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Abstract

Background and aims: Andrographis paniculata is an annual herbaceous plant which belongs to

the Acanthaceae family. Extracts from this plant have shown hepatoprotective, anti-inflammatory

and antidiabetic properties, at least in part, through activation of the nuclear receptor Peroxisome

Proliferator-Activated Receptor-gamma (PPAR γ ). Recent evidence has demonstrated that activation

of PPARγ reduces alcohol drinking and seeking in Marchigian Sardinian (msP) alcohol-preferring

rats.

Methods: The present study evaluated whether A. paniculata reduces alcohol drinking and relapse

in msP rats by activating PPARγ .

Results: Oral administration of an A. paniculata dried extract (0, 15, 150 mg/kg) lowered voluntary

alcohol consumption in a dose-dependent manner and achieved ∼65% reduction at the dose of

450 mg/kg. Water and food consumption were not affected by the treatment. Administration of

Andrographolide (5 and 10 mg/kg), the main active component of A. paniculata, also reduced alco-

hol drinking. This effect was suppressed by the selective PPARγ antagonist GW9662. Subsequently,

we showed that oral administration of A. paniculata (0, 150, 450 mg/kg) prevented yohimbine- but

not cues-induced reinstatement of alcohol seeking.

Conclusions: Results point to A. paniculata-mediated PPARγ activation as a possible therapeutic

strategy to treat alcohol use disorder.
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INTRODUCTION

The World Health Organization (WHO) reported that harmful use
of alcohol results in 3 million deaths every year at a global level
(World Health Organization. Management of Substance Abuse Team,
2018). Alcohol is a rewarding substance, whose excessive use often
leads to the development of alcohol use disorder (AUD), which is
characterized by repeated episodes of intoxication and withdrawal
symptoms when access to alcohol is prevented, heightening the
risk of relapse to pathological drinking (Becker, 2008; Koob, 2013;
Wackernah et al., 2014; Cui et al., 2015). The molecular mechanisms
subserving AUD are not yet completely understood, but are thought
to be associated with profound counteradaptive alterations of reward
and stress neurocircuitries (Weiss and Porrino, 2002; Gilpin and
Koob, 2008). Untangling these neuroadaptations is complex but
essential to develop more efficacious therapies.

Andrographis paniculata is a member of the Acanthaceae
family of plant widely cultivated in the Southeast Asia and
has been used to prevent and treat metabolic disorders (Zhou,
1987; Thakur et al., 2016; Islam, 2017), for its hepatoprotective
(Handa and Sharma, 1990; Maiti et al., 2010; Nagalekshmi et al.,
2011) and anti-inflammatory properties (Chao et al., 2010; Shen
et al., 2013; Low et al., 2015). Andrographis paniculata contains
several bioactive compounds among which andrographolide is a
labdane bicyclic diterpenoid lactone isolated from the stem and
leaves (Reddy et al., 2003; Jayakumar et al., 2013). Evidence
suggested that administration of andrographolide activates the
transcription factor Peroxisome Proliferator-Activated Receptor-
gamma (PPARγ ) (Islam, 2017). We have demonstrated that selective
PPARγ agonists pioglitazone and rosiglitazone reduced alcohol
drinking and stress-induced reinstatement of alcohol seeking in genet-
ically selected Marchigian Sardinian (msP) alcohol-preferring rats
(Stopponi et al., 2011, 2013; Fotio et al., 2020a). Based on this
evidence, we hypothesized that administration of an extract of
A. paniculata might reduce alcohol drinking and seeking in msP
rats through a PPARγ -dependent mechanism. To demonstrate our
primary hypothesis, we conducted a series of experiments in which
we tested the effect of A. paniculata extract and andrographolide on
alcohol drinking and seeking in msP rats. We then evaluated whether
it was possible to prevent the effects of andrographolide by blocking
PPARγ with the selective receptor antagonist GW9662.

MATERIALS AND METHODS

Animals

Male genetically selected msP alcohol-preferring rats were used. This
rat line has been genetically selected for its excessive alcohol drinking.
It is highly sensitive to stress, shows anxiety and depressive-like
phenotypes, and is considered a suitable animal model to study
AUD (Ciccocioppo et al., 2006). At the start of the experiment
the rats’ body weights were between 300 and 350 g. They were
bred in a room with a reverse 12:12 h light/dark cycle (lights off
at 9:30 a.m.) in a temperature (20–22◦C) and humidity (45–55%)
controlled environment, at the University of Camerino (Camerino,
Italy). Rats were offered free access to tap water and food pellets
(4RF18, Mucedola, Settimo Milanese, Italy), except when noted. For
the drinking experiments rats were singly housed. All the procedures
were conducted in adherence with the European Community Council
Directive for Care and Use of Laboratory Animals and the National
Institutes of Health Guide for the Care and Use of Laboratory
Animals.

