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Abstract
We introduce a variational setting for the action functional of an autonomous and indefinite
Lagrangian on a finite dimensional manifold M . Our basic assumption is the existence of an
infinitesimal symmetry whose Noether charge is the sum of a one-form and a function on
M . Our setting includes different types of Lorentz–Finsler Lagrangians admitting a timelike
Killing vector field.

Mathematics Subject Classification 37J05 · 53C50 · 53C60

1 Introduction

The principle of least or stationary-action in Lagrangian mechanics has been at the heart
of the development of the variational calculus. It has given rise to different methods for
solving the problem of finding (or at least establishing the existence of) a path of evolution
between two points of a dynamical system described by a finite number of variables (see,
e.g., [12, 42, 49]). The techniques developed to get solutions have been proved to be useful
in the study of general Lagrangian systems with an infinite number of degrees of freedom
(see, e.g., [28, 47]). A very classical field of application of these methods is the geodesic
problem in Riemannian and Finsler geometry. In this case, completeness of the metric is

Communicated by A. Mondino.

E. Caponio is partially supported by PRIN 2017JPCAPN Qualitative and quantitative aspects of nonlinear
PDEs. Both authors thank the partial support of GNAMPA INdAM—Italian National Institute of High
Mathematics.

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

B Erasmo Caponio
erasmo.caponio@poliba.it

Dario Corona
dario.corona@unicam.it

1 Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy

2 Mathematics Division, School of Science and Technology, University of Camerino, Camerino, Italy

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-022-02379-1&domain=pdf
http://orcid.org/0000-0003-1454-8897
http://orcid.org/0000-0002-7575-710X


   39 Page 2 of 33 E. Caponio, D. Corona

enough to get a solution with fixed end points and topological arguments give multiplicity
of geodesics. The landscape is quite different for the analogous problem on a Lorentzian
manifold where (geodesic) completeness is not enough to get compactness properties on the
space of paths between two points and other geometric conditions as global hyperbolicity
have been considered as a replacement [4, 46]. Only recently the features underlying global
hyperbolicity, in connection with the geodesic problem and more generally with causality,
start to find a field of applications beyond classical Lorentzian geometry (see [11, 27, 35,
41]).

On the other hand, the existence of a symmetry that leaves invariant the action functional
of a Lagrangian is a source of information about its stationary points through the Noether’s
theorem. The impact of this result in variational calculus can be hardly overestimated. A nice
application of it to the geodesic problem of a Lorentzianmanifold can be found in [31], where
a stationary spacetime (M, gL) (i.e. a spacetime endowedwith a timelike Killing vector field)
is considered. In this case, the Noether charge associated to the Killing field is used to get
a reduction of the Sobolev manifold of paths between two points p and q in M , where the
energy functional of the Lorentz metric is defined, to the infinite dimensional submanifold
Np,q of the curves with a.e. constant Noether charge. This reduction resembles the classical
Routh reduction for Lagrangian systems (see, e.g. [23, 39]) but it involves merely the paths
space and not the phase space. The roots of the idea of this infinite dimensional reduction
are in a couple of papers about geodesic connectedness of static and stationary spacetimes
admitting a global splitting [9, 30] and, indeed, some local computation in [31] and in the
present paper (see Theorem 7.6) are based on those papers.

Our goal is to show that the full variational setting in [31] admits a generalization for an
indefiniteC1 Lagrangian L on a smooth finite dimensional manifold M . We assume that L is
invariant by a one-parameter group of local diffeomorphisms whose infinitesimal generator
is a vector field K and that the associated Noether charge is a C1 function N on T M , which
is affine in each tangent space TxM :

N (x, v) = Q(v) + d(x), (1.1)

where Q and d are a one-form and a function on M , respectively. We assume also that d
is invariant by the flow of K and Q(K ) < 0 (see Assumption 2.2). Notice that in the case
of a stationary Lorentzian manifold, d = 0 and Q coincides with the one-form metrically
equivalent to the timelike Killing field K .

In Theorems 5.7 and 6.3 we obtain existence and multiplicity of weak solutions to the
Euler-Lagrange equation of the action functional of L connecting two given points on M .
The regularity of solutions is analysed in Appendix A. A key assumption in Theorem 5.7 is
c-boundedness (Definition 5.1) ofNp,q . Under conditions contained inAssumptions 2.2–2.9,
c-boundedness implies that the reduced action functional J (differently from the action) is
bounded frombelow (Proposition 5.2) and satisfies thePalais-Smale condition (Theorem5.6).
We show in Sect. 7 that c-boundedness is essentially equivalent to c-precompactness ofNp,q ,
a condition introduced in [31] which is a compactness property of the set of paths in a sublevel
of the reduced action functional. Actually, on a stationary Lorentzian manifold M , ifNp,q is
c-precompact for all c ∈ R thenM is globally hyperbolic (see [31, Proposition B1] in the case
when the timelike Killing vector field is complete and [15, Section 6.4-(a)] for any timelike
Killing vector field). On the converse, if M is globally hyperbolic with a complete smooth
Cauchy hypersurface thenNp,q is c-precompact for all c ∈ R (see [15, Theorem 5.1]). Thus,
if c-precompactness is satisfied for all c ∈ R, the spacetime M cannot be compact. Inspired
by Proposition A.3 in [31], we give a condition that implies c-precompactness of Np,q , for
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all c ∈ R and all p, q ∈ M , in our setting, and that cannot be satisfied if M is compact (see
Proposition 8.1).

The Lagrangians that we consider (see Sect. 3) include, but are not limited to,C1 stationary
Lorentzian metrics, electromagnetic type Lagrangians on a stationary Lorentzian manifold
with a Killing vector field K and K -invariant potentials (see, e.g. [6, 16, 19, 50]) and some
stationary Lorentz–Finsler metrics. Loosing speaking, a Lorentz–Finsler metric is an indef-
inite, positively homogeneous of degree two in the velocities, Lagrangian that generalizes
the quadratic form of a Lorentzian metric in the same way as the square of a Finsler metric
generalizes the square of the norm of a Riemannian metric. They were studied by K. Beem
[7] following some work by H. Busemann. Although considered from time to time in works
about anisotropy in special and general relativity (even if they often appear as the square of a
more fundamental function, positively homogeneous of degree one in the velocities, see e.g.
[13, 34, 45]), there has been a growing interest about them (or their possible generalizations
as non-degenerate Lagrangians defined on a cone bundle on M) in the last decade, see for
example [1, 10, 17, 29, 32, 33, 36, 38, 40, 44].

Some explicit examples that are covered by our present setting are Beem’s Lorentz–
Finsler metrics endowed with a timelike Killing vector field K including also their sum with
a potential function and a one-form, both invariant by the flow of K (see Example 3.6). In
particular, this class includes Lagrangians defined as

L = F2 − ω2,

introduced in [35],where F andω are, respectively, a Finslermetric and a one-formonM both
invariant by the one-parameter group of local diffeomorphisms generated by K , provided a
sign assumption on F2(K ) − ω2(K ) is satisfied, see Example 3.9. Other examples are given
by Lagrangians L that locally, i.e. on a neighborhood of the type S × (a, b) ⊂ M , can be
expressed as

L = L0 + 2(ω + d/2)dt − βdt2, (1.2)

where L0 is aC1 Tonelli Lagrangian on S, with quadratic growth in the velocities,ω, d and β

are respectively a C1 one-form on S and two C1 functions on S with β > 0 (see Example 3.1
and Proposition 7.4). We include the possibility that the Lagrangian L0 might not be twice
differentiable on the zero section of T S, but we require that it is pointwise strongly convex
(see Assumption 2.7-(ii)). Notice that the possible lack of twice differentiability of L0 at
the zero section implies that L is not twice differentiable along the line bundle defined by
K = ∂t , being t the natural coordinate on the interval (a, b). Lagrangians of the type (1.2)
on a global splitting S × R, with L0 being the square of a Finsler metric and d = 0, were
introduced in [36] when ω = 0 (see also [20]) and in [21] for ω �= 0.

Let us point out a comment about the regularity of the objects we consider in this work.
We consider a smooth, finite dimensional manifold M ; the Lagrangian L and the vector field
K are of class C1 on T M . Lorentz–Finsler Lagrangians are not twice differentiable at the
zero section of T M , hence assuming that L isC1 is motivated by that wide class of indefinite
Lagrangians. We are confident that both the regularity of L and the linearity of the Noether
charge can be further relaxed at least for the existence of a global minimizer of the reduced
action functional. This is clearly suggested by the fact that L is the sum of a Lagrangian
which is strongly convex in the velocities and a C1 Lagrangian related to the Noether charge
(see (2.7)), and that some computations of this work are more related to the sublinearity of
the Noether charge than to its expression (1.1).
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2 Notations, assumptions and preliminary results

Let M be a smooth, connected, (m + 1)-dimensional manifold, with m ≥ 1; let us denote
by T M the tangent bundle of M . Throughout the paper, we consider a (auxiliary) complete
Riemannian metric g on M and we denote by ‖·‖ : T M → R its induced norm, i.e. ‖v‖2 =
g(v, v) for all v ∈ T M .

We will often denote an element of T M as a couple (x, v), x ∈ M , v ∈ TxM (for
examplewe use such a notation in connectionwith the variables of an autonomousLagrangian
L : T M → R, i.e. we will write L = L(x, v)). On the other hand, we will avoid specifying
the point x where a one-form ω or a vector field K on M is applied, and we will write, for
example ω(v), v ∈ T M or also ω(K ). Some exceptions are possible for the sake of clarity,
and we will write then, e.g., Kx or ωx (v), v ∈ TxM and also ωx (K ). We will often explicitly
write the variable of a function on M , like in d(x), C(x), λ(x), etc. When a vector field K
on M is evaluated along a curve z : [0, 1] → M , we will write K (z). In some cases we will
look at a one-form Q on M also as a function on T M writing then Q(x, v).

Let L : T M → R be a Lagrangian onM . For any (x, v) ∈ T M , we denote by ∂vL(x, v)[·]
the vertical derivative of L , i.e. for all x ∈ M and all v,w ∈ TxM

∂vL(x, v)[w] := d

ds
L(x, v + sw)|s=0.

We need also a notion of horizontal derivative of the Lagrangian L (a derivative w.r.t. x).
Let (x0, . . . , xm) be coordinates on M and let (x0, . . . , xm, v0, . . . , vm) be the induced ones
on T M . Let (x, v) ∈ T M , with coordinates values (x0, . . . , xm, v0, . . . , vm); we define
∂x L(x, v)[·] as the v-depending one-form on M locally given by

∂x L(x, v)[w] :=
m∑

i=0

∂L

∂xi
(x, v)wi .

Remark 2.1 Even though, differently from the vertical derivative, this definition is not intrin-
sic, it fits our purposes (in the following, we will make extensively use of local arguments
in computations involving L). In particular, we denote by ‖∂x Lc(x, v)‖ and ‖∂vLc(x, v)‖
the two scalar fields on T M which are pointwise the norm of the above two linear operators
w.r.t. g.

Assumption 2.2 The Lagrangian L : T M → R satisfies the following conditions:

(i) L ∈ C1(T M);
(ii) there exists aC1 vector field K onM such that L is invariant by the one-parameter group

of local C1 diffeomorphisms generated by K (we call K an infinitesimal symmetry of
L); moreover the Noether charge, i.e. the map (x, v) ∈ T M �→ ∂vL(x, v)[K ] ∈ R, is
a function N on T M which is the sum of a C1 one-form Q on M and a C1 function
d : M → R, i.e.

