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1. Introduction 

We consider the problem of the numerical differentiation, where the derivative of a function has to be computed from 

the knowledge of the function values at equidistant points. This is a classical approximation problem with an important role 

in a wide range of applications such as: finance [1] , image processing [2] , inverse problems [3] , parameter identification and

numerical solution of ordinary and partial differential equations [4,5] . 

Unfortunately, the numerical differentiation is an ill-conditioned problem due to the unboundedness of the differentiation 

operator, so, even small errors, in the function values, can yield large errors in the computed numerical derivative. However, 

due to its importance in the applied sciences, several methods have been proposed for the stable computation of first 

(and higher) order derivatives [6,7] ; for instance we mention: finite-difference approaches [8,9] ; kernel-based numerical 

differentiation methods [10] ; interpolation methods [11] ; random samplings for numerical differentiation in many variables 

[12] . A more detailed discussion on the stability issues of the numerical differentiation problem and possible regularization 

strategies can be found in [9,13–16] . 

In [9,17,18] , the numerical differentiation problem has been reformulated as a Volterra integral equation. More precisely, 

in [18] the numerical differentiation of functions specified by data affected by noise is regularized by the truncated singular 

value decomposition. In [17] the special case of periodic functions specified by finite noisy data is considered and a trun-

cated Fourier series technique is used to filter high frequency components of the spectral derivatives. Moreover, in [19] the
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derivatives of functions on an arbitrary interval are obtained by extending these functions to the whole real axis and regu-

larizing these extensions. In [20] the numerical differentiation problem is transformed into a Fredholm integral equation of 

the first kind and solved by the Galerkin method with a trigonometric basis. In [21] , the Legendre expansion is used for

computing numerical derivatives of a function from its noisy data and ill posedness is treated by combining Tikhonov reg- 

ularization with a new penalty term. In [22] , the numerical differentiation problem with noisy data is regularized by using

the Volterra integral equation. 

In this paper we propose a new method for the numerical differentiation. This method is based on the singular value

expansion (SVE) of the Volterra integral operator similar to the one considered in [9,17,18,22] , and the Fast Fourier Transform

(FFT) to approximate such an expansion. The resulting algorithm has been analysed in terms of the convergence rate and 

tested on some functions, by comparing the numerical results with those obtained by an extension of the Neville Algorithm 

implemented in the NAG library [23] . 

In Section 2 we describe the Volterra integral equation associated with the derivative problem and the corresponding 

SVE. In Section 3 the SVE of the Volterra integral operator and the FFT are used to define the method for the numerical

differentiation method, and an error estimation for this method is provided. In Section 4 we present two algorithms based

on the method introduced in Section 3 : FOD and NOD that approximate the first order and ν-order derivative, respectively,

of a given function in equidistant points. In Section 5 we describe the results of a numerical experiment with the proposed

algorithms. In Section 6 some observations and future developments are discussed. 

2. The SVE for the differentiation operator 

We reformulate the differentiation operator as a suitable Volterra integral equation of first kind and we describe its SVE. 

2.1. The general case 

Let ν ≥ 1 and f ( j) , j = 0 , . . . , ν , be the jth continuous derivative of f : [0 , 1] → R . Suppose that we already know or have

already calculated f ( j) (0) , j = 0 , . . . , ν − 1 . In [24] , it has been proved that v = f (ν) is the unique solution of the following

integral equation ∫ 1 

0 

K ν (x, y ) v (y ) dy = f (x ) −
ν−1 ∑ 

j=0 

f ( j) (0) 

j! 
x j , x ∈ [0 , 1] , (1) 

where 

K ν (x, y ) = 

{
(x −y ) ν−1 

(ν−1)! 
, 0 ≤ y < x ≤ 1 , 

0 , 0 ≤ x ≤ y ≤ 1 . 
(2) 

Let K ν be the integral operator associated to (2) , we call K ν the ν-order operator and Eq. (1) can be rewritten as 

K νv = g ν , (3) 

where g ν is the known function 

g ν (x ) = f (x ) −
ν−1 ∑ 

j=0 

f ( j) (0) 

j! 
x j , x ∈ [0 , 1] . (4) 

The knowledge of the second addendum in (4) is a natural assumption, in fact, when we compute the first derivative we

suppose to know f , moreover, when ν > 1 the procedure for the computation of the ν-derivative can be previously used to

compute f ( j) (0) , j = 0 , . . . , ν − 1 . So ultimately only the function values are required in the computation of f (ν) . 

In [25] the SVE of the kernel (2) has been computed and we briefly show these results below. Let μ0 ≥ μ1 ≥ . . . > 0 ,

be the singular values of K ν . We denote with u l and v l , l = 0 , 1 , . . . , the left-singular function and right-singular function,

respectively, associated with μl , then the SVE of K ν is 

K ν (x, y ) = 

∞ ∑ 

l=0 

μl u l (x ) v l (y ) , x, y ∈ [0 , 1] . (5) 

For k ∈ N , let ρ2 (k ) be the reminder of the division of k by 2. 

For q ∈ Z and γ ∈ R we define: 

θq = 

{
qπ
ν , if ν is even, 
(2 q +1) π

2 ν , if ν is odd, 

s q = sin ( θq ) , c q = cos ( θq ) , 

s 
(γ ) 

k,q 
= sin ( (k + 1) θq − γ s q ) , 

c 
(γ ) 

k,q 
= cos ( (k + 1) θq − γ s q ) , 
2 
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α(γ ) 
q = (−1) q e γ c q . 

The computation of the singular values and the singular functions of the ν-order operator can be obtained from the follow-

ing two theorems. 