Drugs

Andrographis paniculata extract (purified by high performance liquid
chromatography: andrographolide average content 95% p/p) was a
generous gift of Dr. Nicotra (EPO S.r.l, Milano) and was formulated
in a vehicle composed of: 1% methylcellulose, 1% Tween 80 and
98% distilled water. It was administered orally (0, 15, 150 and
450 mg/kg) at a volume of 2 ml/kg.

Andrographolide was purchased from Sigma Aldrich (Sigma
Chemical Co., St. Louis, MO, USA), with purity ≥98%. It was
dissolved in 5% dimethyl-sulphoxide (DMSO). GW9662, purchased
from Tocris (Bristol, UK), was dissolved in 10% DMSO and 3%
Tween 80 and 87%distilled water. Yohimbine, purchased from
Sigma-Aldrich (Chemical Co., St. Louis, MO, USA), was dissolved
in distilled water. Andrographis paniculata extract was administered
orally (p.o.), whereas andrographolide, GW9662 and yohimbine
were administered intraperitoneally (i.p.) in a volume of 1 ml/kg.
Alcohol solution (10%) was prepared on a daily basis by diluting
alcohol 95% (v/v) (Sigma-Aldrich, Chemical Co., St. Louis, MO,
USA) in tap water.

TWO-BOTTLE CHOICE PARADIGM

The two-bottle choice (2-BC) procedure (free choice between water
and 10% alcohol) was used to measure voluntary alcohol drinking
and preference (Borruto et al., 2020; Fotio et al., 2020a; Tabakoff
and Hoffman, 2000). The rats were single housed in experimental
chambers (30 cm length × 30 cm width × 30 cm height) for 1 week of
habituation before the 2-BC test began. They were given continuous
free access to water and 10% alcohol (v/v) for the next 15 days
to establish a stable baseline (6.5–8 g/kg/24 h for three consecutive
days) and preference for alcohol. Preference was defined as 80–90%
preference for alcohol vs. water. The fluids were offered through
graduated drinking tubes that were equipped with metal spouts. Fluid
intake was measured by reading the volume that was consumed at
specific time points (2, 8 and 24 h) following initiation of the active
(dark) phase of the light/dark cycle. The drinking tubes were switched
daily to avoid the development of side preference. The rats also had
free access to food. Food consumption was measured by weighing the
food container while considering the spillage weight. Alcohol, water
and food intakes were calculated as absolute values of consumption
at each time-point and are expressed as g/kg body weight.

OPERANT SELF-ADMINISTRATION

Self-administration experiments were conducted according to our
recent reports (Stopponi et al., 2018; Fotio et al., 2020a, 2020b) using
standard operant chambers (Med Associate, St Albans, VT) located in
sound-attenuating, ventilated cubicles. Each chamber was equipped
with a drinking reservoir (volume capacity: 0.30 ml) positioned 4 cm
above the grid floor in the center of the front panel of the chamber.
Two retractable levers were located 3 cm to the right and left of the
drinking receptacle. Auditory and/or visual stimuli were presented via
a speaker and a light located on the front panel. A microcomputer
controlled the delivery of fluids, the presentation of auditory and
visual stimuli and the recording of the behavioral data. Further details
are outlined in Experiments 2 and 3.

Experiment 1: Effect of A. paniculata extract on alcohol

intake in msP rats.

The effect of A.s paniculata on voluntary alcohol intake was assessed
using the two-bottle choice paradigm. During the acquisition of stable
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drinking baseline rats were trained to drug administration procedures
for several days during which they received vehicles. At this point,
we tested for the effect of A. paniculata dried extract (0, 15 and
150 mg/kg, p.o.) on alcohol intake using a between-subject design.
For four consecutive days, rats received drug or vehicle twice a day
12 h (9:30 pm) and 1 h before (8:30 am) the beginning of the dark
period (active phase) of the light–dark cycle. To further investigate
the effect of A. paniculata, a new cohort of msP rats (N = 9/group),
subjected to the same training described above, received a higher dose
(450 mg/kg, p.o.) of the extract or its vehicle for three consecutive
days. Alcohol, water and food consumption were measured after
30 min, 2, 8 and 24 h.

Experiment 2: Effect of A. paniculata extract on

yohimbine-induced reinstatement of alcohol seeking in

msP rats.