N (x, v) := ∂vL(x, v)[K ] = Q(v) + d(x); (2.1)

(iii) the function d in (2.1) is invariant by the flow of K (in particular the case when d is a
constant function is compatible); moreover,

Q(K ) < 0. (2.2)

Remark 2.3 Vector fields K which are infinitesimal symmetries for L can be characterized
similarly to Killing vector fields for Finsler metrics (see, e.g., [21]). We denote by Kc the
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complete lift of K to T M , which, using Einstein summation convention, is locally defined
as:

(Kc)(x,v) = Kh(x)
∂

∂xh
+ ∂Kh

∂xi
(x)vi

∂

∂vh
. (2.3)

It follows that, if ψ is a local flow of K , then for any (x, v) ∈ T M the local flow ψc of Kc

on T M is given by ψc(t, x, v) = (
ψ(t, x), ∂xψ(t, x)[v]). Hence,

Kc(L)
(
ψc(t, x, v)

) = ∂
(
L ◦ ψc

)

∂t
(t, x, v)

and, since

∂
(
L ◦ ψc

)

∂t
(t, x, v) = 0, (2.4)

we get

Kc(L)(x, v) = Kh(x)
∂L

∂xh
(x, v) + ∂Kh

∂xi
(x)vi

∂L

∂vh
(x, v) = 0. (2.5)

Remark 2.4 Since K is an infinitesimal symmetry of L , by Noether’s theorem, the Noether
charge is constant for any weak solution z of the Euler-Lagrange equation

of the Lagrangian L , independently from the boundary conditions. This can be seen by
recalling that a weak solution z = z(s) of the Euler-Lagrange equation is aC1 curve (for fixed
end points boundary conditions, see Appendix A) that locally (i.e. in natural local coordinates
of T M) satisfies the system of equations

∂L

∂xi
(
z(s), ż(s)

) = d

ds

(
∂L

∂vi

(
z(s), ż(s)

))
, ∀i = 0, . . . ,m, (2.6)

hence from (2.5) we get

d

ds

(
∂L

∂vi

(
z(s), ż(s)

)
K i (z(s))

)

= d

ds

(
∂L

∂vi

(
z(s), ż(s)

))
Ki (z(s)) + ∂L

∂vi

(
z(s), ż(s)

)∂Ki

∂xh
(z(s))żh(s)

= ∂L

∂xi
(
z(s), ż(s)

)
K i (z(s)) + ∂L

∂vi

(
z(s), ż(s)

)∂Ki

∂xh
(z(s))żh(s) = 0.

Let us introduce a Lagrangian Lc on T M defined as

Lc(x, v) := L(x, v) − Q2(v)

Q(K )
. (2.7)

Proposition 2.5 The following statements hold:

(i) Lc ∈ C1(T M);
and, for all (x, v) ∈ T M:

(ii)

Qx (K ) = 2 (L(x, K ) − L(x, 0) − d(x)) ; (2.8)
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(iii)

Lc(x, 0) = L(x, 0),

L(x, K ) + Lc(x, K ) = 2
(
L(x, 0) + d(x)

); (2.9)

and

∂vLc(x, v)[K ] = −Q(v) + d(x), (2.10)

(iv) the flow of K preserves also Lc, i.e. K c(Lc) = 0.

Proof Statement (i) comes immediately from (2.7) and Assumption 2.2-(i). Let us prove (ii).
Let x ∈ M be a given point and let l : R → R be defined as

l(α) = L(x, αK ) − L(x, 0).

Hence, l(0) = 0 and, by Assumption 2.2-(ii), we obtain

l ′(α) = ∂vL(x, αK )[K ] = αQx (K ) + d(x).

As a consequence, the function l is equal to

l(α) = α2

2
Qx (K ) + αd(x).

Therefore, noticing that Qx (K ) = 2
(
l(1) − d(x)), we obtain (2.8). Now (iii) is a simple

consequence of (2.7) and (2.8).
Let us prove (iv). From (2.7) it is enough to prove that Q and Q(K ) are invariant by the

flow of Kc and K , respectively. Let us consider Q as a function on T M , i.e. Q(x, v) := Q(v),
thus we have to show that Kc(Q) = 0. By (2.2), Kx �= 0 for all x ∈ M , thus for each x̄ ∈ M
we can take a neighborhood U of x̄ and a coordinate system (x0, x1, . . . , xm) defined in U
such that ∂

∂x0
= K |U . Therefore, in such a coordinate system,

Q(x, v) = ∂L

∂vh
(x, v)Kh − d(x) = ∂L

∂v0
(x, v) − d(x).

Since Q and d are C1, we know that ∂L
∂v0

admits continuous partial derivatives w.r.t. the

coordinates (x0, x1, . . . , xm, v0, v1, . . . , vm) in TU . Notice also that, from (2.5), Kc(L) = 0
is equivalent to ∂L

∂x0
(x, v) = 0. Being then a constant function, ∂L

∂x0
admits zero partial

derivatives w.r.t. the coordinates (x0, x1, . . . , xm, v0, v1, . . . , vm) as well. As d is invariant
by the flow of K , we have ∂d

∂x0
= 0 on U . Thus, from (2.3), we then get

Kc(Q)(x, v) = ∂2L

∂x0∂v0
(x, v) = ∂2L

∂v0∂x0
(x, v) = 0.

Since Q(x, K ) = ∂L
∂v0

(
x, (1, 0, . . . , 0)

)
, we also have

Kc(Q(x, K )
) = K

(
Q(x, K )

) = ∂2L

∂x0∂v0

(
x, (1, 0, . . . , 0)

) = 0.

�

Remark 2.6 From (2.10) and (iv) in Proposition 2.5, we have that, like L , Lc has affine
Noether charge as well.
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Recalling Remark 2.1, the following assumption ensures some growth conditions on Lc,
often used in critical point theory for the action functional of a Lagrangian (see, e.g., [2, 8]),
and its pointwise strong convexity.

Assumption 2.7 The Lagrangian Lc : T M → R, defined as in (2.7), satisfies the following
assumptions:

(i) there exists a continuous function C : M → (0,+∞) such that for all (x, v) ∈ T M ,
the following inequalities hold

Lc(x, v) ≤ C(x)
(‖v‖2 + 1

); (2.11)

‖∂x Lc(x, v)‖ ≤ C(x)
(‖v‖2 + 1

); (2.12)

‖∂vLc(x, v)‖ ≤ C(x)
(‖v‖ + 1

); (2.13)

(ii) there exists a continuous function λ : M → (0,+∞) such that for each x ∈ M and for
all v1, v2 ∈ TxM , the following inequality holds:

(
∂vLc(x, v2) − ∂vLc(x, v1)

)[v2 − v1] ≥ λ(x)‖v2 − v1‖2; (2.14)

Remark 2.8 We notice that from (2.14) and (2.10) we obtain

Qx (K ) = Qx (K ) − Qx (0)

= (
∂vLc(x, 0) − ∂vLc(x, K )

)[K ] ≤ −λ(x)‖K‖2.
Moreover, for all (x, v) ∈ T M we have

Lc(x, v) − Lc(x, 0) =
∫ 1

0

d

ds
Lc(x, sv)ds =

∫ 1

0
∂vLc(x, sv)[v]ds

=
∫ 1

0

1

s

(
∂vLc(x, sv)[sv] − ∂vLc(x, 0)[sv]

)
ds + ∂vLc(x, 0)[v]

≥ 1

2
λ(x)‖v‖2 − ‖∂vLc(x, 0)‖‖v‖.

Thus, Lc satisfies the growth condition

Lc(x, v) ≥ Lc(x, 0) − 1

λ(x)
‖∂vLc(x, 0)‖2 + λ(x)

4
‖v‖2.

and since Lc(x, 0) = L(x, 0) and ∂vLc(x, 0) = ∂vL(x, 0) we get

Lc(x, v) ≥ L(x, 0) − 1

λ(x)
‖∂vL(x, 0)‖2 + λ(x)

4
‖v‖2. (2.15)

The next and final assumption is needed to get a compactness condition on the sublevels
of the reduced action functional (see Lemma 5.3) and then in the proof of the Palais-Smale
condition for the same functional.

Assumption 2.9 There exist four constants, c1, c2, c3, k1, k2 such that, for all x ∈ M , the
following inequalities hold:

0 < c1 ≤ λ(x), (2.16)

L(x, 0) ≥ c2 and ‖∂vL(x, 0)‖ ≤ c3, (2.17)

0 < k1 ≤ −Qx (K ), (2.18)

|d(x)| ≤ k2. (2.19)
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3 Some classes of examples

In this section we present various type of Lagrangians that satisfy Assumptions 2.2–2.9. We
start with a generalization of the Lorentz–Finsler Lagrangians studied in [21].

Example 3.1 Let S be a smooth m–dimensional manifold and M = S × R. Let gS be a
complete auxiliary Riemannian metric on S, whose associated norm is denoted by ‖·‖S , and
let g be the product metric g = gS ⊕ dt2. Let L : T M → R be a Lagrangian on M defined
as

L
(
(x, t), (ν, τ )

) = L0(x, ν) + 2
(
ω(ν) + d(x)/2

)
τ − β(x)τ 2, (3.1)

where

(i) L0 : T S → R belongs to C1(T S) and there exists a continuous positive function

 : S → (0,+∞) such that

L0(x, ν) ≤ 
(x)
(‖ν‖2S + 1

); (3.2)

‖∂x L0(x, ν)‖S ≤ 
(x)
(‖ν‖2S + 1

); (3.3)

‖∂νL0(x, ν)‖S ≤ 
(x)
(‖ν‖S + 1

); (3.4)

(ii) L0 is pointwise strongly convex, i.e. there exists a continuous function λ0 : S →
(0,+∞) such that, for all x ∈ S and all ν1, ν2 ∈ Tx S, (2.14) holds with Lc replaced
by L0, λ by λ0 and ‖ · ‖ by ‖ · ‖S ;

(iii) ω is a C1 one-form on S, d : S → R is a C1 function and β : S → (0,+∞) is a C1

positive function.

In this case, the field K = ∂t ≡ (0, 1) is an infinitesimal symmetry of L and d is invariant by
the flow of K , because it is a function on S. Notice that if L0 is the square of a Riemannian
norm on S and d = 0 then L is the quadratic form associated with the Lorentzian metric of
a standard stationary spacetime (see, e.g., [30]). Moreover, if L0 is the square of the norm
of a Riemannian metric plus a one-form ω0 on S, then they include electromagnetic type
Lagrangians on a standard stationary Lorentzianmanifoldwith an exact electromagnetic field
on S × R having a potential one-form ω0 ⊕ d(x)dt , see Remark 3.3 below.

In the next result we show that L defined as in (3.1) satisfies Assumptions 2.2–2.7 and we
give some further conditions ensuring that it also satisfies Assumption 2.9.

Proposition 3.2 A Lagrangian L defined as in (3.1), such that (i)–(iii) above hold, satisfies
Assumptions 2.2 and 2.7. Moreover, if there exist some constants b, 
1, 
2, 
3, 
4, such that
β(x) ≥ b > 0, λ0(x) ≥ 
1 > 0, L0(x, 0) ≥ 
2, ‖∂vL0(x, 0)‖ ≤ 
3 and |d(x)| ≤ 
4, for
every x ∈ S, then L satisfies Assumption 2.9.