Theorem 2.1. Let γl = 1 / ν
√ 

μl , where μl > 0 is a singular value of K ν . The singular functions corresponding to μl are 

u l (x ) = 

ν−ρ2 (ν) ∑ 

p=0 

e γl c p x 
(
C (u ) 

p cos (γl s p x ) + S (u ) 
p sin (γl s p x ) 

)
, x ∈ [0 , 1] , (6) 

v l (x ) = 

ν−ρ2 (ν) ∑ 

p=0 

e γl c p x 
(
C (v ) p cos (γl s p x ) + S (v ) p sin (γl s p x ) 

)
, x ∈ [0 , 1] , (7) 

where, for p = 0 , 1 , . . . , ν − ρ2 (ν) , the coefficients S (·) p , C 
(·) 
p ∈ R , are solutions of the followings: 

• if ν is odd 

S (u ) 
p = (−1) p C (v ) p , C (u ) 

p = (−1) p+1 S (v ) p , (8) 

ν−1 ∑ 

p=0 

α(γl ) 
p 

(
S (v ) p c 

(γl ) 

k,p 
+ C (v ) p s 

(γl ) 

k,p 

)
= 0 , k = 0 , 1 , . . . , ν − 1 , (9) 

ν−1 ∑ 

p=0 

(
C (v ) p c (0) 

k,p 
− S (v ) p s (0) 

k,p 

)
= 0 , k = 0 , 1 , . . . , ν − 1 ; (10) 

• if ν is even 

S (u ) 
0 

= S (u ) 
ν = S (v ) 

0 
= S (v ) ν = 0 , (11) 

S (u ) 
p = (−1) p S (v ) p , C (u ) 

p = (−1) p C (v ) p , (12) 

ν∑ 

p=0 

α(γl ) 
p 

(
C (v ) p c 

(γl ) 

k,p 
− S (v ) p s 

(γl ) 

k,p 

)
= 0 , k = 0 , 1 , . . . , ν − 1 , (13) 

ν∑ 

p=0 

(
C (v ) p c (0) 

k,p 
− S (v ) p s (0) 

k,p 

)
= 0 , k = 0 , 1 , . . . , ν − 1 . (14) 

Proof. See [25] . �

Theorem 2.2. Let M(γ ) ∈ R 

2 ν×2 ν be the coefficients matrix of linear system (9) - (10) when ν is odd or of linear system (13) - (14)

when ν is even. Let μl , l = 0 , 1 , . . . , be the singular values of K ν , then γ = γl = 1 / ν
√ 

μl are the positive zeros of 

h ν (γ ) = det ( M(γ ) ) , γ ∈ R . 

When ν = 1 we have 

h 1 (γ ) = − cos (γ ) . (15) 

Proof. See [25] . �
The Theorems 2.1 and 2.2 provide the formulas for the computation of the SVE of the ν-order operator. Therefore, from

standard arguments of mathematical analysis, the solution of (3) is given by 

f (ν) (x ) = 

∞ ∑ 

l=0 

1 

μ l 

〈 g ν , u l 〉 v l (x ) , x ∈ (0 , 1) , (16) 

where 〈 g ν , u l 〉 = 

∫ 1 
g ν (x ) u l (x ) dx . 
0 

3
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2.2. The case of first order derivative 

We restrict our attention to the case ν = 1 and the material discussed in the previous section is analysed for the first

derivative. 

The first derivative f ′ of f is the unique solution v = f ′ of the integral equation ∫ 1 

0 

K 1 (x, y ) v (y ) dy = f (x ) − f (0) , x ∈ [0 , 1] , (17) 

and K 1 : [0 , 1] × [0 , 1] → R is 

K 1 (x, y ) = 

{
0 , 0 ≤ x ≤ y ≤ 1 , 

1 , 0 ≤ y < x ≤ 1 . 
(18) 

From Theorem 2.2 , when ν = 1 , the singular values μl , l = 0 , 1 , . . . , are μl = 

1 
γl 

where γl is a zero of the function 

h 1 (γ ) = − cos (γ ) . (19) 

So 

γl = 

(
l + 

1 

2 

)
π, l = 0 , 1 , . . . , (20) 

μl = 

1 
γl 

, and the singular functions u l (x ) , v l (x ) , l = 0 , 1 , . . . , associated with the singular values μl are computed by using

Theorem 2.1 , that gives 

u l (x ) = 

√ 

2 sin (γl x ) , v l (x ) = 

√ 

2 cos (γl x ) . (21) 

From (16) , the derivative of f , that is the solution of (17) , is given by 

f ′ (x ) = 

∞ ∑ 

l=0 

γl 〈 g, u l 〉 v l (x ) , 0 < x < 1 , (22) 

where 

g(x ) = g 1 (x ) = f (x ) − f (0) . (23) 

2.3. The case of higher order derivatives 

The integral operator associated to the first order derivative can be used to factorize the integral operators of higher 

order derivatives. Here we report the relation between K 2 and K 1 , 

( K 2 φ) ( x ) = 

∫ 1 

0 

K 2 ( x, y ) φ( y ) dy = 

∫ x 

0 
( x − y ) φ( y ) dy = 

∫ x 

0 

(∫ x 

y 

φ( y ) dt 

)
dy = 

∫ x 

0 

(∫ t 

0 

φ( y ) dy 

)
dt = 

= 

∫ x 

0 
( K 1 φ) ( t ) dt = ( K 1 K 1 φ) ( x ) = 

(
K 

2 
1 φ

)
( x ) , 

and generally for ν ≥ 2 

K νφ = K 

ν
1 φ. 

Moreover from (17) for ν ≥ 1 we have 

K 1 f 
(ν) = f (ν−1) − f (ν−1) (0) , 

and from f (ν−1) we can compute f (ν) by using formula (22) with g(x ) = f (ν−1) (x ) − f (ν−1) (0) . Note that in the last formula

we assume f (0) = f . 

3. An FFT approach for the SVE computation in the case ν = 1 

For l, k, j ∈ Z , and h ∈ R , h > 0 , we define 

x k = 

(
k + 

1 

2 

)
h, (24) 

ξ j = jh, (25) 

c l,k = cos 

((
l + 

1 

2 

)(
k + 

1 

2 

)
πh 

)
, (26) 
4 
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s l,k = sin 

((
l + 

1 

2 

)(
k + 

1 

2 

)
πh 

)
, (27) 

˜ s l,k = sin 

((
l + 

1 

2 

)
kπh 

)
. (28) 

We note that the quantities given above depend on the choice of h , but in the remainder of this section we suppose that

h = 1 /n , for a given integer number n > 1 , and for l = 0 , . . . , n − 1 , and k ∈ Z , we have 

0 = ξ0 < x 0 < ξ1 < x 1 < ξ2 < . . . < ξn −1 < x n −1 < ξn = 1 , (29) 

√ 

2 c l,k = v l (x k ) = v k (x l ) , 
√ 

2 s l,k = u l (x k ) = u k (x l ) , (30) 

√ 

2 ̃

 s l,k = u l (ξk ) , ˜ s l, 0 = 0 , ˜ s l,n = (−1) l . (31) 

For l = 0 , 1 , . . . , we use the following notations 

g l,u = 〈 g, u l 〉 , g l, v = 〈 g, v l 〉 , (32) 

g (k ) 
l, v = 〈 g (k ) , v l 〉 , g (k ) 

l,u 
= 〈 g (k ) , u l 〉 , k ≥ 0 , (33) 

where for k = 0 we assume g (0) = g so that g (0) 
l, v = g l, v and g (0) 

l,u 
= g l,u . 