The experiment consisted of three phases.
Operant self-administration training phase: A separate group of

animals (N = 8) was trained to self-administer 10% alcohol in
30-min daily sessions on a fixed-ratio 1 (FR-1) schedule of reinforce-
ment, in which each active lever response resulted in the delivery
of 0.1 ml of alcoholic solution (Stopponi et al., 2018). To facilitate
the acquisition of operant learning, at the beginning of training,
presses on the active lever led to delivery of a solution containing
10% alcohol sweetened by 0.2% (w/v) saccharin. After this initial
training, saccharin was tapered and rats continued to lever press
for 10% alcohol on FR-1 with 5 s of time-out (TO 5 s). The TO
period was paired to illumination of a white house light for 5 s. Self-
administration training continued until stable baseline of responding
for alcohol was achieved.

The Extinction phase: After the last alcohol self-administration
session, animals were subjected to daily 30-min extinction sessions.
Responding at the right lever activated the delivery mechanism and
the house light but was not reinforced by alcohol delivery. The
left lever, which serves as control to the active lever, was inactive
throughout the self-administration training and extinction period.
During the last 3 days of extinction, animals again were habituated
to drug administration procedures using saline.

Reinstatement test: The day after the last extinction session, msP
rats were subjected to the 30-min reinstatement test, conducted under
the same extinction conditions, except that 30 min prior to the begin-
ning of the operant session they received yohimbine (1.25 mg/kg,
i.p.) to elicit reinstatement. To evaluate the effect of A. paniculata
in a counterbalanced within subject design, rats (N = 8) received
drug extract (0, 150 and 450 mg/kg, p.o.) 12 h and 1 h before the
reinstatement test. Four days, during which animals were subjected
to extinction sessions, were imposed between drug tests (Cippitelli
et al., 2008; Fotio et al., 2020a).

Experiment 3: Effect of A. paniculata extract on

cue-induced reinstatement of alcohol seeking in msP

rats

The experiment consisted of three phases.
Conditioning phase: Another group of rats (N = 9) was trained

to lever press and discriminate between 10% alcohol and water. The
discriminative stimulus for alcohol consisted of the odor of an orange
extract (S+), whereas water availability (no reward) was signaled by
an anise extract (S−). The olfactory stimuli were generated by deposit-
ing six to eight drops of the respective extract on the bedding of the

operant chamber. In addition, each lever-press resulting in delivery
of alcohol was paired with illumination of the chamber’s house light
for 5 s. The corresponding cue paired to water sessions was a 5 s
white noise tone. The olfactory stimuli serving as S+ or S− for alcohol
availability were introduced 1 min before extension of the levers and
remained present throughout the 30 min sessions. During the first 3
days of the conditioning phase, rats were given alcohol sessions only.
Subsequently, alcohol and water sessions were conducted in random
order across training days, with the requirement that all rats received
a total of 10 alcohol and 10 water sessions.

Extinction Phase: After the last conditioning day, rats were sub-
jected to 30-min extinction sessions. During this phase, both active
and inactive levers were presented to animals without the discrimi-
native stimuli. Presses at the active lever activated the syringe pumps
but did not result in the delivery of liquids or the presentation of the
response-contingent cues (i.e. house light or tone).

Reinstatement: Testing began the day after the last extinction
session. This test lasted 30 min under conditions identical to those
during the conditioning phase, except that alcohol and water were
not made available. Sessions were initiated by the presentation of
both levers and either the alcohol S+ or water S− paired stimuli. The
respective discriminative stimulus remained present during the entire
session and responses at the previously active lever were followed
by activation of the delivery mechanism and a 5 s presentation of
house light in the S+ condition or white noise in the S− condition.
MsP rats were tested under the S− condition on Day 1 and starting
from Day 2 they were tested under the S+ condition. Before initiation
of treatment, rats were trained to the drug administration procedure
for 3 days during which they received vehicle treatments. To evaluate
whether A. paniculata was able to prevent cue-induced reinstatement
of alcohol-seeking behavior, rats (N = 9) received the extract (0, 150,
450 mg/kg, p.o.) 12 and 1 h before the reinstatement test. Animals
received all drug treatments according to a counterbalanced Latin
square design. A 4-day interval, during which animals remained in
their home cages, was allowed between drug tests (Ciccocioppo et al.,
2002; Cippitelli et al., 2008). Following presentation of water-paired
cues (S−) reinstatement did not occur, suggesting the behavioral
specificity of relapse and making irrelevant the need to test the effect
of A. paniculata under this condition.