Proof As remarked above, the vector field ∂t ≡ (0, 1) is an infinitesimal symmetry for L;
moreover, since by hypotheses L0, ω and β are of class C1, L ∈ C1(T M) as well. A direct
computation shows that

∂vL
(
(x, t), ·)[(0, 1)] = 2

(
ωx − β(x)dt

) + d(x) (3.5)

which is an affine function on T M that we denote by N . Let Q := 2(ω − βdt), hence

Q(K ) = Q
(
(0, 1)

) = −2β < 0 (3.6)
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and thus the conditions in Assumption 2.2 are satisfied. Using (2.7) with (3.6), we see that
Lc : T M → R is given by

Lc((x, t), (ν, τ )) = L0(x, ν) +
(

1√
β(x)

ω(ν) − √
β(x)τ

)2

+ 1

β(x)
ω2(ν) + d(x)

2
τ. (3.7)

Let us show that Lc satisfies (2.11), (2.12) and (2.13). By (3.2) we have

Lc((x, t), (ν, τ )) ≤ 
(x)(‖ν‖2S + 1)

+2ω2(ν)

β(x)
+ 2β(x)τ 2 + ω2(ν)

β(x)
+ d2(x)

2
+ τ 2

2
,

so setting

C((x, t)) ≡ C(x) = max

{

(x),

3‖ωx‖2S
β(x)

, 2β(x) + 1

2
,
d2(x)

2

}

(2.11) holds. Let us compute ∂(x,t)Lc:

∂(x,t)Lc
(
(x, t), (ν, τ )

)[ξ, ζ ] = ∂x L0(x, ν)[ξ ] − 2∂xω(ξ, ν)τ + dβ(ξ)τ 2

+ 4

β(x)
ω(ν)∂xω(ξ, ν) − 2

β2(x)
ω2(ν)dβ(ξ) + dd(ξ)τ,

Hence,

‖∂(x,t)Lc
(
(x, t), (ν, τ )

)‖ ≤ ‖∂x L0(x, ν)‖ + 2‖(∂xω)x‖S‖ν‖S |τ |
+‖(dβ)x‖S |τ |2 + 4

β(x)
‖(∂xω)x‖S‖ωx‖S‖ν‖2S

+ 2

β2(x)
‖ωx‖2S‖(dβ)x‖S‖ν‖2S + ‖(dd)x‖|τ |.

By (3.3) and recalling that ‖(ν, τ )‖2 = ‖ν‖2S + |τ |2, we infer the existence of a function
C : M → (0,+∞) such that (2.12) holds. Similarly, using (3.4) we obtain (2.13).

Let us show that Lc satisfies (2.14). From (3.7) we have

∂(ν,τ )Lc
(
(x, t), (ν, τ )

)[(ν1, τ1)] = ∂vL0(x, ν)[ν1]
+2

(
1√
β(x)

ω(ν) − √
β(x)τ

) (
1√
β(x)

ω(ν1) − √
β(x)τ1

)

+ 2

β(x)
ω(ν)ω(ν1) + d(x)τ1,

hence using that L0 is pointwise strongly convex we get
(
∂(ν,τ )Lc

(
(x, t), (ν2, τ2)

) − ∂(ν,τ )Lc
(
(x, t), (ν1, τ1)

))[(ν2 − ν1, τ2 − τ1)]

≥ λ0(x)‖ν2 − ν1‖2S + 4

β(x)
ω2
x (ν2 − ν1)

+2β(x)(τ2 − τ1)
2 − 4(τ2 − τ1)ωx (ν2 − ν1)

≥ λ0(x)‖ν2 − ν1‖2S + β(x)(τ2 − τ1)
2,
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thus (2.14) holds by taking

λ(x) := min{λ0(x), β(x)}. (3.8)

It remains to proveAssumption 2.9. Of course, (2.19) is trivially satisfied and if β ≥ b > 0
then by (3.6) we obtain (2.18). By (3.8), we also have (2.16) with c1 = min{
1, b}. As
L
(
(x, t), 0

) = L0(x, 0) and ∂(ν,τ )L
(
(x, t), 0

) = ∂νL0(x, 0), (2.17) is satisfied as well with
c2 = 
2 and c3 = 
3. �

Remark 3.3 A special case of a Lagrangian in Example 3.1 that satisfies our assumptions is
given by (3.1) with

L0(x, ν) = F2(x, ν) + ω0(ν) + V (x),

where V : S → R is a C1 function bounded from below, ω0 is a C1 one-form on S, such
that supx∈S ‖(ω0)x‖S < +∞, and F : T S → [0,+∞) is a C1 Finsler metric on S, i.e it is a
non-negative, C1 Lagrangian on T S, positively homogeneous of degree 1 w.r.t. ν, such that
F2 is pointwise strongly convex, i.e. it satisfies (2.14) on T S. We remark that usually in the
definition of a Finsler metric it is assumed that F2 ∈ C2(T S\0) (where 0 denotes the zero
section of T S) and its vertical Hessian, the so-called fundamental tensor gF ,

gF (x, v)[u, w] := 1

2

∂2F2

∂s∂t
(x, v + tu + sw)

∣∣∣∣
(s,t)=(0,0)

for all (x, v) ∈ T M\0 and all u, w ∈ TxM , is assumed to be positively homogeneous
of degree 0 in v and positive definite for all (x, v) ∈ T M \ 0 (see, e.g., [5]). Inequality
(2.14) for F2 on T S follows by the mean value theorem applied to the function ν ∈ T S �→
∂vF2(x, v)[ν2 − ν1], when ν1, ν2 are not collinear vectors with opposite directions or when
one of them is 0; for collinear vectors with opposite directions it follows by a continuity
argument. Notice that λ0(x) in (2.14) for F2 is then equal to

λ0(x) = 2 min
ν∈Tx S\{0}

(
min

u∈Tx S\{0} gF (x, ν)
[ u

‖u‖S ,
u

‖u‖S
])

,

and that (3.2)–(3.4) are ensured by the homogeneity of degree 2 of F2 w.r.t. ν.

We notice that Lagrangians L satisfying Assumptions 2.2–2.7 are generated by
Lagrangians Lb satisfying (2.11)–(2.14) and admitting a vector field K as an infinitesimal
symmetry with affine Noether charge Nb = Qb + d such that Qb(K ) > 0. Indeed, arguing

as in Proposition 2.5-(iv), L := Lb − Q2
b

Qb(K )
admits K as infinitesimal symmetry and its

Noether charge is

N = Nb − 2Qb = −Qb + d,

hence Lc = Lb and then, of course, Lc satisfies Assumption 2.7. This observation gives rise
to the following families of examples.

Example 3.4 Let M be a smooth (m + 1)-dimensional manifold endowed with a complete
Riemannian metric g and F , ω0, V be respectively a Finsler metric, a one-form and function
on M , all of C1 class and invariant by the flow of a nowhere vanishing vector field K on M .
Let us assume that the Noether charge associated with F2 and K is a one-form of class C1.
Let L : T M → R be given by

L = F2 + ω0 + V − Q2
F

QF (K )
, (3.9)
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and λ(x) be the positive continuous function in (2.14) for F2 on T M .

Proposition 3.5 Assume that there exist two constants c1 > 0 and a ≥ 0 such that λ(x) >

c1, and ‖(ω0)x‖ ≤ a, for all x ∈ M, V is bounded from below, inf x∈M ‖Kx‖ > 0 and
supx∈M ‖Kx‖ < +∞. Then L in (3.9) satisfies Assumptions 2.2–2.9.

Proof Set Lb = F2 + ω0 + V , then Lb admits K as an infinitesimal symmetry with affine
Noether charge

Nb = NF + ω0(K ).

Hence, the same holds for L and the one-form appearing in its Noether charge is Q = −QF .
Since ω0 is invariant by the flow of K , the Lie derivative LKω0 vanishes. In particular,
0 = LKω0(K ) = K

(
ω0(K )

)
, i.e. ω0(K ) is invariant by the flow of K . We also notice

that (QF )x (K ) = 2F2(x, K ) > 0 for all x ∈ M since, by assumption, Kx �= 0 for all
x ∈ M . Thus L satisfies Assumption 2.2. As Lc = Lb, it satisfies (2.11)–(2.13) because F2

is positively homogeneous of degree two; moreover, it satisfies also (2.14) as F2 is pointwise
strongly convex. Since L(x, 0) = V (x), and ∂vL(x, 0) = ω0, (2.17) holds; being

−Qx (K ) = (QF )x (K ) = 2F2(x, K ) ≥ c1‖K‖2x ≥ c1 inf
x∈M ‖K‖2x > 0,

and d = ω0(K ), (2.18) and (2.19) hold as well. �

The next class of examples involves Lorentz–Finsler metrics LF as defined by J. K. Beem

in [7] (see also [29, 40, 44]).

Example 3.6 Let M be a smooth manifold of dimension m + 1, and g an auxiliary complete
Riemannian metric on M . Let LF : T M → R be a Lagrangian which satisfies the following
conditions:

(i) LF ∈ C1(T M) ∩ C2(T M \ 0), where 0 denotes the zero section of T M ;
(ii) LF (x, λv) = λ2LF (x, v) for all v ∈ T M and all λ > 0;
(iii) for any (x, v) ∈ T M \ 0, the vertical Hessian of LF , i.e. the symmetric matrix

(gF )αβ(x, v) := ∂2LF

∂vα∂vβ
(x, v), α, β = 0, 1, . . . ,m,

is non-degenerate with index 1.

Let us assume that LF admits a nowhere vanishing vector field K as an infinitesimal symmetry
and that its Noether charge is equal to NLF = QLF , where QLF is a C1 one-form such that
QLF (K ) < 0. Let L = LF + ω1 + V where ω1 and V are, respectively, a C1 one-form
on M , such that supx∈M ‖(ω1)x‖ < +∞, and a C1 function, bounded from below on M .
We assume that both ω1 and V are invariant by the flow of K . Then the Noether charge of
L is N = NLF + ω1(K ) = QLF + dLF + ω1(K ). Thus, L satisfies Assumption 2.2. Let

Q := QLF ; so Lc is equal to Lc = L − Q2

Q(K )
.

Proposition 3.7 If conditions (i)–(iii) of Example 3.6 hold, then Lc satisfies Assumption 2.7.

Proof Let us show that Lc admits vertical Hessian at any (x, v) ∈ T M\0, which is a positive
definite bilinear form on TxM . We observe that for any (x, v) ∈ T M \ 0, we have

∂vvLc(x, v) = ∂vvL(x, v) − 2

Q(K )
Q ⊗ Q
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= ∂vvLF (x, v) − 2

Q(K )
Q ⊗ Q (3.10)

As for each u ∈ TxM we have

∂vvL(x, v)[K , u] = ∂2L

∂s∂t
(x, v + t K + su)

∣∣∣∣
(s,t)=(0,0)

= ∂
(
∂vL(x, v + su)[K ])

∂s

∣∣∣∣
s=0

= ∂Q(v + su)

∂s

∣∣∣∣
s=0

= Q(u), (3.11)

from (2.2) and (3.10), we get ∂vvLc(x, v)[K , K ] = −Q(K ) > 0. Let w ∈ ker Q. From
(3.11), we have ∂vvL(x, v)[w, K ] = 0, and since ∂vvL(x, v) has index 1, we also have

∂vvLc(x, v)[w,w] = ∂vvL(x, v)[w,w] > 0,

hence ∂vvLc(x, v)[·, ·] is positive definite. Reasoning as in the last part of Remark 3.3, we
deduce that (2.14) holds. From (3.10), since ∂vvLF (x, v) − 2

Q(K )
Q ⊗ Q is continuous on

T M \ 0 and positively homogeneous of degree 0 in v, we deduce (2.11)
and

C(x) = max
{

(x) + 1, V (x) + ‖(ω1)x‖2

}
,

where


(x) := max
v∈Tx M,‖v‖=1

w∈Tx M

(
1

2
∂vvLF − Q ⊗ Q

Q(K )

)
(x, v)

[
w

‖w‖ ,
w

‖w‖
]

.