Proposition 3.1. For l = 0 , 1 , . . . , and k > 0 the following relations hold: 

γl g 
(k −1) 
l, v = g (k −1) (1) u l (1) − g (k ) 

l,u 
, (34) 

γl g 
(k −1) 
l,u 

= g (k −1) (0) v l (0) + g (k ) 
l, v . (35) 

Proof. They are simple consequences of the integration by parts formula. �
We note that from (35) and using the fact that g(0) = 0 (see formula (23) ) we have 

γl g l,u = g (1) 
l, v , l = 0 , 1 , . . . . (36) 

Let w = (w 0 , w 1 , . . . , w n −1 ) 
t ∈ R 

n and 

ˆ w k = 

√ 

2 

n 

n −1 ∑ 

l=0 

w l c l,k , k = 0 , 1 , . . . , n − 1 , (37) 

then ˆ w = ( ̂  w 0 , ˆ w 1 , . . . , ˆ w n −1 ) 
t ∈ R 

n is the discrete cosine transform of type 4 of w and we write 

ˆ w = DCT (4) ( w ) . 

Let z = (z 1 , z 2 , . . . , z n ) 
t ∈ R 

n and 

˜ z k = 

√ 

1 

n 

( 

2 

n −1 ∑ 

l=1 

z l ̃  s k,l + (−1) k z n 

) 

, k = 0 , 1 , . . . , n − 1 , (38) 

then ˜ z = ( ̃ z 0 , ̃  z 1 , . . . , ̃  z n −1 ) 
t ∈ R 

n is the discrete sine transform of type 3 of z and we write 

˜ z = DST (3) ( z ) . 

We note that DCT (4) is an involutory operator, that is DC T (4) 
(
DC T (4) ( w ) 

)
= w . Moreover, from (22) and (30) , for k =

0 , 1 , . . . , n − 1 , we have 

g ′ (x k ) = 

√ 

2 

∞ ∑ 

l=0 

γl g l,u c l,k , (39) 

and, by truncating the above series, we have the following approximation of g ′ (and hence of f ′ ) at x k , k = 0 , 1 , . . . , n − 1 , 

(g ′ (x 0 ) , g 
′ (x 1 ) , . . . , g 

′ (x n −1 )) 
t ≈ DCT (4) ( 

√ 

n g ′ v ) , (40) 

where 

g ′ = (γ0 g 0 ,u , γ1 g 1 ,u , . . . , γn −1 g n −1 ,u ) 
t ∈ R 

n . (41) 
v 

5 
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In order to explain the above used notation g ′ v , we note that, from (36) , we have 

g ′ v = (g (1) 
0 , v , g 

(1) 
1 , v , . . . , g 

(1) 
n −1 , v ) 

t = (〈 g ′ , v 0 〉 , 〈 g ′ , v 1 〉 , . . . , 〈 g ′ , v n −1 〉 ) t . 
The proposed method consists in the use of the discrete sine transform of type 3 to compute an approximation g p v of g ′ v 
and then compute an approximation g p of (g ′ (x 0 ) , g 

′ (x 1 ) , . . . , g 
′ (x n −1 )) 

t from (40) . More precisely, 

g p = (g p 
0 
, g p 

1 
, . . . , g p 

n −1 
) t = DCT (4) ( 

√ 

n g p v ) , (42) 

where g p v = (g 
p 
0 , v , g 

p 
1 , v , . . . , g 

p 
n −1 , v ) 

t ∈ R 

n and for l = 0 , 1 , . . . , n − 1 , 

g p 
l, v = 

√ 

2 

24 

[√ 

n (DST (3) ( g )) l (27 s l, 0 − s l, 1 ) + c l, 0 (−5 g 1 + 4 g 2 − g 3 )+ 

+ c l,n −1 (g n −3 − 4 g n −2 + 7 g n −1 − 4 g n ) 
]

(43) 

where g = (g 1 , . . . , g n ) 
t = (g(ξ1 ) , . . . , g(ξn )) 

t ∈ R 

n are the data at equispaced points. We remind that g 0 = g(0) = 0 and g n =
g(ξn ) = g(1) . 

The following theorem shows a convergence result for the quantities defined in formulas (42) and (43) . 

Theorem 3.2. For k = 0 , 1 , . . . , n − 1 , g 
p 

k 
, given in (42) , is an approximation of g ′ (x k ) , in particular for a sufficiently regular

function g we have 

g ′ (x k ) − g p 
k 

= O(h 

4 ) , h → 0 . (44) 

Proof. From (43) , by adding and subtracting appropriate quantities and observing that c l,n −1 = −c l,n and g(ξ0 ) = 0 , we

have 

g p 
l, v = 

√ 

2 

24 

[ √ 

n (DST (3) ( g )) l (27 s l, 0 − s l, 1 ) + 

+ 

(
− 23 g(ξ0 ) + 21 g(ξ1 ) + 3 g(ξ2 ) − g(ξ3 ) − 26 g(ξ1 ) + g(ξ2 ) 

)
c l, 0 −

+ 

(
g(ξn −3 ) − 3 g(ξn −2 ) − 21 g(ξn −1 ) + 23 g(ξn ) − g(ξn −2 ) + 

+27 g(ξn −1 ) − 27 g(ξn ) 
)

c l,n −1 − g(ξn −1 ) c l,n 

] 
. (45) 

From Taylor expansion, we have 

−23 g(ξ0 ) + 21 g(ξ1 ) + 3 g(ξ2 ) − g(ξ3 ) = 24 h ̃

 g p 
0 
, (46) 

g(ξn −3 ) − 3 g(ξn −2 ) − 21 g(ξn −1 ) + 23 g(ξn ) = 24 h ̃

 g p 
n −1 

, (47) 

where 

˜ g p 
0 

= g ’ ( x 0 ) + O 

(
h 

4 
)
, ˜ g p 

n −1 
= g ’ ( x n −1 ) + O 

(
h 

4 
)
, h → 0 , (48) 

in particular ˜ g 
p 
0 

and ˜ g 
p 
n −1 

are approximations of g ′ at x 0 and x n −1 , respectively. By substituting (46) and (47) into expression