Experiment 4: Effect of andrographolide on alcohol

intake in msP rats

To assess the effect of andrographolide on voluntary alcohol intake,
we used the two-bottle choice test in a new cohort of msP rats
(N = 27) as described in Experiment 1. Following establishment of
a stable drinking baseline and habituation to the treatment proce-
dure, msP rats (N = 9/group) received andrographolide (either 5 or
10 mg/kg, i.p.) or its vehicle using a treatment schedule identical to
that of A. paniculata (12 h and at 30 min before the beginning of
the dark period of the light–dark cycle). Alcohol, water and food
consumption were monitored daily at 30 min, 2, 8 and 24 h.

Experiment 5: Effect of PPARγ antagonism on

andrographolide-induced reduction of alcohol intake in

msP rats

To examine whether andrographolide reduces alcohol intake through
recruitment of the PPARγ , a selective antagonist (GW9662) of this
receptor was administered alone or in combination with andro-
grapholide. For this purpose, msP rats (N = 27) were treated with
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Fig. 1. Effect of Andrographis paniculata (AP) on alcohol intake in msP rats (N = 27). Voluntary 10% alcohol intake (g/kg) following treatment with AP (0, 15 and

150 mg/kg, p.o.) administered 12 and 1 h before access to alcohol. Data were recorded at 30 min (a), 2 h (b), 8 h (c) and 24 h (d) after access to alcohol. Data

represent the mean ± S.E.M.: Significant difference from the vehicle treated group: ∗P < 0.05.

GW9662 (5 mg/kg i.p.) or vehicle, 10 min prior to each adminis-
tration of andrographolide (0 or 10 mg/kg. i.p.). The latter was given
12 h and 30 min before the beginning of the dark phase. Rats (N = 6-
7/group) received drug treatments in between-subject design for three
consecutive days. Alcohol, water and food intake were recorded at
30 min, 2 and 24 h after initiation of the dark phase.

Statistical analysis

The effects of A. paniculata and andrographolide on alcohol water
and food consumption were analyzed at each time point (30 min, 2,
8 and 24 h) by means of a two-way repeated measures analysis of
variance (ANOVA) with one between-subject factor (treatment) and
one within-subject factor (days).

For reinstatement experiments, discrimination was evaluated by
two-way ANOVA with one within-subject factor (time) and one
between-subject factor (self-administration conditions). Differences
in responses during the extinction exposure to S+ and S− were ana-
lyzed in the vehicle-treated group by one-way ANOVA. The effect of
A. paniculata on reinstatement was evaluated by means of a one-way
repeated measure ANOVA. A Student’s t-test was used to evaluate the
effect of yohimbine on reinstatement of alcohol seeking comparing
the mean of responding at the active lever during extinction to that of
vehicle-treated animals following administration of yohimbine. The
effects of A. paniculata on cue- and on yohimbine-induced reinstate-
ments were evaluated by one-way repeated measures ANOVA. The
effect of GW9662 on andrographolide-induced reduction of alcohol

drinking was evaluated at each time point (30 min, 2, 8 and 24 h)
using a two-way repeated measures ANOVA with one factor time
(days) and one factor treatments (GW9662, andrographolide).

Where appropriate, Tukey’s or Dunnett’s multiple comparison
tests were used for post hoc analysis. All statistical tests were two-
sided, and statistical significance was set at ∗P < 0.05. Where not
indicated, statistical analyses were not significant.

RESULTS

Result 1: Effect of A. paniculata on alcohol intake in

msP rats

The effect of A. paniculata on alcohol intake in msP rats are shown
in Fig. 1, ANOVA revealed a main effect of treatment (15 and
150 mg/kg, p.o.) at 30 min 30 min [F(2,96) = 5.90; P < 0.001;
Fig. 1a] and at 2 h [F(2,96) = 3.12; P < 0.05; Fig. 1b], but not at
8 h [F(2,96) = 30 min1; P = 0.716; Fig. 1c] or 24 h [F(2,96) = 1.87;
P = 0.4825; Fig. 1d]. A significant effect of time (days) on alcohol
intake was also observed at 30 min [F(3,96) = 3.46; P < 0.05] and
at 8 h [F(3,96) = 4.86; P < 0.01], but not at 2 h [F(3,96) = 2.15;
P = 0.6981] and 24 h [F(3,96) = 0.86; P = 0.137]. A treatment x time
interaction was not significant at any time point: [F(6,96) = 1.03;
P = 0.0629], [F(6,96) = 1.53, P = 0.1377], [F(6,96) = 0.72;
P = 0.768] and [F(6,96) = 0.71; P = 0.3136] for the 30 min, 2, 8
and 24 h, respectively (Figure 1a). Tukey’s post hoc test revealed that
at 30 min alcohol drinking was significantly reduced by 15 mg/kg
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Fig. 2. Effect of Andrographis paniculata (AP) on alcohol intake in msP rats (N = 18). Voluntary 10% alcohol intake (g/kg) following treatment with AP (0 and

450 mg/kg, p.o.) administered 12 and 1 h before access to alcohol. Data were recorded at 30 min (a), 2 h (b), 8 h (c) and 24 h (d) after access to alcohol. Data

represent the mean ± S.E.M. Significant difference from the vehicle treated group: ∗P < 0.05, ∗∗P < 0.01 and ∗∗∗ P < 0.001.