Up to redefine C(x), (2.12) and (2.13) can be obtained analogously. �


In particular, Lagrangians in Example 3.6 include the class of C2 stationary Lorentzian
metrics. We also want to consider the C1 case.

Example 3.8 Let (M, gL) be a Lorentzian manifold of dimension m + 1 with C1 metric
tensor gL . Let K be a timelike Killing vector field for gL , i.e. K is a Killing vector field
such that gL(K , K ) < 0. Then (M, gL) is called a stationary Lorentzian manifold. Let
L(x, v) := gL(v, v); we notice that L ∈ C1(T M) and ∂vL(x, v)[K ] = (gL)x (·, K ), thus
Q(K ) = 2gL(K , K ) < 0. The Lagrangian Lc is equal to

Lc(x, v) = gL(v, v) − 2gL(K , v)2

gL(K , K )

and then it is equal to the square of the norm of a Riemannian metric gR (as in [31]). Thus,
Assumption 2.7 is satisfied as well (by using the same metric gR as auxiliary Riemannian
metric g), provided that gR is complete with

C(x) = max

{
2, (m + 1) max

k∈{0,...,m}

(
max

v∈Tx M �=0

∂(gR)i j

∂xk
(x)

vi

‖v‖
v j

‖v‖
)}

.

Finally, Assumption 2.9 is satisfied provided that there exists a constant k1 such that
−gL(K , K ) ≥ k1 > 0.

The following example of Lagrangians are the Lorentz–Finsler Lagrangians studied in
[35] and they can be included in the class of Example 3.6 (see Proposition 3.10).
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Example 3.9 Let M be a smooth manifold and

LF = F2 − ω2, (3.12)

where F and ω are, respectively, a Finsler metric of class C1(T M) ∩ C2(T M \ 0) and a
one-form of class C1 on M , both invariant by the flow of a nowhere vanishing vector field K
and such that the Noether charge NF associated with F2 and K is aC1 one-form, NF = QF .
Then, LF admits K as an infinitesimal symmetry and NLF = QF − 2ω(K )ω. Notice that
(QLF )x (K ) = 2

(
F2(x, K ) − ω2(K )

)
.

Proposition 3.10 Assume that QLF (K ) < 0, then ωx (K ) �= 0 for all x ∈ M and LF in
(3.12) is a Lagrangian of the type in Example 3.6.

Proof The non-trivial part of the statement is to prove (iii) in Example 3.6. For all (x, v) ∈
T M \ 0 we have:

∂vvLF (x, v)[K , K ] = ∂vvF
2(x, v)[K , K ] − 2ω2(K )

= ∂v

(
∂vF

2(x, v)[K ])[K ] − 2ω2(K ) = ∂v

(
(QF )(v)

)[K ] − 2ω2(K )

= QF (K ) − 2ω2(K ) = 2(F2(x, K ) − ω2(K )) < 0,

thus in particular we get that ωx (K ) �= 0, for all x ∈ M . Moreover for all w ∈ ker(ωx ),
w �= 0, we have

∂vvLF (x, v)[w,w] = ∂vvF
2(x, v)[w,w] − 2ω2(w)

= ∂vvF
2(x, v)[w,w] > 0.

Thus, being K transversal to ker(ω), we deduce that ∂vvLF (x, v) has index 1 for all (x, v) ∈
T M\0. �


4 The reducedmanifold of paths and action

Let L : T M → R be a Lagrangian satisfying Assumptions 2.2 and 2.7. Recalling that M is
endowed with an auxiliary complete Riemannian metric g, let us consider the set

W 1,2([0, 1], M) :=
{
z : [0, 1]→M : z is absolutely continuous and

∫ 1

0
g(ż, ż)ds<+∞

}
,

and, for any two fixed points p, q ∈ M , its subset

�1,2
p,q := {

z ∈ W 1,2([0, 1], M) : z(0) = p, z(1) = q
}
.

It is well known that since (M, g) is complete, W 1,2([0, 1], M) is a smooth, infinite dimen-
sional, complete Riemannian manifold and �

1,2
p,q is a smooth closed (hence complete)

submanifold (see, e.g., [25, Lemma 6.2]). For every z ∈ �
1,2
p,q , the tangent space Tz�

1,2
p,q

is equal to

Tz�
1,2
p,q =

{
ξ ∈ W 1,2

0 ([0, 1], T M) : ξ(s) ∈ Tz(s)M, ∀s ∈ [0, 1]
}

.

Weak solutions of (2.6) connecting the points p, q ∈ M are by definition the critical points
of the action functional A : �

1,2
p,q → R, defined as

A(z) :=
∫ 1

0
L(z, ż)ds.
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Remark 4.1 From (2.7), we have that L = Lc + Q2/Q(K ) and hence from Assumption 2.7
we get that A is C1 on �

1,2
p,q (see, e.g., the first part of the proof of Proposition 3.1 in [3]),

with differential dA(z) : Tz�1,2
p,q → R at a curve z ∈ �

1,2
p,q equal to

dA(z)[ξ ] =
∫ 1

0

(
∂x L(z, ż)[ξ ] + ∂vL(z, ż)[ξ̇ ]) ds. (4.1)

Let ξ ∈ Tz�p,q such that ξ = X ◦ z, with X a smooth vector field in M , then in natural
coordinates (x0, . . . , xm, v0, . . . , vm), of T M , the integrand function in (4.1) is given by

∂x L(z, ż)[ξ ] + ∂vL(z, ż)[ξ̇ ] = ∂L

∂xi
(z, ż)Xi (z) + ∂L

∂vi
(z, ż)

∂Xi

∂xh
(z)żh .

In the following, by an abuse of notation, we also denote by Ẋ the derivative of X(z), i.e.
∂Xi

∂xh
(z)żh .

From (2.5) we then get

∂x L(z, ż)[K ] + ∂vL(z, ż)[K̇ ] = 0, (4.2)

for all z ∈ �
1,2
p,q .

The main goal of this section is to prove that the critical points of A lay on the following
subset of �

1,2
p,q :

Np,q :=
{
z ∈ �1,2

p,q(M) : N (z, ż) is constant a.e. on [0, 1]
}

. (4.3)

For every z ∈ �
1,2
p,q , let us define

Wz :=
{
ξ ∈ Tz�

1,2
p,q : ∃μ ∈ W 1,2

0 ([0, 1],R)

such that ξ(s) = μ(s)Kz(s), a.e. on [0, 1]} .

Proposition 4.2

Np,q =
{
z ∈ �1,2

p,q : dA(z)[ξ ] = 0, ∀ξ ∈ Wz

}
.

Proof For all ξ ∈ Wz , from (4.2) we have

dA(z)[ξ ] =
∫ 1

0

(
∂x L(z, ż)[ξ ] + ∂vL(z, ż)[ξ̇ ]) ds

=
∫ 1

0
μ

(
∂x L(z, ż)[K ] + ∂vL(z, ż)[K̇ ]) ds +

∫ 1

0
μ′ ∂vL(z, ż)[K ]ds

=
∫ 1

0
μ′ ∂vL(z, ż)[K ]ds.
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As a consequence, dA(z)[ξ ] = 0 for all ξ ∈ Wz if and only if
∫ 1

0
μ′ ∂vL(z, ż)[K ]ds = 0, ∀μ ∈ W 1,2

0 ([0, 1],R),

namely if and only if ∂vL(z, ż)[K ] = N (z, ż) is constant a.e. on [0, 1]. �

Proposition 4.3 The set Np,q is a C1 closed submanifold of �

1,2
p,q . Moreover, for every z ∈

Np,q , the tangent space TzNp,q is given by

TzNp,q =
{
ξ ∈ Tz�

1,2
p,q : ∂x N (z, ż)[ξ ] + Q(ξ̇ ) is constant a.e. on [0, 1]

}
. (4.4)

Proof Let F : �
1,2
p,q → L2([0, 1],R) be defined as

F(z) := N (z, ż)

and C ⊂ L2([0, 1],R) be defined as

C := {
f ∈ L2([0, 1],R) : f (s) = const. a.e.

}
.

By the definition of Np,q given in (4.3), we have

Np,q = F−1(C).

The map F is C1 and its differential is

dF(z)[ξ ] = ∂x N (z, ż)[ξ ] + Q(ξ̇ ). (4.5)

By [37, Proposition 3, p. 28], it is enough to show that for all z ∈ Np,q and h ∈ L2([0, 1],R)

there exist ξ ∈ Tz�
1,2
p,q and c ∈ R such that

dF(z)[ξ ] = h + c. (4.6)

Therefore, let us fix z ∈ Np,q and h ∈ L2([0, 1],R). Let us consider ξ ∈ Wz ⊂ Tz�
1,2
p,q , so

there exists μ ∈ W 1,2
0 ([0, 1],R) such that ξ(s) = μ(s)K (z(s)). By (4.5), recalling that d is

invariant by the flow of K and then dd(K ) = 0, we obtain

dF(z)[ξ ] = μ
(
∂x Q(ż, K ) + Q(K̇ )

) + μ′Q(K (z)). (4.7)

Using (4.7) and recalling that by Assumption 2.2-(iii), Qx (K ) �= 0 for all x ∈ M , (4.6)
becomes an ODE in normal form with respect to μ, namely

μ′(s) + a(s)μ(s) = bc(s), (4.8)

where

a(s) = ∂x Q(ż, K ) + Q(K̇ )

Q(K (z))
and bc(s) = h(s) + c

Q(K (z))
.

Setting A(s) = ∫ s
0 a(τ )dτ, and

c = −
(∫ 1

0

eA(s)

Q(K (z))
ds

)−1 (∫ 1

0

eA(s)h(s)

Q(K (z))
ds

)
,
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a solution of (4.8) which satisfies the boundary conditions μ(0) = μ(1) = 0 is given by

μ(s) = e−A(s)
∫ s

0
bc(s)e

A(τ )dτ.

Thus, for every z ∈ Np,q and h ∈ L2([0, 1],R), there exist ξ ∈ Tz�
1,2
p,q and c ∈ R such that

(4.6) holds, hence Np,q is a C1 submanifold of �
1,2
p,q .

By the previous part of the proof, for all z ∈ Np,q , TzNp,q is identified with the set of
all ζ such that dF(z)[ζ ] ∈ TF(z)C. Then, (4.4) follows from (4.5) and the fact that TF(z)C is
identified with the set of constant functions on [0, 1].

It remains to show thatNp,q is closed. Let (zn)n ⊂ Np,q ⊂ �
1,2
p,q be a sequence converging

to z ∈ �
1,2
p,q . Up to considering a subsequence, we have that N (zn, żn) converges pointwise

to N (z, ż), so N (z, ż) is constant a.e. on [0, 1], i.e. z ∈ Np,q . �


Lemma 4.4 For each z ∈ Np,q , Tz�
1,2
p,q = Wz ⊕ TzNp,q .

Proof It is enough to show that for each ζ ∈ Tz�
1,2
p,q there exists μ ∈ W 1,2

0 ([0, 1],R) such
that

ξ := ζ − μK (z) ∈ TzNp,q .

By (4.4), this amounts to prove that there exist μ ∈ W 1,2
0 ([0, 1],R) and a constant c ∈ R

such that

∂x N (z, ż)[ξ ] + Q(ξ̇ ) = c, a.e. on [0, 1],
which is equivalent to

∂x N (z, ż)[ζ ] + Q(ζ̇ ) − μ
(
∂x Q(ż, K ) + Q(K̇ )

) − μ′Q(K (z)) = c, (4.9)

a.e. on [0, 1]. Arguing as in the proof of Proposition 4.3, we see that (4.9) admits a solution
μ ∈ W 1,2

0 ([0, 1],R) for a certain constant c, and we are done. �

Definition 4.5 The reduced action functional J is the restriction of the functional A to the
manifold Np,q , i.e. J : Np,q → R, J = A

∣∣Np,q
.