(45) and using (38) , we obtain 

g p 
l, v = 

√ 

2 

n 

[ 
˜ g p 

0 
c l, 0 + 

˜ g p 
n −1 

c l,n −1 + 

+ 

n 

24 

[ 
− 26 g(ξ1 ) c l, 0 + g(ξ2 ) c l, 0 + 

√ 

n (DST (3) ( g )) l 
(
27 s l, 0 − s l, 1 

)
+ 

−g(ξn −2 ) c l,n −1 + g(ξn −1 )(27 c l,n −1 − c l,n ) − 27 g(ξn ) c l,n −1 

] ] 
= 

= 

√ 

2 

n 

[
˜ g p 

0 
c l, 0 + 

˜ g p 
n −1 

c l,n −1 + 

+ 

n 

24 

[ 
− 2 

n −1 ∑ 

k =1 

g(ξk ) ̃  s l,k s l, 1 − g(ξn ) ̃  s l,n s l, 1 + 

+ g(ξ1 ) c l, 0 + g(ξ2 ) c l, 0 − g(ξn −2 ) c l,n −1 − g(ξn −1 ) c l,n 

] 
+ 

+ 

27 n 

24 

[ 
2 

n −1 ∑ 

k =1 

g(ξk ) ̃  s l,k s l, 0 + g(ξn ) ̃  s l,n s l, 0 + 
6
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−g(ξ1 ) c l, 0 + g(ξn −1 ) c l,n −1 − g(ξn ) c l,n −1 

] ]
. 

By substituting in the above identity the following relations 

c l,k +1 − c l,k −2 = −2 ̃

 s l,k s l, 1 , 

c l,k −1 − c l,k = 2 ̃

 s l,k s l, 0 , 

c l, −1 = c l, 0 , 

c l,n −2 = 

˜ s l,n s l, 1 , 

c l,n −1 = 

˜ s l,n s l, 0 , 

˜ s l,n = (−1) l , ˜ s l, 0 = 0 , 

we obtain 

g p 
l, v = 

√ 

2 

n 

[
˜ g p 

0 
c l, 0 + 

˜ g p 
n −1 

c l,n −1 + 

+ 

n 

24 

[ n −1 ∑ 

k =1 

g(ξk ) 
(
c l,k +1 − c l,k −2 

)
− g(ξn ) c l,n −2 + 

+ g(ξ1 ) c l, 0 + g(ξ2 ) c l, 0 − g(ξn −2 ) c l,n −1 − g(ξn −1 ) c l,n 

] 
+ 

+ 

27 n 

24 

[ n −1 ∑ 

k =1 

g(ξk ) 
(
c l,k −1 − c l,k 

)
+ g(ξn ) c l,n −1 + 

−g(ξ1 ) c l, 0 + g(ξn −1 ) c l,n −1 − g(ξn ) c l,n −1 

] ]
= 

= 

√ 

2 

n 

[
˜ g p 

0 
c l, 0 + 

˜ g p 
n −1 

c l,n −1 + 

+ 

n 

24 

[ n −2 ∑ 

k =1 

(
g(ξk −1 ) − 27 g(ξk ) + 27 g(ξk +1 ) − g(ξk +2 ) 

)
c l,k 

] ]
= 

= 

1 √ 

n 

(
DCT (4) 

(
˜ g p 

))
l 
, (49) 

where for k = 1 , 2 , . . . , n − 2 , we have defined ˜ g 
p 

k 
such that 

24 h ̃

 g p 
k 

= g(ξk −1 ) − 27 g(ξk ) + 27 g(ξk +1 ) − g(ξk +2 ) , (50) 

and from the Taylor expansion of g we can prove that 

˜ g p 
k 

= g ′ (x k ) + O(h 

4 ) h → 0 . (51) 

Given the vector 

˜ g p = ( ̃  g p 
0 
, ̃  g p 

1 
, . . . , ̃  g p 

n −1 
) ∈ R 

n , 

whose components are defined in (46), (47) and (50) , identity (49) becomes 

g p v = 

1 √ 

n 

DCT (4) 
(

˜ g p 
)
. (52) 

Finally, from (42), (48), (51) and (52) and the involutory property of DCT (4) we have for k = 0 , 1 , . . . , n − 1 , 

g ′ (x k ) − g p 
k 

= g ′ (x k ) −
(
DCT (4) 

(√ 

n g p v 

))
k 

= 

= g ′ (x k ) −
(
DC T (4) 

(
DC T (4) 

(
˜ g p 

)))
k 

= 

= g ′ (x k ) − ˜ g p 
k 

= O(h 

4 ) , h → 0 , (53) 

and this completes the proof. �

4. The algorithms for numerical differentiation 

We describe two algorithms based on the method presented in the previous section: the algorithm FOD computes the 

first order numerical derivative of a function by knowing its values in equally spaced points of a closed interval [ a, b] ; the
7 



N. Egidi, J. Giacomini, P. Maponi et al. Applied Mathematics and Computation 445 (2023) 127856 

Table 1 

The absolute errors e f and e l at the extreme points of the computed first derivative. 

h f 1 f 2 
e f e l E ∞ e f e l E ∞ 

4.00(-2) 6.18(-5) 9.92(-6) 1.20(-6) 1.33(-4) 7.66(-4) 1.07(-5) 

2.00(-2) 7.93(-6) 1.12(-6) 7.53(-8) 1.54(-5) 9.92(-5) 6.69(-7) 

1.00(-2) 9.98(-7) 1.32(-7) 4.71(-9) 1.84(-6) 1.26(-5) 4.18(-8) 

5.00(-3) 1.24(-7) 1.61(-8) 2.94(-10) 2.26(-7) 1.58(-6) 2.62(-9) 

2.50(-3) 1.56(-8) 1.98(-9) 1.85(-11) 2.80(-8) 1.98(-7) 1.64(-10) 

1.25(-3) 1.95(-9) 2.45(-10) 1.38(-12) 3.48(-9) 2.48(-8) 1.07(-11) 

6.25(-4) 2.44(-10) 3.07(-11) 4.01(-13) 4.34(-10) 3.10(-9) 3.04(-12) 

 

 

 

 

 

 

 

 

 

 

 

 

algorithm NOD computes the numerical derivative of order ν ≥ 1 of a function defined on [ a, b] . In particular, the algorithm

NOD , on the basis of the discussion of Section 2.3 , iteratively applies the algorithm FOD . 