(P < 0.05) and 150 mg/kg (P < 0.01) of A. paniculata. Additionally,
post hoc tests revealed a significant reduction of alcohol drinking
after administration of 150 mg/kg of the extract on the second day of
treatment at 30 min (P < 0.05) and on the second and third treatment
day at 2 h (P < 0.05) (Fig. 1b). Food and water intakes were not
affected by treatment (data not shown).

In a subsequent experiment, rats were treated with a higher
dose (450 mg/kg) of A. paniculata (Fig. 2a). Overall, ANOVA
revealed a significant effect of treatment at 30 min [F(1,16) = 14.26;
P < 0.001; Fig. 2a], 2 h [F(1,16) = 16.14; P < 0.001; Fig. 2b], 8 h
[F(1,16) = 35.87; P < 0.001; Fig. 2c] and 24 h [F(1,16) = 30.34;
P < 0.001; Fig. 2d]. A significant effect of time (days) at 30 min
[F(2,32) = 4.90; P < 0.05], 2 h [F(2,32) = 34.56; P < 0.001], 8 h
[F(2,32) = 16.38; P < 0.001], and 24 h [F(2,32) = 6.49; P < 0.001]
was also detected. Treatment x time interaction was significant at 2 h
[F(2,32) = 4.68; P < 0.05], 8 h [F(2,32) = 6.72; P < 0.001] and 24 h
[F(2,32) = 13.37; P < 0.001], but not at 30 min h [F(2,32) = 1.77;
P = 0.2381]. Post hoc comparisons revealed a significant reduction
of alcohol drinking at each tested time point on the second day of
treatment 30 min [30-min, (P < 0.05), 2 h (P < 0.01), 8 h, (P < 0.001)
and 24 h, (P < 0.001)]. On the third day of treatment, there was a
significant difference (P < 0.001) at each time point. When treatment
was stopped, alcohol drinking rapidly returned to a baseline level
(Fig. 1). Food and water consumption were not significantly affected
by treatment (data not shown).

Result 2: Effect of A. paniculata on yohimbine-induced

reinstatement of alcohol seeking in msP rats

Stable baseline of 10% alcohol responding was established over 10
self- administration days (mean value of rewards on last 3 days of
responding: 55.7 ± 4.7). Following this alcohol self-administration
phase, extinction training was initiated and the responses to alco-
hol progressively decreased, until it was 4.0 ± 1.4 on the last 3
days of this phase. Significant reinstatement of active lever pressing
was demonstrated by t-test [t(7) = 7.02; P < 0.001] comparing
extinction and vehicle-yohimbine (Figure 3a). When ANOVA was
used to evaluate the effect of A. paniculata on yohimbine-induced
reinstatement, results showed a significant overall effect of treatment
[F(2,7) = 32.99; P < 0.001; Fig. 3a]. As shown in Fig. 3, post hoc
analysis demonstrated that at both doses tested (150 and 450 mg/kg,
p.o.) A. paniculata significantly (P < 0.001) reduced reinstatement of
lever pressing evoked by yohimbine. Responses at the inactive lever
were very low and were not affected by yohimbine or A. paniculata
treatments [F(2,7) = 2.14; P = 0.3241; Fig. 3b].

Result 3: Effect of A. paniculata on cue-induced

reinstatement of alcohol seeking in msP rats

During self-administration training, rats learned to discriminate
between alcohol and water, and on the last 3 days of this phase,
animals earned 52.4 ± 4.66 alcohol infusions and 13.8 ± 2.22 water
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Fig. 3. Effect of Andrographis paniculata (AP) on yohimbine-induced rein-

statement of alcohol seeking in msP rats (N = 8). During training phase

animals reached a stable baseline of 10% (v/v) alcohol related responding.