Remark 4.6 Being A ∈ C1(�
1,2
p,q), we get that J is C1 on Np,q as well.

Theorem 4.7 A curve z ∈ �
1,2
p,q is a critical point for A if and only if z ∈ Np,q and z is a

critical point for J .

Proof Let us assume that z is a critical point for A. Then dA(z)[ξ ] = 0 for all ξ ∈ Wz ⊂
Tz�

1,2
p,q and by Proposition 4.2 we have z ∈ Np,q . Since TzNp,q ⊂ Tz�

1,2
p,q ,

dJ (z)[ξ ] = dA(z)[ξ ] = 0, ∀ξ ∈ TzNp,q ,

so z is a critical point for J .
Now, let us assume that z ∈ Np,q and z is a critical point for J . By Lemma 4.4, for every

ζ ∈ Tz�
1,2
p,q there exist ξ ∈ TzNp,q and ψ ∈ Wz such that ζ = ψ + ξ . By Proposition 4.2,

we have dA(z)[ψ] = 0, while dA(z)[ξ ] = dJ (z)[ξ ] = 0 because z is a critical point for J .
Therefore, dA(z)[ζ ] = dA(z)[ψ] + dA(z)[ξ ] = 0, namely z is a critical point for A. �
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5 Lower boundedness and Palais-Smale condition for the reduced
action

Let us give a condition on the manifold Np,q implying that J is bounded from below and
satisfies the Palais-Smale condition. For every c ∈ R, we denote by J c the sublevel of J ,
namely

J c := {
z ∈ Np,q : J (z) ≤ c

}
.

Definition 5.1 We say that Np,q is c-bounded if J c �= ∅ and

Nc := sup
z∈J c

|N (z, ż)| < +∞.

Proposition 5.2 Under Assumptions 2.2–2.9, let c ∈ R such that Np,q is c-bounded. Then,
J is bounded from below.

Proof By (2.7) and (2.15), we obtain

J (z) =
∫ 1

0
L(z, ż)ds

≥
∫ 1

0

(
λ(z)

4
‖ż‖2+L(z, 0)− 1

λ(z)
‖∂vL(x, 0)‖2

)
ds+

∫ 1

0

Q2(ż)

Q(K (z))
ds (5.1)

Since Np,q is c-bounded and using (2.19), for every z ∈ J c we have

Q2(ż) = (
N (z, ż) − d(x)

)2 ≤ 2(N 2
c + k22) (5.2)

thus, using (2.17) and (2.18) we have

J (z) ≥ c2 − c23
c1

− 2(N 2
c + k22)

k1,

and the thesis follows. �

We show now that c-boundedness and Assumptions 2.2–2.9 imply a compactness condi-

tion for the sublevels of J .

Lemma 5.3 Let c ∈ R be such that Np,q is c-bounded. If Assumptions 2.2–2.9 hold, then
every sequence (zn)n ⊂ J c admits a uniformly convergent subsequence.

Proof From (5.1) and Assumption 2.9, if Np,q is c-bounded we have

c ≥ J (zn) ≥ c1
4

∫ 1

0
‖żn‖2ds + c2 − c23

c1
− 2(N 2

c + k22)

k1
,

hence the sequence ‖żn‖ is bounded in L2([0, 1]). Then, denoting by dg the distance induced
by the metric g, by the Cauchy-Schwarz inequality we have

dg(zn(s2), zn(s1)) ≤
∫ s2

s1
‖żn‖ds ≤ |s2 − s1|1/2

(∫ 1

0
‖żn‖2ds

)1/2

,

for all 0 ≤ s1 ≤ s2 ≤ 1. Thus, (zn) is uniformly bounded and uniformly equicontinuous and,
being (M, g) complete, by the Ascoli-Arzelà theorem there exists a uniformly convergent
subsequence. �
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Definition 5.4 A sequence (zn)n ⊂ J c is said a Palais-Smale sequence forJ if dJ (zn) → 0
strongly. We say that J satisfies the Palais-Smale condition on J c if every Palais-Smale
sequence (zn)n ⊂ J c admits a strongly converging subsequence.

Remark 5.5 We point out that if Assumptions 2.2–2.9 hold and Np,q is c-bounded, then J
is bounded on any sequence (zn) ⊂ J c by Proposition 5.2, as it is required in the usual
definition of the Palais-Smale condition.

Theorem 5.6 Under Assumptions 2.2–2.9, assume also that Np,q is c-bounded. Then J
satisfies the Palais-Smale condition on J c.

Proof Let (zn)n ⊂ J c be a Palais-Smale sequence for J . By Lemma 5.3, there exists
a subsequence, still denoted by (zn)n , which uniformly converges to a continuous curve
z : [0, 1] → M such that z(0) = p and z(1) = q .

Let us nownotice that byLemma4.4, and taking into account that the supports of the curves
zn are in a compact subset of M , if ζn ∈ Tzn�

1,2
p,q is bounded in H1 norm then there exist

two bounded sequences ξn ∈ TznNp,q and μn ∈ H1
0 ([0, 1],R) such that ζn = ξn + μnKzn .

By Proposition 4.2 and since zn is a Palais-Smale sequence, we obtain

dA(zn)[ζn] = dA(zn)[ξn] + dA(zn)[μnKzn ] = dJ (zn)[ξn] → 0.

We now apply a localization argument as in [2, Appendix A]; thus, we can assume that the
Lagrangian L is defined on [0, 1] ×U ×R

m+1, withU an open neighborhood of 0 in Rm+1.
Moreover, we can identify (zn)n with a sequence in the Sobolev space H1([0, 1],U ). By
Lemma 5.3, taking into account that the curves zn have fixed end-points, we get that (zn)n
is bounded in H1([0, 1],U ) and so it admits a subsequence, still denoted by (zn), which
weakly and uniformly converges to a curve z ∈ H1([0, 1],Rm+1) which also satisfies the
same fixed end-points boundary conditions. Thus, being zn − z bounded in H1, we have
dA(zn)[zn − z] → 0, i.e.

∫ 1

0
∂x Lc(zn, żn)[zn − z]ds +

∫ 1

0
∂vLc(zn, żn)[żn − ż]ds

−
∫ 1

0

2Q(żn)∂x Q(żn, zn − z)


(zn)
ds −

∫ 1

0

2Q(żn)Q(żn − ż)


(zn)
ds

+
∫ 1

0

Q2(żn)d
(zn)[żn − ż]

2(zn)

ds −→ 0,

where 
(x) := −Qx (K ). From (2.12),
∣∣∂x Lc(zn, żn)[zn − z]∣∣ ≤ C(zn)

(‖żn‖2 + 1
)‖zn − z‖,

thus, recalling that C is continuous and zn − z uniformly converges to 0, the first integral
in the above expression converges to 0. Since the sequence Q(żn) is uniformly bounded on
[0, 1] (recall (5.2)) and, from (2.18), 0 < 1/
(zn) < 1/k1, the third term above converges
to 0 because żn is bounded in L1 and zn − z → 0 uniformly. Analogously the fourth term
goes to 0 since zn converges uniformly to z and żn − ż → 0 weakly in H1. For estimating
the fifth term, taking into account that Q2(żn) is uniformly bounded on [0, 1], we observe
that d
(zn) → d
(z) in operator norm and then

∫ 1

0

d
(zn)[żn − ż]

2(zn)

ds =
∫ 1

0

(
d
(zn) − d
(z)

)[żn − ż]

2(zn)

ds +
∫ 1

0

d
(z)[żn − ż]

2(zn)

ds,
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and both the above integrals goes to 0, because żn − ż, in the first one, is bounded in L1 and,
in the second one, weakly converges to 0 in H1. Thus, we have obtained that

∫ 1

0
∂vLc(zn, żn)[żn − ż]ds −→ 0. (5.3)

Using that zn pointwise converges to z and żn is bounded in L1, from (2.13) and Lebesgue’s
dominated convergence theorem we get

∫ 1

0
∂vLc(zn, ż)[żn − ż]ds −

∫ 1

0
∂vLc(z, ż)[żn − ż]ds −→ 0.

As żn − ż → 0 weakly in H1, also
∫ 1
0 ∂vLc(z, ż)[żn − ż]ds → 0, and then from the above

limit
∫ 1

0
∂vLc(zn, ż)[żn − ż]ds −→ 0. (5.4)

From (2.16), (5.3) and (5.4) we then get

c1
4

∫ 1

0
|żn − ż|2ds ≤

∫ 1

0

(
∂vLc(zn, żn) − ∂vLc(zn, ż)

)[żn − ż]ds −→ 0,

which implies that zn → z strongly in H1. Moreover, there exists a subsequence such that
żn(s) → ż(s) a.e. on [0, 1] and then

N
(
zn(s), żn(s)

) → N
(
z(s), ż(s)

)
, a.e. on [0, 1],

so that also N (z, ż) is constant a.e. on [0, 1], i.e. z ∈ Np,q as required. �

From Propositions 5.2 and Theorem 5.6, J is bounded from below and satisfies the Palais-
Smale condition onJ c. SinceNp,q is only aC1 submanifold of�1,2

p,q (recall Proposition 4.3)
then the exponential map of its infinite dimensional Riemannian structure is not well-defined,
andwe cannot invoke Ekeland’s variational principle to conclude that a minimizer ofJ exists
(see [25, Proposition 5.1]). Anyway, from [48, Theorem 3.1] (which, nevertheless, is based
on Ekeland’s variational principle) or as a straightforward consequence of the noncritical
interval theorem (see [22, Theorem (2.15)]), we actually get the existence of a minimizer of
J . Summing up, we have the following result:

Theorem 5.7 Let L : T M → R be an indefinite Lagrangian satisfying Assumptions 2.2–2.9.
Assume also that Np,q is c-bounded, for some c ∈ R. Then there exists a curve z ∈ Np,q

which minimizes J and it is then a critical point of A on �
1,2
p,q .

Remark 5.8 The critical points of A on �
1,2
p,q , whose existence is ensured by Theorem 5.7,

satisfy the Euler-Lagrange equation (2.6) in weak sense. We will show in Appendix A that
they also satisfy it in classical sense.

6 Multiplicity of critical points

In this section we obtain a multiplicity result for critical points of the functional A by using
Ljusternik-Schnirelmann theory, provided that M is a not contractible. Let us recall the
definition of Ljusternik-Schnirelmann category. Let A be a non-empty subset of a topological
space B; the Lusternik-Schnirelman category of a A, denoted by catB(A), is the least integer

123



   39 Page 20 of 33 E. Caponio, D. Corona

n such that A can be covered n closed contractible (in B) subsets of B. If no such a number
exists then catB(A) = +∞. If A = ∅, we set catB A = 0. We denote catB(B) with cat(B).

By [26, Proposition 3.2], we know that if M is a non-contractible manifold then
cat(�1,2

p,q) = +∞. This fact can be exploited together with the following proposition, which
is a straightforward corollary of [22, Theorem (3.6)] and allows to prove the multiplicity of
critical points for a functional of class C1 defined on a manifold with the same regularity, as
it is in our setting.

Theorem 6.1 (Corvellec-Degiovanni-Marzocchi) LetM be a (possibly infinite dimensional)
C1 Riemannian manifold and f : M → R be a bounded from belowC1 functional satisfying
the Palais-Smale condition.