The first algorithm is based on Theorem 3.2 and computes the first derivative of a function f (x ) , x ∈ [ a, b] . It requires

the knowledge of f j = f (a + ξ j ) , j = 0 , 1 , . . . , n , where h = (b − a ) /n , and computes the approximations of f ′ (a + x j ) , j =
0 , 1 , . . . , n − 1 . 

For later convenience, we define the following sequences. Given n, h, ν > 0 , we define 

x ( 
i ) 

k 
= h 

(
k + 

i 

2 

)
, k = 0 , 1 , · · · , n − i, i = 1 , 2 , · · · , ν, (54) 

ξ ( i ) 
j 

= h 

(
j + 

i − 1 

2 

)
, j = 0 , 1 , · · · , n − i + 1 , i = 1 , 2 , · · · , ν, (55) 

we note that x (1) 
k 

= x k and ξ (1) 
j 

= ξ j . 

The second algorithm computes the ν-order derivative of a function f on [ a, b] . In particular, from the knowledge of

f j = f (a + ξ j ) , j = 0 , 1 , . . . , n , n > 0 , h = (b − a ) /n , it computes the approximations of f (ν) 
(

a + x (ν) 
k + d(ν−1) 

)
, k = 0 , 1 , . . . , m − 1 ,

where m = n − ν − 2 d(ν − 1) + 1 and d is a non-negative integer defining the number of boundary values of the intermedi- 

ate derivatives that are not used in the computation of the next order derivative. Indeed, we have found that the derivatives

at the boundary points have a slightly higher error than the ones in the interior points, so the choice d ≈ 1 , 2 , avoids the

propagation of such errors obtained at the boundary points. Note that, the numerical experiments reported in the next 

section give an evidence of this fact. 

In particular, when d = 0 this algorithm computes the approximations D 

(ν) 
k 

≈ f (ν) 
(

a + x (ν) 
k 

)
, k = 0 , 1 , . . . , n − ν . 

5. Numerical results 

We describe the results obtained in a numerical experiment with Algorithm NOD , where we have considered the follow- 

ing functions 

f 1 (x ) = 

1 

1 + x 2 
, x ∈ [0 , 1] , (56) 

f 2 (x ) = cos 
(
(1 + x ) 2 

)
, x ∈ [0 , 1] , (57) 

f 3 (x ) = (x 3 − 1) e x sin x cos (x − 3) cos (x 2 + 2 x + 1) , x ∈ [0 , 1] . (58) 

Their derivatives of order ν = 1 , 2 , 5 , 6 have been computed by using a FORTRAN implementation of Algorithm NOD , with

different choices of h = 1 /n , n = 25 , 50 , 10 0 , 20 0,40 0,80 0,160 0, and d = 1 . The results have been compared with the ones

obtained by an extension of the Neville Algorithm [26] implemented in the routine D04AAF of the NAG Library [23] . In

particular, f 1 and f 2 have been used to compare the accuracy of these algorithms, instead f 1 and f 3 to compare their

computational cost. 

The NAG Fortran Compiler Release 6.2 [27] has been used and the experiment has been performed in a Workstation 

equipped with an Intel(R) Xeon(R) CPU E5-2620 v3 @2.40GHz, operative system Red Hat Enterprise Linux, release 7.5. 

The numerical results are reported in Tables 1–12 , where x (e ) denotes x · 10 e ∈ R . In these tables, we have considered E 2 
the mean squared error, E r the 2-norm relative error and E ∞ 

the infinity norm error. These errors have been computed by

using the computed numerical derivatives and the corresponding exact values of the derivatives, but the values at the two 

boundary points are not considered in this computation, because Algorithms FOD and NOD have a bad performance at these 

extreme points. 
8 
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Table 2 

The numerical test for the rate of convergence of the method. 

h f 1 f 2 
E 2 /h 4 E r /h 4 E ∞ /h 4 E 2 /h 4 E r /h 4 E ∞ /h 4 

4.00(-2) 2.55(-1) 4.73(-1) 4.69(-1) 2.49( + 0) 1.25( + 0) 4.18( + 0) 

2.00(-2) 2.51(-1) 4.69(-1) 4.71(-1) 2.46( + 0) 1.23( + 0) 4.18( + 0) 

1.00(-2) 2.48(-1) 4.67(-1) 4.71(-1) 2.44( + 0) 1.21( + 0) 4.18( + 0) 

5.00(-3) 2.47(-1) 4.66(-1) 4.70(-1) 2.43( + 0) 1.20( + 0) 4.19( + 0) 

2.50(-3) 2.47( + 0) 4.66(-1) 4.73(-1) 2.43( + 0) 1.20( + 0) 4.20( + 0) 

1.25(-3) 2.49(-1) 4.71(-1) 5.65(-1) 2.43( + 0) 1.20( + 0) 4.38( + 0) 

6.25(-4) 1.39( + 0) 2.63( + 0) 4.82( + 0) 5.90( + 0) 2.92( + 0) 2.00( + 1) 

Table 3 

The errors with respect to h in the computation of the first derivative of f 1 . 

h NOD D 04 AAF NOD D 04 AAF NOD D 04 AAF 

E 2 E 2 E r E r E ∞ E ∞ 

4.00(-2) 6.52(-7) 1.87(-7) 1.21(-6) 3.47(-7) 1.20(-6) 4.51(-7) 

2.00(-2) 4.01(-8) 2.74(-11) 7.50(-8) 5.12(-11) 7.53(-8) 7.16(-11) 

1.00(-2) 2.48(-9) 5.44(-15) 4.67(-9) 1.02(-14) 4.71(-9) 2.09(-14) 

5.00(-3) 1.54(-10) 5.95(-15) 2.91(-10) 1.12(-14) 2.94(-10) 1.80(-14) 

2.50(-3) 9.63(-11) 1.19(-14) 1.82(-11) 2.24(-14) 1.85(-11) 4.77(-14) 