During extinction lever responding progressively decreased. Compared to

extinction (EXT), yohimbine (1.25 mg/kg, i.p.) elicited a significant reinstate-

ment of lever pressing that was significantly reduced by AP (0, 150 and

450 mg/kg, p.o.). Values represent the mean ± S.E.M number of responses

at (a) alcohol active lever and (b) inactive lever. Significant difference from

extinction, ###P < 0.001. Significant difference from the vehicle treated group:

∗∗∗P < 0.001.

infusions. During extinction, lever pressing progressively decreased
to 11.6 ± 3.36 on the last 3 days. In the reinstatement test, ANOVA
revealed a significant overall effect of cue-presentation on alcohol
seeking [F(2,8) = 7,01; P < 0.05]. Post hoc analysis showed that
compared to extinction, exposure to alcohol-paired odor S+ elicited
a robust reinstatement of responding at the active lever (P < 0.05).
Lever presses were not influenced by presentation of water-paired
stimuli S−. Conditioned reinstatement of alcohol-seeking (Fig. 4)
was not modified by pretreatment with A. paniculata [F(2,8) = 0.44;
P = 0.1638; Fig. 4a]. Responses at the inactive lever were very low
throughout the experiment and were not influenced by the treatment
[F(2,8) = 0.81; P = 0.3422; Fig. 4b].

Result 4: Effect of andrographolide on alcohol intake in

msP rats

Overall ANOVA showed (Fig. 5) a significant effect of treatment
on alcohol intake at 30 min ([F(2,24) = 6.75; P < 0.001; Fig. 5a];
2 h [F(2,24) = 7.50; P < 0.001; Fig. 5b]; 8 h [F(2,24) = 9.20;
P < 0.001; Fig. 5c] and 24 h ([F(2,24) = 8.45; P < 0.001; Fig. 5d].
ANOVA also showed a significant effect of time (days) at 30 min
([F(2,48) = 8.20; P < 0.001]; 2 h [F(2,48) = 6.25; P < 0.001]; 8 h
[F(2,48) = 4.60; P < 0.05] and 24 h ([F(2,48) = 7.05; P < 0.01]. The
interaction treatment x time was a significant at 8 h [F(4,48) = 6.72;
P < 0.001] and 24 h ([F(4,48) = 4.62; P < 0.01], but not at 30 min
([F(4,48) = 1.18; P = 0.0978] and 2 h [F(4,48) = 1.37; P = 0.0741].

Tukey’s post hoc tests revealed a significant reduction of alcohol
drinking after administration of andrographolide (5 mg/kg, i.p.) on

Fig. 4. Andrographis paniculata (AP) on cue-induced reinstatement of alcohol

seeking in msP rats (N = 9). During training phase animals reached a stable

baseline of 10% (v/v) alcohol related responding. During extinction lever

responding progressively decreased. Conditioned reinstatement of alcohol

seeking was evaluated after presentation of alcohol (S+) or water (S−) paired

cues. Reinstatement in responding elicited by S+ was not affected by AP (0,

150 and 450 mg/kg, p.o.) treatment. Significant difference from extinction,
##P < 0.01.

the first treatment day at 30 min (P < 0.05), on the second treatment
day at 30 min (P < 0.05) and at 2 h (P < 0.05) and on the third
treatment day at 30 min (P < 0.05), 8 h (P < 0.001) and 24 h
(P < 0.05). After administration of andrographolide (10 mg/kg,
i.p.), alcohol drinking was significantly reduced on the first day of
treatment at 2 h (P < 0.05) and on the second day at 30 min, 2,
8 (P < 0.05) and 24 h (P < 0.001). Finally, on the third day of
treatment drinking was reduced at 30 min and 2 h (P < 0.01) as well
as at 8 and 24 h (P < 0.001). Water intake was not affected by drug
treatments (data not shown). ANOVA also revealed no significant
overall changes in food intake (data not shown).

Result 5: Effect of PPARγ antagonism on

andrographolide-induced reduction of alcohol intake in

msP rats

Overall ANOVA revealed a main effect of treatment with andro-
grapholide at 30 min [F(3,23) = 6.37; P < 0.01; Fig. 6a], 2 h
[F(3,23) = 4.90; P < 0.01; Fig. 6b] and 24 h [F(2,23) = 16.60;
P < 0.001; Fig. 6c]. ANOVA also revealed a main effect of time at 2 h
[F(2,46) =5.75; P < 0.01] and 24 h [F(2,46) =5.84; P < 0.01] but not
at 30 min [F(2,46) = 0.09; P = 0.194]. Treatment x time interaction
was significant at 24 h [F(6,46) = 8.28; P < 0.001] but not at 30 min,
[F(6,46) = 0.98; P = 0.9483] and 2 h [F(6,46) = 1.13; P = 0.3426].
As shown in Fig. 6, Tukey’s post hoc comparisons revealed a signif-
icant difference between animals treated with andrographolide and
vehicles controls was observed at multiple time-points throughout
the treatment. This effect was detected 30 min (P < 0.01)—2 h
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Fig. 5. Effect of andrographolide (AND) on alcohol intake in msP rats (N = 27). Voluntary 10% alcohol intake (g/kg) following treatment with andrographolide (0,

