’s equations for H if and only if it is a
solution of Hamilton’s equations for U, up to time reparametrization.

Proof. See [19, Lemma 2.1]. □

Remark 2.3. Let �( ) [ ]= →x q p S, : 0, n2 be a solution of Hamilton’s equations with HamiltonianU ; hence,

( ( ))= ′

x
s

JU x sd
d

.

By Lemma 2.2, there exists a function [ ] [ ]→λ T S: 0, 0, such that �[ ]= ∘ →z x λ T: 0, n2 is a solution of
Hamilton’s equations with Hamiltonian H ; hence,

( ( ))= ′

z
t

JH z td
d

.

As a consequence, we obtain

( ( ( ))) ( ( )) ( ) ( ) ( ( )) ( ) ( ( ( )))′ = ′ = = = ′JH x λ t JH z t z
t

t λ
t

t x
s

λ t λ
t

t JU x λ td
d

d
d

d
d

d
d

.

Imposing that λ is an orientation preserving reparametrization, we obtain

( )
( ( )) ( ( ))

( ( ))

( ( ))

( ( ))
=

⟨ ′ ′ ⟩

‖ ′ ‖

=

‖ ′ ‖

‖ ′ ‖

λ
t

t H z t U z t
U z t

H z t
U z t

d
d

, .2

Hence, we have

( )
( ( ))

( ( ))
( ) ( )=

‖ ′ ‖

‖ ′ ‖

=

x
s

s U z t
H z t

z
t

t λ t sd
d

d
d

, with . (2.1)

The inverse function of λ satisfies

( )
( )

( ( ))

( ( ))
=

‖ ′ ‖

‖ ′ ‖

−λ
s

s U x s
H x s

d
d

.
1

Hence, we can obtain the time reparametrization solving the following integral:

( )
( ( ))

( ( ))
∫=

‖ ′ ‖

‖ ′ ‖

t s U x σ
H x σ

σd .
s

0

(2.2)

The following result provides the Finsler metric that we will employ in our study.

Lemma 2.4. Let � �× →G D: n be the Legendre transform of U with respect to p; hence,

�

( ) ( ( ))= ⟨ ⟩ −

∈

G q v v p U q p, sup , , ,
p n
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and define � �� × → ×D D: n n as follows:

� ⎜ ⎟( ) ⎛

⎝
( )⎞

⎠
( )=

∂

∂

=q p q U
p

q p q v, , , , . (2.3)

Then, the function � �× →F D: n , defined as ( )=F G q v, , is a Finsler metric on D. Moreover, a curve

[ ] →q S D: 0, is a Finsler geodesic parametrized by arc length if and only if �( ( ) ( )) ( ( ) ( ))=
−q s p s q s q s, , ˙1 is a

solution of Hamilton’s equations with Hamiltonian U and ( ( ) ( )) ≡U q s p s, 1.

Proof. Since U is convex and homogeneous of degree 2 in p, for every �( ) ∈ ×q v D, n, the function

( )↦ ⟨ ⟩ −p v p U q p, ,

has a unique maximum. Therefore, the function G is well defined, convex, and homogeneous of degree 2 in
v. Moreover, G is of class C2 on � { }×D \ 0n , while it is of class C1 on �×D n. Thus, the function

�× →F D R: n defined as ( ) ( )=F q v G q v, , is a Finsler metric on D. Since

�( ) { }
∂

∂

> ∀ ∈ ∀ ∈

U
p

q p q D p, 0, , \ 0 ,n
2

2

the map ( )( )∂ /∂ ⋅U p q, is invertible; thus, � is a diffeomorphism, and it is homogeneous of degree 1 with
respect to p. The equivalence between the Finsler geodesics parametrized by arc length and the solutions of
(1.1) with energy E is a direct consequence of the Legendre transform (see, for instance, [20, Chapter I,
p. 22]). □

By Lemmas 2.2 and 2.4, if q is a geodesic in D, then � ( )− q q, ˙1 is a solution of Hamilton’s equations with
the original Hamiltonian H , up to a time reparametrization. As a consequence, finding a Finsler geodesic in
D is equivalent to finding a solution of (1.1) in D with energy E. The following result provides the repar-
ametrization that links the geodesics to the solutions of (1.1), combining the time reparametrization (2.2)
with the Legendre transform defined in (2.3). For the sake of presentation, we use the following notation:

�

�
�( )

( ( ))

( ( ))
( ) ( )≔

‖ ′ ‖

‖ ′ ‖

∀ ∈

−

−

ϕ q v U q v
H q v

q v, ,
,

, , Σ .
1

1 (2.4)

Remark 2.5. The function ϕ given by (2.4) is well defined. Indeed, since Σ is compact, ( ) ≠

∂

∂

q 0V
q for all

∈ ∂q D and H is strictly convex with respect to p, there exist two constants h1 and h2 such that

( ) ( )< ≤ ‖ ′ ‖ ≤ ∀ ∈h H q p h q p0 , , , Σ.1 2 (2.5)

Lemma 2.6. Let [ ] →γ D: 0, 1 be a Finsler geodesic such that

( ( ) ( )) [ ]= ∀ ∈G γ s γ s c s, ˙ , 0, 1 ,γ

and let [ ] [ ]→λ T: 0, 0, 1 be the reparametrization such that ∘γ λ is a solution of (1.1) with energy E. Then,
the inverse of λ is given by

( )
⎛

⎝
⎜ ( )

( ) ⎞

⎠
⎟∫=t s c ϕ γ σ γ σ

c
σ, ˙ d .γ

s

γ
0

Proof. If ( ( ) ( )) =G γ s γ s c, ˙ γ for all s, then the reparametrization

[ ] [ ] ( )→ =λ c λ τ τ
c

: 0, 0, 1 ,γ
γ

1 1

is such that the curve [ ]= ∘ →γ γ λ c Dˆ : 0, γ1 is a geodesic parametrized by arc length. By Lemma 2.4, the
curve [ ] →x c D: 0, γ , which is defined as follows:

�( ) ( ( ) ( )) ( ( ) ( ))= =
−x τ q τ p τ γ τ γ τ, ˆ , ˆ̇ ,1
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is a solution of Hamilton’s equations with respect to U . Let [ ] [ ]→λ T c: 0, 0, γ2 be the inverse of

( ( ))

( ( ))
( ( ) ( ))∫ ∫↦

‖ ′ ‖

‖ ′ ‖

=τ U x u
H x u

u ϕ γ u γ u ud ˆ , ˆ̇ d .
τ τ

0 0

With the change of variable = /σ u cγ , [ ]∈σ 0, 1 , we have

( ) ( ( ) ( ))
⎛

⎝
⎜ ( )

( ) ⎞

⎠
⎟∫ ∫= =

−

/ /

λ τ c ϕ γ c σ γ c σ σ c ϕ γ σ γ σ
c

σˆ , ˆ̇ d , ˙ d .γ

τ c

γ γ γ

τ c

γ
2

1

0 0

γ γ

By Remark 2.3, in particular by (2.2), ∘x λ2 is a solution of (1.1). As a consequence, since �−1 is the identity
map with respect to the first variable, the curve [ ]∘ ∘ →γ λ λ T D: 0,1 2 is the reparametrization of γ such
that it is a solution of (1.1) with energy E. Hence, the desired reparametrization [ ] [ ]→λ T: 0, 0, 1 is given
by = ∘λ λ λ1 2 and its inverse [ ] [ ]→t T: 0, 1 0, is given by

( ) ( ( )) ( )
⎛

⎝
⎜ ( )

( ) ⎞

⎠
⎟∫= = =

− − −t s λ λ s λ c s c ϕ γ σ γ σ
c

σ, ˙ d ,γ γ

s

γ
2

1
1

1
2

1

0

and we are done. □

Remark 2.7. When H is a Hamiltonian of natural type, the previous construction leads to the well-known
Maupertuis principle (cf. [17]). Indeed, set

( ) ( ) ( )∑= +

=

H q p a q p p V q, 1
2

,
i j

n
ij

i j
, 1

where ( ( ))a qij is a positive definite quadratic form on �n. Then, using the aforementioned construction,

( )
( ( ))

( )∑=

−
=

U q p
E V q

a q p p, 1
2

,
i j

n
ij

i j
, 1

and its Legendre transform is expressed as follows:

( ) ( ( )) ( )∑= −

=

G q v E V q a q v v, 1
2

,
i j

n

ij
i j

, 1
(2.6)

where ( ( ))a qij is the inverse of ( ( ))a qij . We observe that ( )G q v, degenerates on the boundary ∂D, where, by
continuity, it can be extended to 0. Since

( )
( )

( ) ( )′ =

−

′ ∀ ∈U q p
E V q

H q p q p, 1 , , , Σ,

then

( )

( ) ( )
( )

‖ ′ ‖

‖ ′ ‖

=

−

∀ ∈

U q p
H q p E V q

q p,
,

1 , , Σ.