1.25(-3) 6.09(-13) 1.85(-14) 1.15(-12) 3.49(-14) 1.38(-12) 1.12(-13) 

6.25(-4) 2.12(-13) 3.78(-14) 4.01(-13) 7.14(-14) 7.35(-13) 1.83(-13) 

Table 4 

The errors with respect to h in the computation of the second derivative of f 1 . 

h NOD D 04 AAF NOD D 04 AAF NOD D 04 AAF 

E 2 E 2 E r E r E ∞ E ∞ 

4.00(-2) 5.84(-6) 3.10(-7) 6.58(-6) 3.50(-7) 1.10(-5) 7.58(-7) 

2.00(-2) 4.07(-7) 4.51(-11) 4.25(-7) 4.70(-11) 9.73(-7) 1.18(-10) 

1.00(-2) 2.69(-8) 2.66(-13) 2.72(-8) 2.68(-13) 6.58(-8) 5.84(-13) 

5.00(-3) 1.73(-9) 1.05(-12) 1.72(-9) 1.04(-12) 4.18(-9) 2.92(-12) 

2.50(-3) 1.17(-10) 3.51(-12) 1.15(-10) 3.47(-12) 3.82(-10) 1.36(-11) 

1.25(-3) 1.48(-10) 1.46(-11) 1.46(-10) 1.44(-11) 5.22(-10) 5.91(-11) 

6.25(-4) 6.87(-10) 4.00(-11) 6.75(-10) 3.93(-11) 2.12(-9) 1.90(-10) 

Table 5 

The errors with respect to h in the computation of the derivative of order 5 of f 1 . 

h NOD D 04 AAF NOD D 04 AAF NOD D 04 AAF 

E 2 E 2 E r E r E ∞ E ∞ 

4.00(-2) 4.88(-3) 2.70(-2) 1.05(-4) 5.79(-4) 6.64(-2) 4.91(-2) 

2.00(-2) 4.81(-4) 5.40(-5) 8.45(-6) 9.50(-7) 1.21(-3) 1.39(-4) 

1.00(-2) 4.06(-5) 2.95(-7) 7.28(-7) 5.28(-9) 1.25(-4) 9.17(-7) 

5.00(-3) 7.57(-4) 2.34(-6) 1.40(-5) 4.31(-8) 2.03(-3) 7.67(-6) 

2.50(-3) 2.61(-2) 8.39(-5) 4.89(-4) 1.57(-6) 6.32(-2) 5.12(-4) 

1.25(-3) 7.47(-1) 2.09(-3) 1.41(-2) 3.94(-5) 2.93(0) 1.75(-2) 

6.25(-4) 2.99(1) 9.55(-3) 5.68(-1) 1.81(-4) 1.01( + 2) 6.59(-2) 

 

 

 

 

 

 

 

 

 

The behaviour of Algorithm FOD at the extreme points can be evaluated in Table 1 . This table reports the infinity error at

the inner points E ∞ 

(also given in the other tables) and the values of the absolute errors e f and e l at the extreme points x 0 
and x n −1 , respectively, only for the first derivatives of f 1 and f 2 , computed with Algorithm FOD . Of course, similar problems

also occur with Algorithm NOD for higher order derivatives. 

In Table 2 we have reported the ratio of the errors to h 4 for the functions f i , i = 1 , 2 . These results confirm the rate of

convergence O(h 4 ) of the proposed method, given in Theorem 3.2 , when h is taken in an appropriate interval. 

From the Tables 3–10 we can observe that both the routines D04AAF and NOD give satisfactory results, even if D04AAF

performs slightly better than Algorithm NOD except for the function f 1 with ν = 5 , 6 and h = 0 . 04 . However, this slight

higher accuracy of the NAG routine may be explained by the information used in the computation, indeed NOD uses only the

tabulated points with step size h , while D04AAF uses 21 function values around each one of the tabulated points. Moreover,

this preliminary version of the NOD implementation does not consider any adaptation strategy such as for instance an 

optimal step size procedure based on an error evaluation method. 

The computational costs of the proposed algorithm NOD and of the NAG routine D04AAF are reported in Tables 11 –12 ,

where we have considered only the first derivative of functions f and f . From these tables we can see that for a high
1 3 
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Table 6 

The errors with respect to h in the computation of the derivative of order 6 of f 1 . 

h NOD D 04 AAF NOD D 04 AAF NOD D 04 AAF 

E 2 E 2 E r E r E ∞ E ∞ 

4.00(-2) 5.24(-2) 1.18(-1) 1.72(-4) 3.85(-4) 1.05(-1) 1.91(-1) 

2.00(-2) 5.24(-3) 3.57(-4) 2.23(-5) 1.52(-6) 1.07(-2) 9.88(-4) 

1.00(-2) 5.26(-3) 9.38(-5) 2.09(-5) 3.73(-7) 1.25(-2) 4.03(-4) 

5.00(-3) 3.41(-1) 3.28(-3) 1.23(-3) 1.19(-5) 8.58(-1) 2.07(-2) 

2.50(-3) 2.34( + 1) 3.25(-1) 8.08( + 0) 1.12(-3) 5.79( + 1) 1.82( + 0) 

1.25(-3) 1.33( + 3) 3.50(-1) 4.48( + 0) 1.18(-3) 5.39( + 3) 2.77( + 0) 

6.25(-4) 1.08( + 5) 1.77( + 1) 3.60( + 2) 5.93(-2) 3.61( + 5) 9.01( + 1) 

Table 7 

The errors with respect to h in the computation of the first derivative of f 2 . 

h NOD D 04 AAF NOD D 04 AAF NOD D 04 AAF 

E 2 E 2 E r E r E ∞ E ∞ 

4.00(-2) 6.38(-6) 3.96(-8) 3.19(-6) 1.98(-8) 1.07(-5) 1.20(-7) 

2.00(-2) 3.94(-7) 2.12(-12) 1.96(-7) 1.05(-12) 6.69(-7) 7.26(-12) 

1.00(-2) 2.44(-8) 6.25(-15) 1.21(-8) 3.10(-15) 4.18(-8) 2.93(-14) 

5.00(-3) 1.52(-9) 1.45(-14) 7.52(-10) 7.15(-15) 2.62(-9) 6.17(-14) 

2.50(-3) 9.48(-11) 3.44(-14) 4.68(-11) 1.70(-14) 1.64(-10) 9.64(-14) 