5 and 10 mg/kg, i.p.) administered 12 h and 30 min before access to alcohol. Data were recorded at 30 min, 2, 8 and 24 h after the availability of alcohol. Data

represent the mean ± S.E.M. Significant differences from the vehicle treated group: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

(P < 0.05)—24 h (P < 0.001) on day 2; at 2 h and 24 h on day
3 (P < 0.05). The group treated with andrographolide plus GW9662
was not different from vehicle controls at any time point. Water
intake was not affected by drug treatments (data not shown). ANOVA
also revealed no significant overall changes in food intake (data not
shown).

DISCUSSION

Results showed that sub-chronic treatment with A. paniculata sig-
nificantly reduced voluntary alcohol intake in msP rats in a time-
and dose-dependent manner. This effect started on the second day
of administration and was maintained throughout the period of
treatment. Importantly, water and food intake were not modified,
indicating that the effect of A. paniculata is specific for alcohol and
does not affect general consummatory behavior. Of note, intake of
alcohol returned to the baseline level following treatment cessation.
The effect on alcohol drinking was mimicked by andrographolide,
one of the major secondary metabolites of A. paniculata (Xu and
Wang, 2011; Malahubban et al., 2013). The efficacy of andro-
grapholide was comparable to that of the parent extract, indicating
that this compound is probably the most important mediator of the
suppressive effect of A. paniculata on alcohol-seeking and -taking.

At this point we hypothesized that reduction of alcohol drinking
following administration of A. paniculata or its main active ingre-
dient andrographolide might have been mediated by recruitment
of the nuclear transcription factor PPARγ . This hypothesis was
based on several lines of work: first, a prior report indicates that
andrographolide is a partial agonist at PPARγ receptor (Guasch

et al., 2013). Secondly, data from adult mouse and human brains
have consistently reported that PPARγ is expressed in several meso-
corticolimbic regions, including prefrontal cortex (PFC), nucleus
accumbens (NAc), amygdala and ventral tegmental area (VTA),
indicating an important role of this nuclear receptor in physiological
control of motivation and reward processes (Sarruf et al., 2009; Domi
et al., 2016; Warden et al., 2016). Thirdly, earlier studies showed
that PPARγ agonism alleviates AUD symptoms and protects against
deleterious effects of long-term alcohol consumption (Tomita et al.,
2004; Stopponi et al., 2011; Drew et al., 2015; Cippitelli et al.,
2017). Here, to test whether the alcohol-suppressive effects of andro-
grapholide were mediated through a PPARγ -dependent signaling, we
pretreated rats with GW9662, a selective antagonist of this receptor
(Leesnitzer et al., 2002). Consistent with our hypothesis, PPARγ

receptor blockade completely occluded the effect of andrographolide.
PPARγ agonists are clinically used to control type 2 diabetes

mellitus because they increase insulin sensitivity (Chiarelli and Di
Marzio, 2008; Quinn et al., 2008). Given the important role of this
transcription factor on hepatic metabolism (Gurnell et al., 2003;
Ahmadian et al., 2013), the reduction of drinking following activa-
tion of PPARγ by andrographolide might be due to the effect of this
compound on alcohol metabolism. In this study, we did not monitor
the effects of andrographolide on blood glucose and alcohol level and
therefore, we cannot theoretically exclude this possibility. However,
in a previous study in which we have used the same rat model
employed in this study, we have demonstrated that treatment with
PPARγ agonists like pioglitazone and rosiglitazone neither change
blood glucose nor blood alcohol levels even when given high doses
(Stopponi et al., 2011).
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Fig. 6. Voluntary 10% alcohol intake following chronic administration of 5 mg/kg of GW9662 (GW 5 mg/kg, i.p.) and andrographolide (AND, 10 mg/kg, i.p.) at

30 min, 2 and 24 h in msP rats (N = 27). Data represent the mean SEM ±. Significant differences from the vehicle treated group: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001

Andrographolide, the active ingredient of A. paniculata, is charac-
terized by low water solubility and a high degree of binding to plasma
proteins (Panossian et al., 2000). To some extent, this may explain
why the effect did not follow a clear dose–response curve, and was
rather limited on the first treatment day, but increased over time. On
the other hand, at the high dose (450 mg/kg) of the extract, the effect
on voluntary alcohol consumption was particularly robust and long
lasting, suggesting that these pharmacokinetic limitations could be at
least partially overcome by increasing the dosage of the extract.