Then f has at least cat(M) critical points.Moreover, if cat(M) = +∞ then sup f = +∞
and there exists a sequence (cm)m of critical values such that cm → +∞.

Remark 6.2 Actually [22,Theorem (3.6)] is stated for a continuous functional f on a complete
metric space X with a critical point defined by using the notion of weak slope introduced in
[24]. Points with vanishing weak slope are standard critical points if f is a C1 functional on
a Riemannian manifold. The metric space must also be weakly locally contractible, meaning
that each x ∈ X admits a neighborhood contractible in X . Notice that if X is weakly locally
contractible then, for each x ∈ X , catX ({x}) = 1. A C1 Riemannian manifold is clearly
weakly locally contractible (it is enough to take a small neighborhood of x diffeomorphic
to a ball in the model Hilbert space). Thus, for example, both �

1,2
p,q and Np,q are weakly

locally contractible, the latter a fortiori being also a strong deformation retract of �
1,2
p,q if K

is complete (see Proposition 6.4). Finally, we notice that in [22] the definition of Ljusternik-
Schnirelman category is given with open coverings instead of closed one. This is equivalent
to the definition with closed coverings in every ANR space; since metrizable manifolds are
ANR (see [43, Theorem 5]), the two definitions are then equivalent for Np,q .

Let us now state the main result of this section.

Theorem 6.3 Let M be a non-contractible manifold and L : T M → R a Lagrangian that
satisfies Assumptions 2.2–2.9. If K is a complete vector field and Np,q is c-bounded for all

c ∈ R, then there exists a sequence (zn)n∈N ⊂ �
1,2
p,q of critical points of A such that

lim
n→∞A(zn) = +∞.

Like in the existence result given in Theorem 5.7, we cannot work directly on �
1,2
p,q to

prove Theorem 6.3, whereA is not bounded from below and does not satisfy the Palais-Smale
condition, but we have to restrict our analysis on Np,q .

Let us first show that when K is complete thenNp,q is a strong deformation retract of�1,2
p,q

(so that the Ljusternik-Schnirelmann category is preserved), namely there exists a homotopy
H : �

1,2
p,q × [0, 1] → �

1,2
p,q such that, for all z ∈ �

1,2
p,q , w ∈ Np,q and t ∈ [0, 1], we have

H(z, 0) = z, H(z, 1) ∈ Np,q and H(w, t) = w. Next proposition extends [31, Proposition
5.9] from stationary Lorentzian manifold to our setting.

Proposition 6.4 Assume that K is a complete vector field, thenNp,q is a strong deformation

retract of �1,2
p,q .

In the proof of Proposition 6.4, it will be useful the following preliminary result.
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Lemma 6.5 Let the vector field K be complete and let ψ : R × M → M be its flow. Then,
for every z ∈ �

1,2
p,q there exists a uniquely defined function φ ∈ H1

0 ([0, 1],R) such that

ψ
(
φ(·), z(·)) ∈ Np,q . (6.1)

Moreover, defining � : �
1,2
p,q → Np,q as

(
�(z)

)
(s) := ψ

(
φ(s), z(s)

)
,

the function � is C1.

Proof Let z ∈ �
1,2
p,q and, for each φ ∈ H1

0 ([0, 1],R), let us denote by w : [0, 1] → M the
curve

w(s) = ψ(φ(s), z(s)) (6.2)

We want to find φ ∈ H1
0 ([0, 1],R) such that w ∈ Np,q , hence w(0) = p, w(1) = q and

N (w, ẇ) = C, a.e. on [0, 1], (6.3)

for some constant C ∈ R. By differentiating (6.2), we get

ẇ(s) = ∂tψ(φ(s), z(s))φ′(s) + ∂xψ(φ(s), z(s))[ż(s)].
Substituting this expression in (6.3) and recalling that N = Q + d , we get

φ′(s)Qw(s)
(
∂tψ

(
φ(s), z(s)

)) + Qw(s)
(
∂xψ(φ(s), z(s))[ż(s)]) + d

(
w(s)

)

= φ′(s)Qw(s)
(
∂tψ

(
φ(s), z(s)

)) + N
(
w(s), ∂xψ(φ(s), z(s))[ż]) = C (6.4)

which, for each z ∈ �
1,2
p,q , can be seen as a differential equation for φ.

Let us rewrite (6.4) in order to get a simpler equation. Since ψ = ψ(t, x) is the flow
generated by K , we have

∂tψ(φ, z) = K (ψ(φ, z)) = K (w). (6.5)

Using the group property ψ(t1, ψ(t2, x)) = ψ(t1 + t2, x), and (6.5) we also obtain

∂xψ(φ, z)[K (z)] = K (w). (6.6)

Moreover, recalling (2.4), for every v ∈ Tz(s)M we have

L(z(s), v) = L(w(s), ∂xψ(φ(s), z(s))[v]),
thus

∂vL(z(s), v)[K ] = ∂vL(w(s), ∂xψ
(
φ(s), z(s))[v])[∂xψ(φ(s), z(s))[K ]].

By (2.1) and (6.6), the last equality becomes

N (z(s), v) = N
(
w(s), ∂xψ(φ(s), z(s))[v]), ∀v ∈ Tz(s)M . (6.7)

Substituting v with ż in (6.7), we get

N (z(s), ż(s)) = N
(
w(s), ∂xψ(φ(s), z(s))[ż]). (6.8)

Recalling that Q(K ) is invariant by the flow (see the proof of Proposition 2.5-(iv)), by (6.5)
we have

Qw(s)
(
∂tψ

(
φ(s), z(s)

)) = Qw(s)(K ) = Qz(s)(K ). (6.9)
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Thus, from (6.8) and (6.9), (6.4) becomes

φ′Q(K (z)) + N (z, ż) = C

and since by Assumption 2.2, Q(K (z)) is different from 0, we get

φ′ = C − N (z, ż)

Q(K (z))
. (6.10)

Hence, φ can be obtained as the solution of (6.11) with initial condition φ(0) = 0 and, by
setting

∫ 1
0 φ′(s)ds = 0, we can ensure that φ(1) = 0 by taking

C =
(∫ 1

0

N (z, ż)

Q(K (z))
ds

) (∫ 1

0

ds

Q(K (z))

)−1

. (6.11)

The fact that � is C1 is a simple consequence of the C1-regularity of N and (6.10). �

Proof of Proposition 6.4 By Lemma 6.5, for every z ∈ �

1,2
p,q , we consider φ ∈ H1

0 ([0, 1],R)

(depending on z and univocally defined as shown in Lemma 6.5), such that (6.1) holds. Then,
let us define H : �

1,2
p,q × [0, 1] → �

1,2
p,q as

H(z, t) := ψ(tφ, z).

Notice that H(·, 0) is the identity map on �
1,2
p,q , and H(�

1,2
p,q , 1) ⊂ Np,q . If w ∈ Np,q , then

N (w, ẇ) is constant and recalling that φ satisfies (6.10) with C given by (6.11), we get that
the corresponding φ is the zero function, hence H(w, t) = w for all t ∈ [0, 1]. �


We can now prove Theorem 6.3.

Proof of Theorem 6.3 Since the Ljusternik-Schnirelmann category is a homotopy invariant,
by Proposition 6.4 and [26, Proposition 3.2], we have cat(Np,q) = cat(�1,2

p,q) = +∞. From
Theorem 5.6, J satisfies the Palais-Smale condition on J c for every c ∈ R and, then, on
Np,q (recall Remark 5.5). Hence, by Theorem 6.1, there exists a sequence (zn)n ⊂ Np,q of
critical points of J such that J (zn) → +∞. By Theorem 4.7, every critical point of J is a
critical point of A, and A(zn) = J (zn). �


7 c-precompactness and c-boundedness

In light of Theorems 5.7 and 6.3, it becomes important to give conditions ensuring the c-
boundedness of Np,q . We firstly need the following definition, introduced in [31].

Definition 7.1 Let c be a real number. The set Np,q is said to be c-precompact if every
sequence (zn)n ⊂ J c has a uniformly convergent subsequence. We say that J is pseudoco-
ercive if Np,q is c-precompact for all c ∈ R.

We are going to show that c-boundedness and c-precompactness are essentially equivalent
properties for Lagrangians admitting a local expression of “product” type (see (7.1) below).
As a first step, we notice that Lemma 5.3 immediately gives one of the implications in the
equivalence.

Proposition 7.2 Let Assumptions 2.2–2.9 hold. IfNp,q is c-bounded, then it is c-precompact.

The converse implication holds if L admits a local structure of the type in (3.1), so we give
the following definition.
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Definition 7.3 We say that L admits a stationary product type local structure if for every
point p ∈ M there exist an open precompact neighborhood Up ⊂ M of p, a manifold with
boundary Sp, an open interval Ip = (−εp, εp) ⊂ R, and a diffeomorphismφ : Sp× Ip → Up

such that, named t the natural coordinate of Ip ,

φ∗(∂t ) = K
∣∣
Up

,

and for all
(
(x, t), (ν, τ )

) ∈ T (Sp × Ip) we have

L ◦ φ∗
(
(x, t), (ν, τ )

) = L0(x, ν) + 2
(
ω(ν) + d(x)/2

)
τ − β(x)τ 2, (7.1)

where

• L0 ∈ C1(T Sp) is a Lagrangian on Sp which satisfies (3.2)–(3.4) with respect to the norm
‖ · ‖Sp of the metric induced on Sp by the auxiliary Riemannian metric on M , and it is
pointwise strongly convex, i.e. it satisfies (2.14) on T Sp (with Lc replaced by L0 and
‖ · ‖ by ‖ · ‖Sp ), for a continuous function λ : Sp → (0,+∞);

• ω is a C1 one-form on Sp;
• d : Sp → R is a C1 function;
• β : Sp → (0,+∞) is a positive C1 function.

Notice that Definition 7.3 is satisfied for L(v) = gL(v, v), where gL is a C1 Lorentzian
metric on M having a timelike Killing vector field K ; in such a case Sp is a spacelike
hypersurface in M , L0 is the Riemannian metric induced on it by gL , β(x) = −gL(Kx , Kx )

and ω is the one-form metrically equivalent to the orthogonal projection of K on T Sp and
d ≡ 0 (see, e.g., [31, Appendix C]). The next result shows that it is satisfied as well by a
Lagrangian fulfilling Assumptions 2.2–2.7.

Proposition 7.4 Let L : T M → R satisfy Assumptions 2.2 and 2.7. Then it admits a station-
ary product type local structure.

Proof Let us denote by D the distribution in T M generated by the kernel of Q, i.e. for all
z ∈ M , Dz = ker Qz . Notice that by (2.2), D has constant rank equal to m (recall that
dim(M) = m + 1). Let z̄ ∈ M and Sz̄ be a smooth hypersurface (with boundary) in M
such that z̄ ∈ Sz̄ and Tz̄ Sz̄ = Dz̄ . We endow Sz̄ with the Riemannian metric induced by the
auxiliary Riemannian metric g on M and let us denote its norm with ‖ · ‖Sz̄ . From (2.2), up to
shrink Sz̄ , we can assume that for all x ∈ Sz̄ , Kx is transversal to Sz̄ , i.e. TxM = Tx Sz̄ ⊕[Kx ].
Using (2.7), we get

∂vL(x, ν) = ∂vLc(x, ν) + 2

Q(K )
Q(ν)Qx ,

for all (x, ν) ∈ T Sz̄ . In particular, ∂vL(z̄, ν) = ∂vLc(z̄, ν) for all ν ∈ Tz̄ Sz̄ . Considering a
smaller hypersurface Sz̄ such that

λ0 := min
x∈Sz̄

(
λ(x) + 2

Q(K )
max‖ν‖Sz̄=1

Q2
x (ν)

)
> 0, (7.2)

for all (x, ν1), (x, ν2) ∈ T Sz̄ we have
(
∂vL(x, ν2) − ∂vL(x, ν1)

)[ν2 − ν1]
= (

∂vLc(x, ν1) − ∂vLc(x, ν2)
)[ν2 − ν1]

+ 2

Q(K )
Q2(ν2 − ν1) ≥ λ0‖ν2 − ν1‖2Sz̄ .
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Let L0 = L|T Sz̄ ; the above inequality gives then (2.14) for L0 on T Sz̄ . Since L0(x, ν) =
Lc(x, ν) + Q2

x (ν)

Qx (Kx )
and Lc satisfies (2.11)–(2.13), we also have that L0 satisfies (3.2)–(3.4).