1.25(-3) 5.93(-12) 5.46(-14) 2.93(-12) 2.69(-14) 1.07(-11) 2.56(-13) 

6.25(-4) 9.01(-13) 1.23(-13) 4.45(-13) 6.07(-14) 3.05(-12) 5.32(-13) 

Table 8 

The errors with respect to h in the computation of the second derivative of f 2 . 

h NOD D 04 AAF NOD D 04 AAF NOD D 04 AAF 

E 2 E 2 E r E r E ∞ E ∞ 

4.00(-2) 4.02(-5) 2.79(-8) 5.24(-6) 3.64(-9) 6.04(-5) 6.91(-8) 

2.00(-2) 2.77(-6) 2.12(-12) 3.48(-7) 2.67(-13) 6.69(-6) 5.36(-12) 

1.00(-2) 1.86(-7) 1.22(-12) 2.31(-8) 1.52(-13) 5.15(-7) 5.43(-12) 

5.00(-3) 1.21(-8) 3.49(-12) 1.50(-9) 4.31(-13) 3.52(-8) 9.21(-12) 

2.50(-3) 7.84(-10) 9.37(-12) 9.69(-10) 1.16(-12) 2.42(-9) 3.31(-11) 

1.25(-3) 5.54(-10) 4.34(-11) 6.84(-11) 5.36(-12) 1.69(-9) 2.18(-10) 

6.25(-4) 2.78(-9) 1.06(-10) 3.43(-10) 1.31(-11) 7.98(-9) 6.17(-10) 

Table 9 

The errors with respect to h in the computation of the derivative of order 5 of f 2 . 

h NOD D 04 AAF NOD D 04 AAF NOD D 04 AAF 

E 2 E 2 E r E r E ∞ E ∞ 

4.00(-2) 1.52(-2) 4.69(-3) 3.14(-5) 9.70(-6) 1.90(-2) 1.32(-2) 

2.00(-2) 8.36(-4) 2.90(-6) 1.54(-6) 5.35(-9) 1.52(-3) 6.76(-6) 

1.00(-2) 1.16(-4) 1.65(-7) 2.14(-7) 3.05(-10) 3.63(-4) 8.58(-7) 

5.00(-3) 2.83(-3) 9.88(-6) 5.33(-6) 1.86(-8) 8.61(-3) 3.98(-5) 

2.50(-3) 7.43(-2) 2.21(-4) 1.42(-4) 4.22(-7) 1.95(-1) 6.93(-4) 

1.25(-3) 2.96( + 0) 3.29(-3) 5.69(-3) 6.33(-6) 8.58( + 0) 3.66(-2) 

6.25(-4) 1.27( + 2) 5.91(-2) 2.44(-1) 1.14(-4) 3.25( + 2) 1.65(-1) 

 

 

 

 

 

 

 

number of derivative computations the proposed algorithm has a lower computational cost than Neville’s one. The different 

computational efficiency is more evident when the function tabulation has a high cost, as in the case of f 3 . 

Ultimately, the proposed algorithm shows similar performance of D04AAF routine, despite this NAG routine is robust, 

documented and well tested. These results bode well for the development of a scientific software that outperforms also the 

efficient routines of NAG library. 

The proposed procedure can easily be generalised to functions F : [0 , 1] s → R , with s ≥ 2 . For example, for s = 2 the input

is a matrix F ∈ R 

(n +1) ×(n +1) containing the values of F at (ξi , ξ j ) , i, j = 0 , 1 , . . . , n, and using FOD with input a = 0 , b = 1 and

f = F (: , j) , we obtain D whose components are approximations of F ′ x (x i , ξ j ) , i = 0 , 1 , . . . , n − 1 . Similar considerations can be

done for other derivatives or an higher dimension of the domain of F . So that, in order to show the performances of our

proposed method when s ≥ 2 , we chose s = 2 and we reported in Table 13 the infinity norm of errors obtained by using this

generalisation to compute, F ′ x , F 
′ 

y and F ′′ yy where F (x, y ) = f 2 (xy + x ) . As in one-dimensional case, these errors are computed

only in the inner nodes and the results have the same behaviours observed for functions with one input. Hence the number

of inputs of a function does not affect the accuracy of the calculated derivatives. 
10 
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Table 10 

The errors with respect to h in the computation of the derivative of order 6 of f 2 . 

h NOD D 04 AAF NOD D 04 AAF NOD D 04 AAF 

E 2 E 2 E r E r E ∞ E ∞ 

4.00(-2) 5.34(-2) 4.12(-3) 2.46(-5) 1.90(-6) 8.88(-2) 6.51(-3) 

2.00(-2) 8.18(-3) 1.29(-5) 4.78(-6) 7.57(-9) 2.09(-2) 3.67(-5) 

1.00(-2) 2.10(-2) 4.64(-5) 1.22(-5) 2.71(-8) 6.53(-2) 2.20(-4) 

5.00(-3) 1.29( + 0) 1.07(-2) 6.87(-4) 5.69(-6) 3.95( + 0) 7.73(-2) 

2.50(-3) 6.65( + 1) 5.23(-1) 3.31(-2) 2.60(-4) 1.67( + 2) 3.26( + 0) 

1.25(-3) 5.31( + 3) 9.33(-1) 2.55( + 0) 4.47(-4) 1.55( + 4) 2.66( + 0) 

6.25(-4) 4.62( + 5) 4.76( + 1) 2.17( + 2) 2.24(-2) 1.16( + 6) 1.75( + 2) 

Table 11 

The computational cost, in seconds, for computing the first derivative of f 1 with FOD and D04AAF. 

h F OD D 04 AAF 

4.00(-2) 1.01(-3) 3.30(-5) 

2.00(-2) 2.66(-4) 5.60(-5) 

1.00(-2) 2.82(-4) 7.50(-5) 

5.00(-3) 4.01(-4) 1.90(-4) 

2.50(-3) 4.23(-4) 3.08(-4) 

1.25(-3) 5.70(-4) 8.16(-4) 

6.25(-4) 8.24(-4) 1.24(-3) 

Table 12 

The computational cost, in seconds, for computing the first derivative of f 3 with FOD and D04AAF. 

h F OD D 04 AAF 

4.00(-2) 2.60(-4) 1.01(-4) 

2.00(-2) 2.76(-4) 1.72(-4) 