Using Lemma 2.6, if [ ] →γ D: 0, 1 is a geodesic of constant speed with respect to the Riemannian metric
G , then we can obtain the reparametrization [ ] [ ]→λ T: 0, 0, 1 such that [ ]= ∘ →q γ λ T D: 0, is a

solution of (1.1) for H . Using (2.2), the inverse of λ is given by

( )
( ( ))

∫=

−

t s c
E V γ σ

σ1 d ,γ

s

0

where ( ( ) ( )) ≡G γ s γ s c, ˙y γ.
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3 Jacobi-Finsler metric near the boundary

SinceU andG are not defined on ∂D, the aforementioned construction does not allow to see the brake orbits
in D as Finsler geodesics. In this section, we estimate the behavior ofU near the boundary ∂D, and we will
show that G degenerates on ∂D to the zero function, as it can be seen in (2.6) for the case of natural
Hamiltonian systems. Differently from [19], we are interested in the multiplicity of the brake orbits, not
only in their existence. Hence, in addition to the construction given in [19], we give an upper and a lower
bound for the Finsler metric that depend only on H and the potential well D, and these bounds will be
exploited to obtain the one-one correspondence between the brake orbits and the orthogonal geodesic
chords.

As a preliminary step, we give the following result, which is available up to a modification of
( ) ( ) ( )= +H q p K q p V q, , far away from Σ.

Lemma 3.1. There exist two constants >ν ν, 01 2 such that the followings hold for every ∈q D and �∈p n:

�( )[ ]‖ ‖ ≤

∂

∂

≤ ‖ ‖ ∀ ∈ν ξ K
p

q p ξ ξ ν ξ ξ, , , ;n
1

2
2

2 2
2 (3.1)

( )‖ ‖ ≤

∂

∂

≤ ‖ ‖ν p K
p

q p ν p, ;1 2 (3.2)

( )‖ ‖ ≤ ≤ ‖ ‖ν p K q p ν p1
2

, 1
2

.1
2

2
2 (3.3)

Proof. Since we are interested in the solutions of Hamilton’s equations for H in Σ, which is a bounded set,
we can modify H far away from Σ. Hence, we may assume that H is fiber-wise quadratic for ‖ ‖p sufficiently
large. By (1.2) and the compactness of D , there exist >ν ν, 01 2 such that (3.1) holds. Since ( )( )∂ /∂ =K p q, 0 0
and ( ) =K q, 0 0 for all q, from (3.1), we infer (3.2) and (3.3) by integration. □

Lemma 3.2. Let ν1 and ν2 be the constants defined by Lemma 3.1. Then, the followings hold:

�
( ( ))

( )
( ( ))

( )
−

‖ ‖ ≤ ≤

−

‖ ‖ ∀ ∈ ×

ν
E V q

p U q p ν
E V q

p q p D
2

,
2

, , ,n1 2 2 2 (3.4)

�
( ( ))

( )
( ( ))

( )
−

‖ ‖ ≤ ≤

−

‖ ‖ ∀ ∈ ×

E V q
ν

v G q v E V q
ν

v q v D
2

,
2

, , .n

2

2

1

2 (3.5)

Moreover, there exists a constant >ν 03 such that

( )
( )

( )‖ ′ ‖ ≥

−

∀ ∈U q p ν
E V q

q p, , , Σ.3 (3.6)

Proof. Set � �{ }= ∈ ‖ ‖ =
− θ θ: 1n n1 . We define  � � �× × →

− +H D: n 1 as follows:

( ) ( )= −H q θ ω H q ωθ E, , , .

Since ( ) <H q θ, , 0 0 for all �( ) ∈ ×
−q θ D, n 1, exploiting also the convexity of H , we obtain that for all

�( ) ∈ ×
−q θ D, n 1, there exists an unique >ω 0 such that ( ) =H q θ ω, , 0. As a consequence, the function

� �× →
− +ω D: n 1 such that

 �( ( )) ( )= ∀ ∈ ×
−H q θ ω q θ q θ D, , , 0, , n 1

is well defined. Moreover, by (3.2), we have


( ) ( ) ( )

∂

∂

=

∂

∂

=

∂

∂

≥ >

H
ω

q θ ω H
p

q ωθ θ
ω

K
p

q ωθ ωθ ων, , , , 1 , , 0.1
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So we can apply the implicit function theorem to obtain that the function ω is of class C2 and it satisfies

⎜ ⎟ ⎜ ⎟( ) ⎛

⎝

( ( ) ) ⎞

⎠

( ( )) ⎛

⎝

( ( ) ) ⎞

⎠

( ( ))
∂

∂

= −

∂

∂

∂

∂

= −

∂

∂

∂

∂

− −ω
q

q θ H
p

q ω q θ θ θ H
q

q ω q θ K
p

q ω q θ θ θ H
q

q ω q θ, , , , , , , , , , , .
1 1

(3.7)

By definition of ( )ω q θ, , ( ( ) ) ( )= −K q ω q θ θ E V q, , for all �( ) ∈ ×
−q θ D, n 1. By (3.3), we have

( ) ( ( ) ) ( ) ( )≤ = − ≤ν ω q θ K q ω q θ θ E V q ν ω q θ1
2

, , , 1
2

, ,1
2

2
2

and hence,

�
( ( ))

( )
( ( ))

<

−

≤ ≤

−

∀ ∈ ∀ ∈
−

E V q
ν

ω q θ E V q
ν

q D θ0 2 , 2 , , .n

2

2

1

1 (3.8)

By definition of ( )ω q θ, , we have also

�( ( ) ) = ∀ ∈ ∀ ∈
−U q ω q θ θ q D θ, , 1, , .n 1

Since U is homogeneous of degree 2 in p, for all ∈q D and ≠p 0, we obtain

⎜ ⎟⎜ ⎟( )
( )

⎛

⎝

⎛

⎝

⎞

⎠

⎞

⎠ ( )
=

‖ ‖

/‖ ‖ ‖ ‖ ‖ ‖

=

‖ ‖

/‖ ‖

U q p p
ω q p p

U q ω q p
p

p
p

p
ω q p p

,
,

, ,
,

.
2

2

2

2 (3.9)

Using (3.8) and (3.9), we obtain (3.4). Since the Legendre transform inverts the order relation, (3.4)
implies (3.5).

It remains to prove (3.6). Let us fix >δ 0 and set

{ ( ) }= ∈ ≤ −D q D V q E δ: ,δ

so every point in Dδ is far away from the boundary ∂D. By the bounds on the functionU given by (3.4) and
recalling that U is homogeneous of degree 2 in p, there exists a constant cδ such that

( ) ( ) ( )‖ ′ ‖ ≥

∂

∂

≥ > ∀ ∈ ∈U q p U
p

q p c q p q D, , 0, , Σ, .δ δ (3.10)

By the arbitrariness of δ, we can obtain (3.6) by proving it for all ( ) ∈q p, Σ with q sufficiently near the
boundary. More precisely, we prove the existence of a constant c1 such that

( ) ( )
( )

‖ ′ ‖ ≥

∂

∂

≥

−

U q p U
q

q p c
E V q

, , ,1 (3.11)

for all ( ) ∈q p, Σ with q sufficiently near the boundary. For every ( ) ∈q p, Σ, ( ) =U q p, 1, so by (3.9), we
obtain

⎜ ⎟ ⎜ ⎟( )
( )

⎛

⎝

⎞

⎠ ( )
⎛

⎝

⎞

⎠
( )

∂

∂

= −

‖ ‖

/‖ ‖

∂

∂ ‖ ‖

= −

/‖ ‖

∂

∂ ‖ ‖

∀ ∈

U
q

q p p
ω q p p

ω
q

q p
p ω q p p

ω
q

q p
p

q p, 2
,

, 2
,

, , , Σ.
2

3

As a consequence, using also (3.7) and denoting /‖ ‖p p by θ, we have

⎜ ⎟( )
( )

⎛

⎝

( ( ) ) ⎞

⎠

( ( ))
∂

∂

=

∂

∂

∂

∂

−U
q

q p
ω q θ

K
p

q ω q θ θ θ H
q

q ω q θ, 2
,

, , , , , ,
1

(3.12)

for all ( ) ∈q p, Σ. By (3.2), we have

( ( ) )
( )

∂

∂

≥

−K
p

q ω q θ θ θ
ν ω q θ

, , , 1
,

.
1

2

Hence, by (3.12) and using again (3.8), we obtain

( )
( )

( ( ) )
( ( ))

( ( ) ) ( )
∂

∂

≥

∂

∂

≥

−

∂

∂

∀ ∈

U
q

q p
ν ω q θ

H
q

q ω q θ θ ν
ν E V q

H
q

q ω q θ θ q p, 2
,

, , , , , , Σ.
2

2
1

2
(3.13)
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The existence of a strictly positive constant c1 such that (3.11) holds for all ( ) ∈q p, Σ with q sufficiently near
the boundary ∂D can be obtained by (3.13), recalling that D is compact and ( )( )∂ /∂ ≠V q q 0 in ∂D. Finally,
we obtain (3.6) by (3.10) and (3.11), recalling the arbitrariness of δ. □

Remark 3.3. By (3.5), we can extend G on the boundary ∂D by continuity. Denoting this extension again
with G, we have

�( ) = ∀ ∈ ∂ ∀ ∈G q v q D v, 0, , .n

3.1 Behaviour of the solutions near the boundary

In this section, we present some preliminary results about the behavior of the solutions of Hamilton’s
equations near the boundary of the potential well D. These results are required to analyze the time
reparametrization of the Finsler geodesics that correspond to the brake orbits and to study the strong
concavity of the set Ω described in Theorem 1.9.

Lemma 3.4. There exists >ε̄ 0 such that, if ( ( ) ( ))q t p t, is a solution of (1.1) with Hamiltonian H and energy E
such that ( ( )) ≥ −V q t E ε̄ for [ ]∈t a b, , then

( ( )) [ ]≤ − ∀ ∈

t
V q t ε t a bd

d
¯, , .

2

2

Proof. See [19, Lemma 5.2]. □

The following result provides an upper bound for the length of a time interval in which a solution of
Hamilton’s equations with energy E can be uniformly near the boundary.

Lemma 3.5. Let ε̄ given by Lemma 3.4. If ( ( ) ( ))q t p t, is a solution of Hamilton’s equations with total energy E
and ( ( )) ≥ − /V q t E ε̄ 2 for [ ]∈t a b, , then − ≤b a 2.

Proof. See [19, Corollary 5.3]. □

For every ∈ ∂Q D, we denote by ( ) ( ( ) ( ))=z t Q q t Q p t Q, , , , the solution of Hamilton’s equations for H
with total energy E and such that ( ) =q Q0 . Since ( )z t Q, is the solution of the Cauchy problem

⎧
⎨⎩

( ) ( ( ))

( ) ( )

= ′

=

z t Q JH z t Q
z Q Q
˙ , , ,

0, , 0 ,

it is well defined and of class C1.

Remark 3.6. Since ′JH is a function of classC1, also ( )z t Q˙ , is of classC1 with respect to the variables t andQ.

Lemma 3.7. For every ∈ ∂Q D0 , there exists a function �[ [+∞ × ∂ →ρ D: 0, n of class C1 such that
( ) =ρ Qd 0, 00 and

( ) ( ) ( ) ( ) [ [= −

∂

∂

∇ + ∀ ∈ +∞ ∀ ∈ ∂q t Q t H
p

Q V Q ρ t Q t Q D˙ , , 0 , , 0, , .
2

2 0 0 (3.14)

Proof. We define �[ [+∞ × ∂ →ρ D: 0, n
0 as follows:

( ) ( ) ( )= −ρ t Q q t Q q Q, ¨ , ¨ 0, .0 0
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Recalling that ( )z t Q, is of class C1 both respect to t and Q and taking the derivative with respect to t of
( ) ( ( ))= ′z t Q JH z t Q˙ , , , we obtain that ( )z t Q¨ , is a continuous function, so ( )ρ t Q,0 is a continuous function.

Since ( ) =p Q0, 0 for all ∈ ∂Q D, then ( ) =q Q˙ 0, 0 and

⎜ ⎟

( ) ( )

⎛

⎝
( ( ) ( )) ( ) ( ( ) ( )) ( )⎞

⎠

( ) ( )

=

=

∂

∂ ∂

+

∂

∂

= −

∂

∂

∇ ∀ ∈ ∂

=

=

q Q
t

q t Q

H
q p

q t Q p t Q q t Q H
p

q t Q p t Q p t Q

H
p

Q V Q Q D

¨ 0, d
d

˙ ,

, , , ˙ , , , , ˙ ,

, 0 , .

t

t

0
2 2

2
0

2

2

By definition of ρ0, we have

( ) ( ) ( ) ( ) ( ) ( )= + = −

∂

∂

∇ +q t Q q Q ρ t Q H
p

Q V Q ρ t Q¨ , ¨ 0, , , 0 , .0 0

2

2 0 0 0

Integrating the previous equation, recalling that ( ) =q Q˙ 0, 0 and setting ( ) ( )∫=ρ t Q ρ τ Q τ, , d
t

0 0 , we obtain
(3.14). Since ( ) =ρ Q0, 00 0 , we have ( ) =ρ Qd 0, 00 . □

4 The Jacobi-Finsler energy function

In this section, we introduce the function �→ψ D: , which will be exploited to define the strongly concave

set Ω with the properties required by Theorem 1.9. Given a point ∈y D , the function ( )ψ y is the infimum of
the energy of the curves connecting y with ∂D. We prove that, if y is sufficiently near the boundary, ( )ψ y is
attained on exactly one curve that is a solution of (1.1) with energy E, up to time reparametrization.

Let us define the functional �� ([ ] ) →W D: 0, 1 ,1,2 as follows:

�( ) ( ( ) ( ))∫=γ G γ s γ s s, ˙ d .
0

1

If ([ ]) ⊂γ D0, 1 , then � is differentiable at γ and its differential

� ��( ) ([ ] ) →γ Wd : 0, 1 , n1,2

is given by

� ⎜ ⎟( )[ ] ⎛

⎝
( ( ) ( ))[ ( )] ( ( ) ( ))[ ( )]⎞

⎠
∫=

∂

∂

+

∂

∂

γ ξ G
q

γ s γ s ξ s G
v

γ s γ s ξ s sd , ˙ , ˙ ˙ d .
0

1

For every ∈y D, we define Xy as follows:

{ ([ ] ) ( ) ([ [) ( ) }≔ ∈ = ⊂ ∈ ∂X γ W D γ y γ D γ D0, 1 , : 0 , 0, 1 and 1 .y
1,2

Definition 4.1. We define the function �→ψ D: as follows:

�( ) ( )≔

∈

ψ y γinf .
γ Xy

(4.1)

The function ψ will be the main focus of our analysis. Indeed, from now on, we will state and prove
some results that will lead to define the setΩ described in Theorem 1.9 as (] [)∞

−ψ δ,1 , for some δ sufficiently
small.
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Lemma 4.2. There exists a constant >d̄ 0 such that

( ) ≤ ∀ ∈ψ y d y D¯, .

Proof. The thesis directly follows from the upper bound given in (3.5) and the compactness of D . □

Proposition 4.3. For every ∈y D, ( )ψ y is attained on at least one curve ∈γ Xy y. Moreover, γy satisfies

�⎜ ⎟
⎛

⎝
( ( ) ( ))[ ( )] ( ( ) ( ))[ ( )]⎞

⎠
([ ] )∫

∂

∂

+

∂

∂

= ∀ ∈

G
q

γ s γ s ξ s G
v

γ s γ s ξ s s ξ W, ˙ , ˙ ˙ d 0, 0, 1 , ,y y y y
n

0

1

0
1,2 (4.2)

and there exist a >T 0 and a diffeomorphism [ ] [ ]→σ T: 0, 0, 1 such that, setting [ ]= ∘ →γ γ σ T Dˆ : 0,y y ,

the pair �( ) [ ] → ×q p T D, : 0, n given by

�( ( ) ( )) ( ( ) ( ))=
−q t p t γ t γ t, ˆ , ˆ̇y y

1

is a solution of (1.1) with energy E, ( ) =q y0 and ( ) ∈ ∂q T D.

To prove Proposition 4.3, we obtain γy as the weak limit of a sequence of Finsler geodesics

( ) ([ ] )⊂γ W D0, 1 ,k
1,2 . We exploit the fact that ( )Tk is uniformly bounded, where Tk are given by

�
�

( ) ( )
⎛

⎝
⎜

( )
( )

( )

⎞

⎠
⎟∫= =T t γ ϕ γ σ γ σ

γ
σ1 , ˙ d .k k k

k0

1

Recalling the reparametrization given by Lemma 2.6, Tk is the final time of the reparametrization of γk,
which is a solution of (1.1) with energy E. More formally, we require the following lemma.

Lemma 4.4. Let ( ) ([ ] )⊂γ W D0, 1 ,k
1,2 be a sequence of Finsler geodesics. If there exist two constants c c,1 2

such that

��( )< ≤ ≤ ∀ ∈c γ c k0 , ,k1 2 (4.3)

then there exist two constants c c,3 4 such that

�< ≤ ≤ ∀ ∈c T c k0 , .k3 4 (4.4)

Proof. Since ( ( ))− →E V q 0 when → ∂q D and D is compact, there exists a strictly positive constant c5 such
that

( )−

≥ ∀ ∈

E V q
c q D1 , .5

By the definition of ϕ given by (2.4), using (2.5) and (3.6), we have

�

⎛

⎝
⎜

( )
( )

( )

⎞

⎠
⎟ ( ( ( )))

∫ ∫≥

−

≥ >ϕ γ s
γ s

γ
s ν

h E V γ s
s c ν

h
,

˙
d d 0.k

k

k k0

1

0

1
3

2

5 3

2

By using also (4.3), we obtain

�
�

( )
⎛

⎝
⎜

( )
( )

( )

⎞

⎠
⎟∫= ≥ ≕ >T γ ϕ γ σ γ σ

γ
σ c c ν

h
c, ˙ d 0.k k

k0

1

1
5 3

2
3

To prove the existence of a constant c4 such that (4.4) holds, we work directly on the reparametrizations of γk.
Following the construction given in [19, Lemma 5.1], let >ε̄ 0 be given by Lemma 3.4 and let us divide D into
(Figure 3):
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– The rim { ( ) }∈ ≥ − /q D V q E ε: ¯ 2 ;
– The band { ( ) }∈ − ≤ ≤ − /q D E ε V q E ε: ¯ ¯ 2 ;
– The core { ( ) }∈ ≤ −q D V q E ε: ¯ .

Let us set

{( ) ( ) }= ∈ ≤ − /
/

q p V q E εΣ , Σ : ¯ 2 .ε̄ 2

Since
/

Σ ε̄ 2 is compact, there exists a constant >ϕ̄ 0 such that ( ) ≤ϕ q p ϕ, ¯ for all ( ) ∈
/

q p, Σ ε̄ 2. For every k, we
set { [ ] ( ( )) }= ∈ < − /I s V γ s E ε0, 1 : ¯ 2k k and [ ]= ⧹C I0, 1k k. Hence,

� � �

�

⎛

⎝
⎜

( )
( )

( )

⎞

⎠
⎟

⎛

⎝
⎜

( )
( )

( )

⎞

⎠
⎟

⎛

⎝
⎜

( )
( )

( )

⎞

⎠
⎟

⎛

⎝
⎜

( )
( )

( )

⎞

⎠
⎟

∫ ∫ ∫

∫

= +

≤ +

ϕ γ s
γ s

γ
s ϕ γ s

γ s
γ

s ϕ γ s
γ s

γ
s

ϕ ϕ γ s
γ s

γ
s

,
˙

d ,
˙

d ,
˙

d

¯ ,
˙

d .

k
k

k I

k
k

k C

k
k

k

C

k
k

k

0

1

k k

k

(4.5)

For every k, the setCk is the union of closed and disjoint intervals in which the orbit γk is in the rim. The orbit
can enter the rim many times, but, as a consequence of Lemma 2.6, each pair of passages into the rim must
be separated by a dip into the core, and this requires the solution to cross the band twice. This bounds the
number of closed disjoint intervals that constitute Ck, independently of k . Indeed, let us set

�{ ( ) ([ ] ) ( ( )) ( ( )) }= ∈ = − = − /d γ γ W D V γ E ε V γ E ε¯ min : 0, 1 , , 0 ¯, 1 ¯ 2 .1,2

Since (4.3) holds, we have that γk can cross the band at most N times, where N is a positive integer strictly
greater than ( )/c d2 ¯2 , independent of k. As a consequence, by Lemma 3.5, we have

�
�

( )
⎛

⎝
⎜

( )
( )

( )

⎞

⎠
⎟∫ ≤γ ϕ γ s

γ s
γ

s N,
˙

d 2 ,k

C

k
k

k
k

and, by (4.3) and (4.5), we have

≤ + ≕T c ϕ N c¯ 2 ,k 2 4

so (4.4) holds. □

The next lemma provides the sequence of geodesics that will be exploited in the proof of Proposition
4.3. For every �∈k , let (] [)= −∞ − / ∩D V E k D, 1k and

{ ([ ] ) ( ) ( ) }= ∈ = ∈ ∂X γ W D γ y γ D0, 1 , : 0 , 1 .y
k

k k
1,2

Lemma 4.5. For k sufficiently large, the functional � restricted to Xy
k has a minimum γk that is a Finsler

geodesic and such that ([ [) ⊂γ D0, 1k k.

Figure 3: The division of the potential well D into the rim, the band and the core.
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Proof. By the continuity of the function V , for k sufficiently large, we have ∈y Dk, so ≠ ∅Xy
k , and Dk is

homeomorphic to D; hence, Dk is a closed and bounded set; thus it is compact. In the following, let us

denote by � the restriction of it to Xy
k. Since � is bounded from below and Dk is compact, a minimizing

sequence ( ) ⊂γ Xm m y
k is equibounded with respect to norm of ([ ] )W D0, 1 , k

1,2 . By the Ascola-Arzelà theorem,

unless to consider a subsequence, ( )γm m converges uniformly to a curve γk and, since Dk is closed, ∈γ Xk y
k.

Moreover, ( )γm m converges weakly to γk in ([ ] )W D0, 1 , k
1,2 . By Lemma 2.4, the function ( )G q v, is strongly

convex in Dk with respect to the variable v. As a consequence, � is lower weakly semi-continuous; hence,

� � �( ) ( ) ( )≤ =

→∞ ∈

γ γ γliminf inf ,k m m γ Xy
k

so γk is a minimum for� in Xy
k. Let us prove that ([ [) ∈γ D0, 1k k. Assume, by contradiction, that there exists

] [∈s̄ 0, 1 such that ( ) ∈ ∂γ s D¯k k. Then, defining the curve ∈γ Xk̃ y
k as ( ) ( )= /γ s γ s s˜ ¯k k , we obtain

� �( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫= ≥ = > =γ G γ γ s G γ γ s
s

G γ γ s G γ γ s γ, ˙ d , ˙ d 1
¯

˜ , ˜̇ d ˜ , ˜̇ d ˜ ,k k k

s

k k k k k k k

0

1

0

¯

0

1

0

1

which contradicts the minimality of γk. Since γk is a curve, which minimizes the energy functional � and
([ [) ⊂γ D0, 1k k, we obtain that γk is a geodesic. □

Proof of Proposition 4.3. For k sufficiently large, let ( )γk k be a sequence of geodesics obtained with Lemma
4.5. Setting �( )ℓ = γk k , by definition of ψ in (4.1), we have

( )ℓ ≥

→∞

ψ yliminf .
k

k

We claim that

( )ℓ =

→∞

ψ yliminf .
k

k (4.6)

By absurd, if it was ( )ℓ >
→∞

ψ yliminfk k , then we could find a curve ∈x Xy such that�( ) < ℓ
→∞

x liminfk k and
a suitable reparametrization of x would yield a curve ∈x Xk y

k such that �( ) < ℓxk k, which contradicts the
minimality of ℓk. Hence, (4.6) holds. Since γk minimizes � on Xy

k, it is a geodesic with constant speed;
hence,

( ( ) ( )) [ ]= ℓ ∀ ∈G γ s γ s s, ˙ , 0, 1 .k k k

Using (3.5) and Lemma 4.2, there are two constants c c,1 2 such that

< ≤ ℓ ≤c c0 ,k1 2 (4.7)

for all k sufficiently large. As a consequence, we can apply Lemma 4.4, so there exist two constants c c,3 4
such that (4.4) holds for every k sufficiently large. Using also (2.5), (3.6), and (4.7), we have

( ( ( )))
∫≥ ≥

−

c T c ν
h E V γ s

sd .k
k

4 3

0

1
3

2

Then, the sequence

( ( ))
∫

−E V γ s
s1 d

k0

1

is bounded. By (3.5) and (4.7), we have

( )
( ( ))

( ( ) ( ))
( ( )) ( ( ))

∫ ∫ ∫ ∫‖ ‖ ≤

−

= ℓ

−

≤

−

γ s s ν
E V γ s

G γ s γ s s ν
E V γ s

s ν c
E V γ s

s˙ d 2 , ˙ d 2 d 2 1 d ,k
k

k k k
k k0

1

2

0

1
2

0

1
2

2 2

0

1
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so ( )γk is bounded in ([ ] )W D0, 1 ,1,2 . By the Ascoli Arzelà theorem, γk uniformly converges to a curve γy, up
to a subsequence. We claim that γy is a minimizer for � in Xy. Let us show that ∈γ Xy y. Since γk converges
uniformly to γy, ( ) =γ y0y and ( ) ∈ ∂γ D1 . We show that ([ [) ⊂γ D0, 1 arguing by contradiction. Let ( )∈s̄ 0, 1
be the first instant, where ( ) ∈ ∂γ s D¯y . By the minimality of γk, we have that ([ ]) ⊂ ∂γ s D¯, 1y . Thus, we obtain

( ) ( ( ) ( )) ( ( ) ( ))∫ ∫− ℓ = = =

→∞ →∞

s G γ s γ s s G γ s γ s slim 1 ¯ lim , ˙ d , ˙ d 0,
k

k
k

s

k k

s

y y

¯

1

¯

1

in contradiction with ℓ ≥ >c 0k 1 , given by (4.7). Hence, γy belongs to Xy and, since �( ) ≤ ℓ
→∞

γ liminfy k k, by
(4.6), we obtain �( ) ( )=γ ψ yy . Being a minimizer, γy satisfies (4.2). By Lemma 2.6, the diffeomorphism

[ ] [ ]→σ T: 0, 0, 1 such that ∘γ σy is a solution of (1.1) with energy E has inverse

�
�

( ) ( )
⎛

⎝
⎜

( )
( )

( )

⎞

⎠
⎟∫=t s γ ϕ γ σ

γ σ

γ
σ,

˙
d .y

s

y
y

y0

By (4.4),

�
�

( ) ( )
⎛

⎝
⎜

( )
( )

( )

⎞

⎠
⎟∫= =T t γ ϕ γ σ

γ σ

γ
σ1 ,

˙
dy y

y

y0

1

is bounded and strictly greater than 0. □

The next main step is proving that if y is sufficiently near∂D, then the minimizer of� in Xy is unique. To
this aim, we require the following lemma, which provides a coordinate system of a neighborhood of ∂D
through the solutions of (1.1) that start from the boundary.

Lemma 4.6. There exists a constant >δ̄ 0 such that the following property holds:

( ) ( ) ( )

( ) ( )

( ( )) [ ]

∀ ∈ ≤

> ∈ ∂ =

≤ ∈

y D with ψ y δ there exists a unique solution q p of
with energy E and a unique t such that q D q t y and
ψ q t δ for all t t

¯ , 1.1
0 0 ,

¯, 0, .

y y

y y y y

y y

(4.8)

A representation of Property (4.8) is given in Figure 4.

Figure 4: A representation of Property (4.8). Each point yi, i 1, 2, 3= , is such thatψ y δ̄i( ) ≤ . Hence, there exists a uniqueq D∂yi
∈

and a unique tyi such that q q0 yi
( ) = , q t yy ii( ) = andψ q t δ̄( ( )) ≤ for every t t0, yi[ ]∈ , where q is the unique solution of Hamilton’s

equations with energy E starting from qyi
.
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Proof. By Lemma 3.7, for every ∈ ∂Q D0 , there exists a function � �∂ × →ρ D: n such that

( ) ( ) ( ) ( )∫= −

∂

∂

∂

∂

+ ∀ ∈ ∂q t Q Q t H
p

Q V
q

Q ρ τ Q τ Q D,
2

, 0 , d , ,
t

2 2

2 0 0

0

where the vector ( ) ( )
∂

∂

∂

∂

Q Q, 0H
p

V
q0 0

2

2 is not tangent to ∂D for every ∈ ∂Q D0 . Indeed, ( )
∂

∂

QV
q 0 is orthogonal to ∂D

by definition of D and by (3.1), we have

( ) ( ) ( ) ( )
∂

∂

∂

∂

∂

∂

≥

∂

∂

> ∀ ∈ ∂

H
p

Q V
q

Q V
q

Q ν V
q

Q Q D, 0 , 0, .
2

2 0 0 0 1 0

2

0

As a consequence, if { }…
−

y y, , n1 1 is a coordinate system of ∂D in a neighborhood ofQ0, then { }…
−

y y t, , ,n1 1 is
a local coordinate system on the manifold with boundary ∂D and ( ) ( )↦t Q q t Q, , defines a local chart. By
the compactness of ∂D, we can construct a neighborhood ⊂N D of ∂D as union of a finite number of such
local charts. By the upper bound onG given by (3.5), ( ) →ψ y 0 as → ∂y D, and there exists a >δ̄ 0 such that

([ ]) ⊂
−ψ δ N0, ¯1 . As a consequence, if ∈y D satisfies ( ) ≤ψ y δ̄, then ∈y N , and it is uniquely represented by

a coordinate of the constructed local chart, so there exists a unique solution ( )q p,y y of (1.1) with energy E
and a unique >t 0y such that ( ) ∈ ∂q D0y , ( ) =q t yy y and ( ) ∈q t Ny for each [ ]∈t t0, y . It remains to prove that

( ( )) ≤ψ q t δ̄y for every [ ]∈t t0, y . By Proposition 4.3, there exists γy such that �( ) ( )=γ ψ yy and a reparame-
trization of it is a solution of (1.1) with energy E and with an endpoint in ∂D. We recall that, since H is even
with respect to p, a backward parametrization of a solution is still a solution. Thus, there exists a solution

[ ] →q T D: 0,γy of (1.1) and energy E such that ( ) ∈ ∂q D0γy , ( ) =q T yγy , and for each [ ]∈t T0, , there exists an
[ ]∈s 0, 1 such that ( ) ( )=q t γ sγ yy . Using the reparametrizations of γy, it can be proved that for each [ ]∈s 0, 1 ,

we have ( ( )) ≤ψ γ s δ̄y , so ( )( ) ≤ψ q t δ̄γy for every [ ]∈t T0, . By definition of δ̄, this implies that ( ) ∈q t Nγy for
every [ ]∈t T0, . By the uniqueness of qy, we obtain that =T ty and ( ) ( )=q t q tγ yy for every [ ]∈t t0, y , so we are
done. □

Notation: If ∈y D is such that ( ) ≤ψ y δ̄, we denote by ( )t Q,y y the unique element in � × ∂
+ D such that

( ) =q t Q y,y y and ( ( )) ≤ψ q t Q δ, ¯y , for all [ ]∈t t0, y .

Remark 4.7. Both ty and Qy are functions of class C1 with respect to y, since they are implicitly defined by
the coordinate system given by the proof of Lemma 4.6.

Proposition 4.8. For every ∈y D such that ( ) ≤ψ y δ̄, the minimizer of � in the space Xy is unique.

Proof. By contradiction argument, let us assume the existence of two different curves, ∈γ γ X, y1 2 , such that
� �( ) ( ) ( )= =ψ y γ γ1 2 . Since γ1 and γ2 are two minimizers, by Proposition 4.3, they are reparametrizations of

two solutions of (1.1) with energy E and final points on ∂D. Moreover, ( ( )) ≤ψ γ s δ̄1 and ( ( )) ≤ψ γ s δ̄2 for every
[ ]∈s 0, 1 . Hence, if ( ) ( )≠γ γ1 11 2 , then setting ( )=Q γ 11 1 and ( )=Q γ 12 2 , we have

( ) ( )= =y q t Q y q t Q, and , ,1 1 2 2

for some >t t, 01 2 ,

( ( )) [ ] ( ( )) [ ]≤ ∀ ∈ ≤ ∀ ∈ψ q t Q δ t t ψ q t Q δ t t, ¯ 0, and , ¯ 0, .1 1 2 2

As a consequence, y is given by two different coordinates of the local chart constructed in Lemma 4.6,
which is a contradiction. If ( ) ( )=γ γ1 11 2 , by the uniqueness of the solution ( )q t Q, y of (1.1) with energy E, we
infer that ( ) ( )=γ s γ s1 2 for all [ ]∈s 0, 1 , which is a contradiction. □

Remark 4.9. By Propositions 4.3 and 4.8, for every ∈y D such that ( ) ≤ψ y δ̄, the minimizer γy and the curve
( )q t Q, y are linked by a reparametrizations, which invert the orientation.
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5 Differentiability and concavity

In this section, we prove that ψ is of class C2 near the boundary and that, if δ̂ is sufficiently small, the set

([ [)+∞
−ψ δ̂,1 is strongly concave with respect to the Finsler metric F .

Let δ̄ satisfies property (4.8), and set

{ ( ) }= ∈ ≤D y D ψ y δ: ¯ .δ̄

Proposition 5.1. For every ∈y Dδ̄, ψ is differentiable at y and

�( )[ ] ( ( ))[ ]= −

∂

∂

∀ ∈ψ y ξ G
v

y γ ξ ξd , ˙ 0 , .y
n (5.1)

Proof. Let us fix �∈ξ n, ‖ ‖ ≤ξ 1 and set

( ) { }= −v s s ξmax 0, 1 2 ,ξ

and hence, ( ) =v s 0ξ for all [ ]∈ /s 1 2, 1 . Let us define �� ([ ] ) →W D˜ : 0, 1 ,1,2 as follows:

� ( ) ( ( ) ( ))∫=γ G γ s γ s s˜ , ˙ d .
0

1
2

Since the curve ∣[ ]/
γy 0,1 2 is uniformly far from ∂D, so are the curves ( )∣[ ]+

/
γ εvy ξ 0,1 2 for ε sufficiently small.

Moreover, by Proposition 4.3, there exists a constant >c 0γ such that ( ( ) ( )) =G γ s γ s c, ˙y y γ, for all [ [∈s 0, 1 . As
a consequence, for ε sufficiently small, we can assume that

( ) ( ) ⎡
⎣

⎤
⎦

[ ]+ ≠ ∀ ∈ ∀ ∈γ s σεv s s σ˙ ˙ 0, 0, 1
2

, 0, 1 ,y ξ (5.2)

and thus, we shall work in a region where G is of class C2. By definition of ψ, we have

�( ) ( )+ ≤ +ψ y εξ γ εv .y ξ

Since �( ) ( )=ψ y γy , we obtain

� � � �( ) ( ) ( ) ( ) ( ) ( )+ − ≤ + − = + −ψ y εξ ψ y γ εv γ γ εv γ˜ ˜ ,y ξ y y ξ y

and hence,

� �( ( ) ( )) ( ( ) ( ))+ − ≤ + −

→ →
ε

ψ y εξ ψ y
ε

γ εv γlimsup 1 limsup 1 ˜ ˜ .
ε ε

y ξ y
0 0

Then, using the dominated convergence theorem, an integration by parts and recalling that γy satisfies (4.2),
we have

� �

⎜ ⎟

( ( ) ( )) ( ( ) ( ))

⎛

⎝
( )[ ] ( )[ ]⎞

⎠

⎡
⎣

( )[ ]⎤
⎦

( ( ))[ ]

∫

∫

+ − = + + −

=

∂

∂

+

∂

∂

=

∂

∂

= −

∂

∂

→ →

/

ε
γ εv γ

ε
G γ εv γ εv G γ γ s

G
q

γ γ v G
v

γ γ v s

G
v

γ γ v

G
v

y γ ξ

lim 1 ˜ ˜ lim 1 , ˙ ˙ , ˙ d

, ˙ , ˙ ˙ d

, ˙ ˙

, ˙ 0 ,

ε y ξ y ε y ξ y ξ y y

y y ξ y y ξ

y y ξ

y

0 0
0

1
2

0

1
2

0

1 2
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and hence,

( ( ) ( )) ( ( ))[ ]+ − ≤ −

∂

∂
→

ε
ψ y εξ ψ y G

v
y γ ξlimsup 1 , ˙ 0 .

ε
y

0

It remains to prove that

( ( ) ( )) ( ( ))[ ]+ − ≥ −

∂

∂→ ε
ψ y εξ ψ y G

v
y γ ξliminf 1 , ˙ 0 .

ε y0
(5.3)

Since �( ) ( )+ =
+

ψ y εξ γy εξ and �( ) ( )≤ −
+

ψ y γ εvy εξ ξ , we have

� � � �( ) ( ) ( ) ( ) ( ) ( )+ − ≥ − − = − −
+ + + +

ψ y εξ ψ y γ γ εv γ γ εv˜ ˜ .y εξ y εξ ξ y εξ y εξ ξ (5.4)

By (5.2), �̃ is of class C2 in a neighborhood of γy. Hence, there exists some ] [∈σ 0, 1ε such that

� � � �( ) ( ) ( )[ ] ( )[ ]− − = − −
+ + + +

γ γ εv ε γ v ε γ σ εv v v˜ ˜ d ˜
2

d ˜ , .y εξ y εξ ξ y εξ ξ y εξ ε ξ ξ ξ
2

2 (5.5)

Now, we are going to prove that

� ( )[ ]− =

→

+
ε γ σ εv v vlim d ˜ , 0.

ε y εξ ε ξ ξ ξ
0

2 (5.6)

Since γy is uniformly far from ∂D on the interval [ ]/0, 1 2 , the same holds for
+

γy εξ whenever ε is sufficiently
small. As a consequence, there exists a constant >c 01 such that

( ( ))
⎡
⎣

⎤
⎦−

≤ ∀ ∈

+
E V γ s

c s1 , 0, 1
2

.
y εξ

1

Since
+

γy εξ is a minimal geodesic, we also have

( ( ) ( )) ( ) ⎡
⎣

⎤
⎦

= + ∀ ∈
+ +

G γ s γ s ψ y εξ s, ˙ , 0, 1
2

.y εξ y εξ

Moreover, using (3.5), there exists a constant >c 02 such that

( )
( ( ))

( ( ) ( )) ( )∫ ∫‖ ‖ ≤

−

≤ + ≤
+

+

+ +
γ s s ν

E V γ s
G γ s γ s s c ν ψ y εξ c˙ d 2 , ˙ d .y εξ

y εξ
y εξ y εξ

0

1
2

2

0

1
2

2
1 2 2 (5.7)

Hence,
+

γy εξ is uniformly bounded in ⎡⎣ ⎤⎦( )W D0, ,1,2 1
2 . Since ( ) =v s 0ξ on ⎡⎣ ⎤⎦

0, 1
2 , we have that � ( −

+
γd ˜ y εξ

2

)[ ]σ εv v v,ε ξ ξ ξ is uniformly bounded with respect to ε sufficiently small; hence, (5.6) holds. By (5.5) and (5.6),
we have

� � �( ( ) ( )) ( )[ ]− − =

→

+ +

→

+ε
γ γ εv γ vlim 1 ˜ ˜ lim d ˜ .

ε y εξ y εξ ξ
ε y εξ ξ

0 0
(5.8)

Since
+

γy εξ satisfies (4.2), integration by parts leads to

� ( )[ ] ( ( ))[ ]= −

∂

∂

+
+ +

γ v G
v

y εξ γ ξd ˜ , ˙ 0 .y εξ ξ y εξ (5.9)

To obtain (5.3) and conclude the proof, it suffices to show that

( ) ( )=

→

+
γ γlim ˙ 0 ˙ 0 .

ε y εξ y0 (5.10)

To this aim, we exploit the uniqueness of γy ensured by Proposition 4.8. Arguing by contradiction, let ( )εn be
a sequence such that →ε 0n and

( ) ( )≠

→∞

+
γ γlim ˙ 0 ˙ 0 .

n y ε ξ yn
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By (5.7),
+

γy εξ are uniformly bounded in ([ ] )W D0, 1 ,1,2 ; hence, there exists �∈v n such that ( ) =
→∞ +

γlim ˙ 0n y ε ξn

( )≠v γ̇ 0y . Since ( )
+

γy ε ξn
is a sequence of geodesics, it converges with respect to the C1 norm to a minimum.

Since the minimum is unique by Proposition 4.8, then →
+

γ γy ε ξ yn
in C1, so ( ) ( )→

+
γ γ˙ 0 ˙ 0y ε ξ yn

, which is a
contradiction.

Therefore, (5.10) holds, and using also (5.9), we have

�( )[ ] ( ( ))[ ]= −

∂

∂→

+
γ v G

v
y γ ξlim d , ˙ 0 .

ε y εξ ξ y0
(5.11)

Finally, combining (5.4), (5.8), and (5.11), we obtain (5.3), and we are done. □

Lemma 5.2 will play a central role because it links the initial velocity of the curve γy with ( )q t Q˙ ,y y

through a function of class C1.

Lemma 5.2. There exists a function � �× →φ D: δ
n¯ of class C1 such that

( ) ( ( )) ( ) ( )= −ψ y φ y q t Q q t Q γ, ˙ , ˙ , ˙ 0 .y y y y y (5.12)

Proof. Let [ ( ) ] →ζ ψ y D: 0,y the backward arc-length reparametrization of γy, namely,

( )
⎛

⎝
⎜ ( )

⎞

⎠
⎟= −ζ s γ s

ψ y
1 .y y

As a consequence,

( ( ) )
( )

( )= −ζ ψ y
ψ y

γ˙ 1 ˙ 0 .y y (5.13)

By Lemma 2.4, the curve �[ ( ) ] →x ψ y: 0, n2 given by

�( ) ( ( ) ( ))=
−x s ζ s ζ s, ˙ ,y y

1

is a solution of Hamilton’s equations with respect to U and ( ( )) ≡U x s 1. Since ∈y Dδ̄, By Lemma 4.6 and
Remark 4.9, ( )x s is actually a reparametrization of ( ) ( ( ) ( ))=z t Q q t Q p t Q, , , ,y y y , with ( ( ) ) ( )=x ψ y z t Q,y y .
Hence, using (2.1) and recalling that � is the identity map with respect to the first variable, we have

( ( ) )
( ( ))

( ( ))
( )

( ( ))

( ( ))
( )=

‖ ′ ‖

‖ ′ ‖

=

‖ ′ ‖

‖ ′ ‖

ζ ψ y
U z t Q
H z t Q

q t Q
U y p t Q
H y p t Q

q t Q˙ ,
,

˙ ,
, ,
, ,

˙ , .y
y y

y y
y y

y y

y y
y y (5.14)

Since the map

( ) ( ) ( ( ))↦ =

∂

∂

p t Q q t Q H
p

y p t Q, ˙ , , ,y y y y y y

is invertible, there exists � �× →φ D: δ
n¯ such that

( ( ))
( ( ))

( ( ))
=

‖ ′ ‖

‖ ′ ‖

φ y q t Q
U y p t Q
H y p t Q

, ˙ ,
, ,
, ,

.y y
y y

y y
(5.15)

Combining (5.13)–(5.15), we obtain (5.12). Recalling that both ty and Qy are of class C1 by Remark 4.7, and
that ( ) ≠q t Q˙ , 0y y for every ∈y Dδ̄, the functionφ is of classC1 as a composition of the derivatives of H andU ,

□

Lemma 5.3. The function ψ is of class C2 in Dδ̄.
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Proof. By (5.12), we deduce that ( )γ̇ 0y is continuous as a function of ∈y Dδ̄. Hence, by (5.1),ψ is of classC1 in
Dδ̄. Using again (5.12) and the C1-regularity of φ and ( )q t Q˙ ,y y , we deduce that ( )γ̇ 0y is of class C1. By using

(5.1), we obtain the thesis. □

Recalling the notion of strong concavity given in Definition 1.8 and the definition of ( )[ ]H y v v v, ,ψ in

(1.4), the next proposition shows that the set ([ [)∞ψ δ̂, is strongly concave, provided >δ̂ 0 sufficiently
small.

Proposition 5.4. There exists ] ]∈δ δˆ 0, ¯ such that for every ∈y D with ( )< ≤ψ y δ0 ˆ, we have

�( )[ ] { } ( )[ ]> ∀ ∈ =H y ξ ξ ξ ξ ψ y ξ, , 0, \ 0 : d 0.ψ
n

Proof. For every � { }∈ξ \ 0n such that ( )[ ] =ψ y ξd 0, we denote by η the unique Finsler geodesic such that
( ) =η y0 and ( ) =η ξ˙ 0 . We have to prove that, for y sufficiently near the boundary ∂D,

( )( )∘ >

s
ψ ηd

d
0 0.

2

2

Let ζ be the reparametrization of η, which is a solution of (1.1) with energy E. By Remark 2.3, there exists a
function λ of class C2 such that ( ) ( ( ))=ζ t η λ t , ( ) =λ 0 0, and ( ) >λ t˙ 0. Hence,

( )( ) ( ) ( )( ) ( ) ( )[ ] ( ) ( )( )∘ = ∘ + = ∘

s
ψ ζ λ

s
ψ η λ ψ y ξ λ

s
ψ ηd

d
0 ˙ 0 d

d
0 ¨ 0 d ˙ 0 d

d
0 .

2

2

2

2

2

2

As a consequence, it suffices to prove that

( )( )∘ >

s
ψ ζd

d
0 0.

2

2

By using (5.1) and (5.12), we obtain

( ( )) ( ( ))[ ( )]

( ( ) ( ))[ ( )]

( ( )) ( ( ) ( )) ( ( ) ( ))[ ( )]

( )

( ) ( ) ( ) ( )

=

= −

∂

∂

=

∂

∂

s
ψ ζ s ψ ζ s ζ s

G
v

ζ s γ ζ s

ψ ζ s φ ζ s q t Q G
v

ζ s q t Q ζ s

d
d

d ˙

, ˙ 0 ˙

, ˙ , , ˙ , ˙ .

ζ s

ζ s ζ s ζ s ζ s

Let us set ( )=w ζ̇ 0 . Since ( )q t Q˙ ,y y is parallel to ( )γ̇ 0y , we have

( ( ))[ ]
∂

∂

=

G
v

y q t Q w, ˙ , 0,y y

and thus, we obtain

( )( ) ( ( ( )) ( ( ) ( ))) ( ( ))[ ]

( ) ( ( )) ⎛
⎝

( ( ) ( ))[ ( )]⎞
⎠

( ) ( ( )) ⎛
⎝

( ( ) ( ))[ ( )]⎞
⎠

( ) ( )

( ) ( )

( ) ( )

∘ =

∂

∂

+

∂

∂

=

∂

∂

=

=

=

s
ψ ζ

s
ψ ζ s φ ζ s q t Q G

v
y q t Q w

ψ y φ y q t Q
s

G
v

ζ s q t Q ζ s

ψ y φ y q t Q
s

G
v

ζ s q t Q ζ s

d
d

0 d
d

, ˙ , , ˙ ,

, ˙ , d
d

, ˙ , ˙

, ˙ , d
d

, ˙ , ˙ .

ζ s ζ s
s

y y

y y ζ s ζ s
s

y y ζ s ζ s
s

2

2
0

0

0

Since ( )ψ y and ( ( ))φ y q t Q, ˙ ,y y are two strictly positive functions with respect to ∈y D, it remains to prove
that, for y sufficiently near the boundary ∂D, we have

⎛
⎝

( ( ) ( ))[ ( )]⎞
⎠

( ) ( )
∂

∂

>

=
s

G
v

ζ s q t Q ζ sd
d

, ˙ , ˙ 0.ζ s ζ s
s 0

(5.16)
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Let us define the function � �× →DΓ : n as follows:

( )
( )

( )
=

−

q v G q v
E V q

Γ , , .

Since ( )[ ] =ψ y wd 0, we have

( ( ))[ ]
( )

( ( ))[ ]
∂

∂

=

−

∂

∂

=

v
y q t Q w

E V y
G
v

y q t Q wΓ , ˙ , 1 , ˙ , 0.y y y y

As a consequence,

⎛
⎝

( ( ) ( ))[ ( )]⎞
⎠

( ( )) ⎛
⎝

( ( ) ( ))[ ( )]⎞
⎠

( ) ( ) ( ) ( )
∂

∂

= −

∂

∂
= =

s
G
v

ζ s q t Q ζ s E V y
s v

ζ s q t Q ζ sd
d

, ˙ , ˙ d
d

Γ , ˙ , ˙ .ζ s ζ s
s

ζ s ζ s
s0 0

Hence, to obtain (5.16), it suffices to prove that

⎛
⎝

( ( ) ( ))[ ( )]⎞
⎠

( ) ( )
∂

∂

>

=
s v

ζ s q t Q ζ sd
d

Γ , ˙ , ˙ 0,ζ s ζ s
s 0

(5.17)

for y sufficiently near the boundary ∂D. Setting

( ) ⎛
⎝

( ( ) ( ))⎞
⎠

[ ]

( ) ( ( ))[ ( )]

( ) ( )=

∂

∂

=

∂

∂

=

I y
s v

ζ s q t Q w

I y
v

y q t Q ζ

d
d

Γ , ˙ , ,

Γ , ˙ , ¨ 0 ,

ζ s ζ s
s

y y

1
0

2

we have

⎛
⎝

( ( ) ( ))[ ( )]⎞
⎠

( ) ( )( ) ( )
∂

∂

= +

=
s v

ζ s q t Q ζ s I y I yd
d

Γ , ˙ , ˙ .ζ s ζ s
s 0

1 2

Let us study ( )I y1 and ( )I y2 separately. We have

( ) ( ( ))[ ] ( ( ))⎡

⎣
( ( )) ⎤

⎦
⎥( ) ( )=

∂

∂ ∂

+

∂

∂
=

I y
q v

y q t Q w w
v

y q t Q
s

q t Q wΓ , ˙ , , Γ , ˙ , d
d

˙ , , .y y y y ζ s ζ s
s

1
2 2

2
0

Since ( )q t Q, y is a solution of (1.1) with energy E, by (3.2), we have

( ) ( ( )) ( ) ( )‖ ‖ ≤

∂

∂

= ‖ ‖ ≤ ‖ ‖ν p t Q K
p

y p t Q q t Q ν p t Q, , , ˙ , , ,y y y y y y y y1 2

and by (3.3), we obtain that there exist two constants >c c, 01 2 such that

( ( )) ( ) ( ( ))− ≤ ‖ ‖ ≤ −c E V y q t Q c E V y˙ , .y y1
2

2 (5.18)

Similarly, since ( )=w ζ̇ 0 , we have

( ( )) ( ( ))− ≤ ‖ ‖ ≤ −c E V y w c E V y .1
2

2 (5.19)

Since Γ is homogeneous of degree two with respect to v and recalling the bounds for G given by (3.5), there
exists a constant c3 such that

�( )[ ] ( )
∂

∂ ∂

≤ ‖ ‖‖ ‖ ∀ ∈ ×

q v
q v ω ω c v ω q v DΓ , , , , .n

2
3

2

As a consequence, using (5.18) and (5.19), we have

( ( ))[ ] ( ( ))
∂

∂ ∂

≤ −

q v
y q t Q w w c E V yΓ , ˙ , , .y y

2
3

3
2 (5.20)
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Let us set

( ) ( )≔

∂

∂

∂

∂

v H
p

y V
q

y, 0 .y
2

2

We remark that, since ( )( )∂ /∂ ≠V q q 0 for every ∈ ∂q D, and by the strictly convexity of H given by (3.1),‖ ‖vy

is uniformly greater than zero if y is sufficiently near the boundary. Since ( ) =
→

Q Qlims ζ s y0 , using (3.14), we
have

( ) ( ) [ [( ) ( )= − + ∀ ∈ +∞q t Q tv ρ t Q t˙ , , , 0, ,ζ s y ζ s

with ( ) =ρ Qd 0, 0y . By Remark 4.7, ty andQy are functions of classC1 with respect to y. Moreover, by Remark
3.6, ( )q t Q˙ , is of class C1. Hence, we obtain

( ( ))∣ [ ] ( ) [ ] ( ) [ ]( ) ( ) = − +

∂

∂

+

∂

∂

∂

∂

=s
q t Q t w v ρ

t
t Q t w ρ

Q
t Q Q

y
wd

d
˙ , d , d , .ζ s ζ s s y y y y y y y0 (5.21)

Since ( ) =q t Q y,y y , we get

�[ ] ( ) ( ) [ ]+

∂

∂

∂

∂

= ∀ ∈t v q t Q q
Q

t Q
Q
y

v v vd ˙ , , , .y y y y y
y n (5.22)

We recall that ( )t Q, is a coordinate system in a neighborhood of ∂D, where ( )=y q t Q,y y . Hence, if y tends to
∂D, then →t 0y and ( )( )∂ /∂q Q t Q,y y goes to the identity map. Similarly, when → ∂y D, ( )[ ]∂ /∂Q y vy tends to v
uniformly as‖ ‖ ≤v 1. Then, by (5.22), [ ] ( ) →t v q t Qd ˙ , 0y y y uniformly in v, as → ∂y D. Therefore, since by (5.18)
and (5.19) w and ( )q t Q˙ ,y y , we have

( )
< ≤

‖ ‖

‖ ‖

c
c

q t Q
w

c
c

0
˙ ,

,y y1

2

2

1

and we obtain

[ ] =

→∂

t wlim d 0.
y D

y (5.23)

Since ( ) =ρ Qd 0, 0y , by (5.21) and (5.23), we infer

( ( )) ( )( ) ( ) =

=
s

q t Q od
d

˙ , 1 ,ζ s ζ s
s 0

(5.24)

as → ∂y D. Since Γ is homogeneous of degree 2 with respect to v and using (3.5), there exist a constant >c 03
such that

� �( )[ ] { }
∂

∂

≤ ‖ ‖‖ ‖ ∀ ∈ ∀ ∈ ∀ ∈

v
q ξ v v c v v q D ξ v vΓ , , , , \ 0 , , .n n

2

2 1 2 4 1 2 1 2

As a consequence, by (5.19) and (5.24), we obtain

( ( ))⎡

⎣
( ( ))∣ ⎤

⎦
( ( ) )( ) ( )

∂

∂

= −

→∂

=v
y q t Q

s
q t Q w o E V ylim Γ , ˙ , d

d
˙ , , .

y D
y y ζ s ζ s s

2

2 0 (5.25)

By (5.20) and (5.25), we obtain

( ) ( ( ) )= −I y o E V y ,1 (5.26)

as → ∂y D.
Let us analyze ( )I y2 . Since ( )ζ p, is a solution of Hamilton’s equations, with p implicitly defined by

( ) ( ( ) ( ))=

∂

∂

ζ s H
p

ζ s p s˙ , ,
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we have

⎜ ⎟( ) ( ( )) ( ( ))⎛

⎝
( ( )) ( )⎞

⎠
=

∂

∂ ∂

−

∂

∂

∂

∂

+

∂

∂

ζ H
q p

y p w H
p

y p K
q

y p V
q

y¨ 0 , 0 , 0 , 0 .
2 2

2

If → ∂y D, then ( )‖ ‖ →p 0 0. Therefore,

( ( )) ( ( ))
∂

∂ ∂

→

∂

∂

→

H
q p

y p w K
q

y p, 0 0, , 0 0,
2

and we obtain ( ) = −
→∂

ζ vlim ¨ 0y D y. Hence, using also (3.5) and (5.21), we obtain

⎜ ⎟
⎛

⎝

( )

( )

⎞

⎠

[ ( )] ( )[ ] ( )
∂

∂ ‖ ‖

=

∂

∂

− − = ≥ ‖ ‖

→∂ v
y

q t Q
q t Q

ζ
v

y v v y v
ν

vlim Γ ,
˙ ,
˙ ,

¨ 0 Γ , Γ , 1
2

.
y D

y y

y y
y y y y

2

2 (5.27)

As a consequence, by (5.18) and (5.27), we obtain

( )

( )−

>

→∂

I y
E V y

lim 0.
y D

2 (5.28)

Finally, by (5.26) and (5.28), we obtain (5.17), and we are done. □

6 Proof of the main theorem

Finally, we are ready to prove Theorem 1.9.

Proof of Theorem 1.9. Let δ̂ be as in Proposition 5.4 and set

(] [)= +∞
−ψ δΩ ˆ, .1

By continuity, Ω is an open subset of D and ( )∂ =
−ψ δΩ ˆ1 . By Lemma 5.3, ψ is of class C2 in Dδ̄, and since

≠ψd 0 on ∂Ω, we have that ∂Ω is of classC2. Since δ̄ satisfies property (4.8) and ≤δ δˆ ¯, Ω is homeomorphic
to D . Since ∂Ω is a level hyper-surface of ψ, for every ∈ ∂y Ω, ∈ ∂v T Ωy if and only if ( )[ ] =ψ y vd 0. Recalling
Definition 1.8, Proposition 5.4 implies that Ω is strongly concave with respect to the Finsler metric F .

Let [ ] →γ : 0, 1 Ω be an orthogonal Finsler geodesic chord. We will prove the desired properties of the
extension [ ] →γ α β Dˆ : , only in the interval [ ]β1, . The case [ ]α, 0 is analog. Set ( )=y γ 1 . Since γ is an
orthogonal Finsler geodesic chord, it satisfies (1.3); hence,

( ( ))[ ] ( )
∂

∂

= ∀ ∈ ∂

G
v

y γ v v T, ˙ 1 0, Ω.γ 1

The minimizer curve γy satisfies

( ( ))[ ] ( )
∂

∂

= ∀ ∈ ∂

G
v

y γ v v T, ˙ 0 0, Ω,y γ 1

and thus, ( )γ̇ 1 and ( )γ̇ 0y are parallel. As a consequence, the curve [ ] →γ D¯ : 0, 2 defined as

( )
⎧

⎨
⎩

( ) [ ]

( ) ] ]
=

∈

− ∈

γ s
γ s s
γ s s¯

, if 0, 1 ,
1 , if 1, 2 ,y

is of class C1 and it is a geodesic with respect to F , up to a suitable time reparametrization. With the analog
extension in [ ]α, 0 , we obtain a geodesic [ ] →γ α β Dˆ : , such that ( ) ( ) ∈ ∂γ α γ β Dˆ , ˆ and (] [) ⊂γ α β Dˆ , . By
Lemmas 2.2 and 2.4, we have that

�( ( ) ( )) ( ( ) ( )) ] [= ∀ ∈
−q t p t γ t γ t t α β, ˆ , ˆ̇ ,1
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is a solution of (1.1) with energy E for H , up to time reparametrization. By using also Lemma 4.4 to ensure
that the time reparametrization is finite, we obtain the existence of a diffeomorphism [ ] [ ]→σ T α β: 0, , ,
with ( ) =σ α0 and ( ) =σ T β, such that

( ) [ ]∘ →q p σ T, : 0, Σ

is a brake orbit. □
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