Another important feature of AUD is the elevated rate of relapse
during abstinence (Hunt et al., 1971; Junghanns et al., 2005; O’Brien,
2005; Moos and Moos, 2006). Over the years, results from many
human studies have consistently suggested that stress is a major
causal factor of resumption of drug use in abstinent individuals
(Sinha, 2001; Moos and Moos, 2006). These clinical studies have led
to the development of rat models based on the operant conditioning
reinstatement model to study mechanisms of relapse to alcohol use
(Marchant et al., 2013; Venniro et al., 2016). Yohimbine, an α-2
adrenoceptor antagonist, acts by increasing cell firing and release
of brain noradrenalin (Aghajanian and VanderMaelen, 1982; Lee
et al., 2004). Yohimbine has long been used to precipitate craving
in human alcoholics following abstinence and to reinstate alcohol
seeking behaviors in animals after extinction (Charney et al., 1983;
Lee et al., 2004; Marinelli et al., 2007; Umhau et al., 2011; Stopponi
et al., 2013; Fotio et al., 2020a). In our experimental condition, this
drug was used to study the effect of A. paniculata on reinstatement
of drug seeking. Data showed that pretreatment of msP rats with
this plant extract following the extinction phase has significantly
reduced alcohol seeking elicited by yohimbine. Importantly, neither
yohimbine nor A. paniculata affected responding at the inactive lever,
indicating that the effect of A. paniculata was specific and not a result
of generalized behavioral depression. A plausible explanation of this
effect is that PPARγ activation by andrographolide contained in the
extract could act by blocking the brain’s stress response and/or acting
as an anxiolytic. In fact, it is known that activation of this nuclear
receptor attenuates anxiety (Domi et al., 2016; Domi et al., 2019b)
reduces hypothalamic–pituitary–adrenal axis activity and reduces the
expression of corticotropin-releasing factor (CRF) in response to
stress, especially in the paraventricular nucleus of the hypothalamus
(Festuccia et al., 2008).

Environmental stimuli paired with the availability or consump-
tion of alcohol have long been demonstrated to evoke subjective
feelings of craving and to trigger episodes of relapse in abstinent
alcoholics (Ludwig et al., 1974; O’Brien et al., 1990; Katner et al.,
1999). In the present study, we trained msP rats to an extinction/re-
instatement procedure in which re-exposure to environmental cues

predictive of alcohol availability elicited a robust reinstatement of
lever pressing. Andrographis paniculata did not show any efficacy
in this model confirming previous work with other PPARγ agonists
(Stopponi et al., 2011; Stopponi et al., 2013; de Guglielmo et al.,
2017).

One potential limitation of the study is that we used a strain of rats
that has a genetically determined preference for alcohol. Although
widely used in alcohol research (Economidou et al., 2006; Stopponi
et al., 2013, 2018; Kirson et al., 2018; Logrip et al., 2018; Domi
et al., 2019a; Borruto et al., 2020; Fotio et al., 2020a, 2020b), this
strain is characterized by the inherent limitation of being a genetic
model that likely mimics a specific form of AUD. However, in a
recent study we also reported that activation of PPARγ reduces
alcohol drinking in nonselected rats and mice suggesting a more
general role of this receptor system in AUD (Domi et al., 2020). The
study of PPARγ agonist on alcohol abuse has been so far limited
to male rats. Considering the importance of sex differences in AUD,
in future studies it will be important to expand this investigation in
female animals. Another aspect to consider is that in the reinstatement
elicited by environmental cues we combined the presentation of
context and discrete cues. Hence, we could not evaluate if activation
PPARγ may lead to different effects if specifically tested against
discriminative or discrete cues only.

Currently, three medications have been Food and Drug Adminis-
tration (FDA) approved for the treatment of AUD. These include nal-
trexone, acamprosate and disulfiram (Littleton et al., 2004; Williams,
2005; Litten et al., 2012). These medications, however, showed
significant side effects and an efficacy limited to specific subgroups of
patients (Wilson, 1962; Fox, 1968; Christensen, 1973; Brahen et al.,
1978; Enghusen Poulsen et al., 1992; Weinrieb and O’Brien, 2004).
The development of new, possibly more effective, pharmacotherapies
is therefore a priority. The results of this study strengthen our pre-
vious observations, supporting the idea that PPARγ agonism could
represent a novel strategy to treat AUD and possibly addiction to
other substances of abuse (Stopponi et al., 2011, 2013; de Guglielmo
et al., 2015; Miller et al., 2018; Brami-Cherrier et al., 2020; Fotio
et al., 2020a).
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