1.00(-2) 2.93(-4) 3.18(-4) 

5.00(-3) 4.23(-4) 7.83(-4) 

2.50(-3) 4.52(-4) 1.22(-3) 

1.25(-3) 6.52(-4) 2.44(-3) 

6.25(-4) 1.10(-3) 5.10(-3) 

Table 13 

The infinity norm of errors with respect to h in the computation of F ′ x , F 
′ 

y and F ′′ yy where F (x, y ) = f 2 (xy + x ) . 

h F OD F OD NOD 

F ′ x F ′ y F ′′ yy 

4.00(-2) 1.07(-5) 3.35(-7) 1.67(-6) 

2.00(-2) 6.69(-7) 2.09(-8) 1.29(-7) 

1.00(-2) 4.18((-8) 1.31(-9) 8.79(-9) 

5.00(-3) 2.62(-9) 8.17(-11) 5.82(-10) 

2.50(-3) 1.63(-10) 5.19(-12) 3.37(-10) 

1.25(-3) 1.07(-11) 7.11(-13) 1.10(-9) 

6.25(-4) 3.05(-12) 1.93(-12) 5.59(-9) 

 

 

 

 

 

 

 

 

 

 

 

Finally, in order to numerically verify the robustness of the proposed method, we added to the input vector f a random

error ε(δ) whose components were uniformly distributed in [ −δ, δ] with δ = 10 e , e = −14 , −13 , . . . , −1 . We computed, with

FOD, the first derivative and the ratio between the relative error of the computed derivative and the relative error of the

data, with respect to the infinity norm, we repeated this procedure 10 times and we denoted with K(δ) the means of these

ratios. In the vertical axes of Fig. 1 , it is reported the values K(δ) obtained with the above described procedure, when

we use FOD with h = 1 . 25 · 10 −3 to numerically compute f ′ 1 when the data are contaminated with a reference error level

δ = 10 e , and e = −14 , −13 , . . . , −1 . From this graph we can say that the conditional number of the proposed algorithm is

approximated by 2704 (equal to the mean of the values K(10 e ) represented in Fig. 1 ). For different choices of f and of h

we obtained similar behaviours, in particular, the computed conditional number when h = 4 · 10 −2 is 70.8. These numerical

tests prove the robustness of the proposed algorithm. 

6. Conclusions 

We have proposed a method to compute the numerical derivatives of a function known at equispaced points. The pro- 

posed method uses the FFT and the singular value expansion of the Volterra integral operator associated to the ν-derivative

operator. The use of the FFT is justified by the particular form of the singular functions. Two algorithms based on the pro-
11 
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Fig. 1. The mean values K(δ) obtained with FOD with h = 1 . 25 · 10 −3 in the computation of f ′ 1 when the data are contaminated with a reference error 

level δ = 10 e , the exponent e is represented in the horizontal axes. 

Algorithm 1 (First order derivative) FOD 

(
a, b, n, f , D 

)
Gi ven n ∈ N , n > 0 , h = (b − a ) /n , and f = ( f 0 , f 1 , . . . , f n ) ∈ R 

n +1 , 

where f j = f (a + ξ j ) , j = 0 , 1 , . . . , n , compute D = ( D 0 , D 1 , . . . , D n −1 ) ∈ R 

n , containing the approximation D j ≈ f ′ (a + x j ) , 

j = 0 , 1 , . . . , n − 1 . 

Construct the vector g ∈ R 

n , where its components are g j = f j − f 0 , j = 1 , . . . , n 

for l = 0 , . . . , n − 1 do 

Compute the quantity g 
p 

l, v by using formula (43) 

end for 

for k = 0 , . . . , n − 1 do 

Compute g 
p 

k 
by using formula (42) 

Compute D k = 

g 
p 
k 

b−a 
end for 

return D 

Algorithm 2 ( ν-order derivative) NOD 

(
a, b, n, d, f , D 

(ν) 
, ν

)
Given n ∈ N , n > 0 , h = (b − a ) /n , m = n − ν − 2 d(ν − 1) + 1 , and 

f = ( f 0 , f 1 , . . . , f n ) ∈ R 

n +1 , where f j = f (a + ξ j ) , j = 0 , 1 , . . . , n , compute D 

(ν) = ( D 0 , D 1 , . . . , D m −1 ) ∈ R 

m , containing the ap- 

proximations D k ≈ f (ν) 
(

a + x (ν) 
k + d(ν−1) 

)
, k = 0 , 1 , . . . , m − 1 . 

Let D 

(0) = f ∈ R 

n +1 

for l = 1 , 2 , . . . , ν do 

m = n − l + 1 ;
Compute D 

(l) ∈ R 

m by FOD 

(
ξ (l) 

d(l−1) 
, ξ (l) 

m + d(l−1) 
, m, D 

(l−1) 
, D 

(l) 
)
. 

if l < ν then 

delete from D 

(l) the first d components and the last d components 

set n = n − 2 d 

end if 

end for 

return D 

(ν) 
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posed method have been given and implemented for functions f defined on a closed interval [ a, b] : the algorithm FOD to

compute the first derivative f ′ ; the algorithm NOD to compute the derivative f (ν) of order ν ≥ 1 . The rate of convergence

of the method has been proved and numerically validated. The numerical results obtained with the proposed method have 

been compared with the ones obtained by an extension of the Neville Algorithm implemented in the routine D04AAF of the

NAG library. Despite the routine D04AAF is a robust, documented and tested numerical algorithm, the proposed algorithm 

has shown similar performance. Moreover, when the derivatives are required for a high number of points, the proposed 

algorithm has a lower computational cost than the one of D04AAF. 

The promising results obtained in this paper motivate further studies of the proposed method to obtain a state of the art

procedure for the numerical differentiation. Other interesting problems are the application of this method to the solution of 

differential equations, the numerical differentiation from scattered and/or multivariate data as well as the stability analysis 

and the corresponding stabilization techniques to deal with noisy function values. Moreover, the main improvements of the 

method can arise from: higher integration formulas than formula (43) ; an automatic selection of the optimal step size h to

use in the computation; the joint use of the operator K in (1) - (2) and of its adjoint operator. Further improvements relate

to the refinement of the algorithm for the first order derivative and a direct use of the SVE, of the corresponding operator,

for the computation of the derivatives of order ν > 1 . 

Data availability 

Data will be made available on request. 
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