Let us now evaluate d
ds L(x, y + sτK ), for any y ∈ TxM , x ∈ M , and τ ∈ R:

d

ds
L(x, y + sτK ) = ∂vL(x, y + sτK )[τK ] = τ∂vL(x, y + sτK )[K ]

= τ
(
Q(y + sτK ) + d(x)

) = τ
(
Q(y) + sτQ(K ) + d(x)

)
.

Hence, integrating w.r.t. s between 0 and 1 we get

L(x, y + τK ) − L(x, y) = τ
(
Q(y) + d(x)

) + 1

2
τ 2Q(K ). (7.3)

Let now w ∈ TxM , x ∈ Sz̄ , and wS ∈ Tx Sz̄ , τw ∈ R such that w = wS + τwKx . From (7.3)
we get

L(x, w) = L(x, wS + τwK )

= L(x, wS) + τw

(
Q(wS) + d(x)

) + 1

2
τ 2wQ(K )

= L0(x, wS) + τw

(
Q(wS) + d(x)

) + 1

2
τ 2wQ(K ). (7.4)

Thus, we get an expression of the type at the right-hand side of (7.1) on Sz̄ by defining ω as
the one-form induced by Q/2 on Sz̄ and β(x) := −Q(K )/2. Since L is invariant by the flow
of Kc we then obtain (7.1) on Sz̄ × Iz̄ , for some open interval Iz̄ containing 0, by taking φ as
the restriction to Sz̄ × Iz̄ of the flow ψ of K adapted to Sz̄ , i.e. such that Sz̄ = ψ(Sz̄ ×{0}). �

Remark 7.5 Notice that if the distribution D generated by the kernel of Q is integrable then
we can take in the above proof Sz̄ equal to an integral manifold of D. In this case the local
expression of L simplifies to

L ◦ φ∗
(
(x, t), (ν, τ )

) = L0(x, ν) + d(x)τ − β(x)τ 2.

This can be considered as a generalization of the notion of a static Lorentzian metric to an
indefinite Lagrangian admitting an infinitesimal symmetry satisfying Assumptions 2.2–2.7
(compare also with [20, 21]).

By Proposition 7.4 we obtain the following generalization of [31, Lemma 4.1].

Theorem 7.6 Let Assumptions 2.2 and 2.7 hold. IfNp,q is c-precompact then it is c-bounded.

Proof Let (zn)n ⊂ J c be a sequence such that

lim
n→∞ |N (zn, żn)| = sup

z∈J c
|N (z, ż)|.

Moreover, let (Czn )n ⊂ R be the sequence of real numbers such that for all n

Czn = 1

2
N

(
zn(s), żn(s)

)
, a.e. in [0, 1].

To obtain the thesis, it suffices to prove that Czn is bounded. SinceNp,q is c-precompact we
can assume, up to pass to a subsequence, that zn converges uniformly to a curve z ∈ J c. We
can then assume that there exists a finite number of neighborhoods Uk , with k = 1, . . . , N ,
that cover z([0, 1]) such that, for some finite sequence 0 = a0 < a1 < · · · < aN = 1,
zn([ak−1, ak]) ⊂ Uk , for all n sufficiently large and for all k = 1, . . . , N . Moreover, by
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Proposition 7.4, in each domain Uk we can identify L with L ◦ (φk)∗ so that L , evaluated
along a curve z(s) = (

x(s), t(s)
)
contained in Uk , is given by

L(z, ż) = L0,k(x, ẋ) + 2
(
ωk(ẋ) + dk(x)/2

)
ṫ − βk(x)ṫ

2,

(here we are not writing the point where the one-forms ωk are applied). Up to replace each
Uk by a precompact open subset, we can assume that

max
k

(‖ωk‖) = max
k

(
sup

‖y‖=1
y∈TUk

|ωk(y)|
)

= D0 < +∞, (7.5)

and

max
k

(
sup
x∈Uk

|dk(x)|
) = D1 < +∞, (7.6)

reminding that ‖y‖ = √
g(y, y), where g is the auxiliary Riemannian metric. Analogously,

we have

� = max
k

(
sup

m1,m2∈Uk

|tk(m1) − tk(m2)|
)

< +∞

and there also exist two constants ν, μ such that

0 < ν ≤ βk ≤ μ, for all k ∈ {1, . . . , N }.
In the following, we write L0,k , ωk , dk and βk without the index k. In this local charts, let
zn(s) = (

xn(s), tn(s)
)
. As for (3.1) and (3.5), we have N (zn, żn) = 2ω(ẋn)− 2β ṫn + d(xn).

Hence,

ṫn = ω(ẋn) + d(xn)/2 − Czn

β(xn)
. (7.7)

Defining T k
n = tn(ak) − tn(ak−1), we have

T k
n =

∫ ak

ak−1

ṫnds =
∫ ak

ak−1

ω(ẋn) + d(xn)/2 − Czn

β(xn)
ds. (7.8)

Therefore, the quantity

bkn :=
∫ ak

ak−1

ds

β(xn(s))
.

is well-defined and finite. Moreover,

ak − ak−1

μ
≤ bkn ≤ ak − ak−1

ν
. (7.9)

From (7.8) we obtain

Czn = 1

bkn

(∫ ak

ak−1

ω(ẋn) + d(xn)/2

β(xn)
ds − T k

n

)
. (7.10)

By (7.5), we have |w(ẋn)| ≤ D0‖ẋn‖. As a consequence, using also (7.6), |T k
n | ≤ � and

(7.9), from (7.10) we have

|Czn | <
(D0 + D1)μ

ν(ak−1 − ak)

∫ ak

ak−1

‖ẋn‖ds + μ�

ak−1 − ak
. (7.11)
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By (7.11), to prove that Czn is bounded, and thus to prove the theorem, it suffices to show
that

sup
n

∫ 1

0
‖ẋn‖ds < +∞. (7.12)

To this end, recall that by (7.7) we have

L
(
(xn, tn), (ẋn, ṫn)

) = L0(xn, ẋn) + 2
(
ω(ẋn) + d(xn)/2

)
ṫn − β(xn)ṫ

2
n

= L0(xn, ẋn) +
(
ω(ẋn) + d(xn)/2

)2 − C2
zn

β(xn)
,

therefore, using also (7.10) we obtain
∫ ak

ak−1

L
(
(xn, tn), (ẋn, ṫn)

)
ds =

∫ ak

ak−1

L0(xn, ẋn)ds

+
∫ ak

ak−1

(
ω(ẋn) + d(xn)/2

)2

β(xn)
ds − 1

bkn

(∫ ak

ak−1

ω(ẋn) + d(xn)/2

β(xn)
ds

)2

+2T k
n

bkn

∫ ak

ak−1

ω(ẋn) + d(xn)/2

β(xn)
ds − (T k

n )2

bkn
. (7.13)

By the Schwartz inequality in L2, we obtain
(∫ ak

ak−1

ω(ẋn) + d(xn)/2

β(xn)
ds

)2

≤
(∫ ak

ak−1

ds

β(xn)

) ∫ ak

ak−1

(
ω(ẋn) + d(xn)/2

)2

β(xn)
ds

= bkn

∫ ak

ak−1

(
ω(ẋn) + d(xn)/2

)2

β(xn)
ds.

Hence, from (7.13) we obtain
∫ ak

ak−1

L
(
(xn, tn), (ẋn, ṫn)

)
ds ≥

∫ ak

ak−1

L0(xn, ẋn)ds

+2T k
n

bkn

∫ ak

ak−1

ω(ẋn) + d(xn)/2

β(xn)
ds − (T k

n )2

bkn
. (7.14)

Since L0 is the Lagrangian in a stationary product type local structure, as for (2.15), we
deduce that there exist two positive constants 
1, 
2 ∈ R such that, for all the domainsUk of
the charts, we have

L0(xn, ẋn) ≥ 
1‖ẋn‖2 − 
2.

Since dk , T k
n and 1/bkn are bounded for each k, we obtain the existence of two positive

constants E1, E2 (depending on ν, μ,�, D0, D1, 
2) such that

c ≥ J (zn) =
∫ 1

0
L(xn, żn)ds =

N∑

k=1

∫ ak

ak−1

L
(
(xn, tn), (ẋn, ṫn)

)
ds

≥ 
1

∫ 1

0
‖ẋn‖2ds − E1

∫ 1

0
‖ẋn‖ds − E2.
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As a consequence, (7.12) holds and by (7.10) we conclude that Np,q is c-precompact. �

Remark 7.7 If Np,q is c-precompact, then there exists a compact subset of M that contains
the images of all curves in J c. Therefore, Assumption 2.9 holds on such a compact set.

From Theorem 7.6, Remark 7.7, Theorems 5.7, 6.3 we deduce the following corollary.

Corollary 7.8 Let L : T M → R satisfy Assumptions 2.2 and 2.7. IfNp,q is c-precompact for
some c ∈ R such that J c �= ∅, then J c is bounded from below and it admits a minimizer
which is critical point of A.

Moreover, if J is pseudocoercive, K is complete, and M is a non-contractible manifold,
then Np,q �= ∅ and there exists a sequence (zn)n∈N ⊂ �

1,2
p,q of critical points of A such that

limn→∞ A(zn) = +∞.

Recalling Example 3.8, by Corollary 7.8 we then obtain the following extension of [31,
Theorems 1.2 and 1.3] to C1 stationary Lorentzian manifolds.

Corollary 7.9 Let (M, g) be a Lorentzian manifold such that g is a C1 metric endowed with
a timelike Killing vector field K . IfNp,q is c-precompact for some c ∈ R such that J c �= ∅,
then there exists a geodesic connecting p to q. Moreover, if J is pseudocoercive, K is
complete, and M is a non-contractible manifold, thenNp,q �= ∅ and there exists a sequence

of geodesics (zn)n∈N ⊂ �
1,2
p,q with unbounded energy.

Remark 7.10 Apart from completeness of K , whenever d = 0, a condition ensuring that
Np,q is non-empty for all p and q in M is that the distribution D defined by the kernel of
Q is not integrable through any point in M . Indeed by Chow-Rashevskii Theorem, there
exists then a horizontal C1 curve γ connecting p to q . Hence, such curve belongs to Np,q

with constant Q(γ̇ ) = 0. We recall that, in the case when L is the quadratic form associated
with a stationary Lorentzian metric gL with Killing vector field K , the non-integrability of
D through any point is equivalent to the fact that K is not static in any region of M . Geodesic
connectedness of a smooth static Lorentzian manifold was studied in [18]; we point out that,
thanks to Theorem 6.1, the results in [18] can be extended to a C1 static Lorentzian metric.

8 Dynamic conditions for pseudocoercivity

Inspired byAppendixA in [31],we give some conditions that ensure thatJ is pseudocoercive.
Let us assume that there exists aC1 function ϕ : M → Rwhich satisfies the monotonicity

condition dϕ(K ) > 0.
If K is complete, this implies that M is foliated by level sets of the function ϕ, and it

splits as � ×R, where � is one of this level set. Notice that [31, Assumption (4.11)] implies
the completeness of the timelike Killing vector field there, so the setting leading to [31,
Proposition A.3] is actually analogous to ours (compare also with [15, Theorem 2.3]). Some
differences, on the other hand, are that the splitting � ×R is only C1 and there is no simple
link between convexity properties of the induced Lagrangian L0 and the level set � (see
Remark 8.3).

Since � is transversal to K , using Assumption 2.2 and arguing as in the proof of Proposi-
tion 7.4, we get that L is given by (3.1) in � ×R for a C1 Lagrangian L0 : T� → R. Let us
denote by g� the C1 Riemannian metric on � induced by g. We assume that the one-form
ω induced by Q on � has sublinear growth w.r.t. the distance d� induced by g� , i.e. there
exist α ∈ [0, 1) and two non-negative constants k0 and k1 such that

‖ω‖� ≤ k0 + k1
(
d�(x, x0)

)α
, (8.1)
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for some x0 ∈ � and all x ∈ �. We recall that β in an expression like (3.1) for L is equal to
−Q(K )/2 (see (7.4)).

Proposition 8.1 Let L satisfy Assumption 2.2 with d in (2.1) bounded and K complete. Let
ϕ : M → R be a C1 function such that dϕ(K ) > 0. Let � a level set of ϕ and L0 be the
Lagrangian induced by L on �. Assume that

• L0 satisfies (i) and (ii) in Example 3.1 (namely it satisfies the growth conditions and the
pointwise convexity) and there exist three constants 
1, 
2, 
3 such that λ0(x) ≥ 
1 > 0,
L0(x, 0) ≥ 
2 and ‖∂vL0(x, 0)‖� ≤ 
3;

• ω satisfies (8.1);
• there exist two constant b1 and b2 such that 0 < b1 ≤ β(x) ≤ b2, for all x ∈ �.

Then J is pseudocoercive.

Proof Recalling that, by Definition 7.1, J is pseudocoercive if Np,q is c-precompact for all
c ∈ R, the thesis follows from Proposition 7.2 by showing that that Np,q is c-bounded for
all c ∈ R.

Let us set � := t(q)− t(p) and let zn = zn(s) = (
xn(s), tn(s)

) ∈ J c be a sequence such
that |N (zn, żn)| → supz∈J c |N (z, ż)|. As for (7.14), we then get

c ≥
∫ 1

0
L
(
(xn, tn), (ẋn, ṫn)

)
ds

≥
∫ 1

0
L0(xn, ẋn)ds + 2�

bn

∫ 1

0

ω(ẋn) + d(xn)/2

β(xn)
ds − �2

bn
, (8.2)

where bn = ∫ 1
0

1
β(xn(s))

ds. Then taking into account that d is bounded, 0 < b1 ≤ β(x) ≤ b2,
λ0(x) ≥ 
1 > 0, L0(x, 0) ≥ 
2 and ‖∂vL0(x, 0)‖� ≤ 
3, for all x ∈ �, using (2.15) for L0

and (8.1), we obtain from (8.2) that
∫ 1
0 ‖ẋn‖2�ds is bounded. Analogously to (7.7) we have

then

N (zn, żn) = 2Czn = 2

bn

(∫ 1

0

ω(ẋn) + d(xn)/2

β
ds − �

)

and hence N (zn, żn) is bounded as well. �

Remark 8.2 The proof of Proposition 8.1 also shows that the manifold Np,q associated to
the Lagrangian in Example 3.1 is c-bounded for all c ∈ R provided that L0 satisfies (i) and
(ii) in Example 3.1, d is bounded, ω has sublinear growth on S (hence (8.1) holds) and there
exist some constants b1, b2, 
1, 
2, 
3 such that 0 < b1 ≤ β(x) ≤ b2, λ0(x) ≥ 
1 > 0,
L0(x, 0) ≥ 
2 and ‖∂vL0(x, 0)‖� ≤ 
3, for all x ∈ S.

Remark 8.3 The strong convexity condition for L0 holds if L0, satisfying (2.14) on T�,
satisfies also (7.2) on �. This condition can be considered as a replacement of being � a
spacelike and complete hypersurface when L is the quadratic form of a stationary Lorentzian
manifold (in our setting the Riemannian metric on �, induced by the auxiliary one g, is
complete because g is complete by assumptions). Indeed, in such a case, it is enough to
assume that ∇ϕ is timelike (i.e. ϕ is a C1 time function) to get that a level set � of ϕ is
spacelike. The existence of such a ϕ is guaranteed if there exists a spacelike hypersurface
that intersects once every flow line of the complete timelike Killing vector field K (see [31,
Appendix A]).

Funding Open access funding provided by Politecnico di Bari within the CRUI-CARE Agreement.
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Appendix A: Regularity of the critical points

In this section we show that a critical point of the action functional A on �p,q is actually a
curve of class C1. This is a quite standard result in relation with Assumptions 2.2 and 2.7,
but we give the details for the reader convenience.

Proposition A.1 Let L : T M → R be a Lagrangian satisfying Assumptions 2.2 and 2.7 and
let z be a critical point of the action functional A : �

1,2
p,q → R, A(z) = ∫ 1

0 L(z, ż)ds. Then,
both z and ∂vL(z, ż) are of class C1, the Euler-Lagrange equation (2.6) holds in classical
sense, namely for all i ∈ {0, . . . ,m},

∂L

∂zi
(
z(s), ż(s)

) = d

ds

(
∂L

∂vi

(
z(s), ż(s)

))
, for all s ∈ [0, 1], (A.1)

and z satisfies the conservation law

∂vL(z, ż)[ż] − L(z, ż) = E, (A.2)

for some constant E ∈ R.

Proof As regularity of a critical curve is a local result, by Proposition 7.4 we can assume,
without loosing generality, that L is a Lagrangian on U × I , where U is a precompact open
neighborhood of Rm and I ⊂ R an open interval, defined as

L
(
(x, t), (ν, τ )

) = L0(x, ν) + 2
(
ω(ν) + d(xn)/2

)
τ − β(x)τ 2, (A.3)

for all
(
(x, t), (ν, τ )

) ∈ (U × I ) × (Rm × R). Arguing as in the proof of Proposition 7.4,
for any point z̄ ∈ M , we can take U as a hypersurface in M passing through z̄ such that ω

vanishes at z̄. Let z : [0, 1] → U × I , z(s) = (x(s), t(s)) be a critical point for A then for
all (ξ, η) ∈ H1

0 ([0, 1],Rm) × H1
0 ([0, 1],R) we have

0 = dA(z)[(ξ, η)] =
∫ 1

0

(
∂x L0(x, ẋ)[ξ ] + ∂νL0(x, ẋ)[ξ̇ ]) ds

+2
∫ 1

0

(
∂xω(ξ, ẋ)ṫ + ω(ξ̇)ṫ + ω(ẋ)η̇ + 1

2
dd(ξ)ṫ + d(x)

2
η̇

)
ds

−
∫ 1

0

(
dβ(ξ)ṫ2 + 2β(x)ṫ η̇

)
ds. (A.4)

Since z = (x, t) is a critical point of A, there exists a constant Cz ∈ R such that

N (z, ż) = 2ω(ẋ) − 2β(x)ṫ + d(x) = 2Cz,

hence we have

ṫ = ω(ẋ) + d(x)/2 − Cz

β(x)
. (A.5)
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Moreover, from (A.4), for all ξ ∈ C∞
0 ([0, 1],Rm) we have

dA(z)[ξ, 0] =
∫ 1

0

(
∂x L0(x, ẋ)[ξ ] + ∂νL0(x, ẋ)[ξ̇ ]) ds

+2
∫ 1

0

(
∂xω(ξ, ẋ) + ω(ξ̇) + 1

2
dd(ξ)

)
ṫds −

∫ 1

0
dβ(ξ)ṫ2ds = 0,

hence,
∫ 1

0

(
∂νL0(x, ẋ)[ξ̇ ] + 2ω(ξ̇)ṫ

)
ds = −

∫ 1

0
∂x L0(x, ẋ)(ξ)ds

−
∫ 1

0

(
2∂xω(ξ, ẋ)ṫ + dd(ξ)ṫ − dβ(ξ)ṫ2

)
ds.

Then, there exists an L1 map h : [0, 1] → (Rm)∗ such that
∫ 1

0

(
∂νL0(x, ẋ)[ξ̇ ] + 2ω(ξ̇)ṫ

)
ds =

∫ 1

0
h(s)[ξ ]ds.

Denoting by H a primitive of −h, we obtain the existence of a constant A ∈ (Rm)∗ such
that

∂νL0(x, ẋ) + 2ṫωx = A + H a.e. on [0, 1]. (A.6)

Using (A.5) we obtain

∂νL0(x, ẋ) + 2
ω(ẋ)

β(x)
ωx = A + H + 2Cz − d(x)

β(x)
ωx , a.e. on [0, 1],

where the right-hand side is an absolute continuous function.
Let us consider the continuousmapsL : U×R

m → (Rm)∗ andP : U×R
m → U×(Rm)∗

defined respectively as

L(x, ν) := ∂νL0(x, ν) + 2
ω(ν)

β(x)
ωx

and

P(x, ν) := (x,L(x, ν)) .

As in the proof of Proposition 7.4, recalling howU has been chosen, and up to take a smaller
U , we can state that there exists C > 0 such that for any x ∈ U and for all ν1, ν2 ∈ R

m

(L(x, v2) − L(x, v1)
)[v2 − v1] ≥ C‖v2 − v1‖2. (A.7)

Notice that (A.7) implies that for each x ∈ U , L(x, ·) is injective with inverse which is
continuous on the image of L(x, ·). Using again (A.7) together with the continuity of L on
U ×R

m , we get that the map P is injective with continuous inverse as well. Hence,by (A.7),

(
x(s), ẋ(s)

) = P−1
(
x(s), A + H(s) + 2Cz − d(x)

β(x(s))
ωx(s)

)
(A.8)

and so x is of class C1. By (A.5), even ṫ is continuous, so z is of class C1 in the coordinate
system where the stationary product type local structure (A.3) of L holds and then in any
other coordinate system. Hence, the function h is actually a continuous function, and the
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right-hand side of (A.7) is of class C1. Since ω is a C1 one-form, (A.7) shows that also
∂νL0(x, ẋ) is of class C1. Being ∂vL(z, ż) identifiable with

(
∂nu L0(x, ẋ) +

(
2ωṫd(x) − 2β(x)ṫ

)
dt

)
,

we deduce that the function s ∈ [0, 1] �→ ∂vL
(
z(s), ż(s)

)
isC1 as well, and then (A.1) holds.

Moreover, by standard arguments, z satisfies the conservation law (A.2) for some constant
E ∈ R (see, e.g., Proposition 1.16 of [14]). �

Remark A.2 We notice that, if L0 admits positive definite vertical Hessian at some vector in
ν ∈ TU , then L admits a bijective fiberwise derivative, so it is a local C1-diffeomorphism
in a neighborhood V of ν in TU . Hence, P has a C1 inverse on P(V) and then from (A.8)
we get that ẋ is C1 on an open interval J containing the instant s0 such that ẋ(s0) = ν.
From (A.5), ṫ is C1 as well on J and then z ∈ C2(J , M). We observe that this holds in
particular when L is the quadratic form associated with C1 stationary Lorentzian metric gL
(see Example 3.8), hence its critical curves are C2 on the interval where they are defined and
then they are classical geodesics